Merge tag 'asoc-fix-v5.5-rc6' into asoc-5.6
[sfrench/cifs-2.6.git] / mm / filemap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include "internal.h"
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/filemap.h>
48
49 /*
50  * FIXME: remove all knowledge of the buffer layer from the core VM
51  */
52 #include <linux/buffer_head.h> /* for try_to_free_buffers */
53
54 #include <asm/mman.h>
55
56 /*
57  * Shared mappings implemented 30.11.1994. It's not fully working yet,
58  * though.
59  *
60  * Shared mappings now work. 15.8.1995  Bruno.
61  *
62  * finished 'unifying' the page and buffer cache and SMP-threaded the
63  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
64  *
65  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
66  */
67
68 /*
69  * Lock ordering:
70  *
71  *  ->i_mmap_rwsem              (truncate_pagecache)
72  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
73  *      ->swap_lock             (exclusive_swap_page, others)
74  *        ->i_pages lock
75  *
76  *  ->i_mutex
77  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
78  *
79  *  ->mmap_sem
80  *    ->i_mmap_rwsem
81  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
82  *        ->i_pages lock        (arch-dependent flush_dcache_mmap_lock)
83  *
84  *  ->mmap_sem
85  *    ->lock_page               (access_process_vm)
86  *
87  *  ->i_mutex                   (generic_perform_write)
88  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
89  *
90  *  bdi->wb.list_lock
91  *    sb_lock                   (fs/fs-writeback.c)
92  *    ->i_pages lock            (__sync_single_inode)
93  *
94  *  ->i_mmap_rwsem
95  *    ->anon_vma.lock           (vma_adjust)
96  *
97  *  ->anon_vma.lock
98  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
99  *
100  *  ->page_table_lock or pte_lock
101  *    ->swap_lock               (try_to_unmap_one)
102  *    ->private_lock            (try_to_unmap_one)
103  *    ->i_pages lock            (try_to_unmap_one)
104  *    ->pgdat->lru_lock         (follow_page->mark_page_accessed)
105  *    ->pgdat->lru_lock         (check_pte_range->isolate_lru_page)
106  *    ->private_lock            (page_remove_rmap->set_page_dirty)
107  *    ->i_pages lock            (page_remove_rmap->set_page_dirty)
108  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
109  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
110  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
111  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
112  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
113  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
114  *
115  * ->i_mmap_rwsem
116  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
117  */
118
119 static void page_cache_delete(struct address_space *mapping,
120                                    struct page *page, void *shadow)
121 {
122         XA_STATE(xas, &mapping->i_pages, page->index);
123         unsigned int nr = 1;
124
125         mapping_set_update(&xas, mapping);
126
127         /* hugetlb pages are represented by a single entry in the xarray */
128         if (!PageHuge(page)) {
129                 xas_set_order(&xas, page->index, compound_order(page));
130                 nr = compound_nr(page);
131         }
132
133         VM_BUG_ON_PAGE(!PageLocked(page), page);
134         VM_BUG_ON_PAGE(PageTail(page), page);
135         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
136
137         xas_store(&xas, shadow);
138         xas_init_marks(&xas);
139
140         page->mapping = NULL;
141         /* Leave page->index set: truncation lookup relies upon it */
142
143         if (shadow) {
144                 mapping->nrexceptional += nr;
145                 /*
146                  * Make sure the nrexceptional update is committed before
147                  * the nrpages update so that final truncate racing
148                  * with reclaim does not see both counters 0 at the
149                  * same time and miss a shadow entry.
150                  */
151                 smp_wmb();
152         }
153         mapping->nrpages -= nr;
154 }
155
156 static void unaccount_page_cache_page(struct address_space *mapping,
157                                       struct page *page)
158 {
159         int nr;
160
161         /*
162          * if we're uptodate, flush out into the cleancache, otherwise
163          * invalidate any existing cleancache entries.  We can't leave
164          * stale data around in the cleancache once our page is gone
165          */
166         if (PageUptodate(page) && PageMappedToDisk(page))
167                 cleancache_put_page(page);
168         else
169                 cleancache_invalidate_page(mapping, page);
170
171         VM_BUG_ON_PAGE(PageTail(page), page);
172         VM_BUG_ON_PAGE(page_mapped(page), page);
173         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
174                 int mapcount;
175
176                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
177                          current->comm, page_to_pfn(page));
178                 dump_page(page, "still mapped when deleted");
179                 dump_stack();
180                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
181
182                 mapcount = page_mapcount(page);
183                 if (mapping_exiting(mapping) &&
184                     page_count(page) >= mapcount + 2) {
185                         /*
186                          * All vmas have already been torn down, so it's
187                          * a good bet that actually the page is unmapped,
188                          * and we'd prefer not to leak it: if we're wrong,
189                          * some other bad page check should catch it later.
190                          */
191                         page_mapcount_reset(page);
192                         page_ref_sub(page, mapcount);
193                 }
194         }
195
196         /* hugetlb pages do not participate in page cache accounting. */
197         if (PageHuge(page))
198                 return;
199
200         nr = hpage_nr_pages(page);
201
202         __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
203         if (PageSwapBacked(page)) {
204                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
205                 if (PageTransHuge(page))
206                         __dec_node_page_state(page, NR_SHMEM_THPS);
207         } else if (PageTransHuge(page)) {
208                 __dec_node_page_state(page, NR_FILE_THPS);
209                 filemap_nr_thps_dec(mapping);
210         }
211
212         /*
213          * At this point page must be either written or cleaned by
214          * truncate.  Dirty page here signals a bug and loss of
215          * unwritten data.
216          *
217          * This fixes dirty accounting after removing the page entirely
218          * but leaves PageDirty set: it has no effect for truncated
219          * page and anyway will be cleared before returning page into
220          * buddy allocator.
221          */
222         if (WARN_ON_ONCE(PageDirty(page)))
223                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
224 }
225
226 /*
227  * Delete a page from the page cache and free it. Caller has to make
228  * sure the page is locked and that nobody else uses it - or that usage
229  * is safe.  The caller must hold the i_pages lock.
230  */
231 void __delete_from_page_cache(struct page *page, void *shadow)
232 {
233         struct address_space *mapping = page->mapping;
234
235         trace_mm_filemap_delete_from_page_cache(page);
236
237         unaccount_page_cache_page(mapping, page);
238         page_cache_delete(mapping, page, shadow);
239 }
240
241 static void page_cache_free_page(struct address_space *mapping,
242                                 struct page *page)
243 {
244         void (*freepage)(struct page *);
245
246         freepage = mapping->a_ops->freepage;
247         if (freepage)
248                 freepage(page);
249
250         if (PageTransHuge(page) && !PageHuge(page)) {
251                 page_ref_sub(page, HPAGE_PMD_NR);
252                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
253         } else {
254                 put_page(page);
255         }
256 }
257
258 /**
259  * delete_from_page_cache - delete page from page cache
260  * @page: the page which the kernel is trying to remove from page cache
261  *
262  * This must be called only on pages that have been verified to be in the page
263  * cache and locked.  It will never put the page into the free list, the caller
264  * has a reference on the page.
265  */
266 void delete_from_page_cache(struct page *page)
267 {
268         struct address_space *mapping = page_mapping(page);
269         unsigned long flags;
270
271         BUG_ON(!PageLocked(page));
272         xa_lock_irqsave(&mapping->i_pages, flags);
273         __delete_from_page_cache(page, NULL);
274         xa_unlock_irqrestore(&mapping->i_pages, flags);
275
276         page_cache_free_page(mapping, page);
277 }
278 EXPORT_SYMBOL(delete_from_page_cache);
279
280 /*
281  * page_cache_delete_batch - delete several pages from page cache
282  * @mapping: the mapping to which pages belong
283  * @pvec: pagevec with pages to delete
284  *
285  * The function walks over mapping->i_pages and removes pages passed in @pvec
286  * from the mapping. The function expects @pvec to be sorted by page index
287  * and is optimised for it to be dense.
288  * It tolerates holes in @pvec (mapping entries at those indices are not
289  * modified). The function expects only THP head pages to be present in the
290  * @pvec.
291  *
292  * The function expects the i_pages lock to be held.
293  */
294 static void page_cache_delete_batch(struct address_space *mapping,
295                              struct pagevec *pvec)
296 {
297         XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
298         int total_pages = 0;
299         int i = 0;
300         struct page *page;
301
302         mapping_set_update(&xas, mapping);
303         xas_for_each(&xas, page, ULONG_MAX) {
304                 if (i >= pagevec_count(pvec))
305                         break;
306
307                 /* A swap/dax/shadow entry got inserted? Skip it. */
308                 if (xa_is_value(page))
309                         continue;
310                 /*
311                  * A page got inserted in our range? Skip it. We have our
312                  * pages locked so they are protected from being removed.
313                  * If we see a page whose index is higher than ours, it
314                  * means our page has been removed, which shouldn't be
315                  * possible because we're holding the PageLock.
316                  */
317                 if (page != pvec->pages[i]) {
318                         VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
319                                         page);
320                         continue;
321                 }
322
323                 WARN_ON_ONCE(!PageLocked(page));
324
325                 if (page->index == xas.xa_index)
326                         page->mapping = NULL;
327                 /* Leave page->index set: truncation lookup relies on it */
328
329                 /*
330                  * Move to the next page in the vector if this is a regular
331                  * page or the index is of the last sub-page of this compound
332                  * page.
333                  */
334                 if (page->index + compound_nr(page) - 1 == xas.xa_index)
335                         i++;
336                 xas_store(&xas, NULL);
337                 total_pages++;
338         }
339         mapping->nrpages -= total_pages;
340 }
341
342 void delete_from_page_cache_batch(struct address_space *mapping,
343                                   struct pagevec *pvec)
344 {
345         int i;
346         unsigned long flags;
347
348         if (!pagevec_count(pvec))
349                 return;
350
351         xa_lock_irqsave(&mapping->i_pages, flags);
352         for (i = 0; i < pagevec_count(pvec); i++) {
353                 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
354
355                 unaccount_page_cache_page(mapping, pvec->pages[i]);
356         }
357         page_cache_delete_batch(mapping, pvec);
358         xa_unlock_irqrestore(&mapping->i_pages, flags);
359
360         for (i = 0; i < pagevec_count(pvec); i++)
361                 page_cache_free_page(mapping, pvec->pages[i]);
362 }
363
364 int filemap_check_errors(struct address_space *mapping)
365 {
366         int ret = 0;
367         /* Check for outstanding write errors */
368         if (test_bit(AS_ENOSPC, &mapping->flags) &&
369             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
370                 ret = -ENOSPC;
371         if (test_bit(AS_EIO, &mapping->flags) &&
372             test_and_clear_bit(AS_EIO, &mapping->flags))
373                 ret = -EIO;
374         return ret;
375 }
376 EXPORT_SYMBOL(filemap_check_errors);
377
378 static int filemap_check_and_keep_errors(struct address_space *mapping)
379 {
380         /* Check for outstanding write errors */
381         if (test_bit(AS_EIO, &mapping->flags))
382                 return -EIO;
383         if (test_bit(AS_ENOSPC, &mapping->flags))
384                 return -ENOSPC;
385         return 0;
386 }
387
388 /**
389  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
390  * @mapping:    address space structure to write
391  * @start:      offset in bytes where the range starts
392  * @end:        offset in bytes where the range ends (inclusive)
393  * @sync_mode:  enable synchronous operation
394  *
395  * Start writeback against all of a mapping's dirty pages that lie
396  * within the byte offsets <start, end> inclusive.
397  *
398  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
399  * opposed to a regular memory cleansing writeback.  The difference between
400  * these two operations is that if a dirty page/buffer is encountered, it must
401  * be waited upon, and not just skipped over.
402  *
403  * Return: %0 on success, negative error code otherwise.
404  */
405 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
406                                 loff_t end, int sync_mode)
407 {
408         int ret;
409         struct writeback_control wbc = {
410                 .sync_mode = sync_mode,
411                 .nr_to_write = LONG_MAX,
412                 .range_start = start,
413                 .range_end = end,
414         };
415
416         if (!mapping_cap_writeback_dirty(mapping) ||
417             !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
418                 return 0;
419
420         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
421         ret = do_writepages(mapping, &wbc);
422         wbc_detach_inode(&wbc);
423         return ret;
424 }
425
426 static inline int __filemap_fdatawrite(struct address_space *mapping,
427         int sync_mode)
428 {
429         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430 }
431
432 int filemap_fdatawrite(struct address_space *mapping)
433 {
434         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435 }
436 EXPORT_SYMBOL(filemap_fdatawrite);
437
438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439                                 loff_t end)
440 {
441         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite_range);
444
445 /**
446  * filemap_flush - mostly a non-blocking flush
447  * @mapping:    target address_space
448  *
449  * This is a mostly non-blocking flush.  Not suitable for data-integrity
450  * purposes - I/O may not be started against all dirty pages.
451  *
452  * Return: %0 on success, negative error code otherwise.
453  */
454 int filemap_flush(struct address_space *mapping)
455 {
456         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457 }
458 EXPORT_SYMBOL(filemap_flush);
459
460 /**
461  * filemap_range_has_page - check if a page exists in range.
462  * @mapping:           address space within which to check
463  * @start_byte:        offset in bytes where the range starts
464  * @end_byte:          offset in bytes where the range ends (inclusive)
465  *
466  * Find at least one page in the range supplied, usually used to check if
467  * direct writing in this range will trigger a writeback.
468  *
469  * Return: %true if at least one page exists in the specified range,
470  * %false otherwise.
471  */
472 bool filemap_range_has_page(struct address_space *mapping,
473                            loff_t start_byte, loff_t end_byte)
474 {
475         struct page *page;
476         XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477         pgoff_t max = end_byte >> PAGE_SHIFT;
478
479         if (end_byte < start_byte)
480                 return false;
481
482         rcu_read_lock();
483         for (;;) {
484                 page = xas_find(&xas, max);
485                 if (xas_retry(&xas, page))
486                         continue;
487                 /* Shadow entries don't count */
488                 if (xa_is_value(page))
489                         continue;
490                 /*
491                  * We don't need to try to pin this page; we're about to
492                  * release the RCU lock anyway.  It is enough to know that
493                  * there was a page here recently.
494                  */
495                 break;
496         }
497         rcu_read_unlock();
498
499         return page != NULL;
500 }
501 EXPORT_SYMBOL(filemap_range_has_page);
502
503 static void __filemap_fdatawait_range(struct address_space *mapping,
504                                      loff_t start_byte, loff_t end_byte)
505 {
506         pgoff_t index = start_byte >> PAGE_SHIFT;
507         pgoff_t end = end_byte >> PAGE_SHIFT;
508         struct pagevec pvec;
509         int nr_pages;
510
511         if (end_byte < start_byte)
512                 return;
513
514         pagevec_init(&pvec);
515         while (index <= end) {
516                 unsigned i;
517
518                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
519                                 end, PAGECACHE_TAG_WRITEBACK);
520                 if (!nr_pages)
521                         break;
522
523                 for (i = 0; i < nr_pages; i++) {
524                         struct page *page = pvec.pages[i];
525
526                         wait_on_page_writeback(page);
527                         ClearPageError(page);
528                 }
529                 pagevec_release(&pvec);
530                 cond_resched();
531         }
532 }
533
534 /**
535  * filemap_fdatawait_range - wait for writeback to complete
536  * @mapping:            address space structure to wait for
537  * @start_byte:         offset in bytes where the range starts
538  * @end_byte:           offset in bytes where the range ends (inclusive)
539  *
540  * Walk the list of under-writeback pages of the given address space
541  * in the given range and wait for all of them.  Check error status of
542  * the address space and return it.
543  *
544  * Since the error status of the address space is cleared by this function,
545  * callers are responsible for checking the return value and handling and/or
546  * reporting the error.
547  *
548  * Return: error status of the address space.
549  */
550 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
551                             loff_t end_byte)
552 {
553         __filemap_fdatawait_range(mapping, start_byte, end_byte);
554         return filemap_check_errors(mapping);
555 }
556 EXPORT_SYMBOL(filemap_fdatawait_range);
557
558 /**
559  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
560  * @mapping:            address space structure to wait for
561  * @start_byte:         offset in bytes where the range starts
562  * @end_byte:           offset in bytes where the range ends (inclusive)
563  *
564  * Walk the list of under-writeback pages of the given address space in the
565  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
566  * this function does not clear error status of the address space.
567  *
568  * Use this function if callers don't handle errors themselves.  Expected
569  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
570  * fsfreeze(8)
571  */
572 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
573                 loff_t start_byte, loff_t end_byte)
574 {
575         __filemap_fdatawait_range(mapping, start_byte, end_byte);
576         return filemap_check_and_keep_errors(mapping);
577 }
578 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
579
580 /**
581  * file_fdatawait_range - wait for writeback to complete
582  * @file:               file pointing to address space structure to wait for
583  * @start_byte:         offset in bytes where the range starts
584  * @end_byte:           offset in bytes where the range ends (inclusive)
585  *
586  * Walk the list of under-writeback pages of the address space that file
587  * refers to, in the given range and wait for all of them.  Check error
588  * status of the address space vs. the file->f_wb_err cursor and return it.
589  *
590  * Since the error status of the file is advanced by this function,
591  * callers are responsible for checking the return value and handling and/or
592  * reporting the error.
593  *
594  * Return: error status of the address space vs. the file->f_wb_err cursor.
595  */
596 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
597 {
598         struct address_space *mapping = file->f_mapping;
599
600         __filemap_fdatawait_range(mapping, start_byte, end_byte);
601         return file_check_and_advance_wb_err(file);
602 }
603 EXPORT_SYMBOL(file_fdatawait_range);
604
605 /**
606  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
607  * @mapping: address space structure to wait for
608  *
609  * Walk the list of under-writeback pages of the given address space
610  * and wait for all of them.  Unlike filemap_fdatawait(), this function
611  * does not clear error status of the address space.
612  *
613  * Use this function if callers don't handle errors themselves.  Expected
614  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
615  * fsfreeze(8)
616  *
617  * Return: error status of the address space.
618  */
619 int filemap_fdatawait_keep_errors(struct address_space *mapping)
620 {
621         __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
622         return filemap_check_and_keep_errors(mapping);
623 }
624 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
625
626 /* Returns true if writeback might be needed or already in progress. */
627 static bool mapping_needs_writeback(struct address_space *mapping)
628 {
629         if (dax_mapping(mapping))
630                 return mapping->nrexceptional;
631
632         return mapping->nrpages;
633 }
634
635 int filemap_write_and_wait(struct address_space *mapping)
636 {
637         int err = 0;
638
639         if (mapping_needs_writeback(mapping)) {
640                 err = filemap_fdatawrite(mapping);
641                 /*
642                  * Even if the above returned error, the pages may be
643                  * written partially (e.g. -ENOSPC), so we wait for it.
644                  * But the -EIO is special case, it may indicate the worst
645                  * thing (e.g. bug) happened, so we avoid waiting for it.
646                  */
647                 if (err != -EIO) {
648                         int err2 = filemap_fdatawait(mapping);
649                         if (!err)
650                                 err = err2;
651                 } else {
652                         /* Clear any previously stored errors */
653                         filemap_check_errors(mapping);
654                 }
655         } else {
656                 err = filemap_check_errors(mapping);
657         }
658         return err;
659 }
660 EXPORT_SYMBOL(filemap_write_and_wait);
661
662 /**
663  * filemap_write_and_wait_range - write out & wait on a file range
664  * @mapping:    the address_space for the pages
665  * @lstart:     offset in bytes where the range starts
666  * @lend:       offset in bytes where the range ends (inclusive)
667  *
668  * Write out and wait upon file offsets lstart->lend, inclusive.
669  *
670  * Note that @lend is inclusive (describes the last byte to be written) so
671  * that this function can be used to write to the very end-of-file (end = -1).
672  *
673  * Return: error status of the address space.
674  */
675 int filemap_write_and_wait_range(struct address_space *mapping,
676                                  loff_t lstart, loff_t lend)
677 {
678         int err = 0;
679
680         if (mapping_needs_writeback(mapping)) {
681                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
682                                                  WB_SYNC_ALL);
683                 /* See comment of filemap_write_and_wait() */
684                 if (err != -EIO) {
685                         int err2 = filemap_fdatawait_range(mapping,
686                                                 lstart, lend);
687                         if (!err)
688                                 err = err2;
689                 } else {
690                         /* Clear any previously stored errors */
691                         filemap_check_errors(mapping);
692                 }
693         } else {
694                 err = filemap_check_errors(mapping);
695         }
696         return err;
697 }
698 EXPORT_SYMBOL(filemap_write_and_wait_range);
699
700 void __filemap_set_wb_err(struct address_space *mapping, int err)
701 {
702         errseq_t eseq = errseq_set(&mapping->wb_err, err);
703
704         trace_filemap_set_wb_err(mapping, eseq);
705 }
706 EXPORT_SYMBOL(__filemap_set_wb_err);
707
708 /**
709  * file_check_and_advance_wb_err - report wb error (if any) that was previously
710  *                                 and advance wb_err to current one
711  * @file: struct file on which the error is being reported
712  *
713  * When userland calls fsync (or something like nfsd does the equivalent), we
714  * want to report any writeback errors that occurred since the last fsync (or
715  * since the file was opened if there haven't been any).
716  *
717  * Grab the wb_err from the mapping. If it matches what we have in the file,
718  * then just quickly return 0. The file is all caught up.
719  *
720  * If it doesn't match, then take the mapping value, set the "seen" flag in
721  * it and try to swap it into place. If it works, or another task beat us
722  * to it with the new value, then update the f_wb_err and return the error
723  * portion. The error at this point must be reported via proper channels
724  * (a'la fsync, or NFS COMMIT operation, etc.).
725  *
726  * While we handle mapping->wb_err with atomic operations, the f_wb_err
727  * value is protected by the f_lock since we must ensure that it reflects
728  * the latest value swapped in for this file descriptor.
729  *
730  * Return: %0 on success, negative error code otherwise.
731  */
732 int file_check_and_advance_wb_err(struct file *file)
733 {
734         int err = 0;
735         errseq_t old = READ_ONCE(file->f_wb_err);
736         struct address_space *mapping = file->f_mapping;
737
738         /* Locklessly handle the common case where nothing has changed */
739         if (errseq_check(&mapping->wb_err, old)) {
740                 /* Something changed, must use slow path */
741                 spin_lock(&file->f_lock);
742                 old = file->f_wb_err;
743                 err = errseq_check_and_advance(&mapping->wb_err,
744                                                 &file->f_wb_err);
745                 trace_file_check_and_advance_wb_err(file, old);
746                 spin_unlock(&file->f_lock);
747         }
748
749         /*
750          * We're mostly using this function as a drop in replacement for
751          * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
752          * that the legacy code would have had on these flags.
753          */
754         clear_bit(AS_EIO, &mapping->flags);
755         clear_bit(AS_ENOSPC, &mapping->flags);
756         return err;
757 }
758 EXPORT_SYMBOL(file_check_and_advance_wb_err);
759
760 /**
761  * file_write_and_wait_range - write out & wait on a file range
762  * @file:       file pointing to address_space with pages
763  * @lstart:     offset in bytes where the range starts
764  * @lend:       offset in bytes where the range ends (inclusive)
765  *
766  * Write out and wait upon file offsets lstart->lend, inclusive.
767  *
768  * Note that @lend is inclusive (describes the last byte to be written) so
769  * that this function can be used to write to the very end-of-file (end = -1).
770  *
771  * After writing out and waiting on the data, we check and advance the
772  * f_wb_err cursor to the latest value, and return any errors detected there.
773  *
774  * Return: %0 on success, negative error code otherwise.
775  */
776 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
777 {
778         int err = 0, err2;
779         struct address_space *mapping = file->f_mapping;
780
781         if (mapping_needs_writeback(mapping)) {
782                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
783                                                  WB_SYNC_ALL);
784                 /* See comment of filemap_write_and_wait() */
785                 if (err != -EIO)
786                         __filemap_fdatawait_range(mapping, lstart, lend);
787         }
788         err2 = file_check_and_advance_wb_err(file);
789         if (!err)
790                 err = err2;
791         return err;
792 }
793 EXPORT_SYMBOL(file_write_and_wait_range);
794
795 /**
796  * replace_page_cache_page - replace a pagecache page with a new one
797  * @old:        page to be replaced
798  * @new:        page to replace with
799  * @gfp_mask:   allocation mode
800  *
801  * This function replaces a page in the pagecache with a new one.  On
802  * success it acquires the pagecache reference for the new page and
803  * drops it for the old page.  Both the old and new pages must be
804  * locked.  This function does not add the new page to the LRU, the
805  * caller must do that.
806  *
807  * The remove + add is atomic.  This function cannot fail.
808  *
809  * Return: %0
810  */
811 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
812 {
813         struct address_space *mapping = old->mapping;
814         void (*freepage)(struct page *) = mapping->a_ops->freepage;
815         pgoff_t offset = old->index;
816         XA_STATE(xas, &mapping->i_pages, offset);
817         unsigned long flags;
818
819         VM_BUG_ON_PAGE(!PageLocked(old), old);
820         VM_BUG_ON_PAGE(!PageLocked(new), new);
821         VM_BUG_ON_PAGE(new->mapping, new);
822
823         get_page(new);
824         new->mapping = mapping;
825         new->index = offset;
826
827         xas_lock_irqsave(&xas, flags);
828         xas_store(&xas, new);
829
830         old->mapping = NULL;
831         /* hugetlb pages do not participate in page cache accounting. */
832         if (!PageHuge(old))
833                 __dec_node_page_state(new, NR_FILE_PAGES);
834         if (!PageHuge(new))
835                 __inc_node_page_state(new, NR_FILE_PAGES);
836         if (PageSwapBacked(old))
837                 __dec_node_page_state(new, NR_SHMEM);
838         if (PageSwapBacked(new))
839                 __inc_node_page_state(new, NR_SHMEM);
840         xas_unlock_irqrestore(&xas, flags);
841         mem_cgroup_migrate(old, new);
842         if (freepage)
843                 freepage(old);
844         put_page(old);
845
846         return 0;
847 }
848 EXPORT_SYMBOL_GPL(replace_page_cache_page);
849
850 static int __add_to_page_cache_locked(struct page *page,
851                                       struct address_space *mapping,
852                                       pgoff_t offset, gfp_t gfp_mask,
853                                       void **shadowp)
854 {
855         XA_STATE(xas, &mapping->i_pages, offset);
856         int huge = PageHuge(page);
857         struct mem_cgroup *memcg;
858         int error;
859         void *old;
860
861         VM_BUG_ON_PAGE(!PageLocked(page), page);
862         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
863         mapping_set_update(&xas, mapping);
864
865         if (!huge) {
866                 error = mem_cgroup_try_charge(page, current->mm,
867                                               gfp_mask, &memcg, false);
868                 if (error)
869                         return error;
870         }
871
872         get_page(page);
873         page->mapping = mapping;
874         page->index = offset;
875
876         do {
877                 xas_lock_irq(&xas);
878                 old = xas_load(&xas);
879                 if (old && !xa_is_value(old))
880                         xas_set_err(&xas, -EEXIST);
881                 xas_store(&xas, page);
882                 if (xas_error(&xas))
883                         goto unlock;
884
885                 if (xa_is_value(old)) {
886                         mapping->nrexceptional--;
887                         if (shadowp)
888                                 *shadowp = old;
889                 }
890                 mapping->nrpages++;
891
892                 /* hugetlb pages do not participate in page cache accounting */
893                 if (!huge)
894                         __inc_node_page_state(page, NR_FILE_PAGES);
895 unlock:
896                 xas_unlock_irq(&xas);
897         } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
898
899         if (xas_error(&xas))
900                 goto error;
901
902         if (!huge)
903                 mem_cgroup_commit_charge(page, memcg, false, false);
904         trace_mm_filemap_add_to_page_cache(page);
905         return 0;
906 error:
907         page->mapping = NULL;
908         /* Leave page->index set: truncation relies upon it */
909         if (!huge)
910                 mem_cgroup_cancel_charge(page, memcg, false);
911         put_page(page);
912         return xas_error(&xas);
913 }
914 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
915
916 /**
917  * add_to_page_cache_locked - add a locked page to the pagecache
918  * @page:       page to add
919  * @mapping:    the page's address_space
920  * @offset:     page index
921  * @gfp_mask:   page allocation mode
922  *
923  * This function is used to add a page to the pagecache. It must be locked.
924  * This function does not add the page to the LRU.  The caller must do that.
925  *
926  * Return: %0 on success, negative error code otherwise.
927  */
928 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
929                 pgoff_t offset, gfp_t gfp_mask)
930 {
931         return __add_to_page_cache_locked(page, mapping, offset,
932                                           gfp_mask, NULL);
933 }
934 EXPORT_SYMBOL(add_to_page_cache_locked);
935
936 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
937                                 pgoff_t offset, gfp_t gfp_mask)
938 {
939         void *shadow = NULL;
940         int ret;
941
942         __SetPageLocked(page);
943         ret = __add_to_page_cache_locked(page, mapping, offset,
944                                          gfp_mask, &shadow);
945         if (unlikely(ret))
946                 __ClearPageLocked(page);
947         else {
948                 /*
949                  * The page might have been evicted from cache only
950                  * recently, in which case it should be activated like
951                  * any other repeatedly accessed page.
952                  * The exception is pages getting rewritten; evicting other
953                  * data from the working set, only to cache data that will
954                  * get overwritten with something else, is a waste of memory.
955                  */
956                 WARN_ON_ONCE(PageActive(page));
957                 if (!(gfp_mask & __GFP_WRITE) && shadow)
958                         workingset_refault(page, shadow);
959                 lru_cache_add(page);
960         }
961         return ret;
962 }
963 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
964
965 #ifdef CONFIG_NUMA
966 struct page *__page_cache_alloc(gfp_t gfp)
967 {
968         int n;
969         struct page *page;
970
971         if (cpuset_do_page_mem_spread()) {
972                 unsigned int cpuset_mems_cookie;
973                 do {
974                         cpuset_mems_cookie = read_mems_allowed_begin();
975                         n = cpuset_mem_spread_node();
976                         page = __alloc_pages_node(n, gfp, 0);
977                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
978
979                 return page;
980         }
981         return alloc_pages(gfp, 0);
982 }
983 EXPORT_SYMBOL(__page_cache_alloc);
984 #endif
985
986 /*
987  * In order to wait for pages to become available there must be
988  * waitqueues associated with pages. By using a hash table of
989  * waitqueues where the bucket discipline is to maintain all
990  * waiters on the same queue and wake all when any of the pages
991  * become available, and for the woken contexts to check to be
992  * sure the appropriate page became available, this saves space
993  * at a cost of "thundering herd" phenomena during rare hash
994  * collisions.
995  */
996 #define PAGE_WAIT_TABLE_BITS 8
997 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
998 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
999
1000 static wait_queue_head_t *page_waitqueue(struct page *page)
1001 {
1002         return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1003 }
1004
1005 void __init pagecache_init(void)
1006 {
1007         int i;
1008
1009         for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1010                 init_waitqueue_head(&page_wait_table[i]);
1011
1012         page_writeback_init();
1013 }
1014
1015 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
1016 struct wait_page_key {
1017         struct page *page;
1018         int bit_nr;
1019         int page_match;
1020 };
1021
1022 struct wait_page_queue {
1023         struct page *page;
1024         int bit_nr;
1025         wait_queue_entry_t wait;
1026 };
1027
1028 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1029 {
1030         struct wait_page_key *key = arg;
1031         struct wait_page_queue *wait_page
1032                 = container_of(wait, struct wait_page_queue, wait);
1033
1034         if (wait_page->page != key->page)
1035                return 0;
1036         key->page_match = 1;
1037
1038         if (wait_page->bit_nr != key->bit_nr)
1039                 return 0;
1040
1041         /*
1042          * Stop walking if it's locked.
1043          * Is this safe if put_and_wait_on_page_locked() is in use?
1044          * Yes: the waker must hold a reference to this page, and if PG_locked
1045          * has now already been set by another task, that task must also hold
1046          * a reference to the *same usage* of this page; so there is no need
1047          * to walk on to wake even the put_and_wait_on_page_locked() callers.
1048          */
1049         if (test_bit(key->bit_nr, &key->page->flags))
1050                 return -1;
1051
1052         return autoremove_wake_function(wait, mode, sync, key);
1053 }
1054
1055 static void wake_up_page_bit(struct page *page, int bit_nr)
1056 {
1057         wait_queue_head_t *q = page_waitqueue(page);
1058         struct wait_page_key key;
1059         unsigned long flags;
1060         wait_queue_entry_t bookmark;
1061
1062         key.page = page;
1063         key.bit_nr = bit_nr;
1064         key.page_match = 0;
1065
1066         bookmark.flags = 0;
1067         bookmark.private = NULL;
1068         bookmark.func = NULL;
1069         INIT_LIST_HEAD(&bookmark.entry);
1070
1071         spin_lock_irqsave(&q->lock, flags);
1072         __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1073
1074         while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1075                 /*
1076                  * Take a breather from holding the lock,
1077                  * allow pages that finish wake up asynchronously
1078                  * to acquire the lock and remove themselves
1079                  * from wait queue
1080                  */
1081                 spin_unlock_irqrestore(&q->lock, flags);
1082                 cpu_relax();
1083                 spin_lock_irqsave(&q->lock, flags);
1084                 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1085         }
1086
1087         /*
1088          * It is possible for other pages to have collided on the waitqueue
1089          * hash, so in that case check for a page match. That prevents a long-
1090          * term waiter
1091          *
1092          * It is still possible to miss a case here, when we woke page waiters
1093          * and removed them from the waitqueue, but there are still other
1094          * page waiters.
1095          */
1096         if (!waitqueue_active(q) || !key.page_match) {
1097                 ClearPageWaiters(page);
1098                 /*
1099                  * It's possible to miss clearing Waiters here, when we woke
1100                  * our page waiters, but the hashed waitqueue has waiters for
1101                  * other pages on it.
1102                  *
1103                  * That's okay, it's a rare case. The next waker will clear it.
1104                  */
1105         }
1106         spin_unlock_irqrestore(&q->lock, flags);
1107 }
1108
1109 static void wake_up_page(struct page *page, int bit)
1110 {
1111         if (!PageWaiters(page))
1112                 return;
1113         wake_up_page_bit(page, bit);
1114 }
1115
1116 /*
1117  * A choice of three behaviors for wait_on_page_bit_common():
1118  */
1119 enum behavior {
1120         EXCLUSIVE,      /* Hold ref to page and take the bit when woken, like
1121                          * __lock_page() waiting on then setting PG_locked.
1122                          */
1123         SHARED,         /* Hold ref to page and check the bit when woken, like
1124                          * wait_on_page_writeback() waiting on PG_writeback.
1125                          */
1126         DROP,           /* Drop ref to page before wait, no check when woken,
1127                          * like put_and_wait_on_page_locked() on PG_locked.
1128                          */
1129 };
1130
1131 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1132         struct page *page, int bit_nr, int state, enum behavior behavior)
1133 {
1134         struct wait_page_queue wait_page;
1135         wait_queue_entry_t *wait = &wait_page.wait;
1136         bool bit_is_set;
1137         bool thrashing = false;
1138         bool delayacct = false;
1139         unsigned long pflags;
1140         int ret = 0;
1141
1142         if (bit_nr == PG_locked &&
1143             !PageUptodate(page) && PageWorkingset(page)) {
1144                 if (!PageSwapBacked(page)) {
1145                         delayacct_thrashing_start();
1146                         delayacct = true;
1147                 }
1148                 psi_memstall_enter(&pflags);
1149                 thrashing = true;
1150         }
1151
1152         init_wait(wait);
1153         wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1154         wait->func = wake_page_function;
1155         wait_page.page = page;
1156         wait_page.bit_nr = bit_nr;
1157
1158         for (;;) {
1159                 spin_lock_irq(&q->lock);
1160
1161                 if (likely(list_empty(&wait->entry))) {
1162                         __add_wait_queue_entry_tail(q, wait);
1163                         SetPageWaiters(page);
1164                 }
1165
1166                 set_current_state(state);
1167
1168                 spin_unlock_irq(&q->lock);
1169
1170                 bit_is_set = test_bit(bit_nr, &page->flags);
1171                 if (behavior == DROP)
1172                         put_page(page);
1173
1174                 if (likely(bit_is_set))
1175                         io_schedule();
1176
1177                 if (behavior == EXCLUSIVE) {
1178                         if (!test_and_set_bit_lock(bit_nr, &page->flags))
1179                                 break;
1180                 } else if (behavior == SHARED) {
1181                         if (!test_bit(bit_nr, &page->flags))
1182                                 break;
1183                 }
1184
1185                 if (signal_pending_state(state, current)) {
1186                         ret = -EINTR;
1187                         break;
1188                 }
1189
1190                 if (behavior == DROP) {
1191                         /*
1192                          * We can no longer safely access page->flags:
1193                          * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1194                          * there is a risk of waiting forever on a page reused
1195                          * for something that keeps it locked indefinitely.
1196                          * But best check for -EINTR above before breaking.
1197                          */
1198                         break;
1199                 }
1200         }
1201
1202         finish_wait(q, wait);
1203
1204         if (thrashing) {
1205                 if (delayacct)
1206                         delayacct_thrashing_end();
1207                 psi_memstall_leave(&pflags);
1208         }
1209
1210         /*
1211          * A signal could leave PageWaiters set. Clearing it here if
1212          * !waitqueue_active would be possible (by open-coding finish_wait),
1213          * but still fail to catch it in the case of wait hash collision. We
1214          * already can fail to clear wait hash collision cases, so don't
1215          * bother with signals either.
1216          */
1217
1218         return ret;
1219 }
1220
1221 void wait_on_page_bit(struct page *page, int bit_nr)
1222 {
1223         wait_queue_head_t *q = page_waitqueue(page);
1224         wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1225 }
1226 EXPORT_SYMBOL(wait_on_page_bit);
1227
1228 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1229 {
1230         wait_queue_head_t *q = page_waitqueue(page);
1231         return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1232 }
1233 EXPORT_SYMBOL(wait_on_page_bit_killable);
1234
1235 /**
1236  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1237  * @page: The page to wait for.
1238  *
1239  * The caller should hold a reference on @page.  They expect the page to
1240  * become unlocked relatively soon, but do not wish to hold up migration
1241  * (for example) by holding the reference while waiting for the page to
1242  * come unlocked.  After this function returns, the caller should not
1243  * dereference @page.
1244  */
1245 void put_and_wait_on_page_locked(struct page *page)
1246 {
1247         wait_queue_head_t *q;
1248
1249         page = compound_head(page);
1250         q = page_waitqueue(page);
1251         wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1252 }
1253
1254 /**
1255  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1256  * @page: Page defining the wait queue of interest
1257  * @waiter: Waiter to add to the queue
1258  *
1259  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1260  */
1261 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1262 {
1263         wait_queue_head_t *q = page_waitqueue(page);
1264         unsigned long flags;
1265
1266         spin_lock_irqsave(&q->lock, flags);
1267         __add_wait_queue_entry_tail(q, waiter);
1268         SetPageWaiters(page);
1269         spin_unlock_irqrestore(&q->lock, flags);
1270 }
1271 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1272
1273 #ifndef clear_bit_unlock_is_negative_byte
1274
1275 /*
1276  * PG_waiters is the high bit in the same byte as PG_lock.
1277  *
1278  * On x86 (and on many other architectures), we can clear PG_lock and
1279  * test the sign bit at the same time. But if the architecture does
1280  * not support that special operation, we just do this all by hand
1281  * instead.
1282  *
1283  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1284  * being cleared, but a memory barrier should be unneccssary since it is
1285  * in the same byte as PG_locked.
1286  */
1287 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1288 {
1289         clear_bit_unlock(nr, mem);
1290         /* smp_mb__after_atomic(); */
1291         return test_bit(PG_waiters, mem);
1292 }
1293
1294 #endif
1295
1296 /**
1297  * unlock_page - unlock a locked page
1298  * @page: the page
1299  *
1300  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1301  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1302  * mechanism between PageLocked pages and PageWriteback pages is shared.
1303  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1304  *
1305  * Note that this depends on PG_waiters being the sign bit in the byte
1306  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1307  * clear the PG_locked bit and test PG_waiters at the same time fairly
1308  * portably (architectures that do LL/SC can test any bit, while x86 can
1309  * test the sign bit).
1310  */
1311 void unlock_page(struct page *page)
1312 {
1313         BUILD_BUG_ON(PG_waiters != 7);
1314         page = compound_head(page);
1315         VM_BUG_ON_PAGE(!PageLocked(page), page);
1316         if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1317                 wake_up_page_bit(page, PG_locked);
1318 }
1319 EXPORT_SYMBOL(unlock_page);
1320
1321 /**
1322  * end_page_writeback - end writeback against a page
1323  * @page: the page
1324  */
1325 void end_page_writeback(struct page *page)
1326 {
1327         /*
1328          * TestClearPageReclaim could be used here but it is an atomic
1329          * operation and overkill in this particular case. Failing to
1330          * shuffle a page marked for immediate reclaim is too mild to
1331          * justify taking an atomic operation penalty at the end of
1332          * ever page writeback.
1333          */
1334         if (PageReclaim(page)) {
1335                 ClearPageReclaim(page);
1336                 rotate_reclaimable_page(page);
1337         }
1338
1339         if (!test_clear_page_writeback(page))
1340                 BUG();
1341
1342         smp_mb__after_atomic();
1343         wake_up_page(page, PG_writeback);
1344 }
1345 EXPORT_SYMBOL(end_page_writeback);
1346
1347 /*
1348  * After completing I/O on a page, call this routine to update the page
1349  * flags appropriately
1350  */
1351 void page_endio(struct page *page, bool is_write, int err)
1352 {
1353         if (!is_write) {
1354                 if (!err) {
1355                         SetPageUptodate(page);
1356                 } else {
1357                         ClearPageUptodate(page);
1358                         SetPageError(page);
1359                 }
1360                 unlock_page(page);
1361         } else {
1362                 if (err) {
1363                         struct address_space *mapping;
1364
1365                         SetPageError(page);
1366                         mapping = page_mapping(page);
1367                         if (mapping)
1368                                 mapping_set_error(mapping, err);
1369                 }
1370                 end_page_writeback(page);
1371         }
1372 }
1373 EXPORT_SYMBOL_GPL(page_endio);
1374
1375 /**
1376  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1377  * @__page: the page to lock
1378  */
1379 void __lock_page(struct page *__page)
1380 {
1381         struct page *page = compound_head(__page);
1382         wait_queue_head_t *q = page_waitqueue(page);
1383         wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1384                                 EXCLUSIVE);
1385 }
1386 EXPORT_SYMBOL(__lock_page);
1387
1388 int __lock_page_killable(struct page *__page)
1389 {
1390         struct page *page = compound_head(__page);
1391         wait_queue_head_t *q = page_waitqueue(page);
1392         return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1393                                         EXCLUSIVE);
1394 }
1395 EXPORT_SYMBOL_GPL(__lock_page_killable);
1396
1397 /*
1398  * Return values:
1399  * 1 - page is locked; mmap_sem is still held.
1400  * 0 - page is not locked.
1401  *     mmap_sem has been released (up_read()), unless flags had both
1402  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1403  *     which case mmap_sem is still held.
1404  *
1405  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1406  * with the page locked and the mmap_sem unperturbed.
1407  */
1408 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1409                          unsigned int flags)
1410 {
1411         if (flags & FAULT_FLAG_ALLOW_RETRY) {
1412                 /*
1413                  * CAUTION! In this case, mmap_sem is not released
1414                  * even though return 0.
1415                  */
1416                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1417                         return 0;
1418
1419                 up_read(&mm->mmap_sem);
1420                 if (flags & FAULT_FLAG_KILLABLE)
1421                         wait_on_page_locked_killable(page);
1422                 else
1423                         wait_on_page_locked(page);
1424                 return 0;
1425         } else {
1426                 if (flags & FAULT_FLAG_KILLABLE) {
1427                         int ret;
1428
1429                         ret = __lock_page_killable(page);
1430                         if (ret) {
1431                                 up_read(&mm->mmap_sem);
1432                                 return 0;
1433                         }
1434                 } else
1435                         __lock_page(page);
1436                 return 1;
1437         }
1438 }
1439
1440 /**
1441  * page_cache_next_miss() - Find the next gap in the page cache.
1442  * @mapping: Mapping.
1443  * @index: Index.
1444  * @max_scan: Maximum range to search.
1445  *
1446  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1447  * gap with the lowest index.
1448  *
1449  * This function may be called under the rcu_read_lock.  However, this will
1450  * not atomically search a snapshot of the cache at a single point in time.
1451  * For example, if a gap is created at index 5, then subsequently a gap is
1452  * created at index 10, page_cache_next_miss covering both indices may
1453  * return 10 if called under the rcu_read_lock.
1454  *
1455  * Return: The index of the gap if found, otherwise an index outside the
1456  * range specified (in which case 'return - index >= max_scan' will be true).
1457  * In the rare case of index wrap-around, 0 will be returned.
1458  */
1459 pgoff_t page_cache_next_miss(struct address_space *mapping,
1460                              pgoff_t index, unsigned long max_scan)
1461 {
1462         XA_STATE(xas, &mapping->i_pages, index);
1463
1464         while (max_scan--) {
1465                 void *entry = xas_next(&xas);
1466                 if (!entry || xa_is_value(entry))
1467                         break;
1468                 if (xas.xa_index == 0)
1469                         break;
1470         }
1471
1472         return xas.xa_index;
1473 }
1474 EXPORT_SYMBOL(page_cache_next_miss);
1475
1476 /**
1477  * page_cache_prev_miss() - Find the previous gap in the page cache.
1478  * @mapping: Mapping.
1479  * @index: Index.
1480  * @max_scan: Maximum range to search.
1481  *
1482  * Search the range [max(index - max_scan + 1, 0), index] for the
1483  * gap with the highest index.
1484  *
1485  * This function may be called under the rcu_read_lock.  However, this will
1486  * not atomically search a snapshot of the cache at a single point in time.
1487  * For example, if a gap is created at index 10, then subsequently a gap is
1488  * created at index 5, page_cache_prev_miss() covering both indices may
1489  * return 5 if called under the rcu_read_lock.
1490  *
1491  * Return: The index of the gap if found, otherwise an index outside the
1492  * range specified (in which case 'index - return >= max_scan' will be true).
1493  * In the rare case of wrap-around, ULONG_MAX will be returned.
1494  */
1495 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1496                              pgoff_t index, unsigned long max_scan)
1497 {
1498         XA_STATE(xas, &mapping->i_pages, index);
1499
1500         while (max_scan--) {
1501                 void *entry = xas_prev(&xas);
1502                 if (!entry || xa_is_value(entry))
1503                         break;
1504                 if (xas.xa_index == ULONG_MAX)
1505                         break;
1506         }
1507
1508         return xas.xa_index;
1509 }
1510 EXPORT_SYMBOL(page_cache_prev_miss);
1511
1512 /**
1513  * find_get_entry - find and get a page cache entry
1514  * @mapping: the address_space to search
1515  * @offset: the page cache index
1516  *
1517  * Looks up the page cache slot at @mapping & @offset.  If there is a
1518  * page cache page, it is returned with an increased refcount.
1519  *
1520  * If the slot holds a shadow entry of a previously evicted page, or a
1521  * swap entry from shmem/tmpfs, it is returned.
1522  *
1523  * Return: the found page or shadow entry, %NULL if nothing is found.
1524  */
1525 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1526 {
1527         XA_STATE(xas, &mapping->i_pages, offset);
1528         struct page *page;
1529
1530         rcu_read_lock();
1531 repeat:
1532         xas_reset(&xas);
1533         page = xas_load(&xas);
1534         if (xas_retry(&xas, page))
1535                 goto repeat;
1536         /*
1537          * A shadow entry of a recently evicted page, or a swap entry from
1538          * shmem/tmpfs.  Return it without attempting to raise page count.
1539          */
1540         if (!page || xa_is_value(page))
1541                 goto out;
1542
1543         if (!page_cache_get_speculative(page))
1544                 goto repeat;
1545
1546         /*
1547          * Has the page moved or been split?
1548          * This is part of the lockless pagecache protocol. See
1549          * include/linux/pagemap.h for details.
1550          */
1551         if (unlikely(page != xas_reload(&xas))) {
1552                 put_page(page);
1553                 goto repeat;
1554         }
1555         page = find_subpage(page, offset);
1556 out:
1557         rcu_read_unlock();
1558
1559         return page;
1560 }
1561 EXPORT_SYMBOL(find_get_entry);
1562
1563 /**
1564  * find_lock_entry - locate, pin and lock a page cache entry
1565  * @mapping: the address_space to search
1566  * @offset: the page cache index
1567  *
1568  * Looks up the page cache slot at @mapping & @offset.  If there is a
1569  * page cache page, it is returned locked and with an increased
1570  * refcount.
1571  *
1572  * If the slot holds a shadow entry of a previously evicted page, or a
1573  * swap entry from shmem/tmpfs, it is returned.
1574  *
1575  * find_lock_entry() may sleep.
1576  *
1577  * Return: the found page or shadow entry, %NULL if nothing is found.
1578  */
1579 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1580 {
1581         struct page *page;
1582
1583 repeat:
1584         page = find_get_entry(mapping, offset);
1585         if (page && !xa_is_value(page)) {
1586                 lock_page(page);
1587                 /* Has the page been truncated? */
1588                 if (unlikely(page_mapping(page) != mapping)) {
1589                         unlock_page(page);
1590                         put_page(page);
1591                         goto repeat;
1592                 }
1593                 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1594         }
1595         return page;
1596 }
1597 EXPORT_SYMBOL(find_lock_entry);
1598
1599 /**
1600  * pagecache_get_page - find and get a page reference
1601  * @mapping: the address_space to search
1602  * @offset: the page index
1603  * @fgp_flags: PCG flags
1604  * @gfp_mask: gfp mask to use for the page cache data page allocation
1605  *
1606  * Looks up the page cache slot at @mapping & @offset.
1607  *
1608  * PCG flags modify how the page is returned.
1609  *
1610  * @fgp_flags can be:
1611  *
1612  * - FGP_ACCESSED: the page will be marked accessed
1613  * - FGP_LOCK: Page is return locked
1614  * - FGP_CREAT: If page is not present then a new page is allocated using
1615  *   @gfp_mask and added to the page cache and the VM's LRU
1616  *   list. The page is returned locked and with an increased
1617  *   refcount.
1618  * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1619  *   its own locking dance if the page is already in cache, or unlock the page
1620  *   before returning if we had to add the page to pagecache.
1621  *
1622  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1623  * if the GFP flags specified for FGP_CREAT are atomic.
1624  *
1625  * If there is a page cache page, it is returned with an increased refcount.
1626  *
1627  * Return: the found page or %NULL otherwise.
1628  */
1629 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1630         int fgp_flags, gfp_t gfp_mask)
1631 {
1632         struct page *page;
1633
1634 repeat:
1635         page = find_get_entry(mapping, offset);
1636         if (xa_is_value(page))
1637                 page = NULL;
1638         if (!page)
1639                 goto no_page;
1640
1641         if (fgp_flags & FGP_LOCK) {
1642                 if (fgp_flags & FGP_NOWAIT) {
1643                         if (!trylock_page(page)) {
1644                                 put_page(page);
1645                                 return NULL;
1646                         }
1647                 } else {
1648                         lock_page(page);
1649                 }
1650
1651                 /* Has the page been truncated? */
1652                 if (unlikely(compound_head(page)->mapping != mapping)) {
1653                         unlock_page(page);
1654                         put_page(page);
1655                         goto repeat;
1656                 }
1657                 VM_BUG_ON_PAGE(page->index != offset, page);
1658         }
1659
1660         if (fgp_flags & FGP_ACCESSED)
1661                 mark_page_accessed(page);
1662
1663 no_page:
1664         if (!page && (fgp_flags & FGP_CREAT)) {
1665                 int err;
1666                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1667                         gfp_mask |= __GFP_WRITE;
1668                 if (fgp_flags & FGP_NOFS)
1669                         gfp_mask &= ~__GFP_FS;
1670
1671                 page = __page_cache_alloc(gfp_mask);
1672                 if (!page)
1673                         return NULL;
1674
1675                 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1676                         fgp_flags |= FGP_LOCK;
1677
1678                 /* Init accessed so avoid atomic mark_page_accessed later */
1679                 if (fgp_flags & FGP_ACCESSED)
1680                         __SetPageReferenced(page);
1681
1682                 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1683                 if (unlikely(err)) {
1684                         put_page(page);
1685                         page = NULL;
1686                         if (err == -EEXIST)
1687                                 goto repeat;
1688                 }
1689
1690                 /*
1691                  * add_to_page_cache_lru locks the page, and for mmap we expect
1692                  * an unlocked page.
1693                  */
1694                 if (page && (fgp_flags & FGP_FOR_MMAP))
1695                         unlock_page(page);
1696         }
1697
1698         return page;
1699 }
1700 EXPORT_SYMBOL(pagecache_get_page);
1701
1702 /**
1703  * find_get_entries - gang pagecache lookup
1704  * @mapping:    The address_space to search
1705  * @start:      The starting page cache index
1706  * @nr_entries: The maximum number of entries
1707  * @entries:    Where the resulting entries are placed
1708  * @indices:    The cache indices corresponding to the entries in @entries
1709  *
1710  * find_get_entries() will search for and return a group of up to
1711  * @nr_entries entries in the mapping.  The entries are placed at
1712  * @entries.  find_get_entries() takes a reference against any actual
1713  * pages it returns.
1714  *
1715  * The search returns a group of mapping-contiguous page cache entries
1716  * with ascending indexes.  There may be holes in the indices due to
1717  * not-present pages.
1718  *
1719  * Any shadow entries of evicted pages, or swap entries from
1720  * shmem/tmpfs, are included in the returned array.
1721  *
1722  * Return: the number of pages and shadow entries which were found.
1723  */
1724 unsigned find_get_entries(struct address_space *mapping,
1725                           pgoff_t start, unsigned int nr_entries,
1726                           struct page **entries, pgoff_t *indices)
1727 {
1728         XA_STATE(xas, &mapping->i_pages, start);
1729         struct page *page;
1730         unsigned int ret = 0;
1731
1732         if (!nr_entries)
1733                 return 0;
1734
1735         rcu_read_lock();
1736         xas_for_each(&xas, page, ULONG_MAX) {
1737                 if (xas_retry(&xas, page))
1738                         continue;
1739                 /*
1740                  * A shadow entry of a recently evicted page, a swap
1741                  * entry from shmem/tmpfs or a DAX entry.  Return it
1742                  * without attempting to raise page count.
1743                  */
1744                 if (xa_is_value(page))
1745                         goto export;
1746
1747                 if (!page_cache_get_speculative(page))
1748                         goto retry;
1749
1750                 /* Has the page moved or been split? */
1751                 if (unlikely(page != xas_reload(&xas)))
1752                         goto put_page;
1753                 page = find_subpage(page, xas.xa_index);
1754
1755 export:
1756                 indices[ret] = xas.xa_index;
1757                 entries[ret] = page;
1758                 if (++ret == nr_entries)
1759                         break;
1760                 continue;
1761 put_page:
1762                 put_page(page);
1763 retry:
1764                 xas_reset(&xas);
1765         }
1766         rcu_read_unlock();
1767         return ret;
1768 }
1769
1770 /**
1771  * find_get_pages_range - gang pagecache lookup
1772  * @mapping:    The address_space to search
1773  * @start:      The starting page index
1774  * @end:        The final page index (inclusive)
1775  * @nr_pages:   The maximum number of pages
1776  * @pages:      Where the resulting pages are placed
1777  *
1778  * find_get_pages_range() will search for and return a group of up to @nr_pages
1779  * pages in the mapping starting at index @start and up to index @end
1780  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1781  * a reference against the returned pages.
1782  *
1783  * The search returns a group of mapping-contiguous pages with ascending
1784  * indexes.  There may be holes in the indices due to not-present pages.
1785  * We also update @start to index the next page for the traversal.
1786  *
1787  * Return: the number of pages which were found. If this number is
1788  * smaller than @nr_pages, the end of specified range has been
1789  * reached.
1790  */
1791 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1792                               pgoff_t end, unsigned int nr_pages,
1793                               struct page **pages)
1794 {
1795         XA_STATE(xas, &mapping->i_pages, *start);
1796         struct page *page;
1797         unsigned ret = 0;
1798
1799         if (unlikely(!nr_pages))
1800                 return 0;
1801
1802         rcu_read_lock();
1803         xas_for_each(&xas, page, end) {
1804                 if (xas_retry(&xas, page))
1805                         continue;
1806                 /* Skip over shadow, swap and DAX entries */
1807                 if (xa_is_value(page))
1808                         continue;
1809
1810                 if (!page_cache_get_speculative(page))
1811                         goto retry;
1812
1813                 /* Has the page moved or been split? */
1814                 if (unlikely(page != xas_reload(&xas)))
1815                         goto put_page;
1816
1817                 pages[ret] = find_subpage(page, xas.xa_index);
1818                 if (++ret == nr_pages) {
1819                         *start = xas.xa_index + 1;
1820                         goto out;
1821                 }
1822                 continue;
1823 put_page:
1824                 put_page(page);
1825 retry:
1826                 xas_reset(&xas);
1827         }
1828
1829         /*
1830          * We come here when there is no page beyond @end. We take care to not
1831          * overflow the index @start as it confuses some of the callers. This
1832          * breaks the iteration when there is a page at index -1 but that is
1833          * already broken anyway.
1834          */
1835         if (end == (pgoff_t)-1)
1836                 *start = (pgoff_t)-1;
1837         else
1838                 *start = end + 1;
1839 out:
1840         rcu_read_unlock();
1841
1842         return ret;
1843 }
1844
1845 /**
1846  * find_get_pages_contig - gang contiguous pagecache lookup
1847  * @mapping:    The address_space to search
1848  * @index:      The starting page index
1849  * @nr_pages:   The maximum number of pages
1850  * @pages:      Where the resulting pages are placed
1851  *
1852  * find_get_pages_contig() works exactly like find_get_pages(), except
1853  * that the returned number of pages are guaranteed to be contiguous.
1854  *
1855  * Return: the number of pages which were found.
1856  */
1857 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1858                                unsigned int nr_pages, struct page **pages)
1859 {
1860         XA_STATE(xas, &mapping->i_pages, index);
1861         struct page *page;
1862         unsigned int ret = 0;
1863
1864         if (unlikely(!nr_pages))
1865                 return 0;
1866
1867         rcu_read_lock();
1868         for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1869                 if (xas_retry(&xas, page))
1870                         continue;
1871                 /*
1872                  * If the entry has been swapped out, we can stop looking.
1873                  * No current caller is looking for DAX entries.
1874                  */
1875                 if (xa_is_value(page))
1876                         break;
1877
1878                 if (!page_cache_get_speculative(page))
1879                         goto retry;
1880
1881                 /* Has the page moved or been split? */
1882                 if (unlikely(page != xas_reload(&xas)))
1883                         goto put_page;
1884
1885                 pages[ret] = find_subpage(page, xas.xa_index);
1886                 if (++ret == nr_pages)
1887                         break;
1888                 continue;
1889 put_page:
1890                 put_page(page);
1891 retry:
1892                 xas_reset(&xas);
1893         }
1894         rcu_read_unlock();
1895         return ret;
1896 }
1897 EXPORT_SYMBOL(find_get_pages_contig);
1898
1899 /**
1900  * find_get_pages_range_tag - find and return pages in given range matching @tag
1901  * @mapping:    the address_space to search
1902  * @index:      the starting page index
1903  * @end:        The final page index (inclusive)
1904  * @tag:        the tag index
1905  * @nr_pages:   the maximum number of pages
1906  * @pages:      where the resulting pages are placed
1907  *
1908  * Like find_get_pages, except we only return pages which are tagged with
1909  * @tag.   We update @index to index the next page for the traversal.
1910  *
1911  * Return: the number of pages which were found.
1912  */
1913 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1914                         pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1915                         struct page **pages)
1916 {
1917         XA_STATE(xas, &mapping->i_pages, *index);
1918         struct page *page;
1919         unsigned ret = 0;
1920
1921         if (unlikely(!nr_pages))
1922                 return 0;
1923
1924         rcu_read_lock();
1925         xas_for_each_marked(&xas, page, end, tag) {
1926                 if (xas_retry(&xas, page))
1927                         continue;
1928                 /*
1929                  * Shadow entries should never be tagged, but this iteration
1930                  * is lockless so there is a window for page reclaim to evict
1931                  * a page we saw tagged.  Skip over it.
1932                  */
1933                 if (xa_is_value(page))
1934                         continue;
1935
1936                 if (!page_cache_get_speculative(page))
1937                         goto retry;
1938
1939                 /* Has the page moved or been split? */
1940                 if (unlikely(page != xas_reload(&xas)))
1941                         goto put_page;
1942
1943                 pages[ret] = find_subpage(page, xas.xa_index);
1944                 if (++ret == nr_pages) {
1945                         *index = xas.xa_index + 1;
1946                         goto out;
1947                 }
1948                 continue;
1949 put_page:
1950                 put_page(page);
1951 retry:
1952                 xas_reset(&xas);
1953         }
1954
1955         /*
1956          * We come here when we got to @end. We take care to not overflow the
1957          * index @index as it confuses some of the callers. This breaks the
1958          * iteration when there is a page at index -1 but that is already
1959          * broken anyway.
1960          */
1961         if (end == (pgoff_t)-1)
1962                 *index = (pgoff_t)-1;
1963         else
1964                 *index = end + 1;
1965 out:
1966         rcu_read_unlock();
1967
1968         return ret;
1969 }
1970 EXPORT_SYMBOL(find_get_pages_range_tag);
1971
1972 /*
1973  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1974  * a _large_ part of the i/o request. Imagine the worst scenario:
1975  *
1976  *      ---R__________________________________________B__________
1977  *         ^ reading here                             ^ bad block(assume 4k)
1978  *
1979  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1980  * => failing the whole request => read(R) => read(R+1) =>
1981  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1982  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1983  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1984  *
1985  * It is going insane. Fix it by quickly scaling down the readahead size.
1986  */
1987 static void shrink_readahead_size_eio(struct file *filp,
1988                                         struct file_ra_state *ra)
1989 {
1990         ra->ra_pages /= 4;
1991 }
1992
1993 /**
1994  * generic_file_buffered_read - generic file read routine
1995  * @iocb:       the iocb to read
1996  * @iter:       data destination
1997  * @written:    already copied
1998  *
1999  * This is a generic file read routine, and uses the
2000  * mapping->a_ops->readpage() function for the actual low-level stuff.
2001  *
2002  * This is really ugly. But the goto's actually try to clarify some
2003  * of the logic when it comes to error handling etc.
2004  *
2005  * Return:
2006  * * total number of bytes copied, including those the were already @written
2007  * * negative error code if nothing was copied
2008  */
2009 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2010                 struct iov_iter *iter, ssize_t written)
2011 {
2012         struct file *filp = iocb->ki_filp;
2013         struct address_space *mapping = filp->f_mapping;
2014         struct inode *inode = mapping->host;
2015         struct file_ra_state *ra = &filp->f_ra;
2016         loff_t *ppos = &iocb->ki_pos;
2017         pgoff_t index;
2018         pgoff_t last_index;
2019         pgoff_t prev_index;
2020         unsigned long offset;      /* offset into pagecache page */
2021         unsigned int prev_offset;
2022         int error = 0;
2023
2024         if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2025                 return 0;
2026         iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2027
2028         index = *ppos >> PAGE_SHIFT;
2029         prev_index = ra->prev_pos >> PAGE_SHIFT;
2030         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2031         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2032         offset = *ppos & ~PAGE_MASK;
2033
2034         for (;;) {
2035                 struct page *page;
2036                 pgoff_t end_index;
2037                 loff_t isize;
2038                 unsigned long nr, ret;
2039
2040                 cond_resched();
2041 find_page:
2042                 if (fatal_signal_pending(current)) {
2043                         error = -EINTR;
2044                         goto out;
2045                 }
2046
2047                 page = find_get_page(mapping, index);
2048                 if (!page) {
2049                         if (iocb->ki_flags & IOCB_NOWAIT)
2050                                 goto would_block;
2051                         page_cache_sync_readahead(mapping,
2052                                         ra, filp,
2053                                         index, last_index - index);
2054                         page = find_get_page(mapping, index);
2055                         if (unlikely(page == NULL))
2056                                 goto no_cached_page;
2057                 }
2058                 if (PageReadahead(page)) {
2059                         page_cache_async_readahead(mapping,
2060                                         ra, filp, page,
2061                                         index, last_index - index);
2062                 }
2063                 if (!PageUptodate(page)) {
2064                         if (iocb->ki_flags & IOCB_NOWAIT) {
2065                                 put_page(page);
2066                                 goto would_block;
2067                         }
2068
2069                         /*
2070                          * See comment in do_read_cache_page on why
2071                          * wait_on_page_locked is used to avoid unnecessarily
2072                          * serialisations and why it's safe.
2073                          */
2074                         error = wait_on_page_locked_killable(page);
2075                         if (unlikely(error))
2076                                 goto readpage_error;
2077                         if (PageUptodate(page))
2078                                 goto page_ok;
2079
2080                         if (inode->i_blkbits == PAGE_SHIFT ||
2081                                         !mapping->a_ops->is_partially_uptodate)
2082                                 goto page_not_up_to_date;
2083                         /* pipes can't handle partially uptodate pages */
2084                         if (unlikely(iov_iter_is_pipe(iter)))
2085                                 goto page_not_up_to_date;
2086                         if (!trylock_page(page))
2087                                 goto page_not_up_to_date;
2088                         /* Did it get truncated before we got the lock? */
2089                         if (!page->mapping)
2090                                 goto page_not_up_to_date_locked;
2091                         if (!mapping->a_ops->is_partially_uptodate(page,
2092                                                         offset, iter->count))
2093                                 goto page_not_up_to_date_locked;
2094                         unlock_page(page);
2095                 }
2096 page_ok:
2097                 /*
2098                  * i_size must be checked after we know the page is Uptodate.
2099                  *
2100                  * Checking i_size after the check allows us to calculate
2101                  * the correct value for "nr", which means the zero-filled
2102                  * part of the page is not copied back to userspace (unless
2103                  * another truncate extends the file - this is desired though).
2104                  */
2105
2106                 isize = i_size_read(inode);
2107                 end_index = (isize - 1) >> PAGE_SHIFT;
2108                 if (unlikely(!isize || index > end_index)) {
2109                         put_page(page);
2110                         goto out;
2111                 }
2112
2113                 /* nr is the maximum number of bytes to copy from this page */
2114                 nr = PAGE_SIZE;
2115                 if (index == end_index) {
2116                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
2117                         if (nr <= offset) {
2118                                 put_page(page);
2119                                 goto out;
2120                         }
2121                 }
2122                 nr = nr - offset;
2123
2124                 /* If users can be writing to this page using arbitrary
2125                  * virtual addresses, take care about potential aliasing
2126                  * before reading the page on the kernel side.
2127                  */
2128                 if (mapping_writably_mapped(mapping))
2129                         flush_dcache_page(page);
2130
2131                 /*
2132                  * When a sequential read accesses a page several times,
2133                  * only mark it as accessed the first time.
2134                  */
2135                 if (prev_index != index || offset != prev_offset)
2136                         mark_page_accessed(page);
2137                 prev_index = index;
2138
2139                 /*
2140                  * Ok, we have the page, and it's up-to-date, so
2141                  * now we can copy it to user space...
2142                  */
2143
2144                 ret = copy_page_to_iter(page, offset, nr, iter);
2145                 offset += ret;
2146                 index += offset >> PAGE_SHIFT;
2147                 offset &= ~PAGE_MASK;
2148                 prev_offset = offset;
2149
2150                 put_page(page);
2151                 written += ret;
2152                 if (!iov_iter_count(iter))
2153                         goto out;
2154                 if (ret < nr) {
2155                         error = -EFAULT;
2156                         goto out;
2157                 }
2158                 continue;
2159
2160 page_not_up_to_date:
2161                 /* Get exclusive access to the page ... */
2162                 error = lock_page_killable(page);
2163                 if (unlikely(error))
2164                         goto readpage_error;
2165
2166 page_not_up_to_date_locked:
2167                 /* Did it get truncated before we got the lock? */
2168                 if (!page->mapping) {
2169                         unlock_page(page);
2170                         put_page(page);
2171                         continue;
2172                 }
2173
2174                 /* Did somebody else fill it already? */
2175                 if (PageUptodate(page)) {
2176                         unlock_page(page);
2177                         goto page_ok;
2178                 }
2179
2180 readpage:
2181                 /*
2182                  * A previous I/O error may have been due to temporary
2183                  * failures, eg. multipath errors.
2184                  * PG_error will be set again if readpage fails.
2185                  */
2186                 ClearPageError(page);
2187                 /* Start the actual read. The read will unlock the page. */
2188                 error = mapping->a_ops->readpage(filp, page);
2189
2190                 if (unlikely(error)) {
2191                         if (error == AOP_TRUNCATED_PAGE) {
2192                                 put_page(page);
2193                                 error = 0;
2194                                 goto find_page;
2195                         }
2196                         goto readpage_error;
2197                 }
2198
2199                 if (!PageUptodate(page)) {
2200                         error = lock_page_killable(page);
2201                         if (unlikely(error))
2202                                 goto readpage_error;
2203                         if (!PageUptodate(page)) {
2204                                 if (page->mapping == NULL) {
2205                                         /*
2206                                          * invalidate_mapping_pages got it
2207                                          */
2208                                         unlock_page(page);
2209                                         put_page(page);
2210                                         goto find_page;
2211                                 }
2212                                 unlock_page(page);
2213                                 shrink_readahead_size_eio(filp, ra);
2214                                 error = -EIO;
2215                                 goto readpage_error;
2216                         }
2217                         unlock_page(page);
2218                 }
2219
2220                 goto page_ok;
2221
2222 readpage_error:
2223                 /* UHHUH! A synchronous read error occurred. Report it */
2224                 put_page(page);
2225                 goto out;
2226
2227 no_cached_page:
2228                 /*
2229                  * Ok, it wasn't cached, so we need to create a new
2230                  * page..
2231                  */
2232                 page = page_cache_alloc(mapping);
2233                 if (!page) {
2234                         error = -ENOMEM;
2235                         goto out;
2236                 }
2237                 error = add_to_page_cache_lru(page, mapping, index,
2238                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
2239                 if (error) {
2240                         put_page(page);
2241                         if (error == -EEXIST) {
2242                                 error = 0;
2243                                 goto find_page;
2244                         }
2245                         goto out;
2246                 }
2247                 goto readpage;
2248         }
2249
2250 would_block:
2251         error = -EAGAIN;
2252 out:
2253         ra->prev_pos = prev_index;
2254         ra->prev_pos <<= PAGE_SHIFT;
2255         ra->prev_pos |= prev_offset;
2256
2257         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2258         file_accessed(filp);
2259         return written ? written : error;
2260 }
2261
2262 /**
2263  * generic_file_read_iter - generic filesystem read routine
2264  * @iocb:       kernel I/O control block
2265  * @iter:       destination for the data read
2266  *
2267  * This is the "read_iter()" routine for all filesystems
2268  * that can use the page cache directly.
2269  * Return:
2270  * * number of bytes copied, even for partial reads
2271  * * negative error code if nothing was read
2272  */
2273 ssize_t
2274 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2275 {
2276         size_t count = iov_iter_count(iter);
2277         ssize_t retval = 0;
2278
2279         if (!count)
2280                 goto out; /* skip atime */
2281
2282         if (iocb->ki_flags & IOCB_DIRECT) {
2283                 struct file *file = iocb->ki_filp;
2284                 struct address_space *mapping = file->f_mapping;
2285                 struct inode *inode = mapping->host;
2286                 loff_t size;
2287
2288                 size = i_size_read(inode);
2289                 if (iocb->ki_flags & IOCB_NOWAIT) {
2290                         if (filemap_range_has_page(mapping, iocb->ki_pos,
2291                                                    iocb->ki_pos + count - 1))
2292                                 return -EAGAIN;
2293                 } else {
2294                         retval = filemap_write_and_wait_range(mapping,
2295                                                 iocb->ki_pos,
2296                                                 iocb->ki_pos + count - 1);
2297                         if (retval < 0)
2298                                 goto out;
2299                 }
2300
2301                 file_accessed(file);
2302
2303                 retval = mapping->a_ops->direct_IO(iocb, iter);
2304                 if (retval >= 0) {
2305                         iocb->ki_pos += retval;
2306                         count -= retval;
2307                 }
2308                 iov_iter_revert(iter, count - iov_iter_count(iter));
2309
2310                 /*
2311                  * Btrfs can have a short DIO read if we encounter
2312                  * compressed extents, so if there was an error, or if
2313                  * we've already read everything we wanted to, or if
2314                  * there was a short read because we hit EOF, go ahead
2315                  * and return.  Otherwise fallthrough to buffered io for
2316                  * the rest of the read.  Buffered reads will not work for
2317                  * DAX files, so don't bother trying.
2318                  */
2319                 if (retval < 0 || !count || iocb->ki_pos >= size ||
2320                     IS_DAX(inode))
2321                         goto out;
2322         }
2323
2324         retval = generic_file_buffered_read(iocb, iter, retval);
2325 out:
2326         return retval;
2327 }
2328 EXPORT_SYMBOL(generic_file_read_iter);
2329
2330 #ifdef CONFIG_MMU
2331 #define MMAP_LOTSAMISS  (100)
2332 /*
2333  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2334  * @vmf - the vm_fault for this fault.
2335  * @page - the page to lock.
2336  * @fpin - the pointer to the file we may pin (or is already pinned).
2337  *
2338  * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2339  * It differs in that it actually returns the page locked if it returns 1 and 0
2340  * if it couldn't lock the page.  If we did have to drop the mmap_sem then fpin
2341  * will point to the pinned file and needs to be fput()'ed at a later point.
2342  */
2343 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2344                                      struct file **fpin)
2345 {
2346         if (trylock_page(page))
2347                 return 1;
2348
2349         /*
2350          * NOTE! This will make us return with VM_FAULT_RETRY, but with
2351          * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2352          * is supposed to work. We have way too many special cases..
2353          */
2354         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2355                 return 0;
2356
2357         *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2358         if (vmf->flags & FAULT_FLAG_KILLABLE) {
2359                 if (__lock_page_killable(page)) {
2360                         /*
2361                          * We didn't have the right flags to drop the mmap_sem,
2362                          * but all fault_handlers only check for fatal signals
2363                          * if we return VM_FAULT_RETRY, so we need to drop the
2364                          * mmap_sem here and return 0 if we don't have a fpin.
2365                          */
2366                         if (*fpin == NULL)
2367                                 up_read(&vmf->vma->vm_mm->mmap_sem);
2368                         return 0;
2369                 }
2370         } else
2371                 __lock_page(page);
2372         return 1;
2373 }
2374
2375
2376 /*
2377  * Synchronous readahead happens when we don't even find a page in the page
2378  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2379  * to drop the mmap sem we return the file that was pinned in order for us to do
2380  * that.  If we didn't pin a file then we return NULL.  The file that is
2381  * returned needs to be fput()'ed when we're done with it.
2382  */
2383 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2384 {
2385         struct file *file = vmf->vma->vm_file;
2386         struct file_ra_state *ra = &file->f_ra;
2387         struct address_space *mapping = file->f_mapping;
2388         struct file *fpin = NULL;
2389         pgoff_t offset = vmf->pgoff;
2390
2391         /* If we don't want any read-ahead, don't bother */
2392         if (vmf->vma->vm_flags & VM_RAND_READ)
2393                 return fpin;
2394         if (!ra->ra_pages)
2395                 return fpin;
2396
2397         if (vmf->vma->vm_flags & VM_SEQ_READ) {
2398                 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2399                 page_cache_sync_readahead(mapping, ra, file, offset,
2400                                           ra->ra_pages);
2401                 return fpin;
2402         }
2403
2404         /* Avoid banging the cache line if not needed */
2405         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2406                 ra->mmap_miss++;
2407
2408         /*
2409          * Do we miss much more than hit in this file? If so,
2410          * stop bothering with read-ahead. It will only hurt.
2411          */
2412         if (ra->mmap_miss > MMAP_LOTSAMISS)
2413                 return fpin;
2414
2415         /*
2416          * mmap read-around
2417          */
2418         fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2419         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2420         ra->size = ra->ra_pages;
2421         ra->async_size = ra->ra_pages / 4;
2422         ra_submit(ra, mapping, file);
2423         return fpin;
2424 }
2425
2426 /*
2427  * Asynchronous readahead happens when we find the page and PG_readahead,
2428  * so we want to possibly extend the readahead further.  We return the file that
2429  * was pinned if we have to drop the mmap_sem in order to do IO.
2430  */
2431 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2432                                             struct page *page)
2433 {
2434         struct file *file = vmf->vma->vm_file;
2435         struct file_ra_state *ra = &file->f_ra;
2436         struct address_space *mapping = file->f_mapping;
2437         struct file *fpin = NULL;
2438         pgoff_t offset = vmf->pgoff;
2439
2440         /* If we don't want any read-ahead, don't bother */
2441         if (vmf->vma->vm_flags & VM_RAND_READ)
2442                 return fpin;
2443         if (ra->mmap_miss > 0)
2444                 ra->mmap_miss--;
2445         if (PageReadahead(page)) {
2446                 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2447                 page_cache_async_readahead(mapping, ra, file,
2448                                            page, offset, ra->ra_pages);
2449         }
2450         return fpin;
2451 }
2452
2453 /**
2454  * filemap_fault - read in file data for page fault handling
2455  * @vmf:        struct vm_fault containing details of the fault
2456  *
2457  * filemap_fault() is invoked via the vma operations vector for a
2458  * mapped memory region to read in file data during a page fault.
2459  *
2460  * The goto's are kind of ugly, but this streamlines the normal case of having
2461  * it in the page cache, and handles the special cases reasonably without
2462  * having a lot of duplicated code.
2463  *
2464  * vma->vm_mm->mmap_sem must be held on entry.
2465  *
2466  * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
2467  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2468  *
2469  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2470  * has not been released.
2471  *
2472  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2473  *
2474  * Return: bitwise-OR of %VM_FAULT_ codes.
2475  */
2476 vm_fault_t filemap_fault(struct vm_fault *vmf)
2477 {
2478         int error;
2479         struct file *file = vmf->vma->vm_file;
2480         struct file *fpin = NULL;
2481         struct address_space *mapping = file->f_mapping;
2482         struct file_ra_state *ra = &file->f_ra;
2483         struct inode *inode = mapping->host;
2484         pgoff_t offset = vmf->pgoff;
2485         pgoff_t max_off;
2486         struct page *page;
2487         vm_fault_t ret = 0;
2488
2489         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2490         if (unlikely(offset >= max_off))
2491                 return VM_FAULT_SIGBUS;
2492
2493         /*
2494          * Do we have something in the page cache already?
2495          */
2496         page = find_get_page(mapping, offset);
2497         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2498                 /*
2499                  * We found the page, so try async readahead before
2500                  * waiting for the lock.
2501                  */
2502                 fpin = do_async_mmap_readahead(vmf, page);
2503         } else if (!page) {
2504                 /* No page in the page cache at all */
2505                 count_vm_event(PGMAJFAULT);
2506                 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2507                 ret = VM_FAULT_MAJOR;
2508                 fpin = do_sync_mmap_readahead(vmf);
2509 retry_find:
2510                 page = pagecache_get_page(mapping, offset,
2511                                           FGP_CREAT|FGP_FOR_MMAP,
2512                                           vmf->gfp_mask);
2513                 if (!page) {
2514                         if (fpin)
2515                                 goto out_retry;
2516                         return vmf_error(-ENOMEM);
2517                 }
2518         }
2519
2520         if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2521                 goto out_retry;
2522
2523         /* Did it get truncated? */
2524         if (unlikely(compound_head(page)->mapping != mapping)) {
2525                 unlock_page(page);
2526                 put_page(page);
2527                 goto retry_find;
2528         }
2529         VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2530
2531         /*
2532          * We have a locked page in the page cache, now we need to check
2533          * that it's up-to-date. If not, it is going to be due to an error.
2534          */
2535         if (unlikely(!PageUptodate(page)))
2536                 goto page_not_uptodate;
2537
2538         /*
2539          * We've made it this far and we had to drop our mmap_sem, now is the
2540          * time to return to the upper layer and have it re-find the vma and
2541          * redo the fault.
2542          */
2543         if (fpin) {
2544                 unlock_page(page);
2545                 goto out_retry;
2546         }
2547
2548         /*
2549          * Found the page and have a reference on it.
2550          * We must recheck i_size under page lock.
2551          */
2552         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2553         if (unlikely(offset >= max_off)) {
2554                 unlock_page(page);
2555                 put_page(page);
2556                 return VM_FAULT_SIGBUS;
2557         }
2558
2559         vmf->page = page;
2560         return ret | VM_FAULT_LOCKED;
2561
2562 page_not_uptodate:
2563         /*
2564          * Umm, take care of errors if the page isn't up-to-date.
2565          * Try to re-read it _once_. We do this synchronously,
2566          * because there really aren't any performance issues here
2567          * and we need to check for errors.
2568          */
2569         ClearPageError(page);
2570         fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2571         error = mapping->a_ops->readpage(file, page);
2572         if (!error) {
2573                 wait_on_page_locked(page);
2574                 if (!PageUptodate(page))
2575                         error = -EIO;
2576         }
2577         if (fpin)
2578                 goto out_retry;
2579         put_page(page);
2580
2581         if (!error || error == AOP_TRUNCATED_PAGE)
2582                 goto retry_find;
2583
2584         /* Things didn't work out. Return zero to tell the mm layer so. */
2585         shrink_readahead_size_eio(file, ra);
2586         return VM_FAULT_SIGBUS;
2587
2588 out_retry:
2589         /*
2590          * We dropped the mmap_sem, we need to return to the fault handler to
2591          * re-find the vma and come back and find our hopefully still populated
2592          * page.
2593          */
2594         if (page)
2595                 put_page(page);
2596         if (fpin)
2597                 fput(fpin);
2598         return ret | VM_FAULT_RETRY;
2599 }
2600 EXPORT_SYMBOL(filemap_fault);
2601
2602 void filemap_map_pages(struct vm_fault *vmf,
2603                 pgoff_t start_pgoff, pgoff_t end_pgoff)
2604 {
2605         struct file *file = vmf->vma->vm_file;
2606         struct address_space *mapping = file->f_mapping;
2607         pgoff_t last_pgoff = start_pgoff;
2608         unsigned long max_idx;
2609         XA_STATE(xas, &mapping->i_pages, start_pgoff);
2610         struct page *page;
2611
2612         rcu_read_lock();
2613         xas_for_each(&xas, page, end_pgoff) {
2614                 if (xas_retry(&xas, page))
2615                         continue;
2616                 if (xa_is_value(page))
2617                         goto next;
2618
2619                 /*
2620                  * Check for a locked page first, as a speculative
2621                  * reference may adversely influence page migration.
2622                  */
2623                 if (PageLocked(page))
2624                         goto next;
2625                 if (!page_cache_get_speculative(page))
2626                         goto next;
2627
2628                 /* Has the page moved or been split? */
2629                 if (unlikely(page != xas_reload(&xas)))
2630                         goto skip;
2631                 page = find_subpage(page, xas.xa_index);
2632
2633                 if (!PageUptodate(page) ||
2634                                 PageReadahead(page) ||
2635                                 PageHWPoison(page))
2636                         goto skip;
2637                 if (!trylock_page(page))
2638                         goto skip;
2639
2640                 if (page->mapping != mapping || !PageUptodate(page))
2641                         goto unlock;
2642
2643                 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2644                 if (page->index >= max_idx)
2645                         goto unlock;
2646
2647                 if (file->f_ra.mmap_miss > 0)
2648                         file->f_ra.mmap_miss--;
2649
2650                 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2651                 if (vmf->pte)
2652                         vmf->pte += xas.xa_index - last_pgoff;
2653                 last_pgoff = xas.xa_index;
2654                 if (alloc_set_pte(vmf, NULL, page))
2655                         goto unlock;
2656                 unlock_page(page);
2657                 goto next;
2658 unlock:
2659                 unlock_page(page);
2660 skip:
2661                 put_page(page);
2662 next:
2663                 /* Huge page is mapped? No need to proceed. */
2664                 if (pmd_trans_huge(*vmf->pmd))
2665                         break;
2666         }
2667         rcu_read_unlock();
2668 }
2669 EXPORT_SYMBOL(filemap_map_pages);
2670
2671 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2672 {
2673         struct page *page = vmf->page;
2674         struct inode *inode = file_inode(vmf->vma->vm_file);
2675         vm_fault_t ret = VM_FAULT_LOCKED;
2676
2677         sb_start_pagefault(inode->i_sb);
2678         file_update_time(vmf->vma->vm_file);
2679         lock_page(page);
2680         if (page->mapping != inode->i_mapping) {
2681                 unlock_page(page);
2682                 ret = VM_FAULT_NOPAGE;
2683                 goto out;
2684         }
2685         /*
2686          * We mark the page dirty already here so that when freeze is in
2687          * progress, we are guaranteed that writeback during freezing will
2688          * see the dirty page and writeprotect it again.
2689          */
2690         set_page_dirty(page);
2691         wait_for_stable_page(page);
2692 out:
2693         sb_end_pagefault(inode->i_sb);
2694         return ret;
2695 }
2696
2697 const struct vm_operations_struct generic_file_vm_ops = {
2698         .fault          = filemap_fault,
2699         .map_pages      = filemap_map_pages,
2700         .page_mkwrite   = filemap_page_mkwrite,
2701 };
2702
2703 /* This is used for a general mmap of a disk file */
2704
2705 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2706 {
2707         struct address_space *mapping = file->f_mapping;
2708
2709         if (!mapping->a_ops->readpage)
2710                 return -ENOEXEC;
2711         file_accessed(file);
2712         vma->vm_ops = &generic_file_vm_ops;
2713         return 0;
2714 }
2715
2716 /*
2717  * This is for filesystems which do not implement ->writepage.
2718  */
2719 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2720 {
2721         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2722                 return -EINVAL;
2723         return generic_file_mmap(file, vma);
2724 }
2725 #else
2726 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2727 {
2728         return VM_FAULT_SIGBUS;
2729 }
2730 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2731 {
2732         return -ENOSYS;
2733 }
2734 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2735 {
2736         return -ENOSYS;
2737 }
2738 #endif /* CONFIG_MMU */
2739
2740 EXPORT_SYMBOL(filemap_page_mkwrite);
2741 EXPORT_SYMBOL(generic_file_mmap);
2742 EXPORT_SYMBOL(generic_file_readonly_mmap);
2743
2744 static struct page *wait_on_page_read(struct page *page)
2745 {
2746         if (!IS_ERR(page)) {
2747                 wait_on_page_locked(page);
2748                 if (!PageUptodate(page)) {
2749                         put_page(page);
2750                         page = ERR_PTR(-EIO);
2751                 }
2752         }
2753         return page;
2754 }
2755
2756 static struct page *do_read_cache_page(struct address_space *mapping,
2757                                 pgoff_t index,
2758                                 int (*filler)(void *, struct page *),
2759                                 void *data,
2760                                 gfp_t gfp)
2761 {
2762         struct page *page;
2763         int err;
2764 repeat:
2765         page = find_get_page(mapping, index);
2766         if (!page) {
2767                 page = __page_cache_alloc(gfp);
2768                 if (!page)
2769                         return ERR_PTR(-ENOMEM);
2770                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2771                 if (unlikely(err)) {
2772                         put_page(page);
2773                         if (err == -EEXIST)
2774                                 goto repeat;
2775                         /* Presumably ENOMEM for xarray node */
2776                         return ERR_PTR(err);
2777                 }
2778
2779 filler:
2780                 if (filler)
2781                         err = filler(data, page);
2782                 else
2783                         err = mapping->a_ops->readpage(data, page);
2784
2785                 if (err < 0) {
2786                         put_page(page);
2787                         return ERR_PTR(err);
2788                 }
2789
2790                 page = wait_on_page_read(page);
2791                 if (IS_ERR(page))
2792                         return page;
2793                 goto out;
2794         }
2795         if (PageUptodate(page))
2796                 goto out;
2797
2798         /*
2799          * Page is not up to date and may be locked due one of the following
2800          * case a: Page is being filled and the page lock is held
2801          * case b: Read/write error clearing the page uptodate status
2802          * case c: Truncation in progress (page locked)
2803          * case d: Reclaim in progress
2804          *
2805          * Case a, the page will be up to date when the page is unlocked.
2806          *    There is no need to serialise on the page lock here as the page
2807          *    is pinned so the lock gives no additional protection. Even if the
2808          *    the page is truncated, the data is still valid if PageUptodate as
2809          *    it's a race vs truncate race.
2810          * Case b, the page will not be up to date
2811          * Case c, the page may be truncated but in itself, the data may still
2812          *    be valid after IO completes as it's a read vs truncate race. The
2813          *    operation must restart if the page is not uptodate on unlock but
2814          *    otherwise serialising on page lock to stabilise the mapping gives
2815          *    no additional guarantees to the caller as the page lock is
2816          *    released before return.
2817          * Case d, similar to truncation. If reclaim holds the page lock, it
2818          *    will be a race with remove_mapping that determines if the mapping
2819          *    is valid on unlock but otherwise the data is valid and there is
2820          *    no need to serialise with page lock.
2821          *
2822          * As the page lock gives no additional guarantee, we optimistically
2823          * wait on the page to be unlocked and check if it's up to date and
2824          * use the page if it is. Otherwise, the page lock is required to
2825          * distinguish between the different cases. The motivation is that we
2826          * avoid spurious serialisations and wakeups when multiple processes
2827          * wait on the same page for IO to complete.
2828          */
2829         wait_on_page_locked(page);
2830         if (PageUptodate(page))
2831                 goto out;
2832
2833         /* Distinguish between all the cases under the safety of the lock */
2834         lock_page(page);
2835
2836         /* Case c or d, restart the operation */
2837         if (!page->mapping) {
2838                 unlock_page(page);
2839                 put_page(page);
2840                 goto repeat;
2841         }
2842
2843         /* Someone else locked and filled the page in a very small window */
2844         if (PageUptodate(page)) {
2845                 unlock_page(page);
2846                 goto out;
2847         }
2848         goto filler;
2849
2850 out:
2851         mark_page_accessed(page);
2852         return page;
2853 }
2854
2855 /**
2856  * read_cache_page - read into page cache, fill it if needed
2857  * @mapping:    the page's address_space
2858  * @index:      the page index
2859  * @filler:     function to perform the read
2860  * @data:       first arg to filler(data, page) function, often left as NULL
2861  *
2862  * Read into the page cache. If a page already exists, and PageUptodate() is
2863  * not set, try to fill the page and wait for it to become unlocked.
2864  *
2865  * If the page does not get brought uptodate, return -EIO.
2866  *
2867  * Return: up to date page on success, ERR_PTR() on failure.
2868  */
2869 struct page *read_cache_page(struct address_space *mapping,
2870                                 pgoff_t index,
2871                                 int (*filler)(void *, struct page *),
2872                                 void *data)
2873 {
2874         return do_read_cache_page(mapping, index, filler, data,
2875                         mapping_gfp_mask(mapping));
2876 }
2877 EXPORT_SYMBOL(read_cache_page);
2878
2879 /**
2880  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2881  * @mapping:    the page's address_space
2882  * @index:      the page index
2883  * @gfp:        the page allocator flags to use if allocating
2884  *
2885  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2886  * any new page allocations done using the specified allocation flags.
2887  *
2888  * If the page does not get brought uptodate, return -EIO.
2889  *
2890  * Return: up to date page on success, ERR_PTR() on failure.
2891  */
2892 struct page *read_cache_page_gfp(struct address_space *mapping,
2893                                 pgoff_t index,
2894                                 gfp_t gfp)
2895 {
2896         return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2897 }
2898 EXPORT_SYMBOL(read_cache_page_gfp);
2899
2900 /*
2901  * Don't operate on ranges the page cache doesn't support, and don't exceed the
2902  * LFS limits.  If pos is under the limit it becomes a short access.  If it
2903  * exceeds the limit we return -EFBIG.
2904  */
2905 static int generic_write_check_limits(struct file *file, loff_t pos,
2906                                       loff_t *count)
2907 {
2908         struct inode *inode = file->f_mapping->host;
2909         loff_t max_size = inode->i_sb->s_maxbytes;
2910         loff_t limit = rlimit(RLIMIT_FSIZE);
2911
2912         if (limit != RLIM_INFINITY) {
2913                 if (pos >= limit) {
2914                         send_sig(SIGXFSZ, current, 0);
2915                         return -EFBIG;
2916                 }
2917                 *count = min(*count, limit - pos);
2918         }
2919
2920         if (!(file->f_flags & O_LARGEFILE))
2921                 max_size = MAX_NON_LFS;
2922
2923         if (unlikely(pos >= max_size))
2924                 return -EFBIG;
2925
2926         *count = min(*count, max_size - pos);
2927
2928         return 0;
2929 }
2930
2931 /*
2932  * Performs necessary checks before doing a write
2933  *
2934  * Can adjust writing position or amount of bytes to write.
2935  * Returns appropriate error code that caller should return or
2936  * zero in case that write should be allowed.
2937  */
2938 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2939 {
2940         struct file *file = iocb->ki_filp;
2941         struct inode *inode = file->f_mapping->host;
2942         loff_t count;
2943         int ret;
2944
2945         if (IS_SWAPFILE(inode))
2946                 return -ETXTBSY;
2947
2948         if (!iov_iter_count(from))
2949                 return 0;
2950
2951         /* FIXME: this is for backwards compatibility with 2.4 */
2952         if (iocb->ki_flags & IOCB_APPEND)
2953                 iocb->ki_pos = i_size_read(inode);
2954
2955         if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2956                 return -EINVAL;
2957
2958         count = iov_iter_count(from);
2959         ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2960         if (ret)
2961                 return ret;
2962
2963         iov_iter_truncate(from, count);
2964         return iov_iter_count(from);
2965 }
2966 EXPORT_SYMBOL(generic_write_checks);
2967
2968 /*
2969  * Performs necessary checks before doing a clone.
2970  *
2971  * Can adjust amount of bytes to clone via @req_count argument.
2972  * Returns appropriate error code that caller should return or
2973  * zero in case the clone should be allowed.
2974  */
2975 int generic_remap_checks(struct file *file_in, loff_t pos_in,
2976                          struct file *file_out, loff_t pos_out,
2977                          loff_t *req_count, unsigned int remap_flags)
2978 {
2979         struct inode *inode_in = file_in->f_mapping->host;
2980         struct inode *inode_out = file_out->f_mapping->host;
2981         uint64_t count = *req_count;
2982         uint64_t bcount;
2983         loff_t size_in, size_out;
2984         loff_t bs = inode_out->i_sb->s_blocksize;
2985         int ret;
2986
2987         /* The start of both ranges must be aligned to an fs block. */
2988         if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
2989                 return -EINVAL;
2990
2991         /* Ensure offsets don't wrap. */
2992         if (pos_in + count < pos_in || pos_out + count < pos_out)
2993                 return -EINVAL;
2994
2995         size_in = i_size_read(inode_in);
2996         size_out = i_size_read(inode_out);
2997
2998         /* Dedupe requires both ranges to be within EOF. */
2999         if ((remap_flags & REMAP_FILE_DEDUP) &&
3000             (pos_in >= size_in || pos_in + count > size_in ||
3001              pos_out >= size_out || pos_out + count > size_out))
3002                 return -EINVAL;
3003
3004         /* Ensure the infile range is within the infile. */
3005         if (pos_in >= size_in)
3006                 return -EINVAL;
3007         count = min(count, size_in - (uint64_t)pos_in);
3008
3009         ret = generic_write_check_limits(file_out, pos_out, &count);
3010         if (ret)
3011                 return ret;
3012
3013         /*
3014          * If the user wanted us to link to the infile's EOF, round up to the
3015          * next block boundary for this check.
3016          *
3017          * Otherwise, make sure the count is also block-aligned, having
3018          * already confirmed the starting offsets' block alignment.
3019          */
3020         if (pos_in + count == size_in) {
3021                 bcount = ALIGN(size_in, bs) - pos_in;
3022         } else {
3023                 if (!IS_ALIGNED(count, bs))
3024                         count = ALIGN_DOWN(count, bs);
3025                 bcount = count;
3026         }
3027
3028         /* Don't allow overlapped cloning within the same file. */
3029         if (inode_in == inode_out &&
3030             pos_out + bcount > pos_in &&
3031             pos_out < pos_in + bcount)
3032                 return -EINVAL;
3033
3034         /*
3035          * We shortened the request but the caller can't deal with that, so
3036          * bounce the request back to userspace.
3037          */
3038         if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3039                 return -EINVAL;
3040
3041         *req_count = count;
3042         return 0;
3043 }
3044
3045
3046 /*
3047  * Performs common checks before doing a file copy/clone
3048  * from @file_in to @file_out.
3049  */
3050 int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3051 {
3052         struct inode *inode_in = file_inode(file_in);
3053         struct inode *inode_out = file_inode(file_out);
3054
3055         /* Don't copy dirs, pipes, sockets... */
3056         if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3057                 return -EISDIR;
3058         if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3059                 return -EINVAL;
3060
3061         if (!(file_in->f_mode & FMODE_READ) ||
3062             !(file_out->f_mode & FMODE_WRITE) ||
3063             (file_out->f_flags & O_APPEND))
3064                 return -EBADF;
3065
3066         return 0;
3067 }
3068
3069 /*
3070  * Performs necessary checks before doing a file copy
3071  *
3072  * Can adjust amount of bytes to copy via @req_count argument.
3073  * Returns appropriate error code that caller should return or
3074  * zero in case the copy should be allowed.
3075  */
3076 int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3077                              struct file *file_out, loff_t pos_out,
3078                              size_t *req_count, unsigned int flags)
3079 {
3080         struct inode *inode_in = file_inode(file_in);
3081         struct inode *inode_out = file_inode(file_out);
3082         uint64_t count = *req_count;
3083         loff_t size_in;
3084         int ret;
3085
3086         ret = generic_file_rw_checks(file_in, file_out);
3087         if (ret)
3088                 return ret;
3089
3090         /* Don't touch certain kinds of inodes */
3091         if (IS_IMMUTABLE(inode_out))
3092                 return -EPERM;
3093
3094         if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3095                 return -ETXTBSY;
3096
3097         /* Ensure offsets don't wrap. */
3098         if (pos_in + count < pos_in || pos_out + count < pos_out)
3099                 return -EOVERFLOW;
3100
3101         /* Shorten the copy to EOF */
3102         size_in = i_size_read(inode_in);
3103         if (pos_in >= size_in)
3104                 count = 0;
3105         else
3106                 count = min(count, size_in - (uint64_t)pos_in);
3107
3108         ret = generic_write_check_limits(file_out, pos_out, &count);
3109         if (ret)
3110                 return ret;
3111
3112         /* Don't allow overlapped copying within the same file. */
3113         if (inode_in == inode_out &&
3114             pos_out + count > pos_in &&
3115             pos_out < pos_in + count)
3116                 return -EINVAL;
3117
3118         *req_count = count;
3119         return 0;
3120 }
3121
3122 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3123                                 loff_t pos, unsigned len, unsigned flags,
3124                                 struct page **pagep, void **fsdata)
3125 {
3126         const struct address_space_operations *aops = mapping->a_ops;
3127
3128         return aops->write_begin(file, mapping, pos, len, flags,
3129                                                         pagep, fsdata);
3130 }
3131 EXPORT_SYMBOL(pagecache_write_begin);
3132
3133 int pagecache_write_end(struct file *file, struct address_space *mapping,
3134                                 loff_t pos, unsigned len, unsigned copied,
3135                                 struct page *page, void *fsdata)
3136 {
3137         const struct address_space_operations *aops = mapping->a_ops;
3138
3139         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3140 }
3141 EXPORT_SYMBOL(pagecache_write_end);
3142
3143 /*
3144  * Warn about a page cache invalidation failure during a direct I/O write.
3145  */
3146 void dio_warn_stale_pagecache(struct file *filp)
3147 {
3148         static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3149         char pathname[128];
3150         struct inode *inode = file_inode(filp);
3151         char *path;
3152
3153         errseq_set(&inode->i_mapping->wb_err, -EIO);
3154         if (__ratelimit(&_rs)) {
3155                 path = file_path(filp, pathname, sizeof(pathname));
3156                 if (IS_ERR(path))
3157                         path = "(unknown)";
3158                 pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3159                 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3160                         current->comm);
3161         }
3162 }
3163
3164 ssize_t
3165 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3166 {
3167         struct file     *file = iocb->ki_filp;
3168         struct address_space *mapping = file->f_mapping;
3169         struct inode    *inode = mapping->host;
3170         loff_t          pos = iocb->ki_pos;
3171         ssize_t         written;
3172         size_t          write_len;
3173         pgoff_t         end;
3174
3175         write_len = iov_iter_count(from);
3176         end = (pos + write_len - 1) >> PAGE_SHIFT;
3177
3178         if (iocb->ki_flags & IOCB_NOWAIT) {
3179                 /* If there are pages to writeback, return */
3180                 if (filemap_range_has_page(inode->i_mapping, pos,
3181                                            pos + write_len - 1))
3182                         return -EAGAIN;
3183         } else {
3184                 written = filemap_write_and_wait_range(mapping, pos,
3185                                                         pos + write_len - 1);
3186                 if (written)
3187                         goto out;
3188         }
3189
3190         /*
3191          * After a write we want buffered reads to be sure to go to disk to get
3192          * the new data.  We invalidate clean cached page from the region we're
3193          * about to write.  We do this *before* the write so that we can return
3194          * without clobbering -EIOCBQUEUED from ->direct_IO().
3195          */
3196         written = invalidate_inode_pages2_range(mapping,
3197                                         pos >> PAGE_SHIFT, end);
3198         /*
3199          * If a page can not be invalidated, return 0 to fall back
3200          * to buffered write.
3201          */
3202         if (written) {
3203                 if (written == -EBUSY)
3204                         return 0;
3205                 goto out;
3206         }
3207
3208         written = mapping->a_ops->direct_IO(iocb, from);
3209
3210         /*
3211          * Finally, try again to invalidate clean pages which might have been
3212          * cached by non-direct readahead, or faulted in by get_user_pages()
3213          * if the source of the write was an mmap'ed region of the file
3214          * we're writing.  Either one is a pretty crazy thing to do,
3215          * so we don't support it 100%.  If this invalidation
3216          * fails, tough, the write still worked...
3217          *
3218          * Most of the time we do not need this since dio_complete() will do
3219          * the invalidation for us. However there are some file systems that
3220          * do not end up with dio_complete() being called, so let's not break
3221          * them by removing it completely.
3222          *
3223          * Noticeable example is a blkdev_direct_IO().
3224          *
3225          * Skip invalidation for async writes or if mapping has no pages.
3226          */
3227         if (written > 0 && mapping->nrpages &&
3228             invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3229                 dio_warn_stale_pagecache(file);
3230
3231         if (written > 0) {
3232                 pos += written;
3233                 write_len -= written;
3234                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3235                         i_size_write(inode, pos);
3236                         mark_inode_dirty(inode);
3237                 }
3238                 iocb->ki_pos = pos;
3239         }
3240         iov_iter_revert(from, write_len - iov_iter_count(from));
3241 out:
3242         return written;
3243 }
3244 EXPORT_SYMBOL(generic_file_direct_write);
3245
3246 /*
3247  * Find or create a page at the given pagecache position. Return the locked
3248  * page. This function is specifically for buffered writes.
3249  */
3250 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3251                                         pgoff_t index, unsigned flags)
3252 {
3253         struct page *page;
3254         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3255
3256         if (flags & AOP_FLAG_NOFS)
3257                 fgp_flags |= FGP_NOFS;
3258
3259         page = pagecache_get_page(mapping, index, fgp_flags,
3260                         mapping_gfp_mask(mapping));
3261         if (page)
3262                 wait_for_stable_page(page);
3263
3264         return page;
3265 }
3266 EXPORT_SYMBOL(grab_cache_page_write_begin);
3267
3268 ssize_t generic_perform_write(struct file *file,
3269                                 struct iov_iter *i, loff_t pos)
3270 {
3271         struct address_space *mapping = file->f_mapping;
3272         const struct address_space_operations *a_ops = mapping->a_ops;
3273         long status = 0;
3274         ssize_t written = 0;
3275         unsigned int flags = 0;
3276
3277         do {
3278                 struct page *page;
3279                 unsigned long offset;   /* Offset into pagecache page */
3280                 unsigned long bytes;    /* Bytes to write to page */
3281                 size_t copied;          /* Bytes copied from user */
3282                 void *fsdata;
3283
3284                 offset = (pos & (PAGE_SIZE - 1));
3285                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3286                                                 iov_iter_count(i));
3287
3288 again:
3289                 /*
3290                  * Bring in the user page that we will copy from _first_.
3291                  * Otherwise there's a nasty deadlock on copying from the
3292                  * same page as we're writing to, without it being marked
3293                  * up-to-date.
3294                  *
3295                  * Not only is this an optimisation, but it is also required
3296                  * to check that the address is actually valid, when atomic
3297                  * usercopies are used, below.
3298                  */
3299                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3300                         status = -EFAULT;
3301                         break;
3302                 }
3303
3304                 if (fatal_signal_pending(current)) {
3305                         status = -EINTR;
3306                         break;
3307                 }
3308
3309                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3310                                                 &page, &fsdata);
3311                 if (unlikely(status < 0))
3312                         break;
3313
3314                 if (mapping_writably_mapped(mapping))
3315                         flush_dcache_page(page);
3316
3317                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3318                 flush_dcache_page(page);
3319
3320                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3321                                                 page, fsdata);
3322                 if (unlikely(status < 0))
3323                         break;
3324                 copied = status;
3325
3326                 cond_resched();
3327
3328                 iov_iter_advance(i, copied);
3329                 if (unlikely(copied == 0)) {
3330                         /*
3331                          * If we were unable to copy any data at all, we must
3332                          * fall back to a single segment length write.
3333                          *
3334                          * If we didn't fallback here, we could livelock
3335                          * because not all segments in the iov can be copied at
3336                          * once without a pagefault.
3337                          */
3338                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
3339                                                 iov_iter_single_seg_count(i));
3340                         goto again;
3341                 }
3342                 pos += copied;
3343                 written += copied;
3344
3345                 balance_dirty_pages_ratelimited(mapping);
3346         } while (iov_iter_count(i));
3347
3348         return written ? written : status;
3349 }
3350 EXPORT_SYMBOL(generic_perform_write);
3351
3352 /**
3353  * __generic_file_write_iter - write data to a file
3354  * @iocb:       IO state structure (file, offset, etc.)
3355  * @from:       iov_iter with data to write
3356  *
3357  * This function does all the work needed for actually writing data to a
3358  * file. It does all basic checks, removes SUID from the file, updates
3359  * modification times and calls proper subroutines depending on whether we
3360  * do direct IO or a standard buffered write.
3361  *
3362  * It expects i_mutex to be grabbed unless we work on a block device or similar
3363  * object which does not need locking at all.
3364  *
3365  * This function does *not* take care of syncing data in case of O_SYNC write.
3366  * A caller has to handle it. This is mainly due to the fact that we want to
3367  * avoid syncing under i_mutex.
3368  *
3369  * Return:
3370  * * number of bytes written, even for truncated writes
3371  * * negative error code if no data has been written at all
3372  */
3373 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3374 {
3375         struct file *file = iocb->ki_filp;
3376         struct address_space * mapping = file->f_mapping;
3377         struct inode    *inode = mapping->host;
3378         ssize_t         written = 0;
3379         ssize_t         err;
3380         ssize_t         status;
3381
3382         /* We can write back this queue in page reclaim */
3383         current->backing_dev_info = inode_to_bdi(inode);
3384         err = file_remove_privs(file);
3385         if (err)
3386                 goto out;
3387
3388         err = file_update_time(file);
3389         if (err)
3390                 goto out;
3391
3392         if (iocb->ki_flags & IOCB_DIRECT) {
3393                 loff_t pos, endbyte;
3394
3395                 written = generic_file_direct_write(iocb, from);
3396                 /*
3397                  * If the write stopped short of completing, fall back to
3398                  * buffered writes.  Some filesystems do this for writes to
3399                  * holes, for example.  For DAX files, a buffered write will
3400                  * not succeed (even if it did, DAX does not handle dirty
3401                  * page-cache pages correctly).
3402                  */
3403                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3404                         goto out;
3405
3406                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3407                 /*
3408                  * If generic_perform_write() returned a synchronous error
3409                  * then we want to return the number of bytes which were
3410                  * direct-written, or the error code if that was zero.  Note
3411                  * that this differs from normal direct-io semantics, which
3412                  * will return -EFOO even if some bytes were written.
3413                  */
3414                 if (unlikely(status < 0)) {
3415                         err = status;
3416                         goto out;
3417                 }
3418                 /*
3419                  * We need to ensure that the page cache pages are written to
3420                  * disk and invalidated to preserve the expected O_DIRECT
3421                  * semantics.
3422                  */
3423                 endbyte = pos + status - 1;
3424                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3425                 if (err == 0) {
3426                         iocb->ki_pos = endbyte + 1;
3427                         written += status;
3428                         invalidate_mapping_pages(mapping,
3429                                                  pos >> PAGE_SHIFT,
3430                                                  endbyte >> PAGE_SHIFT);
3431                 } else {
3432                         /*
3433                          * We don't know how much we wrote, so just return
3434                          * the number of bytes which were direct-written
3435                          */
3436                 }
3437         } else {
3438                 written = generic_perform_write(file, from, iocb->ki_pos);
3439                 if (likely(written > 0))
3440                         iocb->ki_pos += written;
3441         }
3442 out:
3443         current->backing_dev_info = NULL;
3444         return written ? written : err;
3445 }
3446 EXPORT_SYMBOL(__generic_file_write_iter);
3447
3448 /**
3449  * generic_file_write_iter - write data to a file
3450  * @iocb:       IO state structure
3451  * @from:       iov_iter with data to write
3452  *
3453  * This is a wrapper around __generic_file_write_iter() to be used by most
3454  * filesystems. It takes care of syncing the file in case of O_SYNC file
3455  * and acquires i_mutex as needed.
3456  * Return:
3457  * * negative error code if no data has been written at all of
3458  *   vfs_fsync_range() failed for a synchronous write
3459  * * number of bytes written, even for truncated writes
3460  */
3461 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3462 {
3463         struct file *file = iocb->ki_filp;
3464         struct inode *inode = file->f_mapping->host;
3465         ssize_t ret;
3466
3467         inode_lock(inode);
3468         ret = generic_write_checks(iocb, from);
3469         if (ret > 0)
3470                 ret = __generic_file_write_iter(iocb, from);
3471         inode_unlock(inode);
3472
3473         if (ret > 0)
3474                 ret = generic_write_sync(iocb, ret);
3475         return ret;
3476 }
3477 EXPORT_SYMBOL(generic_file_write_iter);
3478
3479 /**
3480  * try_to_release_page() - release old fs-specific metadata on a page
3481  *
3482  * @page: the page which the kernel is trying to free
3483  * @gfp_mask: memory allocation flags (and I/O mode)
3484  *
3485  * The address_space is to try to release any data against the page
3486  * (presumably at page->private).
3487  *
3488  * This may also be called if PG_fscache is set on a page, indicating that the
3489  * page is known to the local caching routines.
3490  *
3491  * The @gfp_mask argument specifies whether I/O may be performed to release
3492  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3493  *
3494  * Return: %1 if the release was successful, otherwise return zero.
3495  */
3496 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3497 {
3498         struct address_space * const mapping = page->mapping;
3499
3500         BUG_ON(!PageLocked(page));
3501         if (PageWriteback(page))
3502                 return 0;
3503
3504         if (mapping && mapping->a_ops->releasepage)
3505                 return mapping->a_ops->releasepage(page, gfp_mask);
3506         return try_to_free_buffers(page);
3507 }
3508
3509 EXPORT_SYMBOL(try_to_release_page);