mm/hmm: HMM should have a callback before MM is destroyed
[sfrench/cifs-2.6.git] / mm / hmm.c
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * Authors: Jérôme Glisse <jglisse@redhat.com>
15  */
16 /*
17  * Refer to include/linux/hmm.h for information about heterogeneous memory
18  * management or HMM for short.
19  */
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
35
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
37
38 #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
39 /*
40  * Device private memory see HMM (Documentation/vm/hmm.txt) or hmm.h
41  */
42 DEFINE_STATIC_KEY_FALSE(device_private_key);
43 EXPORT_SYMBOL(device_private_key);
44 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
45
46
47 #if IS_ENABLED(CONFIG_HMM_MIRROR)
48 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
49
50 /*
51  * struct hmm - HMM per mm struct
52  *
53  * @mm: mm struct this HMM struct is bound to
54  * @lock: lock protecting ranges list
55  * @sequence: we track updates to the CPU page table with a sequence number
56  * @ranges: list of range being snapshotted
57  * @mirrors: list of mirrors for this mm
58  * @mmu_notifier: mmu notifier to track updates to CPU page table
59  * @mirrors_sem: read/write semaphore protecting the mirrors list
60  */
61 struct hmm {
62         struct mm_struct        *mm;
63         spinlock_t              lock;
64         atomic_t                sequence;
65         struct list_head        ranges;
66         struct list_head        mirrors;
67         struct mmu_notifier     mmu_notifier;
68         struct rw_semaphore     mirrors_sem;
69 };
70
71 /*
72  * hmm_register - register HMM against an mm (HMM internal)
73  *
74  * @mm: mm struct to attach to
75  *
76  * This is not intended to be used directly by device drivers. It allocates an
77  * HMM struct if mm does not have one, and initializes it.
78  */
79 static struct hmm *hmm_register(struct mm_struct *mm)
80 {
81         struct hmm *hmm = READ_ONCE(mm->hmm);
82         bool cleanup = false;
83
84         /*
85          * The hmm struct can only be freed once the mm_struct goes away,
86          * hence we should always have pre-allocated an new hmm struct
87          * above.
88          */
89         if (hmm)
90                 return hmm;
91
92         hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
93         if (!hmm)
94                 return NULL;
95         INIT_LIST_HEAD(&hmm->mirrors);
96         init_rwsem(&hmm->mirrors_sem);
97         atomic_set(&hmm->sequence, 0);
98         hmm->mmu_notifier.ops = NULL;
99         INIT_LIST_HEAD(&hmm->ranges);
100         spin_lock_init(&hmm->lock);
101         hmm->mm = mm;
102
103         /*
104          * We should only get here if hold the mmap_sem in write mode ie on
105          * registration of first mirror through hmm_mirror_register()
106          */
107         hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
108         if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
109                 kfree(hmm);
110                 return NULL;
111         }
112
113         spin_lock(&mm->page_table_lock);
114         if (!mm->hmm)
115                 mm->hmm = hmm;
116         else
117                 cleanup = true;
118         spin_unlock(&mm->page_table_lock);
119
120         if (cleanup) {
121                 mmu_notifier_unregister(&hmm->mmu_notifier, mm);
122                 kfree(hmm);
123         }
124
125         return mm->hmm;
126 }
127
128 void hmm_mm_destroy(struct mm_struct *mm)
129 {
130         kfree(mm->hmm);
131 }
132
133 static void hmm_invalidate_range(struct hmm *hmm,
134                                  enum hmm_update_type action,
135                                  unsigned long start,
136                                  unsigned long end)
137 {
138         struct hmm_mirror *mirror;
139         struct hmm_range *range;
140
141         spin_lock(&hmm->lock);
142         list_for_each_entry(range, &hmm->ranges, list) {
143                 unsigned long addr, idx, npages;
144
145                 if (end < range->start || start >= range->end)
146                         continue;
147
148                 range->valid = false;
149                 addr = max(start, range->start);
150                 idx = (addr - range->start) >> PAGE_SHIFT;
151                 npages = (min(range->end, end) - addr) >> PAGE_SHIFT;
152                 memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
153         }
154         spin_unlock(&hmm->lock);
155
156         down_read(&hmm->mirrors_sem);
157         list_for_each_entry(mirror, &hmm->mirrors, list)
158                 mirror->ops->sync_cpu_device_pagetables(mirror, action,
159                                                         start, end);
160         up_read(&hmm->mirrors_sem);
161 }
162
163 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
164 {
165         struct hmm_mirror *mirror;
166         struct hmm *hmm = mm->hmm;
167
168         down_write(&hmm->mirrors_sem);
169         mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
170                                           list);
171         while (mirror) {
172                 list_del_init(&mirror->list);
173                 if (mirror->ops->release) {
174                         /*
175                          * Drop mirrors_sem so callback can wait on any pending
176                          * work that might itself trigger mmu_notifier callback
177                          * and thus would deadlock with us.
178                          */
179                         up_write(&hmm->mirrors_sem);
180                         mirror->ops->release(mirror);
181                         down_write(&hmm->mirrors_sem);
182                 }
183                 mirror = list_first_entry_or_null(&hmm->mirrors,
184                                                   struct hmm_mirror, list);
185         }
186         up_write(&hmm->mirrors_sem);
187 }
188
189 static void hmm_invalidate_range_start(struct mmu_notifier *mn,
190                                        struct mm_struct *mm,
191                                        unsigned long start,
192                                        unsigned long end)
193 {
194         struct hmm *hmm = mm->hmm;
195
196         VM_BUG_ON(!hmm);
197
198         atomic_inc(&hmm->sequence);
199 }
200
201 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
202                                      struct mm_struct *mm,
203                                      unsigned long start,
204                                      unsigned long end)
205 {
206         struct hmm *hmm = mm->hmm;
207
208         VM_BUG_ON(!hmm);
209
210         hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end);
211 }
212
213 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
214         .release                = hmm_release,
215         .invalidate_range_start = hmm_invalidate_range_start,
216         .invalidate_range_end   = hmm_invalidate_range_end,
217 };
218
219 /*
220  * hmm_mirror_register() - register a mirror against an mm
221  *
222  * @mirror: new mirror struct to register
223  * @mm: mm to register against
224  *
225  * To start mirroring a process address space, the device driver must register
226  * an HMM mirror struct.
227  *
228  * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
229  */
230 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
231 {
232         /* Sanity check */
233         if (!mm || !mirror || !mirror->ops)
234                 return -EINVAL;
235
236         mirror->hmm = hmm_register(mm);
237         if (!mirror->hmm)
238                 return -ENOMEM;
239
240         down_write(&mirror->hmm->mirrors_sem);
241         list_add(&mirror->list, &mirror->hmm->mirrors);
242         up_write(&mirror->hmm->mirrors_sem);
243
244         return 0;
245 }
246 EXPORT_SYMBOL(hmm_mirror_register);
247
248 /*
249  * hmm_mirror_unregister() - unregister a mirror
250  *
251  * @mirror: new mirror struct to register
252  *
253  * Stop mirroring a process address space, and cleanup.
254  */
255 void hmm_mirror_unregister(struct hmm_mirror *mirror)
256 {
257         struct hmm *hmm = mirror->hmm;
258
259         down_write(&hmm->mirrors_sem);
260         list_del_init(&mirror->list);
261         up_write(&hmm->mirrors_sem);
262 }
263 EXPORT_SYMBOL(hmm_mirror_unregister);
264
265 struct hmm_vma_walk {
266         struct hmm_range        *range;
267         unsigned long           last;
268         bool                    fault;
269         bool                    block;
270         bool                    write;
271 };
272
273 static int hmm_vma_do_fault(struct mm_walk *walk,
274                             unsigned long addr,
275                             hmm_pfn_t *pfn)
276 {
277         unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
278         struct hmm_vma_walk *hmm_vma_walk = walk->private;
279         struct vm_area_struct *vma = walk->vma;
280         int r;
281
282         flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
283         flags |= hmm_vma_walk->write ? FAULT_FLAG_WRITE : 0;
284         r = handle_mm_fault(vma, addr, flags);
285         if (r & VM_FAULT_RETRY)
286                 return -EBUSY;
287         if (r & VM_FAULT_ERROR) {
288                 *pfn = HMM_PFN_ERROR;
289                 return -EFAULT;
290         }
291
292         return -EAGAIN;
293 }
294
295 static void hmm_pfns_special(hmm_pfn_t *pfns,
296                              unsigned long addr,
297                              unsigned long end)
298 {
299         for (; addr < end; addr += PAGE_SIZE, pfns++)
300                 *pfns = HMM_PFN_SPECIAL;
301 }
302
303 static int hmm_pfns_bad(unsigned long addr,
304                         unsigned long end,
305                         struct mm_walk *walk)
306 {
307         struct hmm_range *range = walk->private;
308         hmm_pfn_t *pfns = range->pfns;
309         unsigned long i;
310
311         i = (addr - range->start) >> PAGE_SHIFT;
312         for (; addr < end; addr += PAGE_SIZE, i++)
313                 pfns[i] = HMM_PFN_ERROR;
314
315         return 0;
316 }
317
318 static void hmm_pfns_clear(hmm_pfn_t *pfns,
319                            unsigned long addr,
320                            unsigned long end)
321 {
322         for (; addr < end; addr += PAGE_SIZE, pfns++)
323                 *pfns = 0;
324 }
325
326 static int hmm_vma_walk_hole(unsigned long addr,
327                              unsigned long end,
328                              struct mm_walk *walk)
329 {
330         struct hmm_vma_walk *hmm_vma_walk = walk->private;
331         struct hmm_range *range = hmm_vma_walk->range;
332         hmm_pfn_t *pfns = range->pfns;
333         unsigned long i;
334
335         hmm_vma_walk->last = addr;
336         i = (addr - range->start) >> PAGE_SHIFT;
337         for (; addr < end; addr += PAGE_SIZE, i++) {
338                 pfns[i] = HMM_PFN_EMPTY;
339                 if (hmm_vma_walk->fault) {
340                         int ret;
341
342                         ret = hmm_vma_do_fault(walk, addr, &pfns[i]);
343                         if (ret != -EAGAIN)
344                                 return ret;
345                 }
346         }
347
348         return hmm_vma_walk->fault ? -EAGAIN : 0;
349 }
350
351 static int hmm_vma_walk_clear(unsigned long addr,
352                               unsigned long end,
353                               struct mm_walk *walk)
354 {
355         struct hmm_vma_walk *hmm_vma_walk = walk->private;
356         struct hmm_range *range = hmm_vma_walk->range;
357         hmm_pfn_t *pfns = range->pfns;
358         unsigned long i;
359
360         hmm_vma_walk->last = addr;
361         i = (addr - range->start) >> PAGE_SHIFT;
362         for (; addr < end; addr += PAGE_SIZE, i++) {
363                 pfns[i] = 0;
364                 if (hmm_vma_walk->fault) {
365                         int ret;
366
367                         ret = hmm_vma_do_fault(walk, addr, &pfns[i]);
368                         if (ret != -EAGAIN)
369                                 return ret;
370                 }
371         }
372
373         return hmm_vma_walk->fault ? -EAGAIN : 0;
374 }
375
376 static int hmm_vma_walk_pmd(pmd_t *pmdp,
377                             unsigned long start,
378                             unsigned long end,
379                             struct mm_walk *walk)
380 {
381         struct hmm_vma_walk *hmm_vma_walk = walk->private;
382         struct hmm_range *range = hmm_vma_walk->range;
383         struct vm_area_struct *vma = walk->vma;
384         hmm_pfn_t *pfns = range->pfns;
385         unsigned long addr = start, i;
386         bool write_fault;
387         hmm_pfn_t flag;
388         pte_t *ptep;
389
390         i = (addr - range->start) >> PAGE_SHIFT;
391         flag = vma->vm_flags & VM_READ ? HMM_PFN_READ : 0;
392         write_fault = hmm_vma_walk->fault & hmm_vma_walk->write;
393
394 again:
395         if (pmd_none(*pmdp))
396                 return hmm_vma_walk_hole(start, end, walk);
397
398         if (pmd_huge(*pmdp) && vma->vm_flags & VM_HUGETLB)
399                 return hmm_pfns_bad(start, end, walk);
400
401         if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) {
402                 unsigned long pfn;
403                 pmd_t pmd;
404
405                 /*
406                  * No need to take pmd_lock here, even if some other threads
407                  * is splitting the huge pmd we will get that event through
408                  * mmu_notifier callback.
409                  *
410                  * So just read pmd value and check again its a transparent
411                  * huge or device mapping one and compute corresponding pfn
412                  * values.
413                  */
414                 pmd = pmd_read_atomic(pmdp);
415                 barrier();
416                 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
417                         goto again;
418                 if (pmd_protnone(pmd))
419                         return hmm_vma_walk_clear(start, end, walk);
420
421                 if (write_fault && !pmd_write(pmd))
422                         return hmm_vma_walk_clear(start, end, walk);
423
424                 pfn = pmd_pfn(pmd) + pte_index(addr);
425                 flag |= pmd_write(pmd) ? HMM_PFN_WRITE : 0;
426                 for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
427                         pfns[i] = hmm_pfn_t_from_pfn(pfn) | flag;
428                 return 0;
429         }
430
431         if (pmd_bad(*pmdp))
432                 return hmm_pfns_bad(start, end, walk);
433
434         ptep = pte_offset_map(pmdp, addr);
435         for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
436                 pte_t pte = *ptep;
437
438                 pfns[i] = 0;
439
440                 if (pte_none(pte)) {
441                         pfns[i] = HMM_PFN_EMPTY;
442                         if (hmm_vma_walk->fault)
443                                 goto fault;
444                         continue;
445                 }
446
447                 if (!pte_present(pte)) {
448                         swp_entry_t entry = pte_to_swp_entry(pte);
449
450                         if (!non_swap_entry(entry)) {
451                                 if (hmm_vma_walk->fault)
452                                         goto fault;
453                                 continue;
454                         }
455
456                         /*
457                          * This is a special swap entry, ignore migration, use
458                          * device and report anything else as error.
459                          */
460                         if (is_device_private_entry(entry)) {
461                                 pfns[i] = hmm_pfn_t_from_pfn(swp_offset(entry));
462                                 if (is_write_device_private_entry(entry)) {
463                                         pfns[i] |= HMM_PFN_WRITE;
464                                 } else if (write_fault)
465                                         goto fault;
466                                 pfns[i] |= HMM_PFN_DEVICE_UNADDRESSABLE;
467                                 pfns[i] |= flag;
468                         } else if (is_migration_entry(entry)) {
469                                 if (hmm_vma_walk->fault) {
470                                         pte_unmap(ptep);
471                                         hmm_vma_walk->last = addr;
472                                         migration_entry_wait(vma->vm_mm,
473                                                              pmdp, addr);
474                                         return -EAGAIN;
475                                 }
476                                 continue;
477                         } else {
478                                 /* Report error for everything else */
479                                 pfns[i] = HMM_PFN_ERROR;
480                         }
481                         continue;
482                 }
483
484                 if (write_fault && !pte_write(pte))
485                         goto fault;
486
487                 pfns[i] = hmm_pfn_t_from_pfn(pte_pfn(pte)) | flag;
488                 pfns[i] |= pte_write(pte) ? HMM_PFN_WRITE : 0;
489                 continue;
490
491 fault:
492                 pte_unmap(ptep);
493                 /* Fault all pages in range */
494                 return hmm_vma_walk_clear(start, end, walk);
495         }
496         pte_unmap(ptep - 1);
497
498         return 0;
499 }
500
501 /*
502  * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
503  * @vma: virtual memory area containing the virtual address range
504  * @range: used to track snapshot validity
505  * @start: range virtual start address (inclusive)
506  * @end: range virtual end address (exclusive)
507  * @entries: array of hmm_pfn_t: provided by the caller, filled in by function
508  * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, 0 success
509  *
510  * This snapshots the CPU page table for a range of virtual addresses. Snapshot
511  * validity is tracked by range struct. See hmm_vma_range_done() for further
512  * information.
513  *
514  * The range struct is initialized here. It tracks the CPU page table, but only
515  * if the function returns success (0), in which case the caller must then call
516  * hmm_vma_range_done() to stop CPU page table update tracking on this range.
517  *
518  * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
519  * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
520  */
521 int hmm_vma_get_pfns(struct vm_area_struct *vma,
522                      struct hmm_range *range,
523                      unsigned long start,
524                      unsigned long end,
525                      hmm_pfn_t *pfns)
526 {
527         struct hmm_vma_walk hmm_vma_walk;
528         struct mm_walk mm_walk;
529         struct hmm *hmm;
530
531         /* FIXME support hugetlb fs */
532         if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
533                 hmm_pfns_special(pfns, start, end);
534                 return -EINVAL;
535         }
536
537         /* Sanity check, this really should not happen ! */
538         if (start < vma->vm_start || start >= vma->vm_end)
539                 return -EINVAL;
540         if (end < vma->vm_start || end > vma->vm_end)
541                 return -EINVAL;
542
543         hmm = hmm_register(vma->vm_mm);
544         if (!hmm)
545                 return -ENOMEM;
546         /* Caller must have registered a mirror, via hmm_mirror_register() ! */
547         if (!hmm->mmu_notifier.ops)
548                 return -EINVAL;
549
550         /* Initialize range to track CPU page table update */
551         range->start = start;
552         range->pfns = pfns;
553         range->end = end;
554         spin_lock(&hmm->lock);
555         range->valid = true;
556         list_add_rcu(&range->list, &hmm->ranges);
557         spin_unlock(&hmm->lock);
558
559         hmm_vma_walk.fault = false;
560         hmm_vma_walk.range = range;
561         mm_walk.private = &hmm_vma_walk;
562
563         mm_walk.vma = vma;
564         mm_walk.mm = vma->vm_mm;
565         mm_walk.pte_entry = NULL;
566         mm_walk.test_walk = NULL;
567         mm_walk.hugetlb_entry = NULL;
568         mm_walk.pmd_entry = hmm_vma_walk_pmd;
569         mm_walk.pte_hole = hmm_vma_walk_hole;
570
571         walk_page_range(start, end, &mm_walk);
572         return 0;
573 }
574 EXPORT_SYMBOL(hmm_vma_get_pfns);
575
576 /*
577  * hmm_vma_range_done() - stop tracking change to CPU page table over a range
578  * @vma: virtual memory area containing the virtual address range
579  * @range: range being tracked
580  * Returns: false if range data has been invalidated, true otherwise
581  *
582  * Range struct is used to track updates to the CPU page table after a call to
583  * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
584  * using the data,  or wants to lock updates to the data it got from those
585  * functions, it must call the hmm_vma_range_done() function, which will then
586  * stop tracking CPU page table updates.
587  *
588  * Note that device driver must still implement general CPU page table update
589  * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
590  * the mmu_notifier API directly.
591  *
592  * CPU page table update tracking done through hmm_range is only temporary and
593  * to be used while trying to duplicate CPU page table contents for a range of
594  * virtual addresses.
595  *
596  * There are two ways to use this :
597  * again:
598  *   hmm_vma_get_pfns(vma, range, start, end, pfns); or hmm_vma_fault(...);
599  *   trans = device_build_page_table_update_transaction(pfns);
600  *   device_page_table_lock();
601  *   if (!hmm_vma_range_done(vma, range)) {
602  *     device_page_table_unlock();
603  *     goto again;
604  *   }
605  *   device_commit_transaction(trans);
606  *   device_page_table_unlock();
607  *
608  * Or:
609  *   hmm_vma_get_pfns(vma, range, start, end, pfns); or hmm_vma_fault(...);
610  *   device_page_table_lock();
611  *   hmm_vma_range_done(vma, range);
612  *   device_update_page_table(pfns);
613  *   device_page_table_unlock();
614  */
615 bool hmm_vma_range_done(struct vm_area_struct *vma, struct hmm_range *range)
616 {
617         unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
618         struct hmm *hmm;
619
620         if (range->end <= range->start) {
621                 BUG();
622                 return false;
623         }
624
625         hmm = hmm_register(vma->vm_mm);
626         if (!hmm) {
627                 memset(range->pfns, 0, sizeof(*range->pfns) * npages);
628                 return false;
629         }
630
631         spin_lock(&hmm->lock);
632         list_del_rcu(&range->list);
633         spin_unlock(&hmm->lock);
634
635         return range->valid;
636 }
637 EXPORT_SYMBOL(hmm_vma_range_done);
638
639 /*
640  * hmm_vma_fault() - try to fault some address in a virtual address range
641  * @vma: virtual memory area containing the virtual address range
642  * @range: use to track pfns array content validity
643  * @start: fault range virtual start address (inclusive)
644  * @end: fault range virtual end address (exclusive)
645  * @pfns: array of hmm_pfn_t, only entry with fault flag set will be faulted
646  * @write: is it a write fault
647  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
648  * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
649  *
650  * This is similar to a regular CPU page fault except that it will not trigger
651  * any memory migration if the memory being faulted is not accessible by CPUs.
652  *
653  * On error, for one virtual address in the range, the function will set the
654  * hmm_pfn_t error flag for the corresponding pfn entry.
655  *
656  * Expected use pattern:
657  * retry:
658  *   down_read(&mm->mmap_sem);
659  *   // Find vma and address device wants to fault, initialize hmm_pfn_t
660  *   // array accordingly
661  *   ret = hmm_vma_fault(vma, start, end, pfns, allow_retry);
662  *   switch (ret) {
663  *   case -EAGAIN:
664  *     hmm_vma_range_done(vma, range);
665  *     // You might want to rate limit or yield to play nicely, you may
666  *     // also commit any valid pfn in the array assuming that you are
667  *     // getting true from hmm_vma_range_monitor_end()
668  *     goto retry;
669  *   case 0:
670  *     break;
671  *   default:
672  *     // Handle error !
673  *     up_read(&mm->mmap_sem)
674  *     return;
675  *   }
676  *   // Take device driver lock that serialize device page table update
677  *   driver_lock_device_page_table_update();
678  *   hmm_vma_range_done(vma, range);
679  *   // Commit pfns we got from hmm_vma_fault()
680  *   driver_unlock_device_page_table_update();
681  *   up_read(&mm->mmap_sem)
682  *
683  * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
684  * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
685  *
686  * YOU HAVE BEEN WARNED !
687  */
688 int hmm_vma_fault(struct vm_area_struct *vma,
689                   struct hmm_range *range,
690                   unsigned long start,
691                   unsigned long end,
692                   hmm_pfn_t *pfns,
693                   bool write,
694                   bool block)
695 {
696         struct hmm_vma_walk hmm_vma_walk;
697         struct mm_walk mm_walk;
698         struct hmm *hmm;
699         int ret;
700
701         /* Sanity check, this really should not happen ! */
702         if (start < vma->vm_start || start >= vma->vm_end)
703                 return -EINVAL;
704         if (end < vma->vm_start || end > vma->vm_end)
705                 return -EINVAL;
706
707         hmm = hmm_register(vma->vm_mm);
708         if (!hmm) {
709                 hmm_pfns_clear(pfns, start, end);
710                 return -ENOMEM;
711         }
712         /* Caller must have registered a mirror using hmm_mirror_register() */
713         if (!hmm->mmu_notifier.ops)
714                 return -EINVAL;
715
716         /* Initialize range to track CPU page table update */
717         range->start = start;
718         range->pfns = pfns;
719         range->end = end;
720         spin_lock(&hmm->lock);
721         range->valid = true;
722         list_add_rcu(&range->list, &hmm->ranges);
723         spin_unlock(&hmm->lock);
724
725         /* FIXME support hugetlb fs */
726         if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
727                 hmm_pfns_special(pfns, start, end);
728                 return 0;
729         }
730
731         hmm_vma_walk.fault = true;
732         hmm_vma_walk.write = write;
733         hmm_vma_walk.block = block;
734         hmm_vma_walk.range = range;
735         mm_walk.private = &hmm_vma_walk;
736         hmm_vma_walk.last = range->start;
737
738         mm_walk.vma = vma;
739         mm_walk.mm = vma->vm_mm;
740         mm_walk.pte_entry = NULL;
741         mm_walk.test_walk = NULL;
742         mm_walk.hugetlb_entry = NULL;
743         mm_walk.pmd_entry = hmm_vma_walk_pmd;
744         mm_walk.pte_hole = hmm_vma_walk_hole;
745
746         do {
747                 ret = walk_page_range(start, end, &mm_walk);
748                 start = hmm_vma_walk.last;
749         } while (ret == -EAGAIN);
750
751         if (ret) {
752                 unsigned long i;
753
754                 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
755                 hmm_pfns_clear(&pfns[i], hmm_vma_walk.last, end);
756                 hmm_vma_range_done(vma, range);
757         }
758         return ret;
759 }
760 EXPORT_SYMBOL(hmm_vma_fault);
761 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
762
763
764 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
765 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
766                                        unsigned long addr)
767 {
768         struct page *page;
769
770         page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
771         if (!page)
772                 return NULL;
773         lock_page(page);
774         return page;
775 }
776 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
777
778
779 static void hmm_devmem_ref_release(struct percpu_ref *ref)
780 {
781         struct hmm_devmem *devmem;
782
783         devmem = container_of(ref, struct hmm_devmem, ref);
784         complete(&devmem->completion);
785 }
786
787 static void hmm_devmem_ref_exit(void *data)
788 {
789         struct percpu_ref *ref = data;
790         struct hmm_devmem *devmem;
791
792         devmem = container_of(ref, struct hmm_devmem, ref);
793         percpu_ref_exit(ref);
794         devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data);
795 }
796
797 static void hmm_devmem_ref_kill(void *data)
798 {
799         struct percpu_ref *ref = data;
800         struct hmm_devmem *devmem;
801
802         devmem = container_of(ref, struct hmm_devmem, ref);
803         percpu_ref_kill(ref);
804         wait_for_completion(&devmem->completion);
805         devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data);
806 }
807
808 static int hmm_devmem_fault(struct vm_area_struct *vma,
809                             unsigned long addr,
810                             const struct page *page,
811                             unsigned int flags,
812                             pmd_t *pmdp)
813 {
814         struct hmm_devmem *devmem = page->pgmap->data;
815
816         return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
817 }
818
819 static void hmm_devmem_free(struct page *page, void *data)
820 {
821         struct hmm_devmem *devmem = data;
822
823         devmem->ops->free(devmem, page);
824 }
825
826 static DEFINE_MUTEX(hmm_devmem_lock);
827 static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
828
829 static void hmm_devmem_radix_release(struct resource *resource)
830 {
831         resource_size_t key, align_start, align_size;
832
833         align_start = resource->start & ~(PA_SECTION_SIZE - 1);
834         align_size = ALIGN(resource_size(resource), PA_SECTION_SIZE);
835
836         mutex_lock(&hmm_devmem_lock);
837         for (key = resource->start;
838              key <= resource->end;
839              key += PA_SECTION_SIZE)
840                 radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
841         mutex_unlock(&hmm_devmem_lock);
842 }
843
844 static void hmm_devmem_release(struct device *dev, void *data)
845 {
846         struct hmm_devmem *devmem = data;
847         struct resource *resource = devmem->resource;
848         unsigned long start_pfn, npages;
849         struct zone *zone;
850         struct page *page;
851
852         if (percpu_ref_tryget_live(&devmem->ref)) {
853                 dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
854                 percpu_ref_put(&devmem->ref);
855         }
856
857         /* pages are dead and unused, undo the arch mapping */
858         start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
859         npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
860
861         page = pfn_to_page(start_pfn);
862         zone = page_zone(page);
863
864         mem_hotplug_begin();
865         if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
866                 __remove_pages(zone, start_pfn, npages, NULL);
867         else
868                 arch_remove_memory(start_pfn << PAGE_SHIFT,
869                                    npages << PAGE_SHIFT, NULL);
870         mem_hotplug_done();
871
872         hmm_devmem_radix_release(resource);
873 }
874
875 static struct hmm_devmem *hmm_devmem_find(resource_size_t phys)
876 {
877         WARN_ON_ONCE(!rcu_read_lock_held());
878
879         return radix_tree_lookup(&hmm_devmem_radix, phys >> PA_SECTION_SHIFT);
880 }
881
882 static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
883 {
884         resource_size_t key, align_start, align_size, align_end;
885         struct device *device = devmem->device;
886         int ret, nid, is_ram;
887         unsigned long pfn;
888
889         align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
890         align_size = ALIGN(devmem->resource->start +
891                            resource_size(devmem->resource),
892                            PA_SECTION_SIZE) - align_start;
893
894         is_ram = region_intersects(align_start, align_size,
895                                    IORESOURCE_SYSTEM_RAM,
896                                    IORES_DESC_NONE);
897         if (is_ram == REGION_MIXED) {
898                 WARN_ONCE(1, "%s attempted on mixed region %pr\n",
899                                 __func__, devmem->resource);
900                 return -ENXIO;
901         }
902         if (is_ram == REGION_INTERSECTS)
903                 return -ENXIO;
904
905         if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
906                 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
907         else
908                 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
909
910         devmem->pagemap.res = *devmem->resource;
911         devmem->pagemap.page_fault = hmm_devmem_fault;
912         devmem->pagemap.page_free = hmm_devmem_free;
913         devmem->pagemap.dev = devmem->device;
914         devmem->pagemap.ref = &devmem->ref;
915         devmem->pagemap.data = devmem;
916
917         mutex_lock(&hmm_devmem_lock);
918         align_end = align_start + align_size - 1;
919         for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
920                 struct hmm_devmem *dup;
921
922                 rcu_read_lock();
923                 dup = hmm_devmem_find(key);
924                 rcu_read_unlock();
925                 if (dup) {
926                         dev_err(device, "%s: collides with mapping for %s\n",
927                                 __func__, dev_name(dup->device));
928                         mutex_unlock(&hmm_devmem_lock);
929                         ret = -EBUSY;
930                         goto error;
931                 }
932                 ret = radix_tree_insert(&hmm_devmem_radix,
933                                         key >> PA_SECTION_SHIFT,
934                                         devmem);
935                 if (ret) {
936                         dev_err(device, "%s: failed: %d\n", __func__, ret);
937                         mutex_unlock(&hmm_devmem_lock);
938                         goto error_radix;
939                 }
940         }
941         mutex_unlock(&hmm_devmem_lock);
942
943         nid = dev_to_node(device);
944         if (nid < 0)
945                 nid = numa_mem_id();
946
947         mem_hotplug_begin();
948         /*
949          * For device private memory we call add_pages() as we only need to
950          * allocate and initialize struct page for the device memory. More-
951          * over the device memory is un-accessible thus we do not want to
952          * create a linear mapping for the memory like arch_add_memory()
953          * would do.
954          *
955          * For device public memory, which is accesible by the CPU, we do
956          * want the linear mapping and thus use arch_add_memory().
957          */
958         if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
959                 ret = arch_add_memory(nid, align_start, align_size, NULL,
960                                 false);
961         else
962                 ret = add_pages(nid, align_start >> PAGE_SHIFT,
963                                 align_size >> PAGE_SHIFT, NULL, false);
964         if (ret) {
965                 mem_hotplug_done();
966                 goto error_add_memory;
967         }
968         move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
969                                 align_start >> PAGE_SHIFT,
970                                 align_size >> PAGE_SHIFT, NULL);
971         mem_hotplug_done();
972
973         for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) {
974                 struct page *page = pfn_to_page(pfn);
975
976                 page->pgmap = &devmem->pagemap;
977         }
978         return 0;
979
980 error_add_memory:
981         untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
982 error_radix:
983         hmm_devmem_radix_release(devmem->resource);
984 error:
985         return ret;
986 }
987
988 static int hmm_devmem_match(struct device *dev, void *data, void *match_data)
989 {
990         struct hmm_devmem *devmem = data;
991
992         return devmem->resource == match_data;
993 }
994
995 static void hmm_devmem_pages_remove(struct hmm_devmem *devmem)
996 {
997         devres_release(devmem->device, &hmm_devmem_release,
998                        &hmm_devmem_match, devmem->resource);
999 }
1000
1001 /*
1002  * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1003  *
1004  * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1005  * @device: device struct to bind the resource too
1006  * @size: size in bytes of the device memory to add
1007  * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1008  *
1009  * This function first finds an empty range of physical address big enough to
1010  * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1011  * in turn allocates struct pages. It does not do anything beyond that; all
1012  * events affecting the memory will go through the various callbacks provided
1013  * by hmm_devmem_ops struct.
1014  *
1015  * Device driver should call this function during device initialization and
1016  * is then responsible of memory management. HMM only provides helpers.
1017  */
1018 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1019                                   struct device *device,
1020                                   unsigned long size)
1021 {
1022         struct hmm_devmem *devmem;
1023         resource_size_t addr;
1024         int ret;
1025
1026         static_branch_enable(&device_private_key);
1027
1028         devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1029                                    GFP_KERNEL, dev_to_node(device));
1030         if (!devmem)
1031                 return ERR_PTR(-ENOMEM);
1032
1033         init_completion(&devmem->completion);
1034         devmem->pfn_first = -1UL;
1035         devmem->pfn_last = -1UL;
1036         devmem->resource = NULL;
1037         devmem->device = device;
1038         devmem->ops = ops;
1039
1040         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1041                               0, GFP_KERNEL);
1042         if (ret)
1043                 goto error_percpu_ref;
1044
1045         ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1046         if (ret)
1047                 goto error_devm_add_action;
1048
1049         size = ALIGN(size, PA_SECTION_SIZE);
1050         addr = min((unsigned long)iomem_resource.end,
1051                    (1UL << MAX_PHYSMEM_BITS) - 1);
1052         addr = addr - size + 1UL;
1053
1054         /*
1055          * FIXME add a new helper to quickly walk resource tree and find free
1056          * range
1057          *
1058          * FIXME what about ioport_resource resource ?
1059          */
1060         for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1061                 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1062                 if (ret != REGION_DISJOINT)
1063                         continue;
1064
1065                 devmem->resource = devm_request_mem_region(device, addr, size,
1066                                                            dev_name(device));
1067                 if (!devmem->resource) {
1068                         ret = -ENOMEM;
1069                         goto error_no_resource;
1070                 }
1071                 break;
1072         }
1073         if (!devmem->resource) {
1074                 ret = -ERANGE;
1075                 goto error_no_resource;
1076         }
1077
1078         devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1079         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1080         devmem->pfn_last = devmem->pfn_first +
1081                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1082
1083         ret = hmm_devmem_pages_create(devmem);
1084         if (ret)
1085                 goto error_pages;
1086
1087         devres_add(device, devmem);
1088
1089         ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1090         if (ret) {
1091                 hmm_devmem_remove(devmem);
1092                 return ERR_PTR(ret);
1093         }
1094
1095         return devmem;
1096
1097 error_pages:
1098         devm_release_mem_region(device, devmem->resource->start,
1099                                 resource_size(devmem->resource));
1100 error_no_resource:
1101 error_devm_add_action:
1102         hmm_devmem_ref_kill(&devmem->ref);
1103         hmm_devmem_ref_exit(&devmem->ref);
1104 error_percpu_ref:
1105         devres_free(devmem);
1106         return ERR_PTR(ret);
1107 }
1108 EXPORT_SYMBOL(hmm_devmem_add);
1109
1110 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1111                                            struct device *device,
1112                                            struct resource *res)
1113 {
1114         struct hmm_devmem *devmem;
1115         int ret;
1116
1117         if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1118                 return ERR_PTR(-EINVAL);
1119
1120         static_branch_enable(&device_private_key);
1121
1122         devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1123                                    GFP_KERNEL, dev_to_node(device));
1124         if (!devmem)
1125                 return ERR_PTR(-ENOMEM);
1126
1127         init_completion(&devmem->completion);
1128         devmem->pfn_first = -1UL;
1129         devmem->pfn_last = -1UL;
1130         devmem->resource = res;
1131         devmem->device = device;
1132         devmem->ops = ops;
1133
1134         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1135                               0, GFP_KERNEL);
1136         if (ret)
1137                 goto error_percpu_ref;
1138
1139         ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1140         if (ret)
1141                 goto error_devm_add_action;
1142
1143
1144         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1145         devmem->pfn_last = devmem->pfn_first +
1146                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1147
1148         ret = hmm_devmem_pages_create(devmem);
1149         if (ret)
1150                 goto error_devm_add_action;
1151
1152         devres_add(device, devmem);
1153
1154         ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1155         if (ret) {
1156                 hmm_devmem_remove(devmem);
1157                 return ERR_PTR(ret);
1158         }
1159
1160         return devmem;
1161
1162 error_devm_add_action:
1163         hmm_devmem_ref_kill(&devmem->ref);
1164         hmm_devmem_ref_exit(&devmem->ref);
1165 error_percpu_ref:
1166         devres_free(devmem);
1167         return ERR_PTR(ret);
1168 }
1169 EXPORT_SYMBOL(hmm_devmem_add_resource);
1170
1171 /*
1172  * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
1173  *
1174  * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
1175  *
1176  * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
1177  * of the device driver. It will free struct page and remove the resource that
1178  * reserved the physical address range for this device memory.
1179  */
1180 void hmm_devmem_remove(struct hmm_devmem *devmem)
1181 {
1182         resource_size_t start, size;
1183         struct device *device;
1184         bool cdm = false;
1185
1186         if (!devmem)
1187                 return;
1188
1189         device = devmem->device;
1190         start = devmem->resource->start;
1191         size = resource_size(devmem->resource);
1192
1193         cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY;
1194         hmm_devmem_ref_kill(&devmem->ref);
1195         hmm_devmem_ref_exit(&devmem->ref);
1196         hmm_devmem_pages_remove(devmem);
1197
1198         if (!cdm)
1199                 devm_release_mem_region(device, start, size);
1200 }
1201 EXPORT_SYMBOL(hmm_devmem_remove);
1202
1203 /*
1204  * A device driver that wants to handle multiple devices memory through a
1205  * single fake device can use hmm_device to do so. This is purely a helper
1206  * and it is not needed to make use of any HMM functionality.
1207  */
1208 #define HMM_DEVICE_MAX 256
1209
1210 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1211 static DEFINE_SPINLOCK(hmm_device_lock);
1212 static struct class *hmm_device_class;
1213 static dev_t hmm_device_devt;
1214
1215 static void hmm_device_release(struct device *device)
1216 {
1217         struct hmm_device *hmm_device;
1218
1219         hmm_device = container_of(device, struct hmm_device, device);
1220         spin_lock(&hmm_device_lock);
1221         clear_bit(hmm_device->minor, hmm_device_mask);
1222         spin_unlock(&hmm_device_lock);
1223
1224         kfree(hmm_device);
1225 }
1226
1227 struct hmm_device *hmm_device_new(void *drvdata)
1228 {
1229         struct hmm_device *hmm_device;
1230
1231         hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1232         if (!hmm_device)
1233                 return ERR_PTR(-ENOMEM);
1234
1235         spin_lock(&hmm_device_lock);
1236         hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1237         if (hmm_device->minor >= HMM_DEVICE_MAX) {
1238                 spin_unlock(&hmm_device_lock);
1239                 kfree(hmm_device);
1240                 return ERR_PTR(-EBUSY);
1241         }
1242         set_bit(hmm_device->minor, hmm_device_mask);
1243         spin_unlock(&hmm_device_lock);
1244
1245         dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1246         hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1247                                         hmm_device->minor);
1248         hmm_device->device.release = hmm_device_release;
1249         dev_set_drvdata(&hmm_device->device, drvdata);
1250         hmm_device->device.class = hmm_device_class;
1251         device_initialize(&hmm_device->device);
1252
1253         return hmm_device;
1254 }
1255 EXPORT_SYMBOL(hmm_device_new);
1256
1257 void hmm_device_put(struct hmm_device *hmm_device)
1258 {
1259         put_device(&hmm_device->device);
1260 }
1261 EXPORT_SYMBOL(hmm_device_put);
1262
1263 static int __init hmm_init(void)
1264 {
1265         int ret;
1266
1267         ret = alloc_chrdev_region(&hmm_device_devt, 0,
1268                                   HMM_DEVICE_MAX,
1269                                   "hmm_device");
1270         if (ret)
1271                 return ret;
1272
1273         hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1274         if (IS_ERR(hmm_device_class)) {
1275                 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1276                 return PTR_ERR(hmm_device_class);
1277         }
1278         return 0;
1279 }
1280
1281 device_initcall(hmm_init);
1282 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */