Merge remote-tracking branch 'iwlwifi-fixes/master' into NEXT
[sfrench/cifs-2.6.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_mutex              (truncate_pagecache)
66  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock             (exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_mutex            (truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_mutex
75  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
76  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page               (access_process_vm)
80  *
81  *  ->i_mutex                   (generic_perform_write)
82  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock                   (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_mutex
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
99  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
104  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
105  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
106  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
107  *
108  * ->i_mmap_mutex
109  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
110  */
111
112 static void page_cache_tree_delete(struct address_space *mapping,
113                                    struct page *page, void *shadow)
114 {
115         struct radix_tree_node *node;
116         unsigned long index;
117         unsigned int offset;
118         unsigned int tag;
119         void **slot;
120
121         VM_BUG_ON(!PageLocked(page));
122
123         __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
124
125         if (shadow) {
126                 mapping->nrshadows++;
127                 /*
128                  * Make sure the nrshadows update is committed before
129                  * the nrpages update so that final truncate racing
130                  * with reclaim does not see both counters 0 at the
131                  * same time and miss a shadow entry.
132                  */
133                 smp_wmb();
134         }
135         mapping->nrpages--;
136
137         if (!node) {
138                 /* Clear direct pointer tags in root node */
139                 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
140                 radix_tree_replace_slot(slot, shadow);
141                 return;
142         }
143
144         /* Clear tree tags for the removed page */
145         index = page->index;
146         offset = index & RADIX_TREE_MAP_MASK;
147         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
148                 if (test_bit(offset, node->tags[tag]))
149                         radix_tree_tag_clear(&mapping->page_tree, index, tag);
150         }
151
152         /* Delete page, swap shadow entry */
153         radix_tree_replace_slot(slot, shadow);
154         workingset_node_pages_dec(node);
155         if (shadow)
156                 workingset_node_shadows_inc(node);
157         else
158                 if (__radix_tree_delete_node(&mapping->page_tree, node))
159                         return;
160
161         /*
162          * Track node that only contains shadow entries.
163          *
164          * Avoid acquiring the list_lru lock if already tracked.  The
165          * list_empty() test is safe as node->private_list is
166          * protected by mapping->tree_lock.
167          */
168         if (!workingset_node_pages(node) &&
169             list_empty(&node->private_list)) {
170                 node->private_data = mapping;
171                 list_lru_add(&workingset_shadow_nodes, &node->private_list);
172         }
173 }
174
175 /*
176  * Delete a page from the page cache and free it. Caller has to make
177  * sure the page is locked and that nobody else uses it - or that usage
178  * is safe.  The caller must hold the mapping's tree_lock.
179  */
180 void __delete_from_page_cache(struct page *page, void *shadow)
181 {
182         struct address_space *mapping = page->mapping;
183
184         trace_mm_filemap_delete_from_page_cache(page);
185         /*
186          * if we're uptodate, flush out into the cleancache, otherwise
187          * invalidate any existing cleancache entries.  We can't leave
188          * stale data around in the cleancache once our page is gone
189          */
190         if (PageUptodate(page) && PageMappedToDisk(page))
191                 cleancache_put_page(page);
192         else
193                 cleancache_invalidate_page(mapping, page);
194
195         page_cache_tree_delete(mapping, page, shadow);
196
197         page->mapping = NULL;
198         /* Leave page->index set: truncation lookup relies upon it */
199
200         __dec_zone_page_state(page, NR_FILE_PAGES);
201         if (PageSwapBacked(page))
202                 __dec_zone_page_state(page, NR_SHMEM);
203         BUG_ON(page_mapped(page));
204
205         /*
206          * Some filesystems seem to re-dirty the page even after
207          * the VM has canceled the dirty bit (eg ext3 journaling).
208          *
209          * Fix it up by doing a final dirty accounting check after
210          * having removed the page entirely.
211          */
212         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
213                 dec_zone_page_state(page, NR_FILE_DIRTY);
214                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
215         }
216 }
217
218 /**
219  * delete_from_page_cache - delete page from page cache
220  * @page: the page which the kernel is trying to remove from page cache
221  *
222  * This must be called only on pages that have been verified to be in the page
223  * cache and locked.  It will never put the page into the free list, the caller
224  * has a reference on the page.
225  */
226 void delete_from_page_cache(struct page *page)
227 {
228         struct address_space *mapping = page->mapping;
229         void (*freepage)(struct page *);
230
231         BUG_ON(!PageLocked(page));
232
233         freepage = mapping->a_ops->freepage;
234         spin_lock_irq(&mapping->tree_lock);
235         __delete_from_page_cache(page, NULL);
236         spin_unlock_irq(&mapping->tree_lock);
237
238         if (freepage)
239                 freepage(page);
240         page_cache_release(page);
241 }
242 EXPORT_SYMBOL(delete_from_page_cache);
243
244 static int filemap_check_errors(struct address_space *mapping)
245 {
246         int ret = 0;
247         /* Check for outstanding write errors */
248         if (test_bit(AS_ENOSPC, &mapping->flags) &&
249             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
250                 ret = -ENOSPC;
251         if (test_bit(AS_EIO, &mapping->flags) &&
252             test_and_clear_bit(AS_EIO, &mapping->flags))
253                 ret = -EIO;
254         return ret;
255 }
256
257 /**
258  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
259  * @mapping:    address space structure to write
260  * @start:      offset in bytes where the range starts
261  * @end:        offset in bytes where the range ends (inclusive)
262  * @sync_mode:  enable synchronous operation
263  *
264  * Start writeback against all of a mapping's dirty pages that lie
265  * within the byte offsets <start, end> inclusive.
266  *
267  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
268  * opposed to a regular memory cleansing writeback.  The difference between
269  * these two operations is that if a dirty page/buffer is encountered, it must
270  * be waited upon, and not just skipped over.
271  */
272 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
273                                 loff_t end, int sync_mode)
274 {
275         int ret;
276         struct writeback_control wbc = {
277                 .sync_mode = sync_mode,
278                 .nr_to_write = LONG_MAX,
279                 .range_start = start,
280                 .range_end = end,
281         };
282
283         if (!mapping_cap_writeback_dirty(mapping))
284                 return 0;
285
286         ret = do_writepages(mapping, &wbc);
287         return ret;
288 }
289
290 static inline int __filemap_fdatawrite(struct address_space *mapping,
291         int sync_mode)
292 {
293         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
294 }
295
296 int filemap_fdatawrite(struct address_space *mapping)
297 {
298         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
299 }
300 EXPORT_SYMBOL(filemap_fdatawrite);
301
302 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
303                                 loff_t end)
304 {
305         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
306 }
307 EXPORT_SYMBOL(filemap_fdatawrite_range);
308
309 /**
310  * filemap_flush - mostly a non-blocking flush
311  * @mapping:    target address_space
312  *
313  * This is a mostly non-blocking flush.  Not suitable for data-integrity
314  * purposes - I/O may not be started against all dirty pages.
315  */
316 int filemap_flush(struct address_space *mapping)
317 {
318         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
319 }
320 EXPORT_SYMBOL(filemap_flush);
321
322 /**
323  * filemap_fdatawait_range - wait for writeback to complete
324  * @mapping:            address space structure to wait for
325  * @start_byte:         offset in bytes where the range starts
326  * @end_byte:           offset in bytes where the range ends (inclusive)
327  *
328  * Walk the list of under-writeback pages of the given address space
329  * in the given range and wait for all of them.
330  */
331 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
332                             loff_t end_byte)
333 {
334         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
335         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
336         struct pagevec pvec;
337         int nr_pages;
338         int ret2, ret = 0;
339
340         if (end_byte < start_byte)
341                 goto out;
342
343         pagevec_init(&pvec, 0);
344         while ((index <= end) &&
345                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
346                         PAGECACHE_TAG_WRITEBACK,
347                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
348                 unsigned i;
349
350                 for (i = 0; i < nr_pages; i++) {
351                         struct page *page = pvec.pages[i];
352
353                         /* until radix tree lookup accepts end_index */
354                         if (page->index > end)
355                                 continue;
356
357                         wait_on_page_writeback(page);
358                         if (TestClearPageError(page))
359                                 ret = -EIO;
360                 }
361                 pagevec_release(&pvec);
362                 cond_resched();
363         }
364 out:
365         ret2 = filemap_check_errors(mapping);
366         if (!ret)
367                 ret = ret2;
368
369         return ret;
370 }
371 EXPORT_SYMBOL(filemap_fdatawait_range);
372
373 /**
374  * filemap_fdatawait - wait for all under-writeback pages to complete
375  * @mapping: address space structure to wait for
376  *
377  * Walk the list of under-writeback pages of the given address space
378  * and wait for all of them.
379  */
380 int filemap_fdatawait(struct address_space *mapping)
381 {
382         loff_t i_size = i_size_read(mapping->host);
383
384         if (i_size == 0)
385                 return 0;
386
387         return filemap_fdatawait_range(mapping, 0, i_size - 1);
388 }
389 EXPORT_SYMBOL(filemap_fdatawait);
390
391 int filemap_write_and_wait(struct address_space *mapping)
392 {
393         int err = 0;
394
395         if (mapping->nrpages) {
396                 err = filemap_fdatawrite(mapping);
397                 /*
398                  * Even if the above returned error, the pages may be
399                  * written partially (e.g. -ENOSPC), so we wait for it.
400                  * But the -EIO is special case, it may indicate the worst
401                  * thing (e.g. bug) happened, so we avoid waiting for it.
402                  */
403                 if (err != -EIO) {
404                         int err2 = filemap_fdatawait(mapping);
405                         if (!err)
406                                 err = err2;
407                 }
408         } else {
409                 err = filemap_check_errors(mapping);
410         }
411         return err;
412 }
413 EXPORT_SYMBOL(filemap_write_and_wait);
414
415 /**
416  * filemap_write_and_wait_range - write out & wait on a file range
417  * @mapping:    the address_space for the pages
418  * @lstart:     offset in bytes where the range starts
419  * @lend:       offset in bytes where the range ends (inclusive)
420  *
421  * Write out and wait upon file offsets lstart->lend, inclusive.
422  *
423  * Note that `lend' is inclusive (describes the last byte to be written) so
424  * that this function can be used to write to the very end-of-file (end = -1).
425  */
426 int filemap_write_and_wait_range(struct address_space *mapping,
427                                  loff_t lstart, loff_t lend)
428 {
429         int err = 0;
430
431         if (mapping->nrpages) {
432                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
433                                                  WB_SYNC_ALL);
434                 /* See comment of filemap_write_and_wait() */
435                 if (err != -EIO) {
436                         int err2 = filemap_fdatawait_range(mapping,
437                                                 lstart, lend);
438                         if (!err)
439                                 err = err2;
440                 }
441         } else {
442                 err = filemap_check_errors(mapping);
443         }
444         return err;
445 }
446 EXPORT_SYMBOL(filemap_write_and_wait_range);
447
448 /**
449  * replace_page_cache_page - replace a pagecache page with a new one
450  * @old:        page to be replaced
451  * @new:        page to replace with
452  * @gfp_mask:   allocation mode
453  *
454  * This function replaces a page in the pagecache with a new one.  On
455  * success it acquires the pagecache reference for the new page and
456  * drops it for the old page.  Both the old and new pages must be
457  * locked.  This function does not add the new page to the LRU, the
458  * caller must do that.
459  *
460  * The remove + add is atomic.  The only way this function can fail is
461  * memory allocation failure.
462  */
463 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
464 {
465         int error;
466
467         VM_BUG_ON_PAGE(!PageLocked(old), old);
468         VM_BUG_ON_PAGE(!PageLocked(new), new);
469         VM_BUG_ON_PAGE(new->mapping, new);
470
471         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
472         if (!error) {
473                 struct address_space *mapping = old->mapping;
474                 void (*freepage)(struct page *);
475
476                 pgoff_t offset = old->index;
477                 freepage = mapping->a_ops->freepage;
478
479                 page_cache_get(new);
480                 new->mapping = mapping;
481                 new->index = offset;
482
483                 spin_lock_irq(&mapping->tree_lock);
484                 __delete_from_page_cache(old, NULL);
485                 error = radix_tree_insert(&mapping->page_tree, offset, new);
486                 BUG_ON(error);
487                 mapping->nrpages++;
488                 __inc_zone_page_state(new, NR_FILE_PAGES);
489                 if (PageSwapBacked(new))
490                         __inc_zone_page_state(new, NR_SHMEM);
491                 spin_unlock_irq(&mapping->tree_lock);
492                 mem_cgroup_migrate(old, new, true);
493                 radix_tree_preload_end();
494                 if (freepage)
495                         freepage(old);
496                 page_cache_release(old);
497         }
498
499         return error;
500 }
501 EXPORT_SYMBOL_GPL(replace_page_cache_page);
502
503 static int page_cache_tree_insert(struct address_space *mapping,
504                                   struct page *page, void **shadowp)
505 {
506         struct radix_tree_node *node;
507         void **slot;
508         int error;
509
510         error = __radix_tree_create(&mapping->page_tree, page->index,
511                                     &node, &slot);
512         if (error)
513                 return error;
514         if (*slot) {
515                 void *p;
516
517                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
518                 if (!radix_tree_exceptional_entry(p))
519                         return -EEXIST;
520                 if (shadowp)
521                         *shadowp = p;
522                 mapping->nrshadows--;
523                 if (node)
524                         workingset_node_shadows_dec(node);
525         }
526         radix_tree_replace_slot(slot, page);
527         mapping->nrpages++;
528         if (node) {
529                 workingset_node_pages_inc(node);
530                 /*
531                  * Don't track node that contains actual pages.
532                  *
533                  * Avoid acquiring the list_lru lock if already
534                  * untracked.  The list_empty() test is safe as
535                  * node->private_list is protected by
536                  * mapping->tree_lock.
537                  */
538                 if (!list_empty(&node->private_list))
539                         list_lru_del(&workingset_shadow_nodes,
540                                      &node->private_list);
541         }
542         return 0;
543 }
544
545 static int __add_to_page_cache_locked(struct page *page,
546                                       struct address_space *mapping,
547                                       pgoff_t offset, gfp_t gfp_mask,
548                                       void **shadowp)
549 {
550         int huge = PageHuge(page);
551         struct mem_cgroup *memcg;
552         int error;
553
554         VM_BUG_ON_PAGE(!PageLocked(page), page);
555         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
556
557         if (!huge) {
558                 error = mem_cgroup_try_charge(page, current->mm,
559                                               gfp_mask, &memcg);
560                 if (error)
561                         return error;
562         }
563
564         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
565         if (error) {
566                 if (!huge)
567                         mem_cgroup_cancel_charge(page, memcg);
568                 return error;
569         }
570
571         page_cache_get(page);
572         page->mapping = mapping;
573         page->index = offset;
574
575         spin_lock_irq(&mapping->tree_lock);
576         error = page_cache_tree_insert(mapping, page, shadowp);
577         radix_tree_preload_end();
578         if (unlikely(error))
579                 goto err_insert;
580         __inc_zone_page_state(page, NR_FILE_PAGES);
581         spin_unlock_irq(&mapping->tree_lock);
582         if (!huge)
583                 mem_cgroup_commit_charge(page, memcg, false);
584         trace_mm_filemap_add_to_page_cache(page);
585         return 0;
586 err_insert:
587         page->mapping = NULL;
588         /* Leave page->index set: truncation relies upon it */
589         spin_unlock_irq(&mapping->tree_lock);
590         if (!huge)
591                 mem_cgroup_cancel_charge(page, memcg);
592         page_cache_release(page);
593         return error;
594 }
595
596 /**
597  * add_to_page_cache_locked - add a locked page to the pagecache
598  * @page:       page to add
599  * @mapping:    the page's address_space
600  * @offset:     page index
601  * @gfp_mask:   page allocation mode
602  *
603  * This function is used to add a page to the pagecache. It must be locked.
604  * This function does not add the page to the LRU.  The caller must do that.
605  */
606 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
607                 pgoff_t offset, gfp_t gfp_mask)
608 {
609         return __add_to_page_cache_locked(page, mapping, offset,
610                                           gfp_mask, NULL);
611 }
612 EXPORT_SYMBOL(add_to_page_cache_locked);
613
614 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
615                                 pgoff_t offset, gfp_t gfp_mask)
616 {
617         void *shadow = NULL;
618         int ret;
619
620         __set_page_locked(page);
621         ret = __add_to_page_cache_locked(page, mapping, offset,
622                                          gfp_mask, &shadow);
623         if (unlikely(ret))
624                 __clear_page_locked(page);
625         else {
626                 /*
627                  * The page might have been evicted from cache only
628                  * recently, in which case it should be activated like
629                  * any other repeatedly accessed page.
630                  */
631                 if (shadow && workingset_refault(shadow)) {
632                         SetPageActive(page);
633                         workingset_activation(page);
634                 } else
635                         ClearPageActive(page);
636                 lru_cache_add(page);
637         }
638         return ret;
639 }
640 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
641
642 #ifdef CONFIG_NUMA
643 struct page *__page_cache_alloc(gfp_t gfp)
644 {
645         int n;
646         struct page *page;
647
648         if (cpuset_do_page_mem_spread()) {
649                 unsigned int cpuset_mems_cookie;
650                 do {
651                         cpuset_mems_cookie = read_mems_allowed_begin();
652                         n = cpuset_mem_spread_node();
653                         page = alloc_pages_exact_node(n, gfp, 0);
654                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
655
656                 return page;
657         }
658         return alloc_pages(gfp, 0);
659 }
660 EXPORT_SYMBOL(__page_cache_alloc);
661 #endif
662
663 /*
664  * In order to wait for pages to become available there must be
665  * waitqueues associated with pages. By using a hash table of
666  * waitqueues where the bucket discipline is to maintain all
667  * waiters on the same queue and wake all when any of the pages
668  * become available, and for the woken contexts to check to be
669  * sure the appropriate page became available, this saves space
670  * at a cost of "thundering herd" phenomena during rare hash
671  * collisions.
672  */
673 static wait_queue_head_t *page_waitqueue(struct page *page)
674 {
675         const struct zone *zone = page_zone(page);
676
677         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
678 }
679
680 static inline void wake_up_page(struct page *page, int bit)
681 {
682         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
683 }
684
685 void wait_on_page_bit(struct page *page, int bit_nr)
686 {
687         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
688
689         if (test_bit(bit_nr, &page->flags))
690                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
691                                                         TASK_UNINTERRUPTIBLE);
692 }
693 EXPORT_SYMBOL(wait_on_page_bit);
694
695 int wait_on_page_bit_killable(struct page *page, int bit_nr)
696 {
697         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
698
699         if (!test_bit(bit_nr, &page->flags))
700                 return 0;
701
702         return __wait_on_bit(page_waitqueue(page), &wait,
703                              bit_wait_io, TASK_KILLABLE);
704 }
705
706 /**
707  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
708  * @page: Page defining the wait queue of interest
709  * @waiter: Waiter to add to the queue
710  *
711  * Add an arbitrary @waiter to the wait queue for the nominated @page.
712  */
713 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
714 {
715         wait_queue_head_t *q = page_waitqueue(page);
716         unsigned long flags;
717
718         spin_lock_irqsave(&q->lock, flags);
719         __add_wait_queue(q, waiter);
720         spin_unlock_irqrestore(&q->lock, flags);
721 }
722 EXPORT_SYMBOL_GPL(add_page_wait_queue);
723
724 /**
725  * unlock_page - unlock a locked page
726  * @page: the page
727  *
728  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
729  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
730  * mechananism between PageLocked pages and PageWriteback pages is shared.
731  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
732  *
733  * The mb is necessary to enforce ordering between the clear_bit and the read
734  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
735  */
736 void unlock_page(struct page *page)
737 {
738         VM_BUG_ON_PAGE(!PageLocked(page), page);
739         clear_bit_unlock(PG_locked, &page->flags);
740         smp_mb__after_atomic();
741         wake_up_page(page, PG_locked);
742 }
743 EXPORT_SYMBOL(unlock_page);
744
745 /**
746  * end_page_writeback - end writeback against a page
747  * @page: the page
748  */
749 void end_page_writeback(struct page *page)
750 {
751         /*
752          * TestClearPageReclaim could be used here but it is an atomic
753          * operation and overkill in this particular case. Failing to
754          * shuffle a page marked for immediate reclaim is too mild to
755          * justify taking an atomic operation penalty at the end of
756          * ever page writeback.
757          */
758         if (PageReclaim(page)) {
759                 ClearPageReclaim(page);
760                 rotate_reclaimable_page(page);
761         }
762
763         if (!test_clear_page_writeback(page))
764                 BUG();
765
766         smp_mb__after_atomic();
767         wake_up_page(page, PG_writeback);
768 }
769 EXPORT_SYMBOL(end_page_writeback);
770
771 /*
772  * After completing I/O on a page, call this routine to update the page
773  * flags appropriately
774  */
775 void page_endio(struct page *page, int rw, int err)
776 {
777         if (rw == READ) {
778                 if (!err) {
779                         SetPageUptodate(page);
780                 } else {
781                         ClearPageUptodate(page);
782                         SetPageError(page);
783                 }
784                 unlock_page(page);
785         } else { /* rw == WRITE */
786                 if (err) {
787                         SetPageError(page);
788                         if (page->mapping)
789                                 mapping_set_error(page->mapping, err);
790                 }
791                 end_page_writeback(page);
792         }
793 }
794 EXPORT_SYMBOL_GPL(page_endio);
795
796 /**
797  * __lock_page - get a lock on the page, assuming we need to sleep to get it
798  * @page: the page to lock
799  */
800 void __lock_page(struct page *page)
801 {
802         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
803
804         __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
805                                                         TASK_UNINTERRUPTIBLE);
806 }
807 EXPORT_SYMBOL(__lock_page);
808
809 int __lock_page_killable(struct page *page)
810 {
811         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
812
813         return __wait_on_bit_lock(page_waitqueue(page), &wait,
814                                         bit_wait_io, TASK_KILLABLE);
815 }
816 EXPORT_SYMBOL_GPL(__lock_page_killable);
817
818 /*
819  * Return values:
820  * 1 - page is locked; mmap_sem is still held.
821  * 0 - page is not locked.
822  *     mmap_sem has been released (up_read()), unless flags had both
823  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
824  *     which case mmap_sem is still held.
825  *
826  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
827  * with the page locked and the mmap_sem unperturbed.
828  */
829 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
830                          unsigned int flags)
831 {
832         if (flags & FAULT_FLAG_ALLOW_RETRY) {
833                 /*
834                  * CAUTION! In this case, mmap_sem is not released
835                  * even though return 0.
836                  */
837                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
838                         return 0;
839
840                 up_read(&mm->mmap_sem);
841                 if (flags & FAULT_FLAG_KILLABLE)
842                         wait_on_page_locked_killable(page);
843                 else
844                         wait_on_page_locked(page);
845                 return 0;
846         } else {
847                 if (flags & FAULT_FLAG_KILLABLE) {
848                         int ret;
849
850                         ret = __lock_page_killable(page);
851                         if (ret) {
852                                 up_read(&mm->mmap_sem);
853                                 return 0;
854                         }
855                 } else
856                         __lock_page(page);
857                 return 1;
858         }
859 }
860
861 /**
862  * page_cache_next_hole - find the next hole (not-present entry)
863  * @mapping: mapping
864  * @index: index
865  * @max_scan: maximum range to search
866  *
867  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
868  * lowest indexed hole.
869  *
870  * Returns: the index of the hole if found, otherwise returns an index
871  * outside of the set specified (in which case 'return - index >=
872  * max_scan' will be true). In rare cases of index wrap-around, 0 will
873  * be returned.
874  *
875  * page_cache_next_hole may be called under rcu_read_lock. However,
876  * like radix_tree_gang_lookup, this will not atomically search a
877  * snapshot of the tree at a single point in time. For example, if a
878  * hole is created at index 5, then subsequently a hole is created at
879  * index 10, page_cache_next_hole covering both indexes may return 10
880  * if called under rcu_read_lock.
881  */
882 pgoff_t page_cache_next_hole(struct address_space *mapping,
883                              pgoff_t index, unsigned long max_scan)
884 {
885         unsigned long i;
886
887         for (i = 0; i < max_scan; i++) {
888                 struct page *page;
889
890                 page = radix_tree_lookup(&mapping->page_tree, index);
891                 if (!page || radix_tree_exceptional_entry(page))
892                         break;
893                 index++;
894                 if (index == 0)
895                         break;
896         }
897
898         return index;
899 }
900 EXPORT_SYMBOL(page_cache_next_hole);
901
902 /**
903  * page_cache_prev_hole - find the prev hole (not-present entry)
904  * @mapping: mapping
905  * @index: index
906  * @max_scan: maximum range to search
907  *
908  * Search backwards in the range [max(index-max_scan+1, 0), index] for
909  * the first hole.
910  *
911  * Returns: the index of the hole if found, otherwise returns an index
912  * outside of the set specified (in which case 'index - return >=
913  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
914  * will be returned.
915  *
916  * page_cache_prev_hole may be called under rcu_read_lock. However,
917  * like radix_tree_gang_lookup, this will not atomically search a
918  * snapshot of the tree at a single point in time. For example, if a
919  * hole is created at index 10, then subsequently a hole is created at
920  * index 5, page_cache_prev_hole covering both indexes may return 5 if
921  * called under rcu_read_lock.
922  */
923 pgoff_t page_cache_prev_hole(struct address_space *mapping,
924                              pgoff_t index, unsigned long max_scan)
925 {
926         unsigned long i;
927
928         for (i = 0; i < max_scan; i++) {
929                 struct page *page;
930
931                 page = radix_tree_lookup(&mapping->page_tree, index);
932                 if (!page || radix_tree_exceptional_entry(page))
933                         break;
934                 index--;
935                 if (index == ULONG_MAX)
936                         break;
937         }
938
939         return index;
940 }
941 EXPORT_SYMBOL(page_cache_prev_hole);
942
943 /**
944  * find_get_entry - find and get a page cache entry
945  * @mapping: the address_space to search
946  * @offset: the page cache index
947  *
948  * Looks up the page cache slot at @mapping & @offset.  If there is a
949  * page cache page, it is returned with an increased refcount.
950  *
951  * If the slot holds a shadow entry of a previously evicted page, or a
952  * swap entry from shmem/tmpfs, it is returned.
953  *
954  * Otherwise, %NULL is returned.
955  */
956 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
957 {
958         void **pagep;
959         struct page *page;
960
961         rcu_read_lock();
962 repeat:
963         page = NULL;
964         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
965         if (pagep) {
966                 page = radix_tree_deref_slot(pagep);
967                 if (unlikely(!page))
968                         goto out;
969                 if (radix_tree_exception(page)) {
970                         if (radix_tree_deref_retry(page))
971                                 goto repeat;
972                         /*
973                          * A shadow entry of a recently evicted page,
974                          * or a swap entry from shmem/tmpfs.  Return
975                          * it without attempting to raise page count.
976                          */
977                         goto out;
978                 }
979                 if (!page_cache_get_speculative(page))
980                         goto repeat;
981
982                 /*
983                  * Has the page moved?
984                  * This is part of the lockless pagecache protocol. See
985                  * include/linux/pagemap.h for details.
986                  */
987                 if (unlikely(page != *pagep)) {
988                         page_cache_release(page);
989                         goto repeat;
990                 }
991         }
992 out:
993         rcu_read_unlock();
994
995         return page;
996 }
997 EXPORT_SYMBOL(find_get_entry);
998
999 /**
1000  * find_lock_entry - locate, pin and lock a page cache entry
1001  * @mapping: the address_space to search
1002  * @offset: the page cache index
1003  *
1004  * Looks up the page cache slot at @mapping & @offset.  If there is a
1005  * page cache page, it is returned locked and with an increased
1006  * refcount.
1007  *
1008  * If the slot holds a shadow entry of a previously evicted page, or a
1009  * swap entry from shmem/tmpfs, it is returned.
1010  *
1011  * Otherwise, %NULL is returned.
1012  *
1013  * find_lock_entry() may sleep.
1014  */
1015 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1016 {
1017         struct page *page;
1018
1019 repeat:
1020         page = find_get_entry(mapping, offset);
1021         if (page && !radix_tree_exception(page)) {
1022                 lock_page(page);
1023                 /* Has the page been truncated? */
1024                 if (unlikely(page->mapping != mapping)) {
1025                         unlock_page(page);
1026                         page_cache_release(page);
1027                         goto repeat;
1028                 }
1029                 VM_BUG_ON_PAGE(page->index != offset, page);
1030         }
1031         return page;
1032 }
1033 EXPORT_SYMBOL(find_lock_entry);
1034
1035 /**
1036  * pagecache_get_page - find and get a page reference
1037  * @mapping: the address_space to search
1038  * @offset: the page index
1039  * @fgp_flags: PCG flags
1040  * @cache_gfp_mask: gfp mask to use for the page cache data page allocation
1041  * @radix_gfp_mask: gfp mask to use for radix tree node allocation
1042  *
1043  * Looks up the page cache slot at @mapping & @offset.
1044  *
1045  * PCG flags modify how the page is returned.
1046  *
1047  * FGP_ACCESSED: the page will be marked accessed
1048  * FGP_LOCK: Page is return locked
1049  * FGP_CREAT: If page is not present then a new page is allocated using
1050  *              @cache_gfp_mask and added to the page cache and the VM's LRU
1051  *              list. If radix tree nodes are allocated during page cache
1052  *              insertion then @radix_gfp_mask is used. The page is returned
1053  *              locked and with an increased refcount. Otherwise, %NULL is
1054  *              returned.
1055  *
1056  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1057  * if the GFP flags specified for FGP_CREAT are atomic.
1058  *
1059  * If there is a page cache page, it is returned with an increased refcount.
1060  */
1061 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1062         int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask)
1063 {
1064         struct page *page;
1065
1066 repeat:
1067         page = find_get_entry(mapping, offset);
1068         if (radix_tree_exceptional_entry(page))
1069                 page = NULL;
1070         if (!page)
1071                 goto no_page;
1072
1073         if (fgp_flags & FGP_LOCK) {
1074                 if (fgp_flags & FGP_NOWAIT) {
1075                         if (!trylock_page(page)) {
1076                                 page_cache_release(page);
1077                                 return NULL;
1078                         }
1079                 } else {
1080                         lock_page(page);
1081                 }
1082
1083                 /* Has the page been truncated? */
1084                 if (unlikely(page->mapping != mapping)) {
1085                         unlock_page(page);
1086                         page_cache_release(page);
1087                         goto repeat;
1088                 }
1089                 VM_BUG_ON_PAGE(page->index != offset, page);
1090         }
1091
1092         if (page && (fgp_flags & FGP_ACCESSED))
1093                 mark_page_accessed(page);
1094
1095 no_page:
1096         if (!page && (fgp_flags & FGP_CREAT)) {
1097                 int err;
1098                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1099                         cache_gfp_mask |= __GFP_WRITE;
1100                 if (fgp_flags & FGP_NOFS) {
1101                         cache_gfp_mask &= ~__GFP_FS;
1102                         radix_gfp_mask &= ~__GFP_FS;
1103                 }
1104
1105                 page = __page_cache_alloc(cache_gfp_mask);
1106                 if (!page)
1107                         return NULL;
1108
1109                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1110                         fgp_flags |= FGP_LOCK;
1111
1112                 /* Init accessed so avoid atomic mark_page_accessed later */
1113                 if (fgp_flags & FGP_ACCESSED)
1114                         __SetPageReferenced(page);
1115
1116                 err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask);
1117                 if (unlikely(err)) {
1118                         page_cache_release(page);
1119                         page = NULL;
1120                         if (err == -EEXIST)
1121                                 goto repeat;
1122                 }
1123         }
1124
1125         return page;
1126 }
1127 EXPORT_SYMBOL(pagecache_get_page);
1128
1129 /**
1130  * find_get_entries - gang pagecache lookup
1131  * @mapping:    The address_space to search
1132  * @start:      The starting page cache index
1133  * @nr_entries: The maximum number of entries
1134  * @entries:    Where the resulting entries are placed
1135  * @indices:    The cache indices corresponding to the entries in @entries
1136  *
1137  * find_get_entries() will search for and return a group of up to
1138  * @nr_entries entries in the mapping.  The entries are placed at
1139  * @entries.  find_get_entries() takes a reference against any actual
1140  * pages it returns.
1141  *
1142  * The search returns a group of mapping-contiguous page cache entries
1143  * with ascending indexes.  There may be holes in the indices due to
1144  * not-present pages.
1145  *
1146  * Any shadow entries of evicted pages, or swap entries from
1147  * shmem/tmpfs, are included in the returned array.
1148  *
1149  * find_get_entries() returns the number of pages and shadow entries
1150  * which were found.
1151  */
1152 unsigned find_get_entries(struct address_space *mapping,
1153                           pgoff_t start, unsigned int nr_entries,
1154                           struct page **entries, pgoff_t *indices)
1155 {
1156         void **slot;
1157         unsigned int ret = 0;
1158         struct radix_tree_iter iter;
1159
1160         if (!nr_entries)
1161                 return 0;
1162
1163         rcu_read_lock();
1164 restart:
1165         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1166                 struct page *page;
1167 repeat:
1168                 page = radix_tree_deref_slot(slot);
1169                 if (unlikely(!page))
1170                         continue;
1171                 if (radix_tree_exception(page)) {
1172                         if (radix_tree_deref_retry(page))
1173                                 goto restart;
1174                         /*
1175                          * A shadow entry of a recently evicted page,
1176                          * or a swap entry from shmem/tmpfs.  Return
1177                          * it without attempting to raise page count.
1178                          */
1179                         goto export;
1180                 }
1181                 if (!page_cache_get_speculative(page))
1182                         goto repeat;
1183
1184                 /* Has the page moved? */
1185                 if (unlikely(page != *slot)) {
1186                         page_cache_release(page);
1187                         goto repeat;
1188                 }
1189 export:
1190                 indices[ret] = iter.index;
1191                 entries[ret] = page;
1192                 if (++ret == nr_entries)
1193                         break;
1194         }
1195         rcu_read_unlock();
1196         return ret;
1197 }
1198
1199 /**
1200  * find_get_pages - gang pagecache lookup
1201  * @mapping:    The address_space to search
1202  * @start:      The starting page index
1203  * @nr_pages:   The maximum number of pages
1204  * @pages:      Where the resulting pages are placed
1205  *
1206  * find_get_pages() will search for and return a group of up to
1207  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1208  * find_get_pages() takes a reference against the returned pages.
1209  *
1210  * The search returns a group of mapping-contiguous pages with ascending
1211  * indexes.  There may be holes in the indices due to not-present pages.
1212  *
1213  * find_get_pages() returns the number of pages which were found.
1214  */
1215 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1216                             unsigned int nr_pages, struct page **pages)
1217 {
1218         struct radix_tree_iter iter;
1219         void **slot;
1220         unsigned ret = 0;
1221
1222         if (unlikely(!nr_pages))
1223                 return 0;
1224
1225         rcu_read_lock();
1226 restart:
1227         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1228                 struct page *page;
1229 repeat:
1230                 page = radix_tree_deref_slot(slot);
1231                 if (unlikely(!page))
1232                         continue;
1233
1234                 if (radix_tree_exception(page)) {
1235                         if (radix_tree_deref_retry(page)) {
1236                                 /*
1237                                  * Transient condition which can only trigger
1238                                  * when entry at index 0 moves out of or back
1239                                  * to root: none yet gotten, safe to restart.
1240                                  */
1241                                 WARN_ON(iter.index);
1242                                 goto restart;
1243                         }
1244                         /*
1245                          * A shadow entry of a recently evicted page,
1246                          * or a swap entry from shmem/tmpfs.  Skip
1247                          * over it.
1248                          */
1249                         continue;
1250                 }
1251
1252                 if (!page_cache_get_speculative(page))
1253                         goto repeat;
1254
1255                 /* Has the page moved? */
1256                 if (unlikely(page != *slot)) {
1257                         page_cache_release(page);
1258                         goto repeat;
1259                 }
1260
1261                 pages[ret] = page;
1262                 if (++ret == nr_pages)
1263                         break;
1264         }
1265
1266         rcu_read_unlock();
1267         return ret;
1268 }
1269
1270 /**
1271  * find_get_pages_contig - gang contiguous pagecache lookup
1272  * @mapping:    The address_space to search
1273  * @index:      The starting page index
1274  * @nr_pages:   The maximum number of pages
1275  * @pages:      Where the resulting pages are placed
1276  *
1277  * find_get_pages_contig() works exactly like find_get_pages(), except
1278  * that the returned number of pages are guaranteed to be contiguous.
1279  *
1280  * find_get_pages_contig() returns the number of pages which were found.
1281  */
1282 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1283                                unsigned int nr_pages, struct page **pages)
1284 {
1285         struct radix_tree_iter iter;
1286         void **slot;
1287         unsigned int ret = 0;
1288
1289         if (unlikely(!nr_pages))
1290                 return 0;
1291
1292         rcu_read_lock();
1293 restart:
1294         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1295                 struct page *page;
1296 repeat:
1297                 page = radix_tree_deref_slot(slot);
1298                 /* The hole, there no reason to continue */
1299                 if (unlikely(!page))
1300                         break;
1301
1302                 if (radix_tree_exception(page)) {
1303                         if (radix_tree_deref_retry(page)) {
1304                                 /*
1305                                  * Transient condition which can only trigger
1306                                  * when entry at index 0 moves out of or back
1307                                  * to root: none yet gotten, safe to restart.
1308                                  */
1309                                 goto restart;
1310                         }
1311                         /*
1312                          * A shadow entry of a recently evicted page,
1313                          * or a swap entry from shmem/tmpfs.  Stop
1314                          * looking for contiguous pages.
1315                          */
1316                         break;
1317                 }
1318
1319                 if (!page_cache_get_speculative(page))
1320                         goto repeat;
1321
1322                 /* Has the page moved? */
1323                 if (unlikely(page != *slot)) {
1324                         page_cache_release(page);
1325                         goto repeat;
1326                 }
1327
1328                 /*
1329                  * must check mapping and index after taking the ref.
1330                  * otherwise we can get both false positives and false
1331                  * negatives, which is just confusing to the caller.
1332                  */
1333                 if (page->mapping == NULL || page->index != iter.index) {
1334                         page_cache_release(page);
1335                         break;
1336                 }
1337
1338                 pages[ret] = page;
1339                 if (++ret == nr_pages)
1340                         break;
1341         }
1342         rcu_read_unlock();
1343         return ret;
1344 }
1345 EXPORT_SYMBOL(find_get_pages_contig);
1346
1347 /**
1348  * find_get_pages_tag - find and return pages that match @tag
1349  * @mapping:    the address_space to search
1350  * @index:      the starting page index
1351  * @tag:        the tag index
1352  * @nr_pages:   the maximum number of pages
1353  * @pages:      where the resulting pages are placed
1354  *
1355  * Like find_get_pages, except we only return pages which are tagged with
1356  * @tag.   We update @index to index the next page for the traversal.
1357  */
1358 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1359                         int tag, unsigned int nr_pages, struct page **pages)
1360 {
1361         struct radix_tree_iter iter;
1362         void **slot;
1363         unsigned ret = 0;
1364
1365         if (unlikely(!nr_pages))
1366                 return 0;
1367
1368         rcu_read_lock();
1369 restart:
1370         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1371                                    &iter, *index, tag) {
1372                 struct page *page;
1373 repeat:
1374                 page = radix_tree_deref_slot(slot);
1375                 if (unlikely(!page))
1376                         continue;
1377
1378                 if (radix_tree_exception(page)) {
1379                         if (radix_tree_deref_retry(page)) {
1380                                 /*
1381                                  * Transient condition which can only trigger
1382                                  * when entry at index 0 moves out of or back
1383                                  * to root: none yet gotten, safe to restart.
1384                                  */
1385                                 goto restart;
1386                         }
1387                         /*
1388                          * A shadow entry of a recently evicted page.
1389                          *
1390                          * Those entries should never be tagged, but
1391                          * this tree walk is lockless and the tags are
1392                          * looked up in bulk, one radix tree node at a
1393                          * time, so there is a sizable window for page
1394                          * reclaim to evict a page we saw tagged.
1395                          *
1396                          * Skip over it.
1397                          */
1398                         continue;
1399                 }
1400
1401                 if (!page_cache_get_speculative(page))
1402                         goto repeat;
1403
1404                 /* Has the page moved? */
1405                 if (unlikely(page != *slot)) {
1406                         page_cache_release(page);
1407                         goto repeat;
1408                 }
1409
1410                 pages[ret] = page;
1411                 if (++ret == nr_pages)
1412                         break;
1413         }
1414
1415         rcu_read_unlock();
1416
1417         if (ret)
1418                 *index = pages[ret - 1]->index + 1;
1419
1420         return ret;
1421 }
1422 EXPORT_SYMBOL(find_get_pages_tag);
1423
1424 /*
1425  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1426  * a _large_ part of the i/o request. Imagine the worst scenario:
1427  *
1428  *      ---R__________________________________________B__________
1429  *         ^ reading here                             ^ bad block(assume 4k)
1430  *
1431  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1432  * => failing the whole request => read(R) => read(R+1) =>
1433  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1434  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1435  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1436  *
1437  * It is going insane. Fix it by quickly scaling down the readahead size.
1438  */
1439 static void shrink_readahead_size_eio(struct file *filp,
1440                                         struct file_ra_state *ra)
1441 {
1442         ra->ra_pages /= 4;
1443 }
1444
1445 /**
1446  * do_generic_file_read - generic file read routine
1447  * @filp:       the file to read
1448  * @ppos:       current file position
1449  * @iter:       data destination
1450  * @written:    already copied
1451  *
1452  * This is a generic file read routine, and uses the
1453  * mapping->a_ops->readpage() function for the actual low-level stuff.
1454  *
1455  * This is really ugly. But the goto's actually try to clarify some
1456  * of the logic when it comes to error handling etc.
1457  */
1458 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1459                 struct iov_iter *iter, ssize_t written)
1460 {
1461         struct address_space *mapping = filp->f_mapping;
1462         struct inode *inode = mapping->host;
1463         struct file_ra_state *ra = &filp->f_ra;
1464         pgoff_t index;
1465         pgoff_t last_index;
1466         pgoff_t prev_index;
1467         unsigned long offset;      /* offset into pagecache page */
1468         unsigned int prev_offset;
1469         int error = 0;
1470
1471         index = *ppos >> PAGE_CACHE_SHIFT;
1472         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1473         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1474         last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1475         offset = *ppos & ~PAGE_CACHE_MASK;
1476
1477         for (;;) {
1478                 struct page *page;
1479                 pgoff_t end_index;
1480                 loff_t isize;
1481                 unsigned long nr, ret;
1482
1483                 cond_resched();
1484 find_page:
1485                 page = find_get_page(mapping, index);
1486                 if (!page) {
1487                         page_cache_sync_readahead(mapping,
1488                                         ra, filp,
1489                                         index, last_index - index);
1490                         page = find_get_page(mapping, index);
1491                         if (unlikely(page == NULL))
1492                                 goto no_cached_page;
1493                 }
1494                 if (PageReadahead(page)) {
1495                         page_cache_async_readahead(mapping,
1496                                         ra, filp, page,
1497                                         index, last_index - index);
1498                 }
1499                 if (!PageUptodate(page)) {
1500                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1501                                         !mapping->a_ops->is_partially_uptodate)
1502                                 goto page_not_up_to_date;
1503                         if (!trylock_page(page))
1504                                 goto page_not_up_to_date;
1505                         /* Did it get truncated before we got the lock? */
1506                         if (!page->mapping)
1507                                 goto page_not_up_to_date_locked;
1508                         if (!mapping->a_ops->is_partially_uptodate(page,
1509                                                         offset, iter->count))
1510                                 goto page_not_up_to_date_locked;
1511                         unlock_page(page);
1512                 }
1513 page_ok:
1514                 /*
1515                  * i_size must be checked after we know the page is Uptodate.
1516                  *
1517                  * Checking i_size after the check allows us to calculate
1518                  * the correct value for "nr", which means the zero-filled
1519                  * part of the page is not copied back to userspace (unless
1520                  * another truncate extends the file - this is desired though).
1521                  */
1522
1523                 isize = i_size_read(inode);
1524                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1525                 if (unlikely(!isize || index > end_index)) {
1526                         page_cache_release(page);
1527                         goto out;
1528                 }
1529
1530                 /* nr is the maximum number of bytes to copy from this page */
1531                 nr = PAGE_CACHE_SIZE;
1532                 if (index == end_index) {
1533                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1534                         if (nr <= offset) {
1535                                 page_cache_release(page);
1536                                 goto out;
1537                         }
1538                 }
1539                 nr = nr - offset;
1540
1541                 /* If users can be writing to this page using arbitrary
1542                  * virtual addresses, take care about potential aliasing
1543                  * before reading the page on the kernel side.
1544                  */
1545                 if (mapping_writably_mapped(mapping))
1546                         flush_dcache_page(page);
1547
1548                 /*
1549                  * When a sequential read accesses a page several times,
1550                  * only mark it as accessed the first time.
1551                  */
1552                 if (prev_index != index || offset != prev_offset)
1553                         mark_page_accessed(page);
1554                 prev_index = index;
1555
1556                 /*
1557                  * Ok, we have the page, and it's up-to-date, so
1558                  * now we can copy it to user space...
1559                  */
1560
1561                 ret = copy_page_to_iter(page, offset, nr, iter);
1562                 offset += ret;
1563                 index += offset >> PAGE_CACHE_SHIFT;
1564                 offset &= ~PAGE_CACHE_MASK;
1565                 prev_offset = offset;
1566
1567                 page_cache_release(page);
1568                 written += ret;
1569                 if (!iov_iter_count(iter))
1570                         goto out;
1571                 if (ret < nr) {
1572                         error = -EFAULT;
1573                         goto out;
1574                 }
1575                 continue;
1576
1577 page_not_up_to_date:
1578                 /* Get exclusive access to the page ... */
1579                 error = lock_page_killable(page);
1580                 if (unlikely(error))
1581                         goto readpage_error;
1582
1583 page_not_up_to_date_locked:
1584                 /* Did it get truncated before we got the lock? */
1585                 if (!page->mapping) {
1586                         unlock_page(page);
1587                         page_cache_release(page);
1588                         continue;
1589                 }
1590
1591                 /* Did somebody else fill it already? */
1592                 if (PageUptodate(page)) {
1593                         unlock_page(page);
1594                         goto page_ok;
1595                 }
1596
1597 readpage:
1598                 /*
1599                  * A previous I/O error may have been due to temporary
1600                  * failures, eg. multipath errors.
1601                  * PG_error will be set again if readpage fails.
1602                  */
1603                 ClearPageError(page);
1604                 /* Start the actual read. The read will unlock the page. */
1605                 error = mapping->a_ops->readpage(filp, page);
1606
1607                 if (unlikely(error)) {
1608                         if (error == AOP_TRUNCATED_PAGE) {
1609                                 page_cache_release(page);
1610                                 error = 0;
1611                                 goto find_page;
1612                         }
1613                         goto readpage_error;
1614                 }
1615
1616                 if (!PageUptodate(page)) {
1617                         error = lock_page_killable(page);
1618                         if (unlikely(error))
1619                                 goto readpage_error;
1620                         if (!PageUptodate(page)) {
1621                                 if (page->mapping == NULL) {
1622                                         /*
1623                                          * invalidate_mapping_pages got it
1624                                          */
1625                                         unlock_page(page);
1626                                         page_cache_release(page);
1627                                         goto find_page;
1628                                 }
1629                                 unlock_page(page);
1630                                 shrink_readahead_size_eio(filp, ra);
1631                                 error = -EIO;
1632                                 goto readpage_error;
1633                         }
1634                         unlock_page(page);
1635                 }
1636
1637                 goto page_ok;
1638
1639 readpage_error:
1640                 /* UHHUH! A synchronous read error occurred. Report it */
1641                 page_cache_release(page);
1642                 goto out;
1643
1644 no_cached_page:
1645                 /*
1646                  * Ok, it wasn't cached, so we need to create a new
1647                  * page..
1648                  */
1649                 page = page_cache_alloc_cold(mapping);
1650                 if (!page) {
1651                         error = -ENOMEM;
1652                         goto out;
1653                 }
1654                 error = add_to_page_cache_lru(page, mapping,
1655                                                 index, GFP_KERNEL);
1656                 if (error) {
1657                         page_cache_release(page);
1658                         if (error == -EEXIST) {
1659                                 error = 0;
1660                                 goto find_page;
1661                         }
1662                         goto out;
1663                 }
1664                 goto readpage;
1665         }
1666
1667 out:
1668         ra->prev_pos = prev_index;
1669         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1670         ra->prev_pos |= prev_offset;
1671
1672         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1673         file_accessed(filp);
1674         return written ? written : error;
1675 }
1676
1677 /**
1678  * generic_file_read_iter - generic filesystem read routine
1679  * @iocb:       kernel I/O control block
1680  * @iter:       destination for the data read
1681  *
1682  * This is the "read_iter()" routine for all filesystems
1683  * that can use the page cache directly.
1684  */
1685 ssize_t
1686 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1687 {
1688         struct file *file = iocb->ki_filp;
1689         ssize_t retval = 0;
1690         loff_t *ppos = &iocb->ki_pos;
1691         loff_t pos = *ppos;
1692
1693         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1694         if (file->f_flags & O_DIRECT) {
1695                 struct address_space *mapping = file->f_mapping;
1696                 struct inode *inode = mapping->host;
1697                 size_t count = iov_iter_count(iter);
1698                 loff_t size;
1699
1700                 if (!count)
1701                         goto out; /* skip atime */
1702                 size = i_size_read(inode);
1703                 retval = filemap_write_and_wait_range(mapping, pos,
1704                                         pos + count - 1);
1705                 if (!retval) {
1706                         struct iov_iter data = *iter;
1707                         retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos);
1708                 }
1709
1710                 if (retval > 0) {
1711                         *ppos = pos + retval;
1712                         iov_iter_advance(iter, retval);
1713                 }
1714
1715                 /*
1716                  * Btrfs can have a short DIO read if we encounter
1717                  * compressed extents, so if there was an error, or if
1718                  * we've already read everything we wanted to, or if
1719                  * there was a short read because we hit EOF, go ahead
1720                  * and return.  Otherwise fallthrough to buffered io for
1721                  * the rest of the read.
1722                  */
1723                 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) {
1724                         file_accessed(file);
1725                         goto out;
1726                 }
1727         }
1728
1729         retval = do_generic_file_read(file, ppos, iter, retval);
1730 out:
1731         return retval;
1732 }
1733 EXPORT_SYMBOL(generic_file_read_iter);
1734
1735 #ifdef CONFIG_MMU
1736 /**
1737  * page_cache_read - adds requested page to the page cache if not already there
1738  * @file:       file to read
1739  * @offset:     page index
1740  *
1741  * This adds the requested page to the page cache if it isn't already there,
1742  * and schedules an I/O to read in its contents from disk.
1743  */
1744 static int page_cache_read(struct file *file, pgoff_t offset)
1745 {
1746         struct address_space *mapping = file->f_mapping;
1747         struct page *page; 
1748         int ret;
1749
1750         do {
1751                 page = page_cache_alloc_cold(mapping);
1752                 if (!page)
1753                         return -ENOMEM;
1754
1755                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1756                 if (ret == 0)
1757                         ret = mapping->a_ops->readpage(file, page);
1758                 else if (ret == -EEXIST)
1759                         ret = 0; /* losing race to add is OK */
1760
1761                 page_cache_release(page);
1762
1763         } while (ret == AOP_TRUNCATED_PAGE);
1764                 
1765         return ret;
1766 }
1767
1768 #define MMAP_LOTSAMISS  (100)
1769
1770 /*
1771  * Synchronous readahead happens when we don't even find
1772  * a page in the page cache at all.
1773  */
1774 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1775                                    struct file_ra_state *ra,
1776                                    struct file *file,
1777                                    pgoff_t offset)
1778 {
1779         unsigned long ra_pages;
1780         struct address_space *mapping = file->f_mapping;
1781
1782         /* If we don't want any read-ahead, don't bother */
1783         if (vma->vm_flags & VM_RAND_READ)
1784                 return;
1785         if (!ra->ra_pages)
1786                 return;
1787
1788         if (vma->vm_flags & VM_SEQ_READ) {
1789                 page_cache_sync_readahead(mapping, ra, file, offset,
1790                                           ra->ra_pages);
1791                 return;
1792         }
1793
1794         /* Avoid banging the cache line if not needed */
1795         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1796                 ra->mmap_miss++;
1797
1798         /*
1799          * Do we miss much more than hit in this file? If so,
1800          * stop bothering with read-ahead. It will only hurt.
1801          */
1802         if (ra->mmap_miss > MMAP_LOTSAMISS)
1803                 return;
1804
1805         /*
1806          * mmap read-around
1807          */
1808         ra_pages = max_sane_readahead(ra->ra_pages);
1809         ra->start = max_t(long, 0, offset - ra_pages / 2);
1810         ra->size = ra_pages;
1811         ra->async_size = ra_pages / 4;
1812         ra_submit(ra, mapping, file);
1813 }
1814
1815 /*
1816  * Asynchronous readahead happens when we find the page and PG_readahead,
1817  * so we want to possibly extend the readahead further..
1818  */
1819 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1820                                     struct file_ra_state *ra,
1821                                     struct file *file,
1822                                     struct page *page,
1823                                     pgoff_t offset)
1824 {
1825         struct address_space *mapping = file->f_mapping;
1826
1827         /* If we don't want any read-ahead, don't bother */
1828         if (vma->vm_flags & VM_RAND_READ)
1829                 return;
1830         if (ra->mmap_miss > 0)
1831                 ra->mmap_miss--;
1832         if (PageReadahead(page))
1833                 page_cache_async_readahead(mapping, ra, file,
1834                                            page, offset, ra->ra_pages);
1835 }
1836
1837 /**
1838  * filemap_fault - read in file data for page fault handling
1839  * @vma:        vma in which the fault was taken
1840  * @vmf:        struct vm_fault containing details of the fault
1841  *
1842  * filemap_fault() is invoked via the vma operations vector for a
1843  * mapped memory region to read in file data during a page fault.
1844  *
1845  * The goto's are kind of ugly, but this streamlines the normal case of having
1846  * it in the page cache, and handles the special cases reasonably without
1847  * having a lot of duplicated code.
1848  *
1849  * vma->vm_mm->mmap_sem must be held on entry.
1850  *
1851  * If our return value has VM_FAULT_RETRY set, it's because
1852  * lock_page_or_retry() returned 0.
1853  * The mmap_sem has usually been released in this case.
1854  * See __lock_page_or_retry() for the exception.
1855  *
1856  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1857  * has not been released.
1858  *
1859  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1860  */
1861 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1862 {
1863         int error;
1864         struct file *file = vma->vm_file;
1865         struct address_space *mapping = file->f_mapping;
1866         struct file_ra_state *ra = &file->f_ra;
1867         struct inode *inode = mapping->host;
1868         pgoff_t offset = vmf->pgoff;
1869         struct page *page;
1870         loff_t size;
1871         int ret = 0;
1872
1873         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1874         if (offset >= size >> PAGE_CACHE_SHIFT)
1875                 return VM_FAULT_SIGBUS;
1876
1877         /*
1878          * Do we have something in the page cache already?
1879          */
1880         page = find_get_page(mapping, offset);
1881         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1882                 /*
1883                  * We found the page, so try async readahead before
1884                  * waiting for the lock.
1885                  */
1886                 do_async_mmap_readahead(vma, ra, file, page, offset);
1887         } else if (!page) {
1888                 /* No page in the page cache at all */
1889                 do_sync_mmap_readahead(vma, ra, file, offset);
1890                 count_vm_event(PGMAJFAULT);
1891                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1892                 ret = VM_FAULT_MAJOR;
1893 retry_find:
1894                 page = find_get_page(mapping, offset);
1895                 if (!page)
1896                         goto no_cached_page;
1897         }
1898
1899         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1900                 page_cache_release(page);
1901                 return ret | VM_FAULT_RETRY;
1902         }
1903
1904         /* Did it get truncated? */
1905         if (unlikely(page->mapping != mapping)) {
1906                 unlock_page(page);
1907                 put_page(page);
1908                 goto retry_find;
1909         }
1910         VM_BUG_ON_PAGE(page->index != offset, page);
1911
1912         /*
1913          * We have a locked page in the page cache, now we need to check
1914          * that it's up-to-date. If not, it is going to be due to an error.
1915          */
1916         if (unlikely(!PageUptodate(page)))
1917                 goto page_not_uptodate;
1918
1919         /*
1920          * Found the page and have a reference on it.
1921          * We must recheck i_size under page lock.
1922          */
1923         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1924         if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1925                 unlock_page(page);
1926                 page_cache_release(page);
1927                 return VM_FAULT_SIGBUS;
1928         }
1929
1930         vmf->page = page;
1931         return ret | VM_FAULT_LOCKED;
1932
1933 no_cached_page:
1934         /*
1935          * We're only likely to ever get here if MADV_RANDOM is in
1936          * effect.
1937          */
1938         error = page_cache_read(file, offset);
1939
1940         /*
1941          * The page we want has now been added to the page cache.
1942          * In the unlikely event that someone removed it in the
1943          * meantime, we'll just come back here and read it again.
1944          */
1945         if (error >= 0)
1946                 goto retry_find;
1947
1948         /*
1949          * An error return from page_cache_read can result if the
1950          * system is low on memory, or a problem occurs while trying
1951          * to schedule I/O.
1952          */
1953         if (error == -ENOMEM)
1954                 return VM_FAULT_OOM;
1955         return VM_FAULT_SIGBUS;
1956
1957 page_not_uptodate:
1958         /*
1959          * Umm, take care of errors if the page isn't up-to-date.
1960          * Try to re-read it _once_. We do this synchronously,
1961          * because there really aren't any performance issues here
1962          * and we need to check for errors.
1963          */
1964         ClearPageError(page);
1965         error = mapping->a_ops->readpage(file, page);
1966         if (!error) {
1967                 wait_on_page_locked(page);
1968                 if (!PageUptodate(page))
1969                         error = -EIO;
1970         }
1971         page_cache_release(page);
1972
1973         if (!error || error == AOP_TRUNCATED_PAGE)
1974                 goto retry_find;
1975
1976         /* Things didn't work out. Return zero to tell the mm layer so. */
1977         shrink_readahead_size_eio(file, ra);
1978         return VM_FAULT_SIGBUS;
1979 }
1980 EXPORT_SYMBOL(filemap_fault);
1981
1982 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1983 {
1984         struct radix_tree_iter iter;
1985         void **slot;
1986         struct file *file = vma->vm_file;
1987         struct address_space *mapping = file->f_mapping;
1988         loff_t size;
1989         struct page *page;
1990         unsigned long address = (unsigned long) vmf->virtual_address;
1991         unsigned long addr;
1992         pte_t *pte;
1993
1994         rcu_read_lock();
1995         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
1996                 if (iter.index > vmf->max_pgoff)
1997                         break;
1998 repeat:
1999                 page = radix_tree_deref_slot(slot);
2000                 if (unlikely(!page))
2001                         goto next;
2002                 if (radix_tree_exception(page)) {
2003                         if (radix_tree_deref_retry(page))
2004                                 break;
2005                         else
2006                                 goto next;
2007                 }
2008
2009                 if (!page_cache_get_speculative(page))
2010                         goto repeat;
2011
2012                 /* Has the page moved? */
2013                 if (unlikely(page != *slot)) {
2014                         page_cache_release(page);
2015                         goto repeat;
2016                 }
2017
2018                 if (!PageUptodate(page) ||
2019                                 PageReadahead(page) ||
2020                                 PageHWPoison(page))
2021                         goto skip;
2022                 if (!trylock_page(page))
2023                         goto skip;
2024
2025                 if (page->mapping != mapping || !PageUptodate(page))
2026                         goto unlock;
2027
2028                 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2029                 if (page->index >= size >> PAGE_CACHE_SHIFT)
2030                         goto unlock;
2031
2032                 pte = vmf->pte + page->index - vmf->pgoff;
2033                 if (!pte_none(*pte))
2034                         goto unlock;
2035
2036                 if (file->f_ra.mmap_miss > 0)
2037                         file->f_ra.mmap_miss--;
2038                 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2039                 do_set_pte(vma, addr, page, pte, false, false);
2040                 unlock_page(page);
2041                 goto next;
2042 unlock:
2043                 unlock_page(page);
2044 skip:
2045                 page_cache_release(page);
2046 next:
2047                 if (iter.index == vmf->max_pgoff)
2048                         break;
2049         }
2050         rcu_read_unlock();
2051 }
2052 EXPORT_SYMBOL(filemap_map_pages);
2053
2054 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2055 {
2056         struct page *page = vmf->page;
2057         struct inode *inode = file_inode(vma->vm_file);
2058         int ret = VM_FAULT_LOCKED;
2059
2060         sb_start_pagefault(inode->i_sb);
2061         file_update_time(vma->vm_file);
2062         lock_page(page);
2063         if (page->mapping != inode->i_mapping) {
2064                 unlock_page(page);
2065                 ret = VM_FAULT_NOPAGE;
2066                 goto out;
2067         }
2068         /*
2069          * We mark the page dirty already here so that when freeze is in
2070          * progress, we are guaranteed that writeback during freezing will
2071          * see the dirty page and writeprotect it again.
2072          */
2073         set_page_dirty(page);
2074         wait_for_stable_page(page);
2075 out:
2076         sb_end_pagefault(inode->i_sb);
2077         return ret;
2078 }
2079 EXPORT_SYMBOL(filemap_page_mkwrite);
2080
2081 const struct vm_operations_struct generic_file_vm_ops = {
2082         .fault          = filemap_fault,
2083         .map_pages      = filemap_map_pages,
2084         .page_mkwrite   = filemap_page_mkwrite,
2085         .remap_pages    = generic_file_remap_pages,
2086 };
2087
2088 /* This is used for a general mmap of a disk file */
2089
2090 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2091 {
2092         struct address_space *mapping = file->f_mapping;
2093
2094         if (!mapping->a_ops->readpage)
2095                 return -ENOEXEC;
2096         file_accessed(file);
2097         vma->vm_ops = &generic_file_vm_ops;
2098         return 0;
2099 }
2100
2101 /*
2102  * This is for filesystems which do not implement ->writepage.
2103  */
2104 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2105 {
2106         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2107                 return -EINVAL;
2108         return generic_file_mmap(file, vma);
2109 }
2110 #else
2111 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2112 {
2113         return -ENOSYS;
2114 }
2115 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2116 {
2117         return -ENOSYS;
2118 }
2119 #endif /* CONFIG_MMU */
2120
2121 EXPORT_SYMBOL(generic_file_mmap);
2122 EXPORT_SYMBOL(generic_file_readonly_mmap);
2123
2124 static struct page *wait_on_page_read(struct page *page)
2125 {
2126         if (!IS_ERR(page)) {
2127                 wait_on_page_locked(page);
2128                 if (!PageUptodate(page)) {
2129                         page_cache_release(page);
2130                         page = ERR_PTR(-EIO);
2131                 }
2132         }
2133         return page;
2134 }
2135
2136 static struct page *__read_cache_page(struct address_space *mapping,
2137                                 pgoff_t index,
2138                                 int (*filler)(void *, struct page *),
2139                                 void *data,
2140                                 gfp_t gfp)
2141 {
2142         struct page *page;
2143         int err;
2144 repeat:
2145         page = find_get_page(mapping, index);
2146         if (!page) {
2147                 page = __page_cache_alloc(gfp | __GFP_COLD);
2148                 if (!page)
2149                         return ERR_PTR(-ENOMEM);
2150                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2151                 if (unlikely(err)) {
2152                         page_cache_release(page);
2153                         if (err == -EEXIST)
2154                                 goto repeat;
2155                         /* Presumably ENOMEM for radix tree node */
2156                         return ERR_PTR(err);
2157                 }
2158                 err = filler(data, page);
2159                 if (err < 0) {
2160                         page_cache_release(page);
2161                         page = ERR_PTR(err);
2162                 } else {
2163                         page = wait_on_page_read(page);
2164                 }
2165         }
2166         return page;
2167 }
2168
2169 static struct page *do_read_cache_page(struct address_space *mapping,
2170                                 pgoff_t index,
2171                                 int (*filler)(void *, struct page *),
2172                                 void *data,
2173                                 gfp_t gfp)
2174
2175 {
2176         struct page *page;
2177         int err;
2178
2179 retry:
2180         page = __read_cache_page(mapping, index, filler, data, gfp);
2181         if (IS_ERR(page))
2182                 return page;
2183         if (PageUptodate(page))
2184                 goto out;
2185
2186         lock_page(page);
2187         if (!page->mapping) {
2188                 unlock_page(page);
2189                 page_cache_release(page);
2190                 goto retry;
2191         }
2192         if (PageUptodate(page)) {
2193                 unlock_page(page);
2194                 goto out;
2195         }
2196         err = filler(data, page);
2197         if (err < 0) {
2198                 page_cache_release(page);
2199                 return ERR_PTR(err);
2200         } else {
2201                 page = wait_on_page_read(page);
2202                 if (IS_ERR(page))
2203                         return page;
2204         }
2205 out:
2206         mark_page_accessed(page);
2207         return page;
2208 }
2209
2210 /**
2211  * read_cache_page - read into page cache, fill it if needed
2212  * @mapping:    the page's address_space
2213  * @index:      the page index
2214  * @filler:     function to perform the read
2215  * @data:       first arg to filler(data, page) function, often left as NULL
2216  *
2217  * Read into the page cache. If a page already exists, and PageUptodate() is
2218  * not set, try to fill the page and wait for it to become unlocked.
2219  *
2220  * If the page does not get brought uptodate, return -EIO.
2221  */
2222 struct page *read_cache_page(struct address_space *mapping,
2223                                 pgoff_t index,
2224                                 int (*filler)(void *, struct page *),
2225                                 void *data)
2226 {
2227         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2228 }
2229 EXPORT_SYMBOL(read_cache_page);
2230
2231 /**
2232  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2233  * @mapping:    the page's address_space
2234  * @index:      the page index
2235  * @gfp:        the page allocator flags to use if allocating
2236  *
2237  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2238  * any new page allocations done using the specified allocation flags.
2239  *
2240  * If the page does not get brought uptodate, return -EIO.
2241  */
2242 struct page *read_cache_page_gfp(struct address_space *mapping,
2243                                 pgoff_t index,
2244                                 gfp_t gfp)
2245 {
2246         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2247
2248         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2249 }
2250 EXPORT_SYMBOL(read_cache_page_gfp);
2251
2252 /*
2253  * Performs necessary checks before doing a write
2254  *
2255  * Can adjust writing position or amount of bytes to write.
2256  * Returns appropriate error code that caller should return or
2257  * zero in case that write should be allowed.
2258  */
2259 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2260 {
2261         struct inode *inode = file->f_mapping->host;
2262         unsigned long limit = rlimit(RLIMIT_FSIZE);
2263
2264         if (unlikely(*pos < 0))
2265                 return -EINVAL;
2266
2267         if (!isblk) {
2268                 /* FIXME: this is for backwards compatibility with 2.4 */
2269                 if (file->f_flags & O_APPEND)
2270                         *pos = i_size_read(inode);
2271
2272                 if (limit != RLIM_INFINITY) {
2273                         if (*pos >= limit) {
2274                                 send_sig(SIGXFSZ, current, 0);
2275                                 return -EFBIG;
2276                         }
2277                         if (*count > limit - (typeof(limit))*pos) {
2278                                 *count = limit - (typeof(limit))*pos;
2279                         }
2280                 }
2281         }
2282
2283         /*
2284          * LFS rule
2285          */
2286         if (unlikely(*pos + *count > MAX_NON_LFS &&
2287                                 !(file->f_flags & O_LARGEFILE))) {
2288                 if (*pos >= MAX_NON_LFS) {
2289                         return -EFBIG;
2290                 }
2291                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2292                         *count = MAX_NON_LFS - (unsigned long)*pos;
2293                 }
2294         }
2295
2296         /*
2297          * Are we about to exceed the fs block limit ?
2298          *
2299          * If we have written data it becomes a short write.  If we have
2300          * exceeded without writing data we send a signal and return EFBIG.
2301          * Linus frestrict idea will clean these up nicely..
2302          */
2303         if (likely(!isblk)) {
2304                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2305                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2306                                 return -EFBIG;
2307                         }
2308                         /* zero-length writes at ->s_maxbytes are OK */
2309                 }
2310
2311                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2312                         *count = inode->i_sb->s_maxbytes - *pos;
2313         } else {
2314 #ifdef CONFIG_BLOCK
2315                 loff_t isize;
2316                 if (bdev_read_only(I_BDEV(inode)))
2317                         return -EPERM;
2318                 isize = i_size_read(inode);
2319                 if (*pos >= isize) {
2320                         if (*count || *pos > isize)
2321                                 return -ENOSPC;
2322                 }
2323
2324                 if (*pos + *count > isize)
2325                         *count = isize - *pos;
2326 #else
2327                 return -EPERM;
2328 #endif
2329         }
2330         return 0;
2331 }
2332 EXPORT_SYMBOL(generic_write_checks);
2333
2334 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2335                                 loff_t pos, unsigned len, unsigned flags,
2336                                 struct page **pagep, void **fsdata)
2337 {
2338         const struct address_space_operations *aops = mapping->a_ops;
2339
2340         return aops->write_begin(file, mapping, pos, len, flags,
2341                                                         pagep, fsdata);
2342 }
2343 EXPORT_SYMBOL(pagecache_write_begin);
2344
2345 int pagecache_write_end(struct file *file, struct address_space *mapping,
2346                                 loff_t pos, unsigned len, unsigned copied,
2347                                 struct page *page, void *fsdata)
2348 {
2349         const struct address_space_operations *aops = mapping->a_ops;
2350
2351         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2352 }
2353 EXPORT_SYMBOL(pagecache_write_end);
2354
2355 ssize_t
2356 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2357 {
2358         struct file     *file = iocb->ki_filp;
2359         struct address_space *mapping = file->f_mapping;
2360         struct inode    *inode = mapping->host;
2361         ssize_t         written;
2362         size_t          write_len;
2363         pgoff_t         end;
2364         struct iov_iter data;
2365
2366         write_len = iov_iter_count(from);
2367         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2368
2369         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2370         if (written)
2371                 goto out;
2372
2373         /*
2374          * After a write we want buffered reads to be sure to go to disk to get
2375          * the new data.  We invalidate clean cached page from the region we're
2376          * about to write.  We do this *before* the write so that we can return
2377          * without clobbering -EIOCBQUEUED from ->direct_IO().
2378          */
2379         if (mapping->nrpages) {
2380                 written = invalidate_inode_pages2_range(mapping,
2381                                         pos >> PAGE_CACHE_SHIFT, end);
2382                 /*
2383                  * If a page can not be invalidated, return 0 to fall back
2384                  * to buffered write.
2385                  */
2386                 if (written) {
2387                         if (written == -EBUSY)
2388                                 return 0;
2389                         goto out;
2390                 }
2391         }
2392
2393         data = *from;
2394         written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos);
2395
2396         /*
2397          * Finally, try again to invalidate clean pages which might have been
2398          * cached by non-direct readahead, or faulted in by get_user_pages()
2399          * if the source of the write was an mmap'ed region of the file
2400          * we're writing.  Either one is a pretty crazy thing to do,
2401          * so we don't support it 100%.  If this invalidation
2402          * fails, tough, the write still worked...
2403          */
2404         if (mapping->nrpages) {
2405                 invalidate_inode_pages2_range(mapping,
2406                                               pos >> PAGE_CACHE_SHIFT, end);
2407         }
2408
2409         if (written > 0) {
2410                 pos += written;
2411                 iov_iter_advance(from, written);
2412                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2413                         i_size_write(inode, pos);
2414                         mark_inode_dirty(inode);
2415                 }
2416                 iocb->ki_pos = pos;
2417         }
2418 out:
2419         return written;
2420 }
2421 EXPORT_SYMBOL(generic_file_direct_write);
2422
2423 /*
2424  * Find or create a page at the given pagecache position. Return the locked
2425  * page. This function is specifically for buffered writes.
2426  */
2427 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2428                                         pgoff_t index, unsigned flags)
2429 {
2430         struct page *page;
2431         int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2432
2433         if (flags & AOP_FLAG_NOFS)
2434                 fgp_flags |= FGP_NOFS;
2435
2436         page = pagecache_get_page(mapping, index, fgp_flags,
2437                         mapping_gfp_mask(mapping),
2438                         GFP_KERNEL);
2439         if (page)
2440                 wait_for_stable_page(page);
2441
2442         return page;
2443 }
2444 EXPORT_SYMBOL(grab_cache_page_write_begin);
2445
2446 ssize_t generic_perform_write(struct file *file,
2447                                 struct iov_iter *i, loff_t pos)
2448 {
2449         struct address_space *mapping = file->f_mapping;
2450         const struct address_space_operations *a_ops = mapping->a_ops;
2451         long status = 0;
2452         ssize_t written = 0;
2453         unsigned int flags = 0;
2454
2455         /*
2456          * Copies from kernel address space cannot fail (NFSD is a big user).
2457          */
2458         if (segment_eq(get_fs(), KERNEL_DS))
2459                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2460
2461         do {
2462                 struct page *page;
2463                 unsigned long offset;   /* Offset into pagecache page */
2464                 unsigned long bytes;    /* Bytes to write to page */
2465                 size_t copied;          /* Bytes copied from user */
2466                 void *fsdata;
2467
2468                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2469                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2470                                                 iov_iter_count(i));
2471
2472 again:
2473                 /*
2474                  * Bring in the user page that we will copy from _first_.
2475                  * Otherwise there's a nasty deadlock on copying from the
2476                  * same page as we're writing to, without it being marked
2477                  * up-to-date.
2478                  *
2479                  * Not only is this an optimisation, but it is also required
2480                  * to check that the address is actually valid, when atomic
2481                  * usercopies are used, below.
2482                  */
2483                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2484                         status = -EFAULT;
2485                         break;
2486                 }
2487
2488                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2489                                                 &page, &fsdata);
2490                 if (unlikely(status < 0))
2491                         break;
2492
2493                 if (mapping_writably_mapped(mapping))
2494                         flush_dcache_page(page);
2495
2496                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2497                 flush_dcache_page(page);
2498
2499                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2500                                                 page, fsdata);
2501                 if (unlikely(status < 0))
2502                         break;
2503                 copied = status;
2504
2505                 cond_resched();
2506
2507                 iov_iter_advance(i, copied);
2508                 if (unlikely(copied == 0)) {
2509                         /*
2510                          * If we were unable to copy any data at all, we must
2511                          * fall back to a single segment length write.
2512                          *
2513                          * If we didn't fallback here, we could livelock
2514                          * because not all segments in the iov can be copied at
2515                          * once without a pagefault.
2516                          */
2517                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2518                                                 iov_iter_single_seg_count(i));
2519                         goto again;
2520                 }
2521                 pos += copied;
2522                 written += copied;
2523
2524                 balance_dirty_pages_ratelimited(mapping);
2525                 if (fatal_signal_pending(current)) {
2526                         status = -EINTR;
2527                         break;
2528                 }
2529         } while (iov_iter_count(i));
2530
2531         return written ? written : status;
2532 }
2533 EXPORT_SYMBOL(generic_perform_write);
2534
2535 /**
2536  * __generic_file_write_iter - write data to a file
2537  * @iocb:       IO state structure (file, offset, etc.)
2538  * @from:       iov_iter with data to write
2539  *
2540  * This function does all the work needed for actually writing data to a
2541  * file. It does all basic checks, removes SUID from the file, updates
2542  * modification times and calls proper subroutines depending on whether we
2543  * do direct IO or a standard buffered write.
2544  *
2545  * It expects i_mutex to be grabbed unless we work on a block device or similar
2546  * object which does not need locking at all.
2547  *
2548  * This function does *not* take care of syncing data in case of O_SYNC write.
2549  * A caller has to handle it. This is mainly due to the fact that we want to
2550  * avoid syncing under i_mutex.
2551  */
2552 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2553 {
2554         struct file *file = iocb->ki_filp;
2555         struct address_space * mapping = file->f_mapping;
2556         struct inode    *inode = mapping->host;
2557         loff_t          pos = iocb->ki_pos;
2558         ssize_t         written = 0;
2559         ssize_t         err;
2560         ssize_t         status;
2561         size_t          count = iov_iter_count(from);
2562
2563         /* We can write back this queue in page reclaim */
2564         current->backing_dev_info = mapping->backing_dev_info;
2565         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2566         if (err)
2567                 goto out;
2568
2569         if (count == 0)
2570                 goto out;
2571
2572         iov_iter_truncate(from, count);
2573
2574         err = file_remove_suid(file);
2575         if (err)
2576                 goto out;
2577
2578         err = file_update_time(file);
2579         if (err)
2580                 goto out;
2581
2582         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2583         if (unlikely(file->f_flags & O_DIRECT)) {
2584                 loff_t endbyte;
2585
2586                 written = generic_file_direct_write(iocb, from, pos);
2587                 if (written < 0 || written == count)
2588                         goto out;
2589
2590                 /*
2591                  * direct-io write to a hole: fall through to buffered I/O
2592                  * for completing the rest of the request.
2593                  */
2594                 pos += written;
2595                 count -= written;
2596
2597                 status = generic_perform_write(file, from, pos);
2598                 /*
2599                  * If generic_perform_write() returned a synchronous error
2600                  * then we want to return the number of bytes which were
2601                  * direct-written, or the error code if that was zero.  Note
2602                  * that this differs from normal direct-io semantics, which
2603                  * will return -EFOO even if some bytes were written.
2604                  */
2605                 if (unlikely(status < 0)) {
2606                         err = status;
2607                         goto out;
2608                 }
2609                 iocb->ki_pos = pos + status;
2610                 /*
2611                  * We need to ensure that the page cache pages are written to
2612                  * disk and invalidated to preserve the expected O_DIRECT
2613                  * semantics.
2614                  */
2615                 endbyte = pos + status - 1;
2616                 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2617                 if (err == 0) {
2618                         written += status;
2619                         invalidate_mapping_pages(mapping,
2620                                                  pos >> PAGE_CACHE_SHIFT,
2621                                                  endbyte >> PAGE_CACHE_SHIFT);
2622                 } else {
2623                         /*
2624                          * We don't know how much we wrote, so just return
2625                          * the number of bytes which were direct-written
2626                          */
2627                 }
2628         } else {
2629                 written = generic_perform_write(file, from, pos);
2630                 if (likely(written >= 0))
2631                         iocb->ki_pos = pos + written;
2632         }
2633 out:
2634         current->backing_dev_info = NULL;
2635         return written ? written : err;
2636 }
2637 EXPORT_SYMBOL(__generic_file_write_iter);
2638
2639 /**
2640  * generic_file_write_iter - write data to a file
2641  * @iocb:       IO state structure
2642  * @from:       iov_iter with data to write
2643  *
2644  * This is a wrapper around __generic_file_write_iter() to be used by most
2645  * filesystems. It takes care of syncing the file in case of O_SYNC file
2646  * and acquires i_mutex as needed.
2647  */
2648 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2649 {
2650         struct file *file = iocb->ki_filp;
2651         struct inode *inode = file->f_mapping->host;
2652         ssize_t ret;
2653
2654         mutex_lock(&inode->i_mutex);
2655         ret = __generic_file_write_iter(iocb, from);
2656         mutex_unlock(&inode->i_mutex);
2657
2658         if (ret > 0) {
2659                 ssize_t err;
2660
2661                 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2662                 if (err < 0)
2663                         ret = err;
2664         }
2665         return ret;
2666 }
2667 EXPORT_SYMBOL(generic_file_write_iter);
2668
2669 /**
2670  * try_to_release_page() - release old fs-specific metadata on a page
2671  *
2672  * @page: the page which the kernel is trying to free
2673  * @gfp_mask: memory allocation flags (and I/O mode)
2674  *
2675  * The address_space is to try to release any data against the page
2676  * (presumably at page->private).  If the release was successful, return `1'.
2677  * Otherwise return zero.
2678  *
2679  * This may also be called if PG_fscache is set on a page, indicating that the
2680  * page is known to the local caching routines.
2681  *
2682  * The @gfp_mask argument specifies whether I/O may be performed to release
2683  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2684  *
2685  */
2686 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2687 {
2688         struct address_space * const mapping = page->mapping;
2689
2690         BUG_ON(!PageLocked(page));
2691         if (PageWriteback(page))
2692                 return 0;
2693
2694         if (mapping && mapping->a_ops->releasepage)
2695                 return mapping->a_ops->releasepage(page, gfp_mask);
2696         return try_to_free_buffers(page);
2697 }
2698
2699 EXPORT_SYMBOL(try_to_release_page);