Merge remote-tracking branches 'regmap/topic/devm-irq', 'regmap/topic/doc', 'regmap...
[sfrench/cifs-2.6.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/kthread.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37
38 enum scan_result {
39         SCAN_FAIL,
40         SCAN_SUCCEED,
41         SCAN_PMD_NULL,
42         SCAN_EXCEED_NONE_PTE,
43         SCAN_PTE_NON_PRESENT,
44         SCAN_PAGE_RO,
45         SCAN_NO_REFERENCED_PAGE,
46         SCAN_PAGE_NULL,
47         SCAN_SCAN_ABORT,
48         SCAN_PAGE_COUNT,
49         SCAN_PAGE_LRU,
50         SCAN_PAGE_LOCK,
51         SCAN_PAGE_ANON,
52         SCAN_PAGE_COMPOUND,
53         SCAN_ANY_PROCESS,
54         SCAN_VMA_NULL,
55         SCAN_VMA_CHECK,
56         SCAN_ADDRESS_RANGE,
57         SCAN_SWAP_CACHE_PAGE,
58         SCAN_DEL_PAGE_LRU,
59         SCAN_ALLOC_HUGE_PAGE_FAIL,
60         SCAN_CGROUP_CHARGE_FAIL
61 };
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/huge_memory.h>
65
66 /*
67  * By default transparent hugepage support is disabled in order that avoid
68  * to risk increase the memory footprint of applications without a guaranteed
69  * benefit. When transparent hugepage support is enabled, is for all mappings,
70  * and khugepaged scans all mappings.
71  * Defrag is invoked by khugepaged hugepage allocations and by page faults
72  * for all hugepage allocations.
73  */
74 unsigned long transparent_hugepage_flags __read_mostly =
75 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
76         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
77 #endif
78 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
79         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
80 #endif
81         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
82         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
83         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
84
85 /* default scan 8*512 pte (or vmas) every 30 second */
86 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
87 static unsigned int khugepaged_pages_collapsed;
88 static unsigned int khugepaged_full_scans;
89 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
90 /* during fragmentation poll the hugepage allocator once every minute */
91 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
92 static struct task_struct *khugepaged_thread __read_mostly;
93 static DEFINE_MUTEX(khugepaged_mutex);
94 static DEFINE_SPINLOCK(khugepaged_mm_lock);
95 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
96 /*
97  * default collapse hugepages if there is at least one pte mapped like
98  * it would have happened if the vma was large enough during page
99  * fault.
100  */
101 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
102
103 static int khugepaged(void *none);
104 static int khugepaged_slab_init(void);
105 static void khugepaged_slab_exit(void);
106
107 #define MM_SLOTS_HASH_BITS 10
108 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
109
110 static struct kmem_cache *mm_slot_cache __read_mostly;
111
112 /**
113  * struct mm_slot - hash lookup from mm to mm_slot
114  * @hash: hash collision list
115  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
116  * @mm: the mm that this information is valid for
117  */
118 struct mm_slot {
119         struct hlist_node hash;
120         struct list_head mm_node;
121         struct mm_struct *mm;
122 };
123
124 /**
125  * struct khugepaged_scan - cursor for scanning
126  * @mm_head: the head of the mm list to scan
127  * @mm_slot: the current mm_slot we are scanning
128  * @address: the next address inside that to be scanned
129  *
130  * There is only the one khugepaged_scan instance of this cursor structure.
131  */
132 struct khugepaged_scan {
133         struct list_head mm_head;
134         struct mm_slot *mm_slot;
135         unsigned long address;
136 };
137 static struct khugepaged_scan khugepaged_scan = {
138         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
139 };
140
141 static struct shrinker deferred_split_shrinker;
142
143 static void set_recommended_min_free_kbytes(void)
144 {
145         struct zone *zone;
146         int nr_zones = 0;
147         unsigned long recommended_min;
148
149         for_each_populated_zone(zone)
150                 nr_zones++;
151
152         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
153         recommended_min = pageblock_nr_pages * nr_zones * 2;
154
155         /*
156          * Make sure that on average at least two pageblocks are almost free
157          * of another type, one for a migratetype to fall back to and a
158          * second to avoid subsequent fallbacks of other types There are 3
159          * MIGRATE_TYPES we care about.
160          */
161         recommended_min += pageblock_nr_pages * nr_zones *
162                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
163
164         /* don't ever allow to reserve more than 5% of the lowmem */
165         recommended_min = min(recommended_min,
166                               (unsigned long) nr_free_buffer_pages() / 20);
167         recommended_min <<= (PAGE_SHIFT-10);
168
169         if (recommended_min > min_free_kbytes) {
170                 if (user_min_free_kbytes >= 0)
171                         pr_info("raising min_free_kbytes from %d to %lu "
172                                 "to help transparent hugepage allocations\n",
173                                 min_free_kbytes, recommended_min);
174
175                 min_free_kbytes = recommended_min;
176         }
177         setup_per_zone_wmarks();
178 }
179
180 static int start_stop_khugepaged(void)
181 {
182         int err = 0;
183         if (khugepaged_enabled()) {
184                 if (!khugepaged_thread)
185                         khugepaged_thread = kthread_run(khugepaged, NULL,
186                                                         "khugepaged");
187                 if (IS_ERR(khugepaged_thread)) {
188                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
189                         err = PTR_ERR(khugepaged_thread);
190                         khugepaged_thread = NULL;
191                         goto fail;
192                 }
193
194                 if (!list_empty(&khugepaged_scan.mm_head))
195                         wake_up_interruptible(&khugepaged_wait);
196
197                 set_recommended_min_free_kbytes();
198         } else if (khugepaged_thread) {
199                 kthread_stop(khugepaged_thread);
200                 khugepaged_thread = NULL;
201         }
202 fail:
203         return err;
204 }
205
206 static atomic_t huge_zero_refcount;
207 struct page *huge_zero_page __read_mostly;
208
209 struct page *get_huge_zero_page(void)
210 {
211         struct page *zero_page;
212 retry:
213         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
214                 return READ_ONCE(huge_zero_page);
215
216         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
217                         HPAGE_PMD_ORDER);
218         if (!zero_page) {
219                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
220                 return NULL;
221         }
222         count_vm_event(THP_ZERO_PAGE_ALLOC);
223         preempt_disable();
224         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
225                 preempt_enable();
226                 __free_pages(zero_page, compound_order(zero_page));
227                 goto retry;
228         }
229
230         /* We take additional reference here. It will be put back by shrinker */
231         atomic_set(&huge_zero_refcount, 2);
232         preempt_enable();
233         return READ_ONCE(huge_zero_page);
234 }
235
236 static void put_huge_zero_page(void)
237 {
238         /*
239          * Counter should never go to zero here. Only shrinker can put
240          * last reference.
241          */
242         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
243 }
244
245 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
246                                         struct shrink_control *sc)
247 {
248         /* we can free zero page only if last reference remains */
249         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
250 }
251
252 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
253                                        struct shrink_control *sc)
254 {
255         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
256                 struct page *zero_page = xchg(&huge_zero_page, NULL);
257                 BUG_ON(zero_page == NULL);
258                 __free_pages(zero_page, compound_order(zero_page));
259                 return HPAGE_PMD_NR;
260         }
261
262         return 0;
263 }
264
265 static struct shrinker huge_zero_page_shrinker = {
266         .count_objects = shrink_huge_zero_page_count,
267         .scan_objects = shrink_huge_zero_page_scan,
268         .seeks = DEFAULT_SEEKS,
269 };
270
271 #ifdef CONFIG_SYSFS
272
273 static ssize_t double_flag_show(struct kobject *kobj,
274                                 struct kobj_attribute *attr, char *buf,
275                                 enum transparent_hugepage_flag enabled,
276                                 enum transparent_hugepage_flag req_madv)
277 {
278         if (test_bit(enabled, &transparent_hugepage_flags)) {
279                 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
280                 return sprintf(buf, "[always] madvise never\n");
281         } else if (test_bit(req_madv, &transparent_hugepage_flags))
282                 return sprintf(buf, "always [madvise] never\n");
283         else
284                 return sprintf(buf, "always madvise [never]\n");
285 }
286 static ssize_t double_flag_store(struct kobject *kobj,
287                                  struct kobj_attribute *attr,
288                                  const char *buf, size_t count,
289                                  enum transparent_hugepage_flag enabled,
290                                  enum transparent_hugepage_flag req_madv)
291 {
292         if (!memcmp("always", buf,
293                     min(sizeof("always")-1, count))) {
294                 set_bit(enabled, &transparent_hugepage_flags);
295                 clear_bit(req_madv, &transparent_hugepage_flags);
296         } else if (!memcmp("madvise", buf,
297                            min(sizeof("madvise")-1, count))) {
298                 clear_bit(enabled, &transparent_hugepage_flags);
299                 set_bit(req_madv, &transparent_hugepage_flags);
300         } else if (!memcmp("never", buf,
301                            min(sizeof("never")-1, count))) {
302                 clear_bit(enabled, &transparent_hugepage_flags);
303                 clear_bit(req_madv, &transparent_hugepage_flags);
304         } else
305                 return -EINVAL;
306
307         return count;
308 }
309
310 static ssize_t enabled_show(struct kobject *kobj,
311                             struct kobj_attribute *attr, char *buf)
312 {
313         return double_flag_show(kobj, attr, buf,
314                                 TRANSPARENT_HUGEPAGE_FLAG,
315                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
316 }
317 static ssize_t enabled_store(struct kobject *kobj,
318                              struct kobj_attribute *attr,
319                              const char *buf, size_t count)
320 {
321         ssize_t ret;
322
323         ret = double_flag_store(kobj, attr, buf, count,
324                                 TRANSPARENT_HUGEPAGE_FLAG,
325                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
326
327         if (ret > 0) {
328                 int err;
329
330                 mutex_lock(&khugepaged_mutex);
331                 err = start_stop_khugepaged();
332                 mutex_unlock(&khugepaged_mutex);
333
334                 if (err)
335                         ret = err;
336         }
337
338         return ret;
339 }
340 static struct kobj_attribute enabled_attr =
341         __ATTR(enabled, 0644, enabled_show, enabled_store);
342
343 static ssize_t single_flag_show(struct kobject *kobj,
344                                 struct kobj_attribute *attr, char *buf,
345                                 enum transparent_hugepage_flag flag)
346 {
347         return sprintf(buf, "%d\n",
348                        !!test_bit(flag, &transparent_hugepage_flags));
349 }
350
351 static ssize_t single_flag_store(struct kobject *kobj,
352                                  struct kobj_attribute *attr,
353                                  const char *buf, size_t count,
354                                  enum transparent_hugepage_flag flag)
355 {
356         unsigned long value;
357         int ret;
358
359         ret = kstrtoul(buf, 10, &value);
360         if (ret < 0)
361                 return ret;
362         if (value > 1)
363                 return -EINVAL;
364
365         if (value)
366                 set_bit(flag, &transparent_hugepage_flags);
367         else
368                 clear_bit(flag, &transparent_hugepage_flags);
369
370         return count;
371 }
372
373 /*
374  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
375  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
376  * memory just to allocate one more hugepage.
377  */
378 static ssize_t defrag_show(struct kobject *kobj,
379                            struct kobj_attribute *attr, char *buf)
380 {
381         return double_flag_show(kobj, attr, buf,
382                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
383                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
384 }
385 static ssize_t defrag_store(struct kobject *kobj,
386                             struct kobj_attribute *attr,
387                             const char *buf, size_t count)
388 {
389         return double_flag_store(kobj, attr, buf, count,
390                                  TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
391                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
392 }
393 static struct kobj_attribute defrag_attr =
394         __ATTR(defrag, 0644, defrag_show, defrag_store);
395
396 static ssize_t use_zero_page_show(struct kobject *kobj,
397                 struct kobj_attribute *attr, char *buf)
398 {
399         return single_flag_show(kobj, attr, buf,
400                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
401 }
402 static ssize_t use_zero_page_store(struct kobject *kobj,
403                 struct kobj_attribute *attr, const char *buf, size_t count)
404 {
405         return single_flag_store(kobj, attr, buf, count,
406                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
407 }
408 static struct kobj_attribute use_zero_page_attr =
409         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
410 #ifdef CONFIG_DEBUG_VM
411 static ssize_t debug_cow_show(struct kobject *kobj,
412                                 struct kobj_attribute *attr, char *buf)
413 {
414         return single_flag_show(kobj, attr, buf,
415                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
416 }
417 static ssize_t debug_cow_store(struct kobject *kobj,
418                                struct kobj_attribute *attr,
419                                const char *buf, size_t count)
420 {
421         return single_flag_store(kobj, attr, buf, count,
422                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
423 }
424 static struct kobj_attribute debug_cow_attr =
425         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
426 #endif /* CONFIG_DEBUG_VM */
427
428 static struct attribute *hugepage_attr[] = {
429         &enabled_attr.attr,
430         &defrag_attr.attr,
431         &use_zero_page_attr.attr,
432 #ifdef CONFIG_DEBUG_VM
433         &debug_cow_attr.attr,
434 #endif
435         NULL,
436 };
437
438 static struct attribute_group hugepage_attr_group = {
439         .attrs = hugepage_attr,
440 };
441
442 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
443                                          struct kobj_attribute *attr,
444                                          char *buf)
445 {
446         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
447 }
448
449 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
450                                           struct kobj_attribute *attr,
451                                           const char *buf, size_t count)
452 {
453         unsigned long msecs;
454         int err;
455
456         err = kstrtoul(buf, 10, &msecs);
457         if (err || msecs > UINT_MAX)
458                 return -EINVAL;
459
460         khugepaged_scan_sleep_millisecs = msecs;
461         wake_up_interruptible(&khugepaged_wait);
462
463         return count;
464 }
465 static struct kobj_attribute scan_sleep_millisecs_attr =
466         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
467                scan_sleep_millisecs_store);
468
469 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
470                                           struct kobj_attribute *attr,
471                                           char *buf)
472 {
473         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
474 }
475
476 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
477                                            struct kobj_attribute *attr,
478                                            const char *buf, size_t count)
479 {
480         unsigned long msecs;
481         int err;
482
483         err = kstrtoul(buf, 10, &msecs);
484         if (err || msecs > UINT_MAX)
485                 return -EINVAL;
486
487         khugepaged_alloc_sleep_millisecs = msecs;
488         wake_up_interruptible(&khugepaged_wait);
489
490         return count;
491 }
492 static struct kobj_attribute alloc_sleep_millisecs_attr =
493         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
494                alloc_sleep_millisecs_store);
495
496 static ssize_t pages_to_scan_show(struct kobject *kobj,
497                                   struct kobj_attribute *attr,
498                                   char *buf)
499 {
500         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
501 }
502 static ssize_t pages_to_scan_store(struct kobject *kobj,
503                                    struct kobj_attribute *attr,
504                                    const char *buf, size_t count)
505 {
506         int err;
507         unsigned long pages;
508
509         err = kstrtoul(buf, 10, &pages);
510         if (err || !pages || pages > UINT_MAX)
511                 return -EINVAL;
512
513         khugepaged_pages_to_scan = pages;
514
515         return count;
516 }
517 static struct kobj_attribute pages_to_scan_attr =
518         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
519                pages_to_scan_store);
520
521 static ssize_t pages_collapsed_show(struct kobject *kobj,
522                                     struct kobj_attribute *attr,
523                                     char *buf)
524 {
525         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
526 }
527 static struct kobj_attribute pages_collapsed_attr =
528         __ATTR_RO(pages_collapsed);
529
530 static ssize_t full_scans_show(struct kobject *kobj,
531                                struct kobj_attribute *attr,
532                                char *buf)
533 {
534         return sprintf(buf, "%u\n", khugepaged_full_scans);
535 }
536 static struct kobj_attribute full_scans_attr =
537         __ATTR_RO(full_scans);
538
539 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
540                                       struct kobj_attribute *attr, char *buf)
541 {
542         return single_flag_show(kobj, attr, buf,
543                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
544 }
545 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
546                                        struct kobj_attribute *attr,
547                                        const char *buf, size_t count)
548 {
549         return single_flag_store(kobj, attr, buf, count,
550                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
551 }
552 static struct kobj_attribute khugepaged_defrag_attr =
553         __ATTR(defrag, 0644, khugepaged_defrag_show,
554                khugepaged_defrag_store);
555
556 /*
557  * max_ptes_none controls if khugepaged should collapse hugepages over
558  * any unmapped ptes in turn potentially increasing the memory
559  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
560  * reduce the available free memory in the system as it
561  * runs. Increasing max_ptes_none will instead potentially reduce the
562  * free memory in the system during the khugepaged scan.
563  */
564 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
565                                              struct kobj_attribute *attr,
566                                              char *buf)
567 {
568         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
569 }
570 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
571                                               struct kobj_attribute *attr,
572                                               const char *buf, size_t count)
573 {
574         int err;
575         unsigned long max_ptes_none;
576
577         err = kstrtoul(buf, 10, &max_ptes_none);
578         if (err || max_ptes_none > HPAGE_PMD_NR-1)
579                 return -EINVAL;
580
581         khugepaged_max_ptes_none = max_ptes_none;
582
583         return count;
584 }
585 static struct kobj_attribute khugepaged_max_ptes_none_attr =
586         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
587                khugepaged_max_ptes_none_store);
588
589 static struct attribute *khugepaged_attr[] = {
590         &khugepaged_defrag_attr.attr,
591         &khugepaged_max_ptes_none_attr.attr,
592         &pages_to_scan_attr.attr,
593         &pages_collapsed_attr.attr,
594         &full_scans_attr.attr,
595         &scan_sleep_millisecs_attr.attr,
596         &alloc_sleep_millisecs_attr.attr,
597         NULL,
598 };
599
600 static struct attribute_group khugepaged_attr_group = {
601         .attrs = khugepaged_attr,
602         .name = "khugepaged",
603 };
604
605 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
606 {
607         int err;
608
609         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
610         if (unlikely(!*hugepage_kobj)) {
611                 pr_err("failed to create transparent hugepage kobject\n");
612                 return -ENOMEM;
613         }
614
615         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
616         if (err) {
617                 pr_err("failed to register transparent hugepage group\n");
618                 goto delete_obj;
619         }
620
621         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
622         if (err) {
623                 pr_err("failed to register transparent hugepage group\n");
624                 goto remove_hp_group;
625         }
626
627         return 0;
628
629 remove_hp_group:
630         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
631 delete_obj:
632         kobject_put(*hugepage_kobj);
633         return err;
634 }
635
636 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
637 {
638         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
639         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
640         kobject_put(hugepage_kobj);
641 }
642 #else
643 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
644 {
645         return 0;
646 }
647
648 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
649 {
650 }
651 #endif /* CONFIG_SYSFS */
652
653 static int __init hugepage_init(void)
654 {
655         int err;
656         struct kobject *hugepage_kobj;
657
658         if (!has_transparent_hugepage()) {
659                 transparent_hugepage_flags = 0;
660                 return -EINVAL;
661         }
662
663         err = hugepage_init_sysfs(&hugepage_kobj);
664         if (err)
665                 goto err_sysfs;
666
667         err = khugepaged_slab_init();
668         if (err)
669                 goto err_slab;
670
671         err = register_shrinker(&huge_zero_page_shrinker);
672         if (err)
673                 goto err_hzp_shrinker;
674         err = register_shrinker(&deferred_split_shrinker);
675         if (err)
676                 goto err_split_shrinker;
677
678         /*
679          * By default disable transparent hugepages on smaller systems,
680          * where the extra memory used could hurt more than TLB overhead
681          * is likely to save.  The admin can still enable it through /sys.
682          */
683         if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
684                 transparent_hugepage_flags = 0;
685                 return 0;
686         }
687
688         err = start_stop_khugepaged();
689         if (err)
690                 goto err_khugepaged;
691
692         return 0;
693 err_khugepaged:
694         unregister_shrinker(&deferred_split_shrinker);
695 err_split_shrinker:
696         unregister_shrinker(&huge_zero_page_shrinker);
697 err_hzp_shrinker:
698         khugepaged_slab_exit();
699 err_slab:
700         hugepage_exit_sysfs(hugepage_kobj);
701 err_sysfs:
702         return err;
703 }
704 subsys_initcall(hugepage_init);
705
706 static int __init setup_transparent_hugepage(char *str)
707 {
708         int ret = 0;
709         if (!str)
710                 goto out;
711         if (!strcmp(str, "always")) {
712                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
713                         &transparent_hugepage_flags);
714                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
715                           &transparent_hugepage_flags);
716                 ret = 1;
717         } else if (!strcmp(str, "madvise")) {
718                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
719                           &transparent_hugepage_flags);
720                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
721                         &transparent_hugepage_flags);
722                 ret = 1;
723         } else if (!strcmp(str, "never")) {
724                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
725                           &transparent_hugepage_flags);
726                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
727                           &transparent_hugepage_flags);
728                 ret = 1;
729         }
730 out:
731         if (!ret)
732                 pr_warn("transparent_hugepage= cannot parse, ignored\n");
733         return ret;
734 }
735 __setup("transparent_hugepage=", setup_transparent_hugepage);
736
737 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
738 {
739         if (likely(vma->vm_flags & VM_WRITE))
740                 pmd = pmd_mkwrite(pmd);
741         return pmd;
742 }
743
744 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
745 {
746         pmd_t entry;
747         entry = mk_pmd(page, prot);
748         entry = pmd_mkhuge(entry);
749         return entry;
750 }
751
752 static inline struct list_head *page_deferred_list(struct page *page)
753 {
754         /*
755          * ->lru in the tail pages is occupied by compound_head.
756          * Let's use ->mapping + ->index in the second tail page as list_head.
757          */
758         return (struct list_head *)&page[2].mapping;
759 }
760
761 void prep_transhuge_page(struct page *page)
762 {
763         /*
764          * we use page->mapping and page->indexlru in second tail page
765          * as list_head: assuming THP order >= 2
766          */
767         BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
768
769         INIT_LIST_HEAD(page_deferred_list(page));
770         set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
771 }
772
773 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
774                                         struct vm_area_struct *vma,
775                                         unsigned long address, pmd_t *pmd,
776                                         struct page *page, gfp_t gfp,
777                                         unsigned int flags)
778 {
779         struct mem_cgroup *memcg;
780         pgtable_t pgtable;
781         spinlock_t *ptl;
782         unsigned long haddr = address & HPAGE_PMD_MASK;
783
784         VM_BUG_ON_PAGE(!PageCompound(page), page);
785
786         if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
787                 put_page(page);
788                 count_vm_event(THP_FAULT_FALLBACK);
789                 return VM_FAULT_FALLBACK;
790         }
791
792         pgtable = pte_alloc_one(mm, haddr);
793         if (unlikely(!pgtable)) {
794                 mem_cgroup_cancel_charge(page, memcg, true);
795                 put_page(page);
796                 return VM_FAULT_OOM;
797         }
798
799         clear_huge_page(page, haddr, HPAGE_PMD_NR);
800         /*
801          * The memory barrier inside __SetPageUptodate makes sure that
802          * clear_huge_page writes become visible before the set_pmd_at()
803          * write.
804          */
805         __SetPageUptodate(page);
806
807         ptl = pmd_lock(mm, pmd);
808         if (unlikely(!pmd_none(*pmd))) {
809                 spin_unlock(ptl);
810                 mem_cgroup_cancel_charge(page, memcg, true);
811                 put_page(page);
812                 pte_free(mm, pgtable);
813         } else {
814                 pmd_t entry;
815
816                 /* Deliver the page fault to userland */
817                 if (userfaultfd_missing(vma)) {
818                         int ret;
819
820                         spin_unlock(ptl);
821                         mem_cgroup_cancel_charge(page, memcg, true);
822                         put_page(page);
823                         pte_free(mm, pgtable);
824                         ret = handle_userfault(vma, address, flags,
825                                                VM_UFFD_MISSING);
826                         VM_BUG_ON(ret & VM_FAULT_FALLBACK);
827                         return ret;
828                 }
829
830                 entry = mk_huge_pmd(page, vma->vm_page_prot);
831                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
832                 page_add_new_anon_rmap(page, vma, haddr, true);
833                 mem_cgroup_commit_charge(page, memcg, false, true);
834                 lru_cache_add_active_or_unevictable(page, vma);
835                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
836                 set_pmd_at(mm, haddr, pmd, entry);
837                 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
838                 atomic_long_inc(&mm->nr_ptes);
839                 spin_unlock(ptl);
840                 count_vm_event(THP_FAULT_ALLOC);
841         }
842
843         return 0;
844 }
845
846 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
847 {
848         return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
849 }
850
851 /* Caller must hold page table lock. */
852 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
853                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
854                 struct page *zero_page)
855 {
856         pmd_t entry;
857         if (!pmd_none(*pmd))
858                 return false;
859         entry = mk_pmd(zero_page, vma->vm_page_prot);
860         entry = pmd_mkhuge(entry);
861         if (pgtable)
862                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
863         set_pmd_at(mm, haddr, pmd, entry);
864         atomic_long_inc(&mm->nr_ptes);
865         return true;
866 }
867
868 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
869                                unsigned long address, pmd_t *pmd,
870                                unsigned int flags)
871 {
872         gfp_t gfp;
873         struct page *page;
874         unsigned long haddr = address & HPAGE_PMD_MASK;
875
876         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
877                 return VM_FAULT_FALLBACK;
878         if (unlikely(anon_vma_prepare(vma)))
879                 return VM_FAULT_OOM;
880         if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
881                 return VM_FAULT_OOM;
882         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
883                         transparent_hugepage_use_zero_page()) {
884                 spinlock_t *ptl;
885                 pgtable_t pgtable;
886                 struct page *zero_page;
887                 bool set;
888                 int ret;
889                 pgtable = pte_alloc_one(mm, haddr);
890                 if (unlikely(!pgtable))
891                         return VM_FAULT_OOM;
892                 zero_page = get_huge_zero_page();
893                 if (unlikely(!zero_page)) {
894                         pte_free(mm, pgtable);
895                         count_vm_event(THP_FAULT_FALLBACK);
896                         return VM_FAULT_FALLBACK;
897                 }
898                 ptl = pmd_lock(mm, pmd);
899                 ret = 0;
900                 set = false;
901                 if (pmd_none(*pmd)) {
902                         if (userfaultfd_missing(vma)) {
903                                 spin_unlock(ptl);
904                                 ret = handle_userfault(vma, address, flags,
905                                                        VM_UFFD_MISSING);
906                                 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
907                         } else {
908                                 set_huge_zero_page(pgtable, mm, vma,
909                                                    haddr, pmd,
910                                                    zero_page);
911                                 spin_unlock(ptl);
912                                 set = true;
913                         }
914                 } else
915                         spin_unlock(ptl);
916                 if (!set) {
917                         pte_free(mm, pgtable);
918                         put_huge_zero_page();
919                 }
920                 return ret;
921         }
922         gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
923         page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
924         if (unlikely(!page)) {
925                 count_vm_event(THP_FAULT_FALLBACK);
926                 return VM_FAULT_FALLBACK;
927         }
928         prep_transhuge_page(page);
929         return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
930                                             flags);
931 }
932
933 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
934                 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
935 {
936         struct mm_struct *mm = vma->vm_mm;
937         pmd_t entry;
938         spinlock_t *ptl;
939
940         ptl = pmd_lock(mm, pmd);
941         entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
942         if (pfn_t_devmap(pfn))
943                 entry = pmd_mkdevmap(entry);
944         if (write) {
945                 entry = pmd_mkyoung(pmd_mkdirty(entry));
946                 entry = maybe_pmd_mkwrite(entry, vma);
947         }
948         set_pmd_at(mm, addr, pmd, entry);
949         update_mmu_cache_pmd(vma, addr, pmd);
950         spin_unlock(ptl);
951 }
952
953 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
954                         pmd_t *pmd, pfn_t pfn, bool write)
955 {
956         pgprot_t pgprot = vma->vm_page_prot;
957         /*
958          * If we had pmd_special, we could avoid all these restrictions,
959          * but we need to be consistent with PTEs and architectures that
960          * can't support a 'special' bit.
961          */
962         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
963         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
964                                                 (VM_PFNMAP|VM_MIXEDMAP));
965         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
966         BUG_ON(!pfn_t_devmap(pfn));
967
968         if (addr < vma->vm_start || addr >= vma->vm_end)
969                 return VM_FAULT_SIGBUS;
970         if (track_pfn_insert(vma, &pgprot, pfn))
971                 return VM_FAULT_SIGBUS;
972         insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
973         return VM_FAULT_NOPAGE;
974 }
975
976 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
977                 pmd_t *pmd)
978 {
979         pmd_t _pmd;
980
981         /*
982          * We should set the dirty bit only for FOLL_WRITE but for now
983          * the dirty bit in the pmd is meaningless.  And if the dirty
984          * bit will become meaningful and we'll only set it with
985          * FOLL_WRITE, an atomic set_bit will be required on the pmd to
986          * set the young bit, instead of the current set_pmd_at.
987          */
988         _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
989         if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
990                                 pmd, _pmd,  1))
991                 update_mmu_cache_pmd(vma, addr, pmd);
992 }
993
994 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
995                 pmd_t *pmd, int flags)
996 {
997         unsigned long pfn = pmd_pfn(*pmd);
998         struct mm_struct *mm = vma->vm_mm;
999         struct dev_pagemap *pgmap;
1000         struct page *page;
1001
1002         assert_spin_locked(pmd_lockptr(mm, pmd));
1003
1004         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1005                 return NULL;
1006
1007         if (pmd_present(*pmd) && pmd_devmap(*pmd))
1008                 /* pass */;
1009         else
1010                 return NULL;
1011
1012         if (flags & FOLL_TOUCH)
1013                 touch_pmd(vma, addr, pmd);
1014
1015         /*
1016          * device mapped pages can only be returned if the
1017          * caller will manage the page reference count.
1018          */
1019         if (!(flags & FOLL_GET))
1020                 return ERR_PTR(-EEXIST);
1021
1022         pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1023         pgmap = get_dev_pagemap(pfn, NULL);
1024         if (!pgmap)
1025                 return ERR_PTR(-EFAULT);
1026         page = pfn_to_page(pfn);
1027         get_page(page);
1028         put_dev_pagemap(pgmap);
1029
1030         return page;
1031 }
1032
1033 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1034                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1035                   struct vm_area_struct *vma)
1036 {
1037         spinlock_t *dst_ptl, *src_ptl;
1038         struct page *src_page;
1039         pmd_t pmd;
1040         pgtable_t pgtable = NULL;
1041         int ret;
1042
1043         if (!vma_is_dax(vma)) {
1044                 ret = -ENOMEM;
1045                 pgtable = pte_alloc_one(dst_mm, addr);
1046                 if (unlikely(!pgtable))
1047                         goto out;
1048         }
1049
1050         dst_ptl = pmd_lock(dst_mm, dst_pmd);
1051         src_ptl = pmd_lockptr(src_mm, src_pmd);
1052         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1053
1054         ret = -EAGAIN;
1055         pmd = *src_pmd;
1056         if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
1057                 pte_free(dst_mm, pgtable);
1058                 goto out_unlock;
1059         }
1060         /*
1061          * When page table lock is held, the huge zero pmd should not be
1062          * under splitting since we don't split the page itself, only pmd to
1063          * a page table.
1064          */
1065         if (is_huge_zero_pmd(pmd)) {
1066                 struct page *zero_page;
1067                 /*
1068                  * get_huge_zero_page() will never allocate a new page here,
1069                  * since we already have a zero page to copy. It just takes a
1070                  * reference.
1071                  */
1072                 zero_page = get_huge_zero_page();
1073                 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1074                                 zero_page);
1075                 ret = 0;
1076                 goto out_unlock;
1077         }
1078
1079         if (!vma_is_dax(vma)) {
1080                 /* thp accounting separate from pmd_devmap accounting */
1081                 src_page = pmd_page(pmd);
1082                 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1083                 get_page(src_page);
1084                 page_dup_rmap(src_page, true);
1085                 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1086                 atomic_long_inc(&dst_mm->nr_ptes);
1087                 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1088         }
1089
1090         pmdp_set_wrprotect(src_mm, addr, src_pmd);
1091         pmd = pmd_mkold(pmd_wrprotect(pmd));
1092         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1093
1094         ret = 0;
1095 out_unlock:
1096         spin_unlock(src_ptl);
1097         spin_unlock(dst_ptl);
1098 out:
1099         return ret;
1100 }
1101
1102 void huge_pmd_set_accessed(struct mm_struct *mm,
1103                            struct vm_area_struct *vma,
1104                            unsigned long address,
1105                            pmd_t *pmd, pmd_t orig_pmd,
1106                            int dirty)
1107 {
1108         spinlock_t *ptl;
1109         pmd_t entry;
1110         unsigned long haddr;
1111
1112         ptl = pmd_lock(mm, pmd);
1113         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1114                 goto unlock;
1115
1116         entry = pmd_mkyoung(orig_pmd);
1117         haddr = address & HPAGE_PMD_MASK;
1118         if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1119                 update_mmu_cache_pmd(vma, address, pmd);
1120
1121 unlock:
1122         spin_unlock(ptl);
1123 }
1124
1125 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1126                                         struct vm_area_struct *vma,
1127                                         unsigned long address,
1128                                         pmd_t *pmd, pmd_t orig_pmd,
1129                                         struct page *page,
1130                                         unsigned long haddr)
1131 {
1132         struct mem_cgroup *memcg;
1133         spinlock_t *ptl;
1134         pgtable_t pgtable;
1135         pmd_t _pmd;
1136         int ret = 0, i;
1137         struct page **pages;
1138         unsigned long mmun_start;       /* For mmu_notifiers */
1139         unsigned long mmun_end;         /* For mmu_notifiers */
1140
1141         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1142                         GFP_KERNEL);
1143         if (unlikely(!pages)) {
1144                 ret |= VM_FAULT_OOM;
1145                 goto out;
1146         }
1147
1148         for (i = 0; i < HPAGE_PMD_NR; i++) {
1149                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1150                                                __GFP_OTHER_NODE,
1151                                                vma, address, page_to_nid(page));
1152                 if (unlikely(!pages[i] ||
1153                              mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1154                                                    &memcg, false))) {
1155                         if (pages[i])
1156                                 put_page(pages[i]);
1157                         while (--i >= 0) {
1158                                 memcg = (void *)page_private(pages[i]);
1159                                 set_page_private(pages[i], 0);
1160                                 mem_cgroup_cancel_charge(pages[i], memcg,
1161                                                 false);
1162                                 put_page(pages[i]);
1163                         }
1164                         kfree(pages);
1165                         ret |= VM_FAULT_OOM;
1166                         goto out;
1167                 }
1168                 set_page_private(pages[i], (unsigned long)memcg);
1169         }
1170
1171         for (i = 0; i < HPAGE_PMD_NR; i++) {
1172                 copy_user_highpage(pages[i], page + i,
1173                                    haddr + PAGE_SIZE * i, vma);
1174                 __SetPageUptodate(pages[i]);
1175                 cond_resched();
1176         }
1177
1178         mmun_start = haddr;
1179         mmun_end   = haddr + HPAGE_PMD_SIZE;
1180         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1181
1182         ptl = pmd_lock(mm, pmd);
1183         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1184                 goto out_free_pages;
1185         VM_BUG_ON_PAGE(!PageHead(page), page);
1186
1187         pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1188         /* leave pmd empty until pte is filled */
1189
1190         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1191         pmd_populate(mm, &_pmd, pgtable);
1192
1193         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1194                 pte_t *pte, entry;
1195                 entry = mk_pte(pages[i], vma->vm_page_prot);
1196                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1197                 memcg = (void *)page_private(pages[i]);
1198                 set_page_private(pages[i], 0);
1199                 page_add_new_anon_rmap(pages[i], vma, haddr, false);
1200                 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1201                 lru_cache_add_active_or_unevictable(pages[i], vma);
1202                 pte = pte_offset_map(&_pmd, haddr);
1203                 VM_BUG_ON(!pte_none(*pte));
1204                 set_pte_at(mm, haddr, pte, entry);
1205                 pte_unmap(pte);
1206         }
1207         kfree(pages);
1208
1209         smp_wmb(); /* make pte visible before pmd */
1210         pmd_populate(mm, pmd, pgtable);
1211         page_remove_rmap(page, true);
1212         spin_unlock(ptl);
1213
1214         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1215
1216         ret |= VM_FAULT_WRITE;
1217         put_page(page);
1218
1219 out:
1220         return ret;
1221
1222 out_free_pages:
1223         spin_unlock(ptl);
1224         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1225         for (i = 0; i < HPAGE_PMD_NR; i++) {
1226                 memcg = (void *)page_private(pages[i]);
1227                 set_page_private(pages[i], 0);
1228                 mem_cgroup_cancel_charge(pages[i], memcg, false);
1229                 put_page(pages[i]);
1230         }
1231         kfree(pages);
1232         goto out;
1233 }
1234
1235 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1236                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1237 {
1238         spinlock_t *ptl;
1239         int ret = 0;
1240         struct page *page = NULL, *new_page;
1241         struct mem_cgroup *memcg;
1242         unsigned long haddr;
1243         unsigned long mmun_start;       /* For mmu_notifiers */
1244         unsigned long mmun_end;         /* For mmu_notifiers */
1245         gfp_t huge_gfp;                 /* for allocation and charge */
1246
1247         ptl = pmd_lockptr(mm, pmd);
1248         VM_BUG_ON_VMA(!vma->anon_vma, vma);
1249         haddr = address & HPAGE_PMD_MASK;
1250         if (is_huge_zero_pmd(orig_pmd))
1251                 goto alloc;
1252         spin_lock(ptl);
1253         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1254                 goto out_unlock;
1255
1256         page = pmd_page(orig_pmd);
1257         VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1258         /*
1259          * We can only reuse the page if nobody else maps the huge page or it's
1260          * part. We can do it by checking page_mapcount() on each sub-page, but
1261          * it's expensive.
1262          * The cheaper way is to check page_count() to be equal 1: every
1263          * mapcount takes page reference reference, so this way we can
1264          * guarantee, that the PMD is the only mapping.
1265          * This can give false negative if somebody pinned the page, but that's
1266          * fine.
1267          */
1268         if (page_mapcount(page) == 1 && page_count(page) == 1) {
1269                 pmd_t entry;
1270                 entry = pmd_mkyoung(orig_pmd);
1271                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1272                 if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1273                         update_mmu_cache_pmd(vma, address, pmd);
1274                 ret |= VM_FAULT_WRITE;
1275                 goto out_unlock;
1276         }
1277         get_page(page);
1278         spin_unlock(ptl);
1279 alloc:
1280         if (transparent_hugepage_enabled(vma) &&
1281             !transparent_hugepage_debug_cow()) {
1282                 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1283                 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1284         } else
1285                 new_page = NULL;
1286
1287         if (likely(new_page)) {
1288                 prep_transhuge_page(new_page);
1289         } else {
1290                 if (!page) {
1291                         split_huge_pmd(vma, pmd, address);
1292                         ret |= VM_FAULT_FALLBACK;
1293                 } else {
1294                         ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1295                                         pmd, orig_pmd, page, haddr);
1296                         if (ret & VM_FAULT_OOM) {
1297                                 split_huge_pmd(vma, pmd, address);
1298                                 ret |= VM_FAULT_FALLBACK;
1299                         }
1300                         put_page(page);
1301                 }
1302                 count_vm_event(THP_FAULT_FALLBACK);
1303                 goto out;
1304         }
1305
1306         if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1307                                            true))) {
1308                 put_page(new_page);
1309                 if (page) {
1310                         split_huge_pmd(vma, pmd, address);
1311                         put_page(page);
1312                 } else
1313                         split_huge_pmd(vma, pmd, address);
1314                 ret |= VM_FAULT_FALLBACK;
1315                 count_vm_event(THP_FAULT_FALLBACK);
1316                 goto out;
1317         }
1318
1319         count_vm_event(THP_FAULT_ALLOC);
1320
1321         if (!page)
1322                 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1323         else
1324                 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1325         __SetPageUptodate(new_page);
1326
1327         mmun_start = haddr;
1328         mmun_end   = haddr + HPAGE_PMD_SIZE;
1329         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1330
1331         spin_lock(ptl);
1332         if (page)
1333                 put_page(page);
1334         if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1335                 spin_unlock(ptl);
1336                 mem_cgroup_cancel_charge(new_page, memcg, true);
1337                 put_page(new_page);
1338                 goto out_mn;
1339         } else {
1340                 pmd_t entry;
1341                 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1342                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1343                 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1344                 page_add_new_anon_rmap(new_page, vma, haddr, true);
1345                 mem_cgroup_commit_charge(new_page, memcg, false, true);
1346                 lru_cache_add_active_or_unevictable(new_page, vma);
1347                 set_pmd_at(mm, haddr, pmd, entry);
1348                 update_mmu_cache_pmd(vma, address, pmd);
1349                 if (!page) {
1350                         add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1351                         put_huge_zero_page();
1352                 } else {
1353                         VM_BUG_ON_PAGE(!PageHead(page), page);
1354                         page_remove_rmap(page, true);
1355                         put_page(page);
1356                 }
1357                 ret |= VM_FAULT_WRITE;
1358         }
1359         spin_unlock(ptl);
1360 out_mn:
1361         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1362 out:
1363         return ret;
1364 out_unlock:
1365         spin_unlock(ptl);
1366         return ret;
1367 }
1368
1369 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1370                                    unsigned long addr,
1371                                    pmd_t *pmd,
1372                                    unsigned int flags)
1373 {
1374         struct mm_struct *mm = vma->vm_mm;
1375         struct page *page = NULL;
1376
1377         assert_spin_locked(pmd_lockptr(mm, pmd));
1378
1379         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1380                 goto out;
1381
1382         /* Avoid dumping huge zero page */
1383         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1384                 return ERR_PTR(-EFAULT);
1385
1386         /* Full NUMA hinting faults to serialise migration in fault paths */
1387         if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1388                 goto out;
1389
1390         page = pmd_page(*pmd);
1391         VM_BUG_ON_PAGE(!PageHead(page), page);
1392         if (flags & FOLL_TOUCH)
1393                 touch_pmd(vma, addr, pmd);
1394         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1395                 /*
1396                  * We don't mlock() pte-mapped THPs. This way we can avoid
1397                  * leaking mlocked pages into non-VM_LOCKED VMAs.
1398                  *
1399                  * In most cases the pmd is the only mapping of the page as we
1400                  * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1401                  * writable private mappings in populate_vma_page_range().
1402                  *
1403                  * The only scenario when we have the page shared here is if we
1404                  * mlocking read-only mapping shared over fork(). We skip
1405                  * mlocking such pages.
1406                  */
1407                 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1408                                 page->mapping && trylock_page(page)) {
1409                         lru_add_drain();
1410                         if (page->mapping)
1411                                 mlock_vma_page(page);
1412                         unlock_page(page);
1413                 }
1414         }
1415         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1416         VM_BUG_ON_PAGE(!PageCompound(page), page);
1417         if (flags & FOLL_GET)
1418                 get_page(page);
1419
1420 out:
1421         return page;
1422 }
1423
1424 /* NUMA hinting page fault entry point for trans huge pmds */
1425 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1426                                 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1427 {
1428         spinlock_t *ptl;
1429         struct anon_vma *anon_vma = NULL;
1430         struct page *page;
1431         unsigned long haddr = addr & HPAGE_PMD_MASK;
1432         int page_nid = -1, this_nid = numa_node_id();
1433         int target_nid, last_cpupid = -1;
1434         bool page_locked;
1435         bool migrated = false;
1436         bool was_writable;
1437         int flags = 0;
1438
1439         /* A PROT_NONE fault should not end up here */
1440         BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1441
1442         ptl = pmd_lock(mm, pmdp);
1443         if (unlikely(!pmd_same(pmd, *pmdp)))
1444                 goto out_unlock;
1445
1446         /*
1447          * If there are potential migrations, wait for completion and retry
1448          * without disrupting NUMA hinting information. Do not relock and
1449          * check_same as the page may no longer be mapped.
1450          */
1451         if (unlikely(pmd_trans_migrating(*pmdp))) {
1452                 page = pmd_page(*pmdp);
1453                 spin_unlock(ptl);
1454                 wait_on_page_locked(page);
1455                 goto out;
1456         }
1457
1458         page = pmd_page(pmd);
1459         BUG_ON(is_huge_zero_page(page));
1460         page_nid = page_to_nid(page);
1461         last_cpupid = page_cpupid_last(page);
1462         count_vm_numa_event(NUMA_HINT_FAULTS);
1463         if (page_nid == this_nid) {
1464                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1465                 flags |= TNF_FAULT_LOCAL;
1466         }
1467
1468         /* See similar comment in do_numa_page for explanation */
1469         if (!(vma->vm_flags & VM_WRITE))
1470                 flags |= TNF_NO_GROUP;
1471
1472         /*
1473          * Acquire the page lock to serialise THP migrations but avoid dropping
1474          * page_table_lock if at all possible
1475          */
1476         page_locked = trylock_page(page);
1477         target_nid = mpol_misplaced(page, vma, haddr);
1478         if (target_nid == -1) {
1479                 /* If the page was locked, there are no parallel migrations */
1480                 if (page_locked)
1481                         goto clear_pmdnuma;
1482         }
1483
1484         /* Migration could have started since the pmd_trans_migrating check */
1485         if (!page_locked) {
1486                 spin_unlock(ptl);
1487                 wait_on_page_locked(page);
1488                 page_nid = -1;
1489                 goto out;
1490         }
1491
1492         /*
1493          * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1494          * to serialises splits
1495          */
1496         get_page(page);
1497         spin_unlock(ptl);
1498         anon_vma = page_lock_anon_vma_read(page);
1499
1500         /* Confirm the PMD did not change while page_table_lock was released */
1501         spin_lock(ptl);
1502         if (unlikely(!pmd_same(pmd, *pmdp))) {
1503                 unlock_page(page);
1504                 put_page(page);
1505                 page_nid = -1;
1506                 goto out_unlock;
1507         }
1508
1509         /* Bail if we fail to protect against THP splits for any reason */
1510         if (unlikely(!anon_vma)) {
1511                 put_page(page);
1512                 page_nid = -1;
1513                 goto clear_pmdnuma;
1514         }
1515
1516         /*
1517          * Migrate the THP to the requested node, returns with page unlocked
1518          * and access rights restored.
1519          */
1520         spin_unlock(ptl);
1521         migrated = migrate_misplaced_transhuge_page(mm, vma,
1522                                 pmdp, pmd, addr, page, target_nid);
1523         if (migrated) {
1524                 flags |= TNF_MIGRATED;
1525                 page_nid = target_nid;
1526         } else
1527                 flags |= TNF_MIGRATE_FAIL;
1528
1529         goto out;
1530 clear_pmdnuma:
1531         BUG_ON(!PageLocked(page));
1532         was_writable = pmd_write(pmd);
1533         pmd = pmd_modify(pmd, vma->vm_page_prot);
1534         pmd = pmd_mkyoung(pmd);
1535         if (was_writable)
1536                 pmd = pmd_mkwrite(pmd);
1537         set_pmd_at(mm, haddr, pmdp, pmd);
1538         update_mmu_cache_pmd(vma, addr, pmdp);
1539         unlock_page(page);
1540 out_unlock:
1541         spin_unlock(ptl);
1542
1543 out:
1544         if (anon_vma)
1545                 page_unlock_anon_vma_read(anon_vma);
1546
1547         if (page_nid != -1)
1548                 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1549
1550         return 0;
1551 }
1552
1553 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1554                 pmd_t *pmd, unsigned long addr, unsigned long next)
1555
1556 {
1557         spinlock_t *ptl;
1558         pmd_t orig_pmd;
1559         struct page *page;
1560         struct mm_struct *mm = tlb->mm;
1561         int ret = 0;
1562
1563         ptl = pmd_trans_huge_lock(pmd, vma);
1564         if (!ptl)
1565                 goto out_unlocked;
1566
1567         orig_pmd = *pmd;
1568         if (is_huge_zero_pmd(orig_pmd)) {
1569                 ret = 1;
1570                 goto out;
1571         }
1572
1573         page = pmd_page(orig_pmd);
1574         /*
1575          * If other processes are mapping this page, we couldn't discard
1576          * the page unless they all do MADV_FREE so let's skip the page.
1577          */
1578         if (page_mapcount(page) != 1)
1579                 goto out;
1580
1581         if (!trylock_page(page))
1582                 goto out;
1583
1584         /*
1585          * If user want to discard part-pages of THP, split it so MADV_FREE
1586          * will deactivate only them.
1587          */
1588         if (next - addr != HPAGE_PMD_SIZE) {
1589                 get_page(page);
1590                 spin_unlock(ptl);
1591                 if (split_huge_page(page)) {
1592                         put_page(page);
1593                         unlock_page(page);
1594                         goto out_unlocked;
1595                 }
1596                 put_page(page);
1597                 unlock_page(page);
1598                 ret = 1;
1599                 goto out_unlocked;
1600         }
1601
1602         if (PageDirty(page))
1603                 ClearPageDirty(page);
1604         unlock_page(page);
1605
1606         if (PageActive(page))
1607                 deactivate_page(page);
1608
1609         if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1610                 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1611                         tlb->fullmm);
1612                 orig_pmd = pmd_mkold(orig_pmd);
1613                 orig_pmd = pmd_mkclean(orig_pmd);
1614
1615                 set_pmd_at(mm, addr, pmd, orig_pmd);
1616                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1617         }
1618         ret = 1;
1619 out:
1620         spin_unlock(ptl);
1621 out_unlocked:
1622         return ret;
1623 }
1624
1625 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1626                  pmd_t *pmd, unsigned long addr)
1627 {
1628         pmd_t orig_pmd;
1629         spinlock_t *ptl;
1630
1631         ptl = __pmd_trans_huge_lock(pmd, vma);
1632         if (!ptl)
1633                 return 0;
1634         /*
1635          * For architectures like ppc64 we look at deposited pgtable
1636          * when calling pmdp_huge_get_and_clear. So do the
1637          * pgtable_trans_huge_withdraw after finishing pmdp related
1638          * operations.
1639          */
1640         orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1641                         tlb->fullmm);
1642         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1643         if (vma_is_dax(vma)) {
1644                 spin_unlock(ptl);
1645                 if (is_huge_zero_pmd(orig_pmd))
1646                         put_huge_zero_page();
1647         } else if (is_huge_zero_pmd(orig_pmd)) {
1648                 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1649                 atomic_long_dec(&tlb->mm->nr_ptes);
1650                 spin_unlock(ptl);
1651                 put_huge_zero_page();
1652         } else {
1653                 struct page *page = pmd_page(orig_pmd);
1654                 page_remove_rmap(page, true);
1655                 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1656                 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1657                 VM_BUG_ON_PAGE(!PageHead(page), page);
1658                 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1659                 atomic_long_dec(&tlb->mm->nr_ptes);
1660                 spin_unlock(ptl);
1661                 tlb_remove_page(tlb, page);
1662         }
1663         return 1;
1664 }
1665
1666 bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1667                   unsigned long old_addr,
1668                   unsigned long new_addr, unsigned long old_end,
1669                   pmd_t *old_pmd, pmd_t *new_pmd)
1670 {
1671         spinlock_t *old_ptl, *new_ptl;
1672         pmd_t pmd;
1673
1674         struct mm_struct *mm = vma->vm_mm;
1675
1676         if ((old_addr & ~HPAGE_PMD_MASK) ||
1677             (new_addr & ~HPAGE_PMD_MASK) ||
1678             old_end - old_addr < HPAGE_PMD_SIZE ||
1679             (new_vma->vm_flags & VM_NOHUGEPAGE))
1680                 return false;
1681
1682         /*
1683          * The destination pmd shouldn't be established, free_pgtables()
1684          * should have release it.
1685          */
1686         if (WARN_ON(!pmd_none(*new_pmd))) {
1687                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1688                 return false;
1689         }
1690
1691         /*
1692          * We don't have to worry about the ordering of src and dst
1693          * ptlocks because exclusive mmap_sem prevents deadlock.
1694          */
1695         old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1696         if (old_ptl) {
1697                 new_ptl = pmd_lockptr(mm, new_pmd);
1698                 if (new_ptl != old_ptl)
1699                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1700                 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1701                 VM_BUG_ON(!pmd_none(*new_pmd));
1702
1703                 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1704                                 vma_is_anonymous(vma)) {
1705                         pgtable_t pgtable;
1706                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1707                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1708                 }
1709                 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1710                 if (new_ptl != old_ptl)
1711                         spin_unlock(new_ptl);
1712                 spin_unlock(old_ptl);
1713                 return true;
1714         }
1715         return false;
1716 }
1717
1718 /*
1719  * Returns
1720  *  - 0 if PMD could not be locked
1721  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1722  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1723  */
1724 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1725                 unsigned long addr, pgprot_t newprot, int prot_numa)
1726 {
1727         struct mm_struct *mm = vma->vm_mm;
1728         spinlock_t *ptl;
1729         int ret = 0;
1730
1731         ptl = __pmd_trans_huge_lock(pmd, vma);
1732         if (ptl) {
1733                 pmd_t entry;
1734                 bool preserve_write = prot_numa && pmd_write(*pmd);
1735                 ret = 1;
1736
1737                 /*
1738                  * Avoid trapping faults against the zero page. The read-only
1739                  * data is likely to be read-cached on the local CPU and
1740                  * local/remote hits to the zero page are not interesting.
1741                  */
1742                 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1743                         spin_unlock(ptl);
1744                         return ret;
1745                 }
1746
1747                 if (!prot_numa || !pmd_protnone(*pmd)) {
1748                         entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1749                         entry = pmd_modify(entry, newprot);
1750                         if (preserve_write)
1751                                 entry = pmd_mkwrite(entry);
1752                         ret = HPAGE_PMD_NR;
1753                         set_pmd_at(mm, addr, pmd, entry);
1754                         BUG_ON(!preserve_write && pmd_write(entry));
1755                 }
1756                 spin_unlock(ptl);
1757         }
1758
1759         return ret;
1760 }
1761
1762 /*
1763  * Returns true if a given pmd maps a thp, false otherwise.
1764  *
1765  * Note that if it returns true, this routine returns without unlocking page
1766  * table lock. So callers must unlock it.
1767  */
1768 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1769 {
1770         spinlock_t *ptl;
1771         ptl = pmd_lock(vma->vm_mm, pmd);
1772         if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1773                 return ptl;
1774         spin_unlock(ptl);
1775         return NULL;
1776 }
1777
1778 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1779
1780 int hugepage_madvise(struct vm_area_struct *vma,
1781                      unsigned long *vm_flags, int advice)
1782 {
1783         switch (advice) {
1784         case MADV_HUGEPAGE:
1785 #ifdef CONFIG_S390
1786                 /*
1787                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1788                  * can't handle this properly after s390_enable_sie, so we simply
1789                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
1790                  */
1791                 if (mm_has_pgste(vma->vm_mm))
1792                         return 0;
1793 #endif
1794                 /*
1795                  * Be somewhat over-protective like KSM for now!
1796                  */
1797                 if (*vm_flags & VM_NO_THP)
1798                         return -EINVAL;
1799                 *vm_flags &= ~VM_NOHUGEPAGE;
1800                 *vm_flags |= VM_HUGEPAGE;
1801                 /*
1802                  * If the vma become good for khugepaged to scan,
1803                  * register it here without waiting a page fault that
1804                  * may not happen any time soon.
1805                  */
1806                 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1807                         return -ENOMEM;
1808                 break;
1809         case MADV_NOHUGEPAGE:
1810                 /*
1811                  * Be somewhat over-protective like KSM for now!
1812                  */
1813                 if (*vm_flags & VM_NO_THP)
1814                         return -EINVAL;
1815                 *vm_flags &= ~VM_HUGEPAGE;
1816                 *vm_flags |= VM_NOHUGEPAGE;
1817                 /*
1818                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1819                  * this vma even if we leave the mm registered in khugepaged if
1820                  * it got registered before VM_NOHUGEPAGE was set.
1821                  */
1822                 break;
1823         }
1824
1825         return 0;
1826 }
1827
1828 static int __init khugepaged_slab_init(void)
1829 {
1830         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1831                                           sizeof(struct mm_slot),
1832                                           __alignof__(struct mm_slot), 0, NULL);
1833         if (!mm_slot_cache)
1834                 return -ENOMEM;
1835
1836         return 0;
1837 }
1838
1839 static void __init khugepaged_slab_exit(void)
1840 {
1841         kmem_cache_destroy(mm_slot_cache);
1842 }
1843
1844 static inline struct mm_slot *alloc_mm_slot(void)
1845 {
1846         if (!mm_slot_cache)     /* initialization failed */
1847                 return NULL;
1848         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1849 }
1850
1851 static inline void free_mm_slot(struct mm_slot *mm_slot)
1852 {
1853         kmem_cache_free(mm_slot_cache, mm_slot);
1854 }
1855
1856 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1857 {
1858         struct mm_slot *mm_slot;
1859
1860         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1861                 if (mm == mm_slot->mm)
1862                         return mm_slot;
1863
1864         return NULL;
1865 }
1866
1867 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1868                                     struct mm_slot *mm_slot)
1869 {
1870         mm_slot->mm = mm;
1871         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1872 }
1873
1874 static inline int khugepaged_test_exit(struct mm_struct *mm)
1875 {
1876         return atomic_read(&mm->mm_users) == 0;
1877 }
1878
1879 int __khugepaged_enter(struct mm_struct *mm)
1880 {
1881         struct mm_slot *mm_slot;
1882         int wakeup;
1883
1884         mm_slot = alloc_mm_slot();
1885         if (!mm_slot)
1886                 return -ENOMEM;
1887
1888         /* __khugepaged_exit() must not run from under us */
1889         VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1890         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1891                 free_mm_slot(mm_slot);
1892                 return 0;
1893         }
1894
1895         spin_lock(&khugepaged_mm_lock);
1896         insert_to_mm_slots_hash(mm, mm_slot);
1897         /*
1898          * Insert just behind the scanning cursor, to let the area settle
1899          * down a little.
1900          */
1901         wakeup = list_empty(&khugepaged_scan.mm_head);
1902         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1903         spin_unlock(&khugepaged_mm_lock);
1904
1905         atomic_inc(&mm->mm_count);
1906         if (wakeup)
1907                 wake_up_interruptible(&khugepaged_wait);
1908
1909         return 0;
1910 }
1911
1912 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1913                                unsigned long vm_flags)
1914 {
1915         unsigned long hstart, hend;
1916         if (!vma->anon_vma)
1917                 /*
1918                  * Not yet faulted in so we will register later in the
1919                  * page fault if needed.
1920                  */
1921                 return 0;
1922         if (vma->vm_ops)
1923                 /* khugepaged not yet working on file or special mappings */
1924                 return 0;
1925         VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
1926         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1927         hend = vma->vm_end & HPAGE_PMD_MASK;
1928         if (hstart < hend)
1929                 return khugepaged_enter(vma, vm_flags);
1930         return 0;
1931 }
1932
1933 void __khugepaged_exit(struct mm_struct *mm)
1934 {
1935         struct mm_slot *mm_slot;
1936         int free = 0;
1937
1938         spin_lock(&khugepaged_mm_lock);
1939         mm_slot = get_mm_slot(mm);
1940         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1941                 hash_del(&mm_slot->hash);
1942                 list_del(&mm_slot->mm_node);
1943                 free = 1;
1944         }
1945         spin_unlock(&khugepaged_mm_lock);
1946
1947         if (free) {
1948                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1949                 free_mm_slot(mm_slot);
1950                 mmdrop(mm);
1951         } else if (mm_slot) {
1952                 /*
1953                  * This is required to serialize against
1954                  * khugepaged_test_exit() (which is guaranteed to run
1955                  * under mmap sem read mode). Stop here (after we
1956                  * return all pagetables will be destroyed) until
1957                  * khugepaged has finished working on the pagetables
1958                  * under the mmap_sem.
1959                  */
1960                 down_write(&mm->mmap_sem);
1961                 up_write(&mm->mmap_sem);
1962         }
1963 }
1964
1965 static void release_pte_page(struct page *page)
1966 {
1967         /* 0 stands for page_is_file_cache(page) == false */
1968         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1969         unlock_page(page);
1970         putback_lru_page(page);
1971 }
1972
1973 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1974 {
1975         while (--_pte >= pte) {
1976                 pte_t pteval = *_pte;
1977                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
1978                         release_pte_page(pte_page(pteval));
1979         }
1980 }
1981
1982 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1983                                         unsigned long address,
1984                                         pte_t *pte)
1985 {
1986         struct page *page = NULL;
1987         pte_t *_pte;
1988         int none_or_zero = 0, result = 0;
1989         bool referenced = false, writable = false;
1990
1991         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1992              _pte++, address += PAGE_SIZE) {
1993                 pte_t pteval = *_pte;
1994                 if (pte_none(pteval) || (pte_present(pteval) &&
1995                                 is_zero_pfn(pte_pfn(pteval)))) {
1996                         if (!userfaultfd_armed(vma) &&
1997                             ++none_or_zero <= khugepaged_max_ptes_none) {
1998                                 continue;
1999                         } else {
2000                                 result = SCAN_EXCEED_NONE_PTE;
2001                                 goto out;
2002                         }
2003                 }
2004                 if (!pte_present(pteval)) {
2005                         result = SCAN_PTE_NON_PRESENT;
2006                         goto out;
2007                 }
2008                 page = vm_normal_page(vma, address, pteval);
2009                 if (unlikely(!page)) {
2010                         result = SCAN_PAGE_NULL;
2011                         goto out;
2012                 }
2013
2014                 VM_BUG_ON_PAGE(PageCompound(page), page);
2015                 VM_BUG_ON_PAGE(!PageAnon(page), page);
2016                 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2017
2018                 /*
2019                  * We can do it before isolate_lru_page because the
2020                  * page can't be freed from under us. NOTE: PG_lock
2021                  * is needed to serialize against split_huge_page
2022                  * when invoked from the VM.
2023                  */
2024                 if (!trylock_page(page)) {
2025                         result = SCAN_PAGE_LOCK;
2026                         goto out;
2027                 }
2028
2029                 /*
2030                  * cannot use mapcount: can't collapse if there's a gup pin.
2031                  * The page must only be referenced by the scanned process
2032                  * and page swap cache.
2033                  */
2034                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2035                         unlock_page(page);
2036                         result = SCAN_PAGE_COUNT;
2037                         goto out;
2038                 }
2039                 if (pte_write(pteval)) {
2040                         writable = true;
2041                 } else {
2042                         if (PageSwapCache(page) && !reuse_swap_page(page)) {
2043                                 unlock_page(page);
2044                                 result = SCAN_SWAP_CACHE_PAGE;
2045                                 goto out;
2046                         }
2047                         /*
2048                          * Page is not in the swap cache. It can be collapsed
2049                          * into a THP.
2050                          */
2051                 }
2052
2053                 /*
2054                  * Isolate the page to avoid collapsing an hugepage
2055                  * currently in use by the VM.
2056                  */
2057                 if (isolate_lru_page(page)) {
2058                         unlock_page(page);
2059                         result = SCAN_DEL_PAGE_LRU;
2060                         goto out;
2061                 }
2062                 /* 0 stands for page_is_file_cache(page) == false */
2063                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2064                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2065                 VM_BUG_ON_PAGE(PageLRU(page), page);
2066
2067                 /* If there is no mapped pte young don't collapse the page */
2068                 if (pte_young(pteval) ||
2069                     page_is_young(page) || PageReferenced(page) ||
2070                     mmu_notifier_test_young(vma->vm_mm, address))
2071                         referenced = true;
2072         }
2073         if (likely(writable)) {
2074                 if (likely(referenced)) {
2075                         result = SCAN_SUCCEED;
2076                         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2077                                                             referenced, writable, result);
2078                         return 1;
2079                 }
2080         } else {
2081                 result = SCAN_PAGE_RO;
2082         }
2083
2084 out:
2085         release_pte_pages(pte, _pte);
2086         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2087                                             referenced, writable, result);
2088         return 0;
2089 }
2090
2091 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2092                                       struct vm_area_struct *vma,
2093                                       unsigned long address,
2094                                       spinlock_t *ptl)
2095 {
2096         pte_t *_pte;
2097         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2098                 pte_t pteval = *_pte;
2099                 struct page *src_page;
2100
2101                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2102                         clear_user_highpage(page, address);
2103                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2104                         if (is_zero_pfn(pte_pfn(pteval))) {
2105                                 /*
2106                                  * ptl mostly unnecessary.
2107                                  */
2108                                 spin_lock(ptl);
2109                                 /*
2110                                  * paravirt calls inside pte_clear here are
2111                                  * superfluous.
2112                                  */
2113                                 pte_clear(vma->vm_mm, address, _pte);
2114                                 spin_unlock(ptl);
2115                         }
2116                 } else {
2117                         src_page = pte_page(pteval);
2118                         copy_user_highpage(page, src_page, address, vma);
2119                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2120                         release_pte_page(src_page);
2121                         /*
2122                          * ptl mostly unnecessary, but preempt has to
2123                          * be disabled to update the per-cpu stats
2124                          * inside page_remove_rmap().
2125                          */
2126                         spin_lock(ptl);
2127                         /*
2128                          * paravirt calls inside pte_clear here are
2129                          * superfluous.
2130                          */
2131                         pte_clear(vma->vm_mm, address, _pte);
2132                         page_remove_rmap(src_page, false);
2133                         spin_unlock(ptl);
2134                         free_page_and_swap_cache(src_page);
2135                 }
2136
2137                 address += PAGE_SIZE;
2138                 page++;
2139         }
2140 }
2141
2142 static void khugepaged_alloc_sleep(void)
2143 {
2144         DEFINE_WAIT(wait);
2145
2146         add_wait_queue(&khugepaged_wait, &wait);
2147         freezable_schedule_timeout_interruptible(
2148                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2149         remove_wait_queue(&khugepaged_wait, &wait);
2150 }
2151
2152 static int khugepaged_node_load[MAX_NUMNODES];
2153
2154 static bool khugepaged_scan_abort(int nid)
2155 {
2156         int i;
2157
2158         /*
2159          * If zone_reclaim_mode is disabled, then no extra effort is made to
2160          * allocate memory locally.
2161          */
2162         if (!zone_reclaim_mode)
2163                 return false;
2164
2165         /* If there is a count for this node already, it must be acceptable */
2166         if (khugepaged_node_load[nid])
2167                 return false;
2168
2169         for (i = 0; i < MAX_NUMNODES; i++) {
2170                 if (!khugepaged_node_load[i])
2171                         continue;
2172                 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2173                         return true;
2174         }
2175         return false;
2176 }
2177
2178 #ifdef CONFIG_NUMA
2179 static int khugepaged_find_target_node(void)
2180 {
2181         static int last_khugepaged_target_node = NUMA_NO_NODE;
2182         int nid, target_node = 0, max_value = 0;
2183
2184         /* find first node with max normal pages hit */
2185         for (nid = 0; nid < MAX_NUMNODES; nid++)
2186                 if (khugepaged_node_load[nid] > max_value) {
2187                         max_value = khugepaged_node_load[nid];
2188                         target_node = nid;
2189                 }
2190
2191         /* do some balance if several nodes have the same hit record */
2192         if (target_node <= last_khugepaged_target_node)
2193                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2194                                 nid++)
2195                         if (max_value == khugepaged_node_load[nid]) {
2196                                 target_node = nid;
2197                                 break;
2198                         }
2199
2200         last_khugepaged_target_node = target_node;
2201         return target_node;
2202 }
2203
2204 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2205 {
2206         if (IS_ERR(*hpage)) {
2207                 if (!*wait)
2208                         return false;
2209
2210                 *wait = false;
2211                 *hpage = NULL;
2212                 khugepaged_alloc_sleep();
2213         } else if (*hpage) {
2214                 put_page(*hpage);
2215                 *hpage = NULL;
2216         }
2217
2218         return true;
2219 }
2220
2221 static struct page *
2222 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2223                        unsigned long address, int node)
2224 {
2225         VM_BUG_ON_PAGE(*hpage, *hpage);
2226
2227         /*
2228          * Before allocating the hugepage, release the mmap_sem read lock.
2229          * The allocation can take potentially a long time if it involves
2230          * sync compaction, and we do not need to hold the mmap_sem during
2231          * that. We will recheck the vma after taking it again in write mode.
2232          */
2233         up_read(&mm->mmap_sem);
2234
2235         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2236         if (unlikely(!*hpage)) {
2237                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2238                 *hpage = ERR_PTR(-ENOMEM);
2239                 return NULL;
2240         }
2241
2242         prep_transhuge_page(*hpage);
2243         count_vm_event(THP_COLLAPSE_ALLOC);
2244         return *hpage;
2245 }
2246 #else
2247 static int khugepaged_find_target_node(void)
2248 {
2249         return 0;
2250 }
2251
2252 static inline struct page *alloc_hugepage(int defrag)
2253 {
2254         struct page *page;
2255
2256         page = alloc_pages(alloc_hugepage_gfpmask(defrag, 0), HPAGE_PMD_ORDER);
2257         if (page)
2258                 prep_transhuge_page(page);
2259         return page;
2260 }
2261
2262 static struct page *khugepaged_alloc_hugepage(bool *wait)
2263 {
2264         struct page *hpage;
2265
2266         do {
2267                 hpage = alloc_hugepage(khugepaged_defrag());
2268                 if (!hpage) {
2269                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2270                         if (!*wait)
2271                                 return NULL;
2272
2273                         *wait = false;
2274                         khugepaged_alloc_sleep();
2275                 } else
2276                         count_vm_event(THP_COLLAPSE_ALLOC);
2277         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2278
2279         return hpage;
2280 }
2281
2282 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2283 {
2284         if (!*hpage)
2285                 *hpage = khugepaged_alloc_hugepage(wait);
2286
2287         if (unlikely(!*hpage))
2288                 return false;
2289
2290         return true;
2291 }
2292
2293 static struct page *
2294 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2295                        unsigned long address, int node)
2296 {
2297         up_read(&mm->mmap_sem);
2298         VM_BUG_ON(!*hpage);
2299
2300         return  *hpage;
2301 }
2302 #endif
2303
2304 static bool hugepage_vma_check(struct vm_area_struct *vma)
2305 {
2306         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2307             (vma->vm_flags & VM_NOHUGEPAGE))
2308                 return false;
2309         if (!vma->anon_vma || vma->vm_ops)
2310                 return false;
2311         if (is_vma_temporary_stack(vma))
2312                 return false;
2313         VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2314         return true;
2315 }
2316
2317 static void collapse_huge_page(struct mm_struct *mm,
2318                                    unsigned long address,
2319                                    struct page **hpage,
2320                                    struct vm_area_struct *vma,
2321                                    int node)
2322 {
2323         pmd_t *pmd, _pmd;
2324         pte_t *pte;
2325         pgtable_t pgtable;
2326         struct page *new_page;
2327         spinlock_t *pmd_ptl, *pte_ptl;
2328         int isolated = 0, result = 0;
2329         unsigned long hstart, hend;
2330         struct mem_cgroup *memcg;
2331         unsigned long mmun_start;       /* For mmu_notifiers */
2332         unsigned long mmun_end;         /* For mmu_notifiers */
2333         gfp_t gfp;
2334
2335         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2336
2337         /* Only allocate from the target node */
2338         gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2339                 __GFP_THISNODE;
2340
2341         /* release the mmap_sem read lock. */
2342         new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2343         if (!new_page) {
2344                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2345                 goto out_nolock;
2346         }
2347
2348         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2349                 result = SCAN_CGROUP_CHARGE_FAIL;
2350                 goto out_nolock;
2351         }
2352
2353         /*
2354          * Prevent all access to pagetables with the exception of
2355          * gup_fast later hanlded by the ptep_clear_flush and the VM
2356          * handled by the anon_vma lock + PG_lock.
2357          */
2358         down_write(&mm->mmap_sem);
2359         if (unlikely(khugepaged_test_exit(mm))) {
2360                 result = SCAN_ANY_PROCESS;
2361                 goto out;
2362         }
2363
2364         vma = find_vma(mm, address);
2365         if (!vma) {
2366                 result = SCAN_VMA_NULL;
2367                 goto out;
2368         }
2369         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2370         hend = vma->vm_end & HPAGE_PMD_MASK;
2371         if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2372                 result = SCAN_ADDRESS_RANGE;
2373                 goto out;
2374         }
2375         if (!hugepage_vma_check(vma)) {
2376                 result = SCAN_VMA_CHECK;
2377                 goto out;
2378         }
2379         pmd = mm_find_pmd(mm, address);
2380         if (!pmd) {
2381                 result = SCAN_PMD_NULL;
2382                 goto out;
2383         }
2384
2385         anon_vma_lock_write(vma->anon_vma);
2386
2387         pte = pte_offset_map(pmd, address);
2388         pte_ptl = pte_lockptr(mm, pmd);
2389
2390         mmun_start = address;
2391         mmun_end   = address + HPAGE_PMD_SIZE;
2392         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2393         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2394         /*
2395          * After this gup_fast can't run anymore. This also removes
2396          * any huge TLB entry from the CPU so we won't allow
2397          * huge and small TLB entries for the same virtual address
2398          * to avoid the risk of CPU bugs in that area.
2399          */
2400         _pmd = pmdp_collapse_flush(vma, address, pmd);
2401         spin_unlock(pmd_ptl);
2402         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2403
2404         spin_lock(pte_ptl);
2405         isolated = __collapse_huge_page_isolate(vma, address, pte);
2406         spin_unlock(pte_ptl);
2407
2408         if (unlikely(!isolated)) {
2409                 pte_unmap(pte);
2410                 spin_lock(pmd_ptl);
2411                 BUG_ON(!pmd_none(*pmd));
2412                 /*
2413                  * We can only use set_pmd_at when establishing
2414                  * hugepmds and never for establishing regular pmds that
2415                  * points to regular pagetables. Use pmd_populate for that
2416                  */
2417                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2418                 spin_unlock(pmd_ptl);
2419                 anon_vma_unlock_write(vma->anon_vma);
2420                 result = SCAN_FAIL;
2421                 goto out;
2422         }
2423
2424         /*
2425          * All pages are isolated and locked so anon_vma rmap
2426          * can't run anymore.
2427          */
2428         anon_vma_unlock_write(vma->anon_vma);
2429
2430         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2431         pte_unmap(pte);
2432         __SetPageUptodate(new_page);
2433         pgtable = pmd_pgtable(_pmd);
2434
2435         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2436         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2437
2438         /*
2439          * spin_lock() below is not the equivalent of smp_wmb(), so
2440          * this is needed to avoid the copy_huge_page writes to become
2441          * visible after the set_pmd_at() write.
2442          */
2443         smp_wmb();
2444
2445         spin_lock(pmd_ptl);
2446         BUG_ON(!pmd_none(*pmd));
2447         page_add_new_anon_rmap(new_page, vma, address, true);
2448         mem_cgroup_commit_charge(new_page, memcg, false, true);
2449         lru_cache_add_active_or_unevictable(new_page, vma);
2450         pgtable_trans_huge_deposit(mm, pmd, pgtable);
2451         set_pmd_at(mm, address, pmd, _pmd);
2452         update_mmu_cache_pmd(vma, address, pmd);
2453         spin_unlock(pmd_ptl);
2454
2455         *hpage = NULL;
2456
2457         khugepaged_pages_collapsed++;
2458         result = SCAN_SUCCEED;
2459 out_up_write:
2460         up_write(&mm->mmap_sem);
2461         trace_mm_collapse_huge_page(mm, isolated, result);
2462         return;
2463
2464 out_nolock:
2465         trace_mm_collapse_huge_page(mm, isolated, result);
2466         return;
2467 out:
2468         mem_cgroup_cancel_charge(new_page, memcg, true);
2469         goto out_up_write;
2470 }
2471
2472 static int khugepaged_scan_pmd(struct mm_struct *mm,
2473                                struct vm_area_struct *vma,
2474                                unsigned long address,
2475                                struct page **hpage)
2476 {
2477         pmd_t *pmd;
2478         pte_t *pte, *_pte;
2479         int ret = 0, none_or_zero = 0, result = 0;
2480         struct page *page = NULL;
2481         unsigned long _address;
2482         spinlock_t *ptl;
2483         int node = NUMA_NO_NODE;
2484         bool writable = false, referenced = false;
2485
2486         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2487
2488         pmd = mm_find_pmd(mm, address);
2489         if (!pmd) {
2490                 result = SCAN_PMD_NULL;
2491                 goto out;
2492         }
2493
2494         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2495         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2496         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2497              _pte++, _address += PAGE_SIZE) {
2498                 pte_t pteval = *_pte;
2499                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2500                         if (!userfaultfd_armed(vma) &&
2501                             ++none_or_zero <= khugepaged_max_ptes_none) {
2502                                 continue;
2503                         } else {
2504                                 result = SCAN_EXCEED_NONE_PTE;
2505                                 goto out_unmap;
2506                         }
2507                 }
2508                 if (!pte_present(pteval)) {
2509                         result = SCAN_PTE_NON_PRESENT;
2510                         goto out_unmap;
2511                 }
2512                 if (pte_write(pteval))
2513                         writable = true;
2514
2515                 page = vm_normal_page(vma, _address, pteval);
2516                 if (unlikely(!page)) {
2517                         result = SCAN_PAGE_NULL;
2518                         goto out_unmap;
2519                 }
2520
2521                 /* TODO: teach khugepaged to collapse THP mapped with pte */
2522                 if (PageCompound(page)) {
2523                         result = SCAN_PAGE_COMPOUND;
2524                         goto out_unmap;
2525                 }
2526
2527                 /*
2528                  * Record which node the original page is from and save this
2529                  * information to khugepaged_node_load[].
2530                  * Khupaged will allocate hugepage from the node has the max
2531                  * hit record.
2532                  */
2533                 node = page_to_nid(page);
2534                 if (khugepaged_scan_abort(node)) {
2535                         result = SCAN_SCAN_ABORT;
2536                         goto out_unmap;
2537                 }
2538                 khugepaged_node_load[node]++;
2539                 if (!PageLRU(page)) {
2540                         result = SCAN_SCAN_ABORT;
2541                         goto out_unmap;
2542                 }
2543                 if (PageLocked(page)) {
2544                         result = SCAN_PAGE_LOCK;
2545                         goto out_unmap;
2546                 }
2547                 if (!PageAnon(page)) {
2548                         result = SCAN_PAGE_ANON;
2549                         goto out_unmap;
2550                 }
2551
2552                 /*
2553                  * cannot use mapcount: can't collapse if there's a gup pin.
2554                  * The page must only be referenced by the scanned process
2555                  * and page swap cache.
2556                  */
2557                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2558                         result = SCAN_PAGE_COUNT;
2559                         goto out_unmap;
2560                 }
2561                 if (pte_young(pteval) ||
2562                     page_is_young(page) || PageReferenced(page) ||
2563                     mmu_notifier_test_young(vma->vm_mm, address))
2564                         referenced = true;
2565         }
2566         if (writable) {
2567                 if (referenced) {
2568                         result = SCAN_SUCCEED;
2569                         ret = 1;
2570                 } else {
2571                         result = SCAN_NO_REFERENCED_PAGE;
2572                 }
2573         } else {
2574                 result = SCAN_PAGE_RO;
2575         }
2576 out_unmap:
2577         pte_unmap_unlock(pte, ptl);
2578         if (ret) {
2579                 node = khugepaged_find_target_node();
2580                 /* collapse_huge_page will return with the mmap_sem released */
2581                 collapse_huge_page(mm, address, hpage, vma, node);
2582         }
2583 out:
2584         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2585                                      none_or_zero, result);
2586         return ret;
2587 }
2588
2589 static void collect_mm_slot(struct mm_slot *mm_slot)
2590 {
2591         struct mm_struct *mm = mm_slot->mm;
2592
2593         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2594
2595         if (khugepaged_test_exit(mm)) {
2596                 /* free mm_slot */
2597                 hash_del(&mm_slot->hash);
2598                 list_del(&mm_slot->mm_node);
2599
2600                 /*
2601                  * Not strictly needed because the mm exited already.
2602                  *
2603                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2604                  */
2605
2606                 /* khugepaged_mm_lock actually not necessary for the below */
2607                 free_mm_slot(mm_slot);
2608                 mmdrop(mm);
2609         }
2610 }
2611
2612 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2613                                             struct page **hpage)
2614         __releases(&khugepaged_mm_lock)
2615         __acquires(&khugepaged_mm_lock)
2616 {
2617         struct mm_slot *mm_slot;
2618         struct mm_struct *mm;
2619         struct vm_area_struct *vma;
2620         int progress = 0;
2621
2622         VM_BUG_ON(!pages);
2623         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2624
2625         if (khugepaged_scan.mm_slot)
2626                 mm_slot = khugepaged_scan.mm_slot;
2627         else {
2628                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2629                                      struct mm_slot, mm_node);
2630                 khugepaged_scan.address = 0;
2631                 khugepaged_scan.mm_slot = mm_slot;
2632         }
2633         spin_unlock(&khugepaged_mm_lock);
2634
2635         mm = mm_slot->mm;
2636         down_read(&mm->mmap_sem);
2637         if (unlikely(khugepaged_test_exit(mm)))
2638                 vma = NULL;
2639         else
2640                 vma = find_vma(mm, khugepaged_scan.address);
2641
2642         progress++;
2643         for (; vma; vma = vma->vm_next) {
2644                 unsigned long hstart, hend;
2645
2646                 cond_resched();
2647                 if (unlikely(khugepaged_test_exit(mm))) {
2648                         progress++;
2649                         break;
2650                 }
2651                 if (!hugepage_vma_check(vma)) {
2652 skip:
2653                         progress++;
2654                         continue;
2655                 }
2656                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2657                 hend = vma->vm_end & HPAGE_PMD_MASK;
2658                 if (hstart >= hend)
2659                         goto skip;
2660                 if (khugepaged_scan.address > hend)
2661                         goto skip;
2662                 if (khugepaged_scan.address < hstart)
2663                         khugepaged_scan.address = hstart;
2664                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2665
2666                 while (khugepaged_scan.address < hend) {
2667                         int ret;
2668                         cond_resched();
2669                         if (unlikely(khugepaged_test_exit(mm)))
2670                                 goto breakouterloop;
2671
2672                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2673                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2674                                   hend);
2675                         ret = khugepaged_scan_pmd(mm, vma,
2676                                                   khugepaged_scan.address,
2677                                                   hpage);
2678                         /* move to next address */
2679                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2680                         progress += HPAGE_PMD_NR;
2681                         if (ret)
2682                                 /* we released mmap_sem so break loop */
2683                                 goto breakouterloop_mmap_sem;
2684                         if (progress >= pages)
2685                                 goto breakouterloop;
2686                 }
2687         }
2688 breakouterloop:
2689         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2690 breakouterloop_mmap_sem:
2691
2692         spin_lock(&khugepaged_mm_lock);
2693         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2694         /*
2695          * Release the current mm_slot if this mm is about to die, or
2696          * if we scanned all vmas of this mm.
2697          */
2698         if (khugepaged_test_exit(mm) || !vma) {
2699                 /*
2700                  * Make sure that if mm_users is reaching zero while
2701                  * khugepaged runs here, khugepaged_exit will find
2702                  * mm_slot not pointing to the exiting mm.
2703                  */
2704                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2705                         khugepaged_scan.mm_slot = list_entry(
2706                                 mm_slot->mm_node.next,
2707                                 struct mm_slot, mm_node);
2708                         khugepaged_scan.address = 0;
2709                 } else {
2710                         khugepaged_scan.mm_slot = NULL;
2711                         khugepaged_full_scans++;
2712                 }
2713
2714                 collect_mm_slot(mm_slot);
2715         }
2716
2717         return progress;
2718 }
2719
2720 static int khugepaged_has_work(void)
2721 {
2722         return !list_empty(&khugepaged_scan.mm_head) &&
2723                 khugepaged_enabled();
2724 }
2725
2726 static int khugepaged_wait_event(void)
2727 {
2728         return !list_empty(&khugepaged_scan.mm_head) ||
2729                 kthread_should_stop();
2730 }
2731
2732 static void khugepaged_do_scan(void)
2733 {
2734         struct page *hpage = NULL;
2735         unsigned int progress = 0, pass_through_head = 0;
2736         unsigned int pages = khugepaged_pages_to_scan;
2737         bool wait = true;
2738
2739         barrier(); /* write khugepaged_pages_to_scan to local stack */
2740
2741         while (progress < pages) {
2742                 if (!khugepaged_prealloc_page(&hpage, &wait))
2743                         break;
2744
2745                 cond_resched();
2746
2747                 if (unlikely(kthread_should_stop() || try_to_freeze()))
2748                         break;
2749
2750                 spin_lock(&khugepaged_mm_lock);
2751                 if (!khugepaged_scan.mm_slot)
2752                         pass_through_head++;
2753                 if (khugepaged_has_work() &&
2754                     pass_through_head < 2)
2755                         progress += khugepaged_scan_mm_slot(pages - progress,
2756                                                             &hpage);
2757                 else
2758                         progress = pages;
2759                 spin_unlock(&khugepaged_mm_lock);
2760         }
2761
2762         if (!IS_ERR_OR_NULL(hpage))
2763                 put_page(hpage);
2764 }
2765
2766 static void khugepaged_wait_work(void)
2767 {
2768         if (khugepaged_has_work()) {
2769                 if (!khugepaged_scan_sleep_millisecs)
2770                         return;
2771
2772                 wait_event_freezable_timeout(khugepaged_wait,
2773                                              kthread_should_stop(),
2774                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2775                 return;
2776         }
2777
2778         if (khugepaged_enabled())
2779                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2780 }
2781
2782 static int khugepaged(void *none)
2783 {
2784         struct mm_slot *mm_slot;
2785
2786         set_freezable();
2787         set_user_nice(current, MAX_NICE);
2788
2789         while (!kthread_should_stop()) {
2790                 khugepaged_do_scan();
2791                 khugepaged_wait_work();
2792         }
2793
2794         spin_lock(&khugepaged_mm_lock);
2795         mm_slot = khugepaged_scan.mm_slot;
2796         khugepaged_scan.mm_slot = NULL;
2797         if (mm_slot)
2798                 collect_mm_slot(mm_slot);
2799         spin_unlock(&khugepaged_mm_lock);
2800         return 0;
2801 }
2802
2803 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2804                 unsigned long haddr, pmd_t *pmd)
2805 {
2806         struct mm_struct *mm = vma->vm_mm;
2807         pgtable_t pgtable;
2808         pmd_t _pmd;
2809         int i;
2810
2811         /* leave pmd empty until pte is filled */
2812         pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2813
2814         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2815         pmd_populate(mm, &_pmd, pgtable);
2816
2817         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2818                 pte_t *pte, entry;
2819                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2820                 entry = pte_mkspecial(entry);
2821                 pte = pte_offset_map(&_pmd, haddr);
2822                 VM_BUG_ON(!pte_none(*pte));
2823                 set_pte_at(mm, haddr, pte, entry);
2824                 pte_unmap(pte);
2825         }
2826         smp_wmb(); /* make pte visible before pmd */
2827         pmd_populate(mm, pmd, pgtable);
2828         put_huge_zero_page();
2829 }
2830
2831 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2832                 unsigned long haddr, bool freeze)
2833 {
2834         struct mm_struct *mm = vma->vm_mm;
2835         struct page *page;
2836         pgtable_t pgtable;
2837         pmd_t _pmd;
2838         bool young, write, dirty;
2839         unsigned long addr;
2840         int i;
2841
2842         VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2843         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2844         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2845         VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
2846
2847         count_vm_event(THP_SPLIT_PMD);
2848
2849         if (vma_is_dax(vma)) {
2850                 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2851                 if (is_huge_zero_pmd(_pmd))
2852                         put_huge_zero_page();
2853                 return;
2854         } else if (is_huge_zero_pmd(*pmd)) {
2855                 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2856         }
2857
2858         page = pmd_page(*pmd);
2859         VM_BUG_ON_PAGE(!page_count(page), page);
2860         atomic_add(HPAGE_PMD_NR - 1, &page->_count);
2861         write = pmd_write(*pmd);
2862         young = pmd_young(*pmd);
2863         dirty = pmd_dirty(*pmd);
2864
2865         pmdp_huge_split_prepare(vma, haddr, pmd);
2866         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2867         pmd_populate(mm, &_pmd, pgtable);
2868
2869         for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2870                 pte_t entry, *pte;
2871                 /*
2872                  * Note that NUMA hinting access restrictions are not
2873                  * transferred to avoid any possibility of altering
2874                  * permissions across VMAs.
2875                  */
2876                 if (freeze) {
2877                         swp_entry_t swp_entry;
2878                         swp_entry = make_migration_entry(page + i, write);
2879                         entry = swp_entry_to_pte(swp_entry);
2880                 } else {
2881                         entry = mk_pte(page + i, vma->vm_page_prot);
2882                         entry = maybe_mkwrite(entry, vma);
2883                         if (!write)
2884                                 entry = pte_wrprotect(entry);
2885                         if (!young)
2886                                 entry = pte_mkold(entry);
2887                 }
2888                 if (dirty)
2889                         SetPageDirty(page + i);
2890                 pte = pte_offset_map(&_pmd, addr);
2891                 BUG_ON(!pte_none(*pte));
2892                 set_pte_at(mm, addr, pte, entry);
2893                 atomic_inc(&page[i]._mapcount);
2894                 pte_unmap(pte);
2895         }
2896
2897         /*
2898          * Set PG_double_map before dropping compound_mapcount to avoid
2899          * false-negative page_mapped().
2900          */
2901         if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2902                 for (i = 0; i < HPAGE_PMD_NR; i++)
2903                         atomic_inc(&page[i]._mapcount);
2904         }
2905
2906         if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2907                 /* Last compound_mapcount is gone. */
2908                 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2909                 if (TestClearPageDoubleMap(page)) {
2910                         /* No need in mapcount reference anymore */
2911                         for (i = 0; i < HPAGE_PMD_NR; i++)
2912                                 atomic_dec(&page[i]._mapcount);
2913                 }
2914         }
2915
2916         smp_wmb(); /* make pte visible before pmd */
2917         /*
2918          * Up to this point the pmd is present and huge and userland has the
2919          * whole access to the hugepage during the split (which happens in
2920          * place). If we overwrite the pmd with the not-huge version pointing
2921          * to the pte here (which of course we could if all CPUs were bug
2922          * free), userland could trigger a small page size TLB miss on the
2923          * small sized TLB while the hugepage TLB entry is still established in
2924          * the huge TLB. Some CPU doesn't like that.
2925          * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2926          * 383 on page 93. Intel should be safe but is also warns that it's
2927          * only safe if the permission and cache attributes of the two entries
2928          * loaded in the two TLB is identical (which should be the case here).
2929          * But it is generally safer to never allow small and huge TLB entries
2930          * for the same virtual address to be loaded simultaneously. So instead
2931          * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2932          * current pmd notpresent (atomically because here the pmd_trans_huge
2933          * and pmd_trans_splitting must remain set at all times on the pmd
2934          * until the split is complete for this pmd), then we flush the SMP TLB
2935          * and finally we write the non-huge version of the pmd entry with
2936          * pmd_populate.
2937          */
2938         pmdp_invalidate(vma, haddr, pmd);
2939         pmd_populate(mm, pmd, pgtable);
2940
2941         if (freeze) {
2942                 for (i = 0; i < HPAGE_PMD_NR; i++) {
2943                         page_remove_rmap(page + i, false);
2944                         put_page(page + i);
2945                 }
2946         }
2947 }
2948
2949 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2950                 unsigned long address)
2951 {
2952         spinlock_t *ptl;
2953         struct mm_struct *mm = vma->vm_mm;
2954         struct page *page = NULL;
2955         unsigned long haddr = address & HPAGE_PMD_MASK;
2956
2957         mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2958         ptl = pmd_lock(mm, pmd);
2959         if (pmd_trans_huge(*pmd)) {
2960                 page = pmd_page(*pmd);
2961                 if (PageMlocked(page))
2962                         get_page(page);
2963                 else
2964                         page = NULL;
2965         } else if (!pmd_devmap(*pmd))
2966                 goto out;
2967         __split_huge_pmd_locked(vma, pmd, haddr, false);
2968 out:
2969         spin_unlock(ptl);
2970         mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2971         if (page) {
2972                 lock_page(page);
2973                 munlock_vma_page(page);
2974                 unlock_page(page);
2975                 put_page(page);
2976         }
2977 }
2978
2979 static void split_huge_pmd_address(struct vm_area_struct *vma,
2980                                     unsigned long address)
2981 {
2982         pgd_t *pgd;
2983         pud_t *pud;
2984         pmd_t *pmd;
2985
2986         VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2987
2988         pgd = pgd_offset(vma->vm_mm, address);
2989         if (!pgd_present(*pgd))
2990                 return;
2991
2992         pud = pud_offset(pgd, address);
2993         if (!pud_present(*pud))
2994                 return;
2995
2996         pmd = pmd_offset(pud, address);
2997         if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
2998                 return;
2999         /*
3000          * Caller holds the mmap_sem write mode, so a huge pmd cannot
3001          * materialize from under us.
3002          */
3003         split_huge_pmd(vma, pmd, address);
3004 }
3005
3006 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3007                              unsigned long start,
3008                              unsigned long end,
3009                              long adjust_next)
3010 {
3011         /*
3012          * If the new start address isn't hpage aligned and it could
3013          * previously contain an hugepage: check if we need to split
3014          * an huge pmd.
3015          */
3016         if (start & ~HPAGE_PMD_MASK &&
3017             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3018             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3019                 split_huge_pmd_address(vma, start);
3020
3021         /*
3022          * If the new end address isn't hpage aligned and it could
3023          * previously contain an hugepage: check if we need to split
3024          * an huge pmd.
3025          */
3026         if (end & ~HPAGE_PMD_MASK &&
3027             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3028             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3029                 split_huge_pmd_address(vma, end);
3030
3031         /*
3032          * If we're also updating the vma->vm_next->vm_start, if the new
3033          * vm_next->vm_start isn't page aligned and it could previously
3034          * contain an hugepage: check if we need to split an huge pmd.
3035          */
3036         if (adjust_next > 0) {
3037                 struct vm_area_struct *next = vma->vm_next;
3038                 unsigned long nstart = next->vm_start;
3039                 nstart += adjust_next << PAGE_SHIFT;
3040                 if (nstart & ~HPAGE_PMD_MASK &&
3041                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3042                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3043                         split_huge_pmd_address(next, nstart);
3044         }
3045 }
3046
3047 static void freeze_page_vma(struct vm_area_struct *vma, struct page *page,
3048                 unsigned long address)
3049 {
3050         unsigned long haddr = address & HPAGE_PMD_MASK;
3051         spinlock_t *ptl;
3052         pgd_t *pgd;
3053         pud_t *pud;
3054         pmd_t *pmd;
3055         pte_t *pte;
3056         int i, nr = HPAGE_PMD_NR;
3057
3058         /* Skip pages which doesn't belong to the VMA */
3059         if (address < vma->vm_start) {
3060                 int off = (vma->vm_start - address) >> PAGE_SHIFT;
3061                 page += off;
3062                 nr -= off;
3063                 address = vma->vm_start;
3064         }
3065
3066         pgd = pgd_offset(vma->vm_mm, address);
3067         if (!pgd_present(*pgd))
3068                 return;
3069         pud = pud_offset(pgd, address);
3070         if (!pud_present(*pud))
3071                 return;
3072         pmd = pmd_offset(pud, address);
3073         ptl = pmd_lock(vma->vm_mm, pmd);
3074         if (!pmd_present(*pmd)) {
3075                 spin_unlock(ptl);
3076                 return;
3077         }
3078         if (pmd_trans_huge(*pmd)) {
3079                 if (page == pmd_page(*pmd))
3080                         __split_huge_pmd_locked(vma, pmd, haddr, true);
3081                 spin_unlock(ptl);
3082                 return;
3083         }
3084         spin_unlock(ptl);
3085
3086         pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
3087         for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
3088                 pte_t entry, swp_pte;
3089                 swp_entry_t swp_entry;
3090
3091                 /*
3092                  * We've just crossed page table boundary: need to map next one.
3093                  * It can happen if THP was mremaped to non PMD-aligned address.
3094                  */
3095                 if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3096                         pte_unmap_unlock(pte - 1, ptl);
3097                         pmd = mm_find_pmd(vma->vm_mm, address);
3098                         if (!pmd)
3099                                 return;
3100                         pte = pte_offset_map_lock(vma->vm_mm, pmd,
3101                                         address, &ptl);
3102                 }
3103
3104                 if (!pte_present(*pte))
3105                         continue;
3106                 if (page_to_pfn(page) != pte_pfn(*pte))
3107                         continue;
3108                 flush_cache_page(vma, address, page_to_pfn(page));
3109                 entry = ptep_clear_flush(vma, address, pte);
3110                 if (pte_dirty(entry))
3111                         SetPageDirty(page);
3112                 swp_entry = make_migration_entry(page, pte_write(entry));
3113                 swp_pte = swp_entry_to_pte(swp_entry);
3114                 if (pte_soft_dirty(entry))
3115                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
3116                 set_pte_at(vma->vm_mm, address, pte, swp_pte);
3117                 page_remove_rmap(page, false);
3118                 put_page(page);
3119         }
3120         pte_unmap_unlock(pte - 1, ptl);
3121 }
3122
3123 static void freeze_page(struct anon_vma *anon_vma, struct page *page)
3124 {
3125         struct anon_vma_chain *avc;
3126         pgoff_t pgoff = page_to_pgoff(page);
3127
3128         VM_BUG_ON_PAGE(!PageHead(page), page);
3129
3130         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff,
3131                         pgoff + HPAGE_PMD_NR - 1) {
3132                 unsigned long address = __vma_address(page, avc->vma);
3133
3134                 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3135                                 address, address + HPAGE_PMD_SIZE);
3136                 freeze_page_vma(avc->vma, page, address);
3137                 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3138                                 address, address + HPAGE_PMD_SIZE);
3139         }
3140 }
3141
3142 static void unfreeze_page_vma(struct vm_area_struct *vma, struct page *page,
3143                 unsigned long address)
3144 {
3145         spinlock_t *ptl;
3146         pmd_t *pmd;
3147         pte_t *pte, entry;
3148         swp_entry_t swp_entry;
3149         unsigned long haddr = address & HPAGE_PMD_MASK;
3150         int i, nr = HPAGE_PMD_NR;
3151
3152         /* Skip pages which doesn't belong to the VMA */
3153         if (address < vma->vm_start) {
3154                 int off = (vma->vm_start - address) >> PAGE_SHIFT;
3155                 page += off;
3156                 nr -= off;
3157                 address = vma->vm_start;
3158         }
3159
3160         pmd = mm_find_pmd(vma->vm_mm, address);
3161         if (!pmd)
3162                 return;
3163
3164         pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
3165         for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
3166                 /*
3167                  * We've just crossed page table boundary: need to map next one.
3168                  * It can happen if THP was mremaped to non-PMD aligned address.
3169                  */
3170                 if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3171                         pte_unmap_unlock(pte - 1, ptl);
3172                         pmd = mm_find_pmd(vma->vm_mm, address);
3173                         if (!pmd)
3174                                 return;
3175                         pte = pte_offset_map_lock(vma->vm_mm, pmd,
3176                                         address, &ptl);
3177                 }
3178
3179                 if (!is_swap_pte(*pte))
3180                         continue;
3181
3182                 swp_entry = pte_to_swp_entry(*pte);
3183                 if (!is_migration_entry(swp_entry))
3184                         continue;
3185                 if (migration_entry_to_page(swp_entry) != page)
3186                         continue;
3187
3188                 get_page(page);
3189                 page_add_anon_rmap(page, vma, address, false);
3190
3191                 entry = pte_mkold(mk_pte(page, vma->vm_page_prot));
3192                 if (PageDirty(page))
3193                         entry = pte_mkdirty(entry);
3194                 if (is_write_migration_entry(swp_entry))
3195                         entry = maybe_mkwrite(entry, vma);
3196
3197                 flush_dcache_page(page);
3198                 set_pte_at(vma->vm_mm, address, pte, entry);
3199
3200                 /* No need to invalidate - it was non-present before */
3201                 update_mmu_cache(vma, address, pte);
3202         }
3203         pte_unmap_unlock(pte - 1, ptl);
3204 }
3205
3206 static void unfreeze_page(struct anon_vma *anon_vma, struct page *page)
3207 {
3208         struct anon_vma_chain *avc;
3209         pgoff_t pgoff = page_to_pgoff(page);
3210
3211         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
3212                         pgoff, pgoff + HPAGE_PMD_NR - 1) {
3213                 unsigned long address = __vma_address(page, avc->vma);
3214
3215                 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3216                                 address, address + HPAGE_PMD_SIZE);
3217                 unfreeze_page_vma(avc->vma, page, address);
3218                 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3219                                 address, address + HPAGE_PMD_SIZE);
3220         }
3221 }
3222
3223 static int __split_huge_page_tail(struct page *head, int tail,
3224                 struct lruvec *lruvec, struct list_head *list)
3225 {
3226         int mapcount;
3227         struct page *page_tail = head + tail;
3228
3229         mapcount = atomic_read(&page_tail->_mapcount) + 1;
3230         VM_BUG_ON_PAGE(atomic_read(&page_tail->_count) != 0, page_tail);
3231
3232         /*
3233          * tail_page->_count is zero and not changing from under us. But
3234          * get_page_unless_zero() may be running from under us on the
3235          * tail_page. If we used atomic_set() below instead of atomic_add(), we
3236          * would then run atomic_set() concurrently with
3237          * get_page_unless_zero(), and atomic_set() is implemented in C not
3238          * using locked ops. spin_unlock on x86 sometime uses locked ops
3239          * because of PPro errata 66, 92, so unless somebody can guarantee
3240          * atomic_set() here would be safe on all archs (and not only on x86),
3241          * it's safer to use atomic_add().
3242          */
3243         atomic_add(mapcount + 1, &page_tail->_count);
3244
3245
3246         page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3247         page_tail->flags |= (head->flags &
3248                         ((1L << PG_referenced) |
3249                          (1L << PG_swapbacked) |
3250                          (1L << PG_mlocked) |
3251                          (1L << PG_uptodate) |
3252                          (1L << PG_active) |
3253                          (1L << PG_locked) |
3254                          (1L << PG_unevictable) |
3255                          (1L << PG_dirty)));
3256
3257         /*
3258          * After clearing PageTail the gup refcount can be released.
3259          * Page flags also must be visible before we make the page non-compound.
3260          */
3261         smp_wmb();
3262
3263         clear_compound_head(page_tail);
3264
3265         if (page_is_young(head))
3266                 set_page_young(page_tail);
3267         if (page_is_idle(head))
3268                 set_page_idle(page_tail);
3269
3270         /* ->mapping in first tail page is compound_mapcount */
3271         VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3272                         page_tail);
3273         page_tail->mapping = head->mapping;
3274
3275         page_tail->index = head->index + tail;
3276         page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3277         lru_add_page_tail(head, page_tail, lruvec, list);
3278
3279         return mapcount;
3280 }
3281
3282 static void __split_huge_page(struct page *page, struct list_head *list)
3283 {
3284         struct page *head = compound_head(page);
3285         struct zone *zone = page_zone(head);
3286         struct lruvec *lruvec;
3287         int i, tail_mapcount;
3288
3289         /* prevent PageLRU to go away from under us, and freeze lru stats */
3290         spin_lock_irq(&zone->lru_lock);
3291         lruvec = mem_cgroup_page_lruvec(head, zone);
3292
3293         /* complete memcg works before add pages to LRU */
3294         mem_cgroup_split_huge_fixup(head);
3295
3296         tail_mapcount = 0;
3297         for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3298                 tail_mapcount += __split_huge_page_tail(head, i, lruvec, list);
3299         atomic_sub(tail_mapcount, &head->_count);
3300
3301         ClearPageCompound(head);
3302         spin_unlock_irq(&zone->lru_lock);
3303
3304         unfreeze_page(page_anon_vma(head), head);
3305
3306         for (i = 0; i < HPAGE_PMD_NR; i++) {
3307                 struct page *subpage = head + i;
3308                 if (subpage == page)
3309                         continue;
3310                 unlock_page(subpage);
3311
3312                 /*
3313                  * Subpages may be freed if there wasn't any mapping
3314                  * like if add_to_swap() is running on a lru page that
3315                  * had its mapping zapped. And freeing these pages
3316                  * requires taking the lru_lock so we do the put_page
3317                  * of the tail pages after the split is complete.
3318                  */
3319                 put_page(subpage);
3320         }
3321 }
3322
3323 int total_mapcount(struct page *page)
3324 {
3325         int i, ret;
3326
3327         VM_BUG_ON_PAGE(PageTail(page), page);
3328
3329         if (likely(!PageCompound(page)))
3330                 return atomic_read(&page->_mapcount) + 1;
3331
3332         ret = compound_mapcount(page);
3333         if (PageHuge(page))
3334                 return ret;
3335         for (i = 0; i < HPAGE_PMD_NR; i++)
3336                 ret += atomic_read(&page[i]._mapcount) + 1;
3337         if (PageDoubleMap(page))
3338                 ret -= HPAGE_PMD_NR;
3339         return ret;
3340 }
3341
3342 /*
3343  * This function splits huge page into normal pages. @page can point to any
3344  * subpage of huge page to split. Split doesn't change the position of @page.
3345  *
3346  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3347  * The huge page must be locked.
3348  *
3349  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3350  *
3351  * Both head page and tail pages will inherit mapping, flags, and so on from
3352  * the hugepage.
3353  *
3354  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3355  * they are not mapped.
3356  *
3357  * Returns 0 if the hugepage is split successfully.
3358  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3359  * us.
3360  */
3361 int split_huge_page_to_list(struct page *page, struct list_head *list)
3362 {
3363         struct page *head = compound_head(page);
3364         struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3365         struct anon_vma *anon_vma;
3366         int count, mapcount, ret;
3367         bool mlocked;
3368         unsigned long flags;
3369
3370         VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3371         VM_BUG_ON_PAGE(!PageAnon(page), page);
3372         VM_BUG_ON_PAGE(!PageLocked(page), page);
3373         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3374         VM_BUG_ON_PAGE(!PageCompound(page), page);
3375
3376         /*
3377          * The caller does not necessarily hold an mmap_sem that would prevent
3378          * the anon_vma disappearing so we first we take a reference to it
3379          * and then lock the anon_vma for write. This is similar to
3380          * page_lock_anon_vma_read except the write lock is taken to serialise
3381          * against parallel split or collapse operations.
3382          */
3383         anon_vma = page_get_anon_vma(head);
3384         if (!anon_vma) {
3385                 ret = -EBUSY;
3386                 goto out;
3387         }
3388         anon_vma_lock_write(anon_vma);
3389
3390         /*
3391          * Racy check if we can split the page, before freeze_page() will
3392          * split PMDs
3393          */
3394         if (total_mapcount(head) != page_count(head) - 1) {
3395                 ret = -EBUSY;
3396                 goto out_unlock;
3397         }
3398
3399         mlocked = PageMlocked(page);
3400         freeze_page(anon_vma, head);
3401         VM_BUG_ON_PAGE(compound_mapcount(head), head);
3402
3403         /* Make sure the page is not on per-CPU pagevec as it takes pin */
3404         if (mlocked)
3405                 lru_add_drain();
3406
3407         /* Prevent deferred_split_scan() touching ->_count */
3408         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3409         count = page_count(head);
3410         mapcount = total_mapcount(head);
3411         if (!mapcount && count == 1) {
3412                 if (!list_empty(page_deferred_list(head))) {
3413                         pgdata->split_queue_len--;
3414                         list_del(page_deferred_list(head));
3415                 }
3416                 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3417                 __split_huge_page(page, list);
3418                 ret = 0;
3419         } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3420                 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3421                 pr_alert("total_mapcount: %u, page_count(): %u\n",
3422                                 mapcount, count);
3423                 if (PageTail(page))
3424                         dump_page(head, NULL);
3425                 dump_page(page, "total_mapcount(head) > 0");
3426                 BUG();
3427         } else {
3428                 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3429                 unfreeze_page(anon_vma, head);
3430                 ret = -EBUSY;
3431         }
3432
3433 out_unlock:
3434         anon_vma_unlock_write(anon_vma);
3435         put_anon_vma(anon_vma);
3436 out:
3437         count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3438         return ret;
3439 }
3440
3441 void free_transhuge_page(struct page *page)
3442 {
3443         struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3444         unsigned long flags;
3445
3446         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3447         if (!list_empty(page_deferred_list(page))) {
3448                 pgdata->split_queue_len--;
3449                 list_del(page_deferred_list(page));
3450         }
3451         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3452         free_compound_page(page);
3453 }
3454
3455 void deferred_split_huge_page(struct page *page)
3456 {
3457         struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3458         unsigned long flags;
3459
3460         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3461
3462         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3463         if (list_empty(page_deferred_list(page))) {
3464                 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3465                 pgdata->split_queue_len++;
3466         }
3467         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3468 }
3469
3470 static unsigned long deferred_split_count(struct shrinker *shrink,
3471                 struct shrink_control *sc)
3472 {
3473         struct pglist_data *pgdata = NODE_DATA(sc->nid);
3474         return ACCESS_ONCE(pgdata->split_queue_len);
3475 }
3476
3477 static unsigned long deferred_split_scan(struct shrinker *shrink,
3478                 struct shrink_control *sc)
3479 {
3480         struct pglist_data *pgdata = NODE_DATA(sc->nid);
3481         unsigned long flags;
3482         LIST_HEAD(list), *pos, *next;
3483         struct page *page;
3484         int split = 0;
3485
3486         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3487         /* Take pin on all head pages to avoid freeing them under us */
3488         list_for_each_safe(pos, next, &pgdata->split_queue) {
3489                 page = list_entry((void *)pos, struct page, mapping);
3490                 page = compound_head(page);
3491                 if (get_page_unless_zero(page)) {
3492                         list_move(page_deferred_list(page), &list);
3493                 } else {
3494                         /* We lost race with put_compound_page() */
3495                         list_del_init(page_deferred_list(page));
3496                         pgdata->split_queue_len--;
3497                 }
3498                 if (!--sc->nr_to_scan)
3499                         break;
3500         }
3501         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3502
3503         list_for_each_safe(pos, next, &list) {
3504                 page = list_entry((void *)pos, struct page, mapping);
3505                 lock_page(page);
3506                 /* split_huge_page() removes page from list on success */
3507                 if (!split_huge_page(page))
3508                         split++;
3509                 unlock_page(page);
3510                 put_page(page);
3511         }
3512
3513         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3514         list_splice_tail(&list, &pgdata->split_queue);
3515         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3516
3517         /*
3518          * Stop shrinker if we didn't split any page, but the queue is empty.
3519          * This can happen if pages were freed under us.
3520          */
3521         if (!split && list_empty(&pgdata->split_queue))
3522                 return SHRINK_STOP;
3523         return split;
3524 }
3525
3526 static struct shrinker deferred_split_shrinker = {
3527         .count_objects = deferred_split_count,
3528         .scan_objects = deferred_split_scan,
3529         .seeks = DEFAULT_SEEKS,
3530         .flags = SHRINKER_NUMA_AWARE,
3531 };
3532
3533 #ifdef CONFIG_DEBUG_FS
3534 static int split_huge_pages_set(void *data, u64 val)
3535 {
3536         struct zone *zone;
3537         struct page *page;
3538         unsigned long pfn, max_zone_pfn;
3539         unsigned long total = 0, split = 0;
3540
3541         if (val != 1)
3542                 return -EINVAL;
3543
3544         for_each_populated_zone(zone) {
3545                 max_zone_pfn = zone_end_pfn(zone);
3546                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3547                         if (!pfn_valid(pfn))
3548                                 continue;
3549
3550                         page = pfn_to_page(pfn);
3551                         if (!get_page_unless_zero(page))
3552                                 continue;
3553
3554                         if (zone != page_zone(page))
3555                                 goto next;
3556
3557                         if (!PageHead(page) || !PageAnon(page) ||
3558                                         PageHuge(page))
3559                                 goto next;
3560
3561                         total++;
3562                         lock_page(page);
3563                         if (!split_huge_page(page))
3564                                 split++;
3565                         unlock_page(page);
3566 next:
3567                         put_page(page);
3568                 }
3569         }
3570
3571         pr_info("%lu of %lu THP split", split, total);
3572
3573         return 0;
3574 }
3575 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3576                 "%llu\n");
3577
3578 static int __init split_huge_pages_debugfs(void)
3579 {
3580         void *ret;
3581
3582         ret = debugfs_create_file("split_huge_pages", 0644, NULL, NULL,
3583                         &split_huge_pages_fops);
3584         if (!ret)
3585                 pr_warn("Failed to create split_huge_pages in debugfs");
3586         return 0;
3587 }
3588 late_initcall(split_huge_pages_debugfs);
3589 #endif