mm/memory_hotplug.c: tidy up node_states_clear_node()
[sfrench/cifs-2.6.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/shmem_fs.h>
38 #include <linux/rmap.h>
39 #include <linux/delayacct.h>
40 #include <linux/psi.h>
41 #include "internal.h"
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/filemap.h>
45
46 /*
47  * FIXME: remove all knowledge of the buffer layer from the core VM
48  */
49 #include <linux/buffer_head.h> /* for try_to_free_buffers */
50
51 #include <asm/mman.h>
52
53 /*
54  * Shared mappings implemented 30.11.1994. It's not fully working yet,
55  * though.
56  *
57  * Shared mappings now work. 15.8.1995  Bruno.
58  *
59  * finished 'unifying' the page and buffer cache and SMP-threaded the
60  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
61  *
62  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
63  */
64
65 /*
66  * Lock ordering:
67  *
68  *  ->i_mmap_rwsem              (truncate_pagecache)
69  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
70  *      ->swap_lock             (exclusive_swap_page, others)
71  *        ->i_pages lock
72  *
73  *  ->i_mutex
74  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
75  *
76  *  ->mmap_sem
77  *    ->i_mmap_rwsem
78  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
79  *        ->i_pages lock        (arch-dependent flush_dcache_mmap_lock)
80  *
81  *  ->mmap_sem
82  *    ->lock_page               (access_process_vm)
83  *
84  *  ->i_mutex                   (generic_perform_write)
85  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
86  *
87  *  bdi->wb.list_lock
88  *    sb_lock                   (fs/fs-writeback.c)
89  *    ->i_pages lock            (__sync_single_inode)
90  *
91  *  ->i_mmap_rwsem
92  *    ->anon_vma.lock           (vma_adjust)
93  *
94  *  ->anon_vma.lock
95  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
96  *
97  *  ->page_table_lock or pte_lock
98  *    ->swap_lock               (try_to_unmap_one)
99  *    ->private_lock            (try_to_unmap_one)
100  *    ->i_pages lock            (try_to_unmap_one)
101  *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
102  *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
103  *    ->private_lock            (page_remove_rmap->set_page_dirty)
104  *    ->i_pages lock            (page_remove_rmap->set_page_dirty)
105  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
106  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
107  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
108  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
109  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
110  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
111  *
112  * ->i_mmap_rwsem
113  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
114  */
115
116 static int page_cache_tree_insert(struct address_space *mapping,
117                                   struct page *page, void **shadowp)
118 {
119         struct radix_tree_node *node;
120         void **slot;
121         int error;
122
123         error = __radix_tree_create(&mapping->i_pages, page->index, 0,
124                                     &node, &slot);
125         if (error)
126                 return error;
127         if (*slot) {
128                 void *p;
129
130                 p = radix_tree_deref_slot_protected(slot,
131                                                     &mapping->i_pages.xa_lock);
132                 if (!radix_tree_exceptional_entry(p))
133                         return -EEXIST;
134
135                 mapping->nrexceptional--;
136                 if (shadowp)
137                         *shadowp = p;
138         }
139         __radix_tree_replace(&mapping->i_pages, node, slot, page,
140                              workingset_lookup_update(mapping));
141         mapping->nrpages++;
142         return 0;
143 }
144
145 static void page_cache_tree_delete(struct address_space *mapping,
146                                    struct page *page, void *shadow)
147 {
148         int i, nr;
149
150         /* hugetlb pages are represented by one entry in the radix tree */
151         nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
152
153         VM_BUG_ON_PAGE(!PageLocked(page), page);
154         VM_BUG_ON_PAGE(PageTail(page), page);
155         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
156
157         for (i = 0; i < nr; i++) {
158                 struct radix_tree_node *node;
159                 void **slot;
160
161                 __radix_tree_lookup(&mapping->i_pages, page->index + i,
162                                     &node, &slot);
163
164                 VM_BUG_ON_PAGE(!node && nr != 1, page);
165
166                 radix_tree_clear_tags(&mapping->i_pages, node, slot);
167                 __radix_tree_replace(&mapping->i_pages, node, slot, shadow,
168                                 workingset_lookup_update(mapping));
169         }
170
171         page->mapping = NULL;
172         /* Leave page->index set: truncation lookup relies upon it */
173
174         if (shadow) {
175                 mapping->nrexceptional += nr;
176                 /*
177                  * Make sure the nrexceptional update is committed before
178                  * the nrpages update so that final truncate racing
179                  * with reclaim does not see both counters 0 at the
180                  * same time and miss a shadow entry.
181                  */
182                 smp_wmb();
183         }
184         mapping->nrpages -= nr;
185 }
186
187 static void unaccount_page_cache_page(struct address_space *mapping,
188                                       struct page *page)
189 {
190         int nr;
191
192         /*
193          * if we're uptodate, flush out into the cleancache, otherwise
194          * invalidate any existing cleancache entries.  We can't leave
195          * stale data around in the cleancache once our page is gone
196          */
197         if (PageUptodate(page) && PageMappedToDisk(page))
198                 cleancache_put_page(page);
199         else
200                 cleancache_invalidate_page(mapping, page);
201
202         VM_BUG_ON_PAGE(PageTail(page), page);
203         VM_BUG_ON_PAGE(page_mapped(page), page);
204         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
205                 int mapcount;
206
207                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
208                          current->comm, page_to_pfn(page));
209                 dump_page(page, "still mapped when deleted");
210                 dump_stack();
211                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
212
213                 mapcount = page_mapcount(page);
214                 if (mapping_exiting(mapping) &&
215                     page_count(page) >= mapcount + 2) {
216                         /*
217                          * All vmas have already been torn down, so it's
218                          * a good bet that actually the page is unmapped,
219                          * and we'd prefer not to leak it: if we're wrong,
220                          * some other bad page check should catch it later.
221                          */
222                         page_mapcount_reset(page);
223                         page_ref_sub(page, mapcount);
224                 }
225         }
226
227         /* hugetlb pages do not participate in page cache accounting. */
228         if (PageHuge(page))
229                 return;
230
231         nr = hpage_nr_pages(page);
232
233         __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
234         if (PageSwapBacked(page)) {
235                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
236                 if (PageTransHuge(page))
237                         __dec_node_page_state(page, NR_SHMEM_THPS);
238         } else {
239                 VM_BUG_ON_PAGE(PageTransHuge(page), page);
240         }
241
242         /*
243          * At this point page must be either written or cleaned by
244          * truncate.  Dirty page here signals a bug and loss of
245          * unwritten data.
246          *
247          * This fixes dirty accounting after removing the page entirely
248          * but leaves PageDirty set: it has no effect for truncated
249          * page and anyway will be cleared before returning page into
250          * buddy allocator.
251          */
252         if (WARN_ON_ONCE(PageDirty(page)))
253                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
254 }
255
256 /*
257  * Delete a page from the page cache and free it. Caller has to make
258  * sure the page is locked and that nobody else uses it - or that usage
259  * is safe.  The caller must hold the i_pages lock.
260  */
261 void __delete_from_page_cache(struct page *page, void *shadow)
262 {
263         struct address_space *mapping = page->mapping;
264
265         trace_mm_filemap_delete_from_page_cache(page);
266
267         unaccount_page_cache_page(mapping, page);
268         page_cache_tree_delete(mapping, page, shadow);
269 }
270
271 static void page_cache_free_page(struct address_space *mapping,
272                                 struct page *page)
273 {
274         void (*freepage)(struct page *);
275
276         freepage = mapping->a_ops->freepage;
277         if (freepage)
278                 freepage(page);
279
280         if (PageTransHuge(page) && !PageHuge(page)) {
281                 page_ref_sub(page, HPAGE_PMD_NR);
282                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
283         } else {
284                 put_page(page);
285         }
286 }
287
288 /**
289  * delete_from_page_cache - delete page from page cache
290  * @page: the page which the kernel is trying to remove from page cache
291  *
292  * This must be called only on pages that have been verified to be in the page
293  * cache and locked.  It will never put the page into the free list, the caller
294  * has a reference on the page.
295  */
296 void delete_from_page_cache(struct page *page)
297 {
298         struct address_space *mapping = page_mapping(page);
299         unsigned long flags;
300
301         BUG_ON(!PageLocked(page));
302         xa_lock_irqsave(&mapping->i_pages, flags);
303         __delete_from_page_cache(page, NULL);
304         xa_unlock_irqrestore(&mapping->i_pages, flags);
305
306         page_cache_free_page(mapping, page);
307 }
308 EXPORT_SYMBOL(delete_from_page_cache);
309
310 /*
311  * page_cache_tree_delete_batch - delete several pages from page cache
312  * @mapping: the mapping to which pages belong
313  * @pvec: pagevec with pages to delete
314  *
315  * The function walks over mapping->i_pages and removes pages passed in @pvec
316  * from the mapping. The function expects @pvec to be sorted by page index.
317  * It tolerates holes in @pvec (mapping entries at those indices are not
318  * modified). The function expects only THP head pages to be present in the
319  * @pvec and takes care to delete all corresponding tail pages from the
320  * mapping as well.
321  *
322  * The function expects the i_pages lock to be held.
323  */
324 static void
325 page_cache_tree_delete_batch(struct address_space *mapping,
326                              struct pagevec *pvec)
327 {
328         struct radix_tree_iter iter;
329         void **slot;
330         int total_pages = 0;
331         int i = 0, tail_pages = 0;
332         struct page *page;
333         pgoff_t start;
334
335         start = pvec->pages[0]->index;
336         radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
337                 if (i >= pagevec_count(pvec) && !tail_pages)
338                         break;
339                 page = radix_tree_deref_slot_protected(slot,
340                                                        &mapping->i_pages.xa_lock);
341                 if (radix_tree_exceptional_entry(page))
342                         continue;
343                 if (!tail_pages) {
344                         /*
345                          * Some page got inserted in our range? Skip it. We
346                          * have our pages locked so they are protected from
347                          * being removed.
348                          */
349                         if (page != pvec->pages[i])
350                                 continue;
351                         WARN_ON_ONCE(!PageLocked(page));
352                         if (PageTransHuge(page) && !PageHuge(page))
353                                 tail_pages = HPAGE_PMD_NR - 1;
354                         page->mapping = NULL;
355                         /*
356                          * Leave page->index set: truncation lookup relies
357                          * upon it
358                          */
359                         i++;
360                 } else {
361                         tail_pages--;
362                 }
363                 radix_tree_clear_tags(&mapping->i_pages, iter.node, slot);
364                 __radix_tree_replace(&mapping->i_pages, iter.node, slot, NULL,
365                                 workingset_lookup_update(mapping));
366                 total_pages++;
367         }
368         mapping->nrpages -= total_pages;
369 }
370
371 void delete_from_page_cache_batch(struct address_space *mapping,
372                                   struct pagevec *pvec)
373 {
374         int i;
375         unsigned long flags;
376
377         if (!pagevec_count(pvec))
378                 return;
379
380         xa_lock_irqsave(&mapping->i_pages, flags);
381         for (i = 0; i < pagevec_count(pvec); i++) {
382                 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
383
384                 unaccount_page_cache_page(mapping, pvec->pages[i]);
385         }
386         page_cache_tree_delete_batch(mapping, pvec);
387         xa_unlock_irqrestore(&mapping->i_pages, flags);
388
389         for (i = 0; i < pagevec_count(pvec); i++)
390                 page_cache_free_page(mapping, pvec->pages[i]);
391 }
392
393 int filemap_check_errors(struct address_space *mapping)
394 {
395         int ret = 0;
396         /* Check for outstanding write errors */
397         if (test_bit(AS_ENOSPC, &mapping->flags) &&
398             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
399                 ret = -ENOSPC;
400         if (test_bit(AS_EIO, &mapping->flags) &&
401             test_and_clear_bit(AS_EIO, &mapping->flags))
402                 ret = -EIO;
403         return ret;
404 }
405 EXPORT_SYMBOL(filemap_check_errors);
406
407 static int filemap_check_and_keep_errors(struct address_space *mapping)
408 {
409         /* Check for outstanding write errors */
410         if (test_bit(AS_EIO, &mapping->flags))
411                 return -EIO;
412         if (test_bit(AS_ENOSPC, &mapping->flags))
413                 return -ENOSPC;
414         return 0;
415 }
416
417 /**
418  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
419  * @mapping:    address space structure to write
420  * @start:      offset in bytes where the range starts
421  * @end:        offset in bytes where the range ends (inclusive)
422  * @sync_mode:  enable synchronous operation
423  *
424  * Start writeback against all of a mapping's dirty pages that lie
425  * within the byte offsets <start, end> inclusive.
426  *
427  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
428  * opposed to a regular memory cleansing writeback.  The difference between
429  * these two operations is that if a dirty page/buffer is encountered, it must
430  * be waited upon, and not just skipped over.
431  */
432 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
433                                 loff_t end, int sync_mode)
434 {
435         int ret;
436         struct writeback_control wbc = {
437                 .sync_mode = sync_mode,
438                 .nr_to_write = LONG_MAX,
439                 .range_start = start,
440                 .range_end = end,
441         };
442
443         if (!mapping_cap_writeback_dirty(mapping))
444                 return 0;
445
446         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
447         ret = do_writepages(mapping, &wbc);
448         wbc_detach_inode(&wbc);
449         return ret;
450 }
451
452 static inline int __filemap_fdatawrite(struct address_space *mapping,
453         int sync_mode)
454 {
455         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
456 }
457
458 int filemap_fdatawrite(struct address_space *mapping)
459 {
460         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
461 }
462 EXPORT_SYMBOL(filemap_fdatawrite);
463
464 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
465                                 loff_t end)
466 {
467         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
468 }
469 EXPORT_SYMBOL(filemap_fdatawrite_range);
470
471 /**
472  * filemap_flush - mostly a non-blocking flush
473  * @mapping:    target address_space
474  *
475  * This is a mostly non-blocking flush.  Not suitable for data-integrity
476  * purposes - I/O may not be started against all dirty pages.
477  */
478 int filemap_flush(struct address_space *mapping)
479 {
480         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
481 }
482 EXPORT_SYMBOL(filemap_flush);
483
484 /**
485  * filemap_range_has_page - check if a page exists in range.
486  * @mapping:           address space within which to check
487  * @start_byte:        offset in bytes where the range starts
488  * @end_byte:          offset in bytes where the range ends (inclusive)
489  *
490  * Find at least one page in the range supplied, usually used to check if
491  * direct writing in this range will trigger a writeback.
492  */
493 bool filemap_range_has_page(struct address_space *mapping,
494                            loff_t start_byte, loff_t end_byte)
495 {
496         pgoff_t index = start_byte >> PAGE_SHIFT;
497         pgoff_t end = end_byte >> PAGE_SHIFT;
498         struct page *page;
499
500         if (end_byte < start_byte)
501                 return false;
502
503         if (mapping->nrpages == 0)
504                 return false;
505
506         if (!find_get_pages_range(mapping, &index, end, 1, &page))
507                 return false;
508         put_page(page);
509         return true;
510 }
511 EXPORT_SYMBOL(filemap_range_has_page);
512
513 static void __filemap_fdatawait_range(struct address_space *mapping,
514                                      loff_t start_byte, loff_t end_byte)
515 {
516         pgoff_t index = start_byte >> PAGE_SHIFT;
517         pgoff_t end = end_byte >> PAGE_SHIFT;
518         struct pagevec pvec;
519         int nr_pages;
520
521         if (end_byte < start_byte)
522                 return;
523
524         pagevec_init(&pvec);
525         while (index <= end) {
526                 unsigned i;
527
528                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
529                                 end, PAGECACHE_TAG_WRITEBACK);
530                 if (!nr_pages)
531                         break;
532
533                 for (i = 0; i < nr_pages; i++) {
534                         struct page *page = pvec.pages[i];
535
536                         wait_on_page_writeback(page);
537                         ClearPageError(page);
538                 }
539                 pagevec_release(&pvec);
540                 cond_resched();
541         }
542 }
543
544 /**
545  * filemap_fdatawait_range - wait for writeback to complete
546  * @mapping:            address space structure to wait for
547  * @start_byte:         offset in bytes where the range starts
548  * @end_byte:           offset in bytes where the range ends (inclusive)
549  *
550  * Walk the list of under-writeback pages of the given address space
551  * in the given range and wait for all of them.  Check error status of
552  * the address space and return it.
553  *
554  * Since the error status of the address space is cleared by this function,
555  * callers are responsible for checking the return value and handling and/or
556  * reporting the error.
557  */
558 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
559                             loff_t end_byte)
560 {
561         __filemap_fdatawait_range(mapping, start_byte, end_byte);
562         return filemap_check_errors(mapping);
563 }
564 EXPORT_SYMBOL(filemap_fdatawait_range);
565
566 /**
567  * file_fdatawait_range - wait for writeback to complete
568  * @file:               file pointing to address space structure to wait for
569  * @start_byte:         offset in bytes where the range starts
570  * @end_byte:           offset in bytes where the range ends (inclusive)
571  *
572  * Walk the list of under-writeback pages of the address space that file
573  * refers to, in the given range and wait for all of them.  Check error
574  * status of the address space vs. the file->f_wb_err cursor and return it.
575  *
576  * Since the error status of the file is advanced by this function,
577  * callers are responsible for checking the return value and handling and/or
578  * reporting the error.
579  */
580 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
581 {
582         struct address_space *mapping = file->f_mapping;
583
584         __filemap_fdatawait_range(mapping, start_byte, end_byte);
585         return file_check_and_advance_wb_err(file);
586 }
587 EXPORT_SYMBOL(file_fdatawait_range);
588
589 /**
590  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
591  * @mapping: address space structure to wait for
592  *
593  * Walk the list of under-writeback pages of the given address space
594  * and wait for all of them.  Unlike filemap_fdatawait(), this function
595  * does not clear error status of the address space.
596  *
597  * Use this function if callers don't handle errors themselves.  Expected
598  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
599  * fsfreeze(8)
600  */
601 int filemap_fdatawait_keep_errors(struct address_space *mapping)
602 {
603         __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
604         return filemap_check_and_keep_errors(mapping);
605 }
606 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
607
608 static bool mapping_needs_writeback(struct address_space *mapping)
609 {
610         return (!dax_mapping(mapping) && mapping->nrpages) ||
611             (dax_mapping(mapping) && mapping->nrexceptional);
612 }
613
614 int filemap_write_and_wait(struct address_space *mapping)
615 {
616         int err = 0;
617
618         if (mapping_needs_writeback(mapping)) {
619                 err = filemap_fdatawrite(mapping);
620                 /*
621                  * Even if the above returned error, the pages may be
622                  * written partially (e.g. -ENOSPC), so we wait for it.
623                  * But the -EIO is special case, it may indicate the worst
624                  * thing (e.g. bug) happened, so we avoid waiting for it.
625                  */
626                 if (err != -EIO) {
627                         int err2 = filemap_fdatawait(mapping);
628                         if (!err)
629                                 err = err2;
630                 } else {
631                         /* Clear any previously stored errors */
632                         filemap_check_errors(mapping);
633                 }
634         } else {
635                 err = filemap_check_errors(mapping);
636         }
637         return err;
638 }
639 EXPORT_SYMBOL(filemap_write_and_wait);
640
641 /**
642  * filemap_write_and_wait_range - write out & wait on a file range
643  * @mapping:    the address_space for the pages
644  * @lstart:     offset in bytes where the range starts
645  * @lend:       offset in bytes where the range ends (inclusive)
646  *
647  * Write out and wait upon file offsets lstart->lend, inclusive.
648  *
649  * Note that @lend is inclusive (describes the last byte to be written) so
650  * that this function can be used to write to the very end-of-file (end = -1).
651  */
652 int filemap_write_and_wait_range(struct address_space *mapping,
653                                  loff_t lstart, loff_t lend)
654 {
655         int err = 0;
656
657         if (mapping_needs_writeback(mapping)) {
658                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
659                                                  WB_SYNC_ALL);
660                 /* See comment of filemap_write_and_wait() */
661                 if (err != -EIO) {
662                         int err2 = filemap_fdatawait_range(mapping,
663                                                 lstart, lend);
664                         if (!err)
665                                 err = err2;
666                 } else {
667                         /* Clear any previously stored errors */
668                         filemap_check_errors(mapping);
669                 }
670         } else {
671                 err = filemap_check_errors(mapping);
672         }
673         return err;
674 }
675 EXPORT_SYMBOL(filemap_write_and_wait_range);
676
677 void __filemap_set_wb_err(struct address_space *mapping, int err)
678 {
679         errseq_t eseq = errseq_set(&mapping->wb_err, err);
680
681         trace_filemap_set_wb_err(mapping, eseq);
682 }
683 EXPORT_SYMBOL(__filemap_set_wb_err);
684
685 /**
686  * file_check_and_advance_wb_err - report wb error (if any) that was previously
687  *                                 and advance wb_err to current one
688  * @file: struct file on which the error is being reported
689  *
690  * When userland calls fsync (or something like nfsd does the equivalent), we
691  * want to report any writeback errors that occurred since the last fsync (or
692  * since the file was opened if there haven't been any).
693  *
694  * Grab the wb_err from the mapping. If it matches what we have in the file,
695  * then just quickly return 0. The file is all caught up.
696  *
697  * If it doesn't match, then take the mapping value, set the "seen" flag in
698  * it and try to swap it into place. If it works, or another task beat us
699  * to it with the new value, then update the f_wb_err and return the error
700  * portion. The error at this point must be reported via proper channels
701  * (a'la fsync, or NFS COMMIT operation, etc.).
702  *
703  * While we handle mapping->wb_err with atomic operations, the f_wb_err
704  * value is protected by the f_lock since we must ensure that it reflects
705  * the latest value swapped in for this file descriptor.
706  */
707 int file_check_and_advance_wb_err(struct file *file)
708 {
709         int err = 0;
710         errseq_t old = READ_ONCE(file->f_wb_err);
711         struct address_space *mapping = file->f_mapping;
712
713         /* Locklessly handle the common case where nothing has changed */
714         if (errseq_check(&mapping->wb_err, old)) {
715                 /* Something changed, must use slow path */
716                 spin_lock(&file->f_lock);
717                 old = file->f_wb_err;
718                 err = errseq_check_and_advance(&mapping->wb_err,
719                                                 &file->f_wb_err);
720                 trace_file_check_and_advance_wb_err(file, old);
721                 spin_unlock(&file->f_lock);
722         }
723
724         /*
725          * We're mostly using this function as a drop in replacement for
726          * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
727          * that the legacy code would have had on these flags.
728          */
729         clear_bit(AS_EIO, &mapping->flags);
730         clear_bit(AS_ENOSPC, &mapping->flags);
731         return err;
732 }
733 EXPORT_SYMBOL(file_check_and_advance_wb_err);
734
735 /**
736  * file_write_and_wait_range - write out & wait on a file range
737  * @file:       file pointing to address_space with pages
738  * @lstart:     offset in bytes where the range starts
739  * @lend:       offset in bytes where the range ends (inclusive)
740  *
741  * Write out and wait upon file offsets lstart->lend, inclusive.
742  *
743  * Note that @lend is inclusive (describes the last byte to be written) so
744  * that this function can be used to write to the very end-of-file (end = -1).
745  *
746  * After writing out and waiting on the data, we check and advance the
747  * f_wb_err cursor to the latest value, and return any errors detected there.
748  */
749 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
750 {
751         int err = 0, err2;
752         struct address_space *mapping = file->f_mapping;
753
754         if (mapping_needs_writeback(mapping)) {
755                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
756                                                  WB_SYNC_ALL);
757                 /* See comment of filemap_write_and_wait() */
758                 if (err != -EIO)
759                         __filemap_fdatawait_range(mapping, lstart, lend);
760         }
761         err2 = file_check_and_advance_wb_err(file);
762         if (!err)
763                 err = err2;
764         return err;
765 }
766 EXPORT_SYMBOL(file_write_and_wait_range);
767
768 /**
769  * replace_page_cache_page - replace a pagecache page with a new one
770  * @old:        page to be replaced
771  * @new:        page to replace with
772  * @gfp_mask:   allocation mode
773  *
774  * This function replaces a page in the pagecache with a new one.  On
775  * success it acquires the pagecache reference for the new page and
776  * drops it for the old page.  Both the old and new pages must be
777  * locked.  This function does not add the new page to the LRU, the
778  * caller must do that.
779  *
780  * The remove + add is atomic.  The only way this function can fail is
781  * memory allocation failure.
782  */
783 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
784 {
785         int error;
786
787         VM_BUG_ON_PAGE(!PageLocked(old), old);
788         VM_BUG_ON_PAGE(!PageLocked(new), new);
789         VM_BUG_ON_PAGE(new->mapping, new);
790
791         error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
792         if (!error) {
793                 struct address_space *mapping = old->mapping;
794                 void (*freepage)(struct page *);
795                 unsigned long flags;
796
797                 pgoff_t offset = old->index;
798                 freepage = mapping->a_ops->freepage;
799
800                 get_page(new);
801                 new->mapping = mapping;
802                 new->index = offset;
803
804                 xa_lock_irqsave(&mapping->i_pages, flags);
805                 __delete_from_page_cache(old, NULL);
806                 error = page_cache_tree_insert(mapping, new, NULL);
807                 BUG_ON(error);
808
809                 /*
810                  * hugetlb pages do not participate in page cache accounting.
811                  */
812                 if (!PageHuge(new))
813                         __inc_node_page_state(new, NR_FILE_PAGES);
814                 if (PageSwapBacked(new))
815                         __inc_node_page_state(new, NR_SHMEM);
816                 xa_unlock_irqrestore(&mapping->i_pages, flags);
817                 mem_cgroup_migrate(old, new);
818                 radix_tree_preload_end();
819                 if (freepage)
820                         freepage(old);
821                 put_page(old);
822         }
823
824         return error;
825 }
826 EXPORT_SYMBOL_GPL(replace_page_cache_page);
827
828 static int __add_to_page_cache_locked(struct page *page,
829                                       struct address_space *mapping,
830                                       pgoff_t offset, gfp_t gfp_mask,
831                                       void **shadowp)
832 {
833         int huge = PageHuge(page);
834         struct mem_cgroup *memcg;
835         int error;
836
837         VM_BUG_ON_PAGE(!PageLocked(page), page);
838         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
839
840         if (!huge) {
841                 error = mem_cgroup_try_charge(page, current->mm,
842                                               gfp_mask, &memcg, false);
843                 if (error)
844                         return error;
845         }
846
847         error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
848         if (error) {
849                 if (!huge)
850                         mem_cgroup_cancel_charge(page, memcg, false);
851                 return error;
852         }
853
854         get_page(page);
855         page->mapping = mapping;
856         page->index = offset;
857
858         xa_lock_irq(&mapping->i_pages);
859         error = page_cache_tree_insert(mapping, page, shadowp);
860         radix_tree_preload_end();
861         if (unlikely(error))
862                 goto err_insert;
863
864         /* hugetlb pages do not participate in page cache accounting. */
865         if (!huge)
866                 __inc_node_page_state(page, NR_FILE_PAGES);
867         xa_unlock_irq(&mapping->i_pages);
868         if (!huge)
869                 mem_cgroup_commit_charge(page, memcg, false, false);
870         trace_mm_filemap_add_to_page_cache(page);
871         return 0;
872 err_insert:
873         page->mapping = NULL;
874         /* Leave page->index set: truncation relies upon it */
875         xa_unlock_irq(&mapping->i_pages);
876         if (!huge)
877                 mem_cgroup_cancel_charge(page, memcg, false);
878         put_page(page);
879         return error;
880 }
881
882 /**
883  * add_to_page_cache_locked - add a locked page to the pagecache
884  * @page:       page to add
885  * @mapping:    the page's address_space
886  * @offset:     page index
887  * @gfp_mask:   page allocation mode
888  *
889  * This function is used to add a page to the pagecache. It must be locked.
890  * This function does not add the page to the LRU.  The caller must do that.
891  */
892 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
893                 pgoff_t offset, gfp_t gfp_mask)
894 {
895         return __add_to_page_cache_locked(page, mapping, offset,
896                                           gfp_mask, NULL);
897 }
898 EXPORT_SYMBOL(add_to_page_cache_locked);
899
900 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
901                                 pgoff_t offset, gfp_t gfp_mask)
902 {
903         void *shadow = NULL;
904         int ret;
905
906         __SetPageLocked(page);
907         ret = __add_to_page_cache_locked(page, mapping, offset,
908                                          gfp_mask, &shadow);
909         if (unlikely(ret))
910                 __ClearPageLocked(page);
911         else {
912                 /*
913                  * The page might have been evicted from cache only
914                  * recently, in which case it should be activated like
915                  * any other repeatedly accessed page.
916                  * The exception is pages getting rewritten; evicting other
917                  * data from the working set, only to cache data that will
918                  * get overwritten with something else, is a waste of memory.
919                  */
920                 WARN_ON_ONCE(PageActive(page));
921                 if (!(gfp_mask & __GFP_WRITE) && shadow)
922                         workingset_refault(page, shadow);
923                 lru_cache_add(page);
924         }
925         return ret;
926 }
927 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
928
929 #ifdef CONFIG_NUMA
930 struct page *__page_cache_alloc(gfp_t gfp)
931 {
932         int n;
933         struct page *page;
934
935         if (cpuset_do_page_mem_spread()) {
936                 unsigned int cpuset_mems_cookie;
937                 do {
938                         cpuset_mems_cookie = read_mems_allowed_begin();
939                         n = cpuset_mem_spread_node();
940                         page = __alloc_pages_node(n, gfp, 0);
941                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
942
943                 return page;
944         }
945         return alloc_pages(gfp, 0);
946 }
947 EXPORT_SYMBOL(__page_cache_alloc);
948 #endif
949
950 /*
951  * In order to wait for pages to become available there must be
952  * waitqueues associated with pages. By using a hash table of
953  * waitqueues where the bucket discipline is to maintain all
954  * waiters on the same queue and wake all when any of the pages
955  * become available, and for the woken contexts to check to be
956  * sure the appropriate page became available, this saves space
957  * at a cost of "thundering herd" phenomena during rare hash
958  * collisions.
959  */
960 #define PAGE_WAIT_TABLE_BITS 8
961 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
962 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
963
964 static wait_queue_head_t *page_waitqueue(struct page *page)
965 {
966         return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
967 }
968
969 void __init pagecache_init(void)
970 {
971         int i;
972
973         for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
974                 init_waitqueue_head(&page_wait_table[i]);
975
976         page_writeback_init();
977 }
978
979 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
980 struct wait_page_key {
981         struct page *page;
982         int bit_nr;
983         int page_match;
984 };
985
986 struct wait_page_queue {
987         struct page *page;
988         int bit_nr;
989         wait_queue_entry_t wait;
990 };
991
992 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
993 {
994         struct wait_page_key *key = arg;
995         struct wait_page_queue *wait_page
996                 = container_of(wait, struct wait_page_queue, wait);
997
998         if (wait_page->page != key->page)
999                return 0;
1000         key->page_match = 1;
1001
1002         if (wait_page->bit_nr != key->bit_nr)
1003                 return 0;
1004
1005         /* Stop walking if it's locked */
1006         if (test_bit(key->bit_nr, &key->page->flags))
1007                 return -1;
1008
1009         return autoremove_wake_function(wait, mode, sync, key);
1010 }
1011
1012 static void wake_up_page_bit(struct page *page, int bit_nr)
1013 {
1014         wait_queue_head_t *q = page_waitqueue(page);
1015         struct wait_page_key key;
1016         unsigned long flags;
1017         wait_queue_entry_t bookmark;
1018
1019         key.page = page;
1020         key.bit_nr = bit_nr;
1021         key.page_match = 0;
1022
1023         bookmark.flags = 0;
1024         bookmark.private = NULL;
1025         bookmark.func = NULL;
1026         INIT_LIST_HEAD(&bookmark.entry);
1027
1028         spin_lock_irqsave(&q->lock, flags);
1029         __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1030
1031         while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1032                 /*
1033                  * Take a breather from holding the lock,
1034                  * allow pages that finish wake up asynchronously
1035                  * to acquire the lock and remove themselves
1036                  * from wait queue
1037                  */
1038                 spin_unlock_irqrestore(&q->lock, flags);
1039                 cpu_relax();
1040                 spin_lock_irqsave(&q->lock, flags);
1041                 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1042         }
1043
1044         /*
1045          * It is possible for other pages to have collided on the waitqueue
1046          * hash, so in that case check for a page match. That prevents a long-
1047          * term waiter
1048          *
1049          * It is still possible to miss a case here, when we woke page waiters
1050          * and removed them from the waitqueue, but there are still other
1051          * page waiters.
1052          */
1053         if (!waitqueue_active(q) || !key.page_match) {
1054                 ClearPageWaiters(page);
1055                 /*
1056                  * It's possible to miss clearing Waiters here, when we woke
1057                  * our page waiters, but the hashed waitqueue has waiters for
1058                  * other pages on it.
1059                  *
1060                  * That's okay, it's a rare case. The next waker will clear it.
1061                  */
1062         }
1063         spin_unlock_irqrestore(&q->lock, flags);
1064 }
1065
1066 static void wake_up_page(struct page *page, int bit)
1067 {
1068         if (!PageWaiters(page))
1069                 return;
1070         wake_up_page_bit(page, bit);
1071 }
1072
1073 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1074                 struct page *page, int bit_nr, int state, bool lock)
1075 {
1076         struct wait_page_queue wait_page;
1077         wait_queue_entry_t *wait = &wait_page.wait;
1078         bool thrashing = false;
1079         unsigned long pflags;
1080         int ret = 0;
1081
1082         if (bit_nr == PG_locked &&
1083             !PageUptodate(page) && PageWorkingset(page)) {
1084                 if (!PageSwapBacked(page))
1085                         delayacct_thrashing_start();
1086                 psi_memstall_enter(&pflags);
1087                 thrashing = true;
1088         }
1089
1090         init_wait(wait);
1091         wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
1092         wait->func = wake_page_function;
1093         wait_page.page = page;
1094         wait_page.bit_nr = bit_nr;
1095
1096         for (;;) {
1097                 spin_lock_irq(&q->lock);
1098
1099                 if (likely(list_empty(&wait->entry))) {
1100                         __add_wait_queue_entry_tail(q, wait);
1101                         SetPageWaiters(page);
1102                 }
1103
1104                 set_current_state(state);
1105
1106                 spin_unlock_irq(&q->lock);
1107
1108                 if (likely(test_bit(bit_nr, &page->flags))) {
1109                         io_schedule();
1110                 }
1111
1112                 if (lock) {
1113                         if (!test_and_set_bit_lock(bit_nr, &page->flags))
1114                                 break;
1115                 } else {
1116                         if (!test_bit(bit_nr, &page->flags))
1117                                 break;
1118                 }
1119
1120                 if (unlikely(signal_pending_state(state, current))) {
1121                         ret = -EINTR;
1122                         break;
1123                 }
1124         }
1125
1126         finish_wait(q, wait);
1127
1128         if (thrashing) {
1129                 if (!PageSwapBacked(page))
1130                         delayacct_thrashing_end();
1131                 psi_memstall_leave(&pflags);
1132         }
1133
1134         /*
1135          * A signal could leave PageWaiters set. Clearing it here if
1136          * !waitqueue_active would be possible (by open-coding finish_wait),
1137          * but still fail to catch it in the case of wait hash collision. We
1138          * already can fail to clear wait hash collision cases, so don't
1139          * bother with signals either.
1140          */
1141
1142         return ret;
1143 }
1144
1145 void wait_on_page_bit(struct page *page, int bit_nr)
1146 {
1147         wait_queue_head_t *q = page_waitqueue(page);
1148         wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1149 }
1150 EXPORT_SYMBOL(wait_on_page_bit);
1151
1152 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1153 {
1154         wait_queue_head_t *q = page_waitqueue(page);
1155         return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1156 }
1157 EXPORT_SYMBOL(wait_on_page_bit_killable);
1158
1159 /**
1160  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1161  * @page: Page defining the wait queue of interest
1162  * @waiter: Waiter to add to the queue
1163  *
1164  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1165  */
1166 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1167 {
1168         wait_queue_head_t *q = page_waitqueue(page);
1169         unsigned long flags;
1170
1171         spin_lock_irqsave(&q->lock, flags);
1172         __add_wait_queue_entry_tail(q, waiter);
1173         SetPageWaiters(page);
1174         spin_unlock_irqrestore(&q->lock, flags);
1175 }
1176 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1177
1178 #ifndef clear_bit_unlock_is_negative_byte
1179
1180 /*
1181  * PG_waiters is the high bit in the same byte as PG_lock.
1182  *
1183  * On x86 (and on many other architectures), we can clear PG_lock and
1184  * test the sign bit at the same time. But if the architecture does
1185  * not support that special operation, we just do this all by hand
1186  * instead.
1187  *
1188  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1189  * being cleared, but a memory barrier should be unneccssary since it is
1190  * in the same byte as PG_locked.
1191  */
1192 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1193 {
1194         clear_bit_unlock(nr, mem);
1195         /* smp_mb__after_atomic(); */
1196         return test_bit(PG_waiters, mem);
1197 }
1198
1199 #endif
1200
1201 /**
1202  * unlock_page - unlock a locked page
1203  * @page: the page
1204  *
1205  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1206  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1207  * mechanism between PageLocked pages and PageWriteback pages is shared.
1208  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1209  *
1210  * Note that this depends on PG_waiters being the sign bit in the byte
1211  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1212  * clear the PG_locked bit and test PG_waiters at the same time fairly
1213  * portably (architectures that do LL/SC can test any bit, while x86 can
1214  * test the sign bit).
1215  */
1216 void unlock_page(struct page *page)
1217 {
1218         BUILD_BUG_ON(PG_waiters != 7);
1219         page = compound_head(page);
1220         VM_BUG_ON_PAGE(!PageLocked(page), page);
1221         if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1222                 wake_up_page_bit(page, PG_locked);
1223 }
1224 EXPORT_SYMBOL(unlock_page);
1225
1226 /**
1227  * end_page_writeback - end writeback against a page
1228  * @page: the page
1229  */
1230 void end_page_writeback(struct page *page)
1231 {
1232         /*
1233          * TestClearPageReclaim could be used here but it is an atomic
1234          * operation and overkill in this particular case. Failing to
1235          * shuffle a page marked for immediate reclaim is too mild to
1236          * justify taking an atomic operation penalty at the end of
1237          * ever page writeback.
1238          */
1239         if (PageReclaim(page)) {
1240                 ClearPageReclaim(page);
1241                 rotate_reclaimable_page(page);
1242         }
1243
1244         if (!test_clear_page_writeback(page))
1245                 BUG();
1246
1247         smp_mb__after_atomic();
1248         wake_up_page(page, PG_writeback);
1249 }
1250 EXPORT_SYMBOL(end_page_writeback);
1251
1252 /*
1253  * After completing I/O on a page, call this routine to update the page
1254  * flags appropriately
1255  */
1256 void page_endio(struct page *page, bool is_write, int err)
1257 {
1258         if (!is_write) {
1259                 if (!err) {
1260                         SetPageUptodate(page);
1261                 } else {
1262                         ClearPageUptodate(page);
1263                         SetPageError(page);
1264                 }
1265                 unlock_page(page);
1266         } else {
1267                 if (err) {
1268                         struct address_space *mapping;
1269
1270                         SetPageError(page);
1271                         mapping = page_mapping(page);
1272                         if (mapping)
1273                                 mapping_set_error(mapping, err);
1274                 }
1275                 end_page_writeback(page);
1276         }
1277 }
1278 EXPORT_SYMBOL_GPL(page_endio);
1279
1280 /**
1281  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1282  * @__page: the page to lock
1283  */
1284 void __lock_page(struct page *__page)
1285 {
1286         struct page *page = compound_head(__page);
1287         wait_queue_head_t *q = page_waitqueue(page);
1288         wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1289 }
1290 EXPORT_SYMBOL(__lock_page);
1291
1292 int __lock_page_killable(struct page *__page)
1293 {
1294         struct page *page = compound_head(__page);
1295         wait_queue_head_t *q = page_waitqueue(page);
1296         return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1297 }
1298 EXPORT_SYMBOL_GPL(__lock_page_killable);
1299
1300 /*
1301  * Return values:
1302  * 1 - page is locked; mmap_sem is still held.
1303  * 0 - page is not locked.
1304  *     mmap_sem has been released (up_read()), unless flags had both
1305  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1306  *     which case mmap_sem is still held.
1307  *
1308  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1309  * with the page locked and the mmap_sem unperturbed.
1310  */
1311 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1312                          unsigned int flags)
1313 {
1314         if (flags & FAULT_FLAG_ALLOW_RETRY) {
1315                 /*
1316                  * CAUTION! In this case, mmap_sem is not released
1317                  * even though return 0.
1318                  */
1319                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1320                         return 0;
1321
1322                 up_read(&mm->mmap_sem);
1323                 if (flags & FAULT_FLAG_KILLABLE)
1324                         wait_on_page_locked_killable(page);
1325                 else
1326                         wait_on_page_locked(page);
1327                 return 0;
1328         } else {
1329                 if (flags & FAULT_FLAG_KILLABLE) {
1330                         int ret;
1331
1332                         ret = __lock_page_killable(page);
1333                         if (ret) {
1334                                 up_read(&mm->mmap_sem);
1335                                 return 0;
1336                         }
1337                 } else
1338                         __lock_page(page);
1339                 return 1;
1340         }
1341 }
1342
1343 /**
1344  * page_cache_next_hole - find the next hole (not-present entry)
1345  * @mapping: mapping
1346  * @index: index
1347  * @max_scan: maximum range to search
1348  *
1349  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1350  * lowest indexed hole.
1351  *
1352  * Returns: the index of the hole if found, otherwise returns an index
1353  * outside of the set specified (in which case 'return - index >=
1354  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1355  * be returned.
1356  *
1357  * page_cache_next_hole may be called under rcu_read_lock. However,
1358  * like radix_tree_gang_lookup, this will not atomically search a
1359  * snapshot of the tree at a single point in time. For example, if a
1360  * hole is created at index 5, then subsequently a hole is created at
1361  * index 10, page_cache_next_hole covering both indexes may return 10
1362  * if called under rcu_read_lock.
1363  */
1364 pgoff_t page_cache_next_hole(struct address_space *mapping,
1365                              pgoff_t index, unsigned long max_scan)
1366 {
1367         unsigned long i;
1368
1369         for (i = 0; i < max_scan; i++) {
1370                 struct page *page;
1371
1372                 page = radix_tree_lookup(&mapping->i_pages, index);
1373                 if (!page || radix_tree_exceptional_entry(page))
1374                         break;
1375                 index++;
1376                 if (index == 0)
1377                         break;
1378         }
1379
1380         return index;
1381 }
1382 EXPORT_SYMBOL(page_cache_next_hole);
1383
1384 /**
1385  * page_cache_prev_hole - find the prev hole (not-present entry)
1386  * @mapping: mapping
1387  * @index: index
1388  * @max_scan: maximum range to search
1389  *
1390  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1391  * the first hole.
1392  *
1393  * Returns: the index of the hole if found, otherwise returns an index
1394  * outside of the set specified (in which case 'index - return >=
1395  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1396  * will be returned.
1397  *
1398  * page_cache_prev_hole may be called under rcu_read_lock. However,
1399  * like radix_tree_gang_lookup, this will not atomically search a
1400  * snapshot of the tree at a single point in time. For example, if a
1401  * hole is created at index 10, then subsequently a hole is created at
1402  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1403  * called under rcu_read_lock.
1404  */
1405 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1406                              pgoff_t index, unsigned long max_scan)
1407 {
1408         unsigned long i;
1409
1410         for (i = 0; i < max_scan; i++) {
1411                 struct page *page;
1412
1413                 page = radix_tree_lookup(&mapping->i_pages, index);
1414                 if (!page || radix_tree_exceptional_entry(page))
1415                         break;
1416                 index--;
1417                 if (index == ULONG_MAX)
1418                         break;
1419         }
1420
1421         return index;
1422 }
1423 EXPORT_SYMBOL(page_cache_prev_hole);
1424
1425 /**
1426  * find_get_entry - find and get a page cache entry
1427  * @mapping: the address_space to search
1428  * @offset: the page cache index
1429  *
1430  * Looks up the page cache slot at @mapping & @offset.  If there is a
1431  * page cache page, it is returned with an increased refcount.
1432  *
1433  * If the slot holds a shadow entry of a previously evicted page, or a
1434  * swap entry from shmem/tmpfs, it is returned.
1435  *
1436  * Otherwise, %NULL is returned.
1437  */
1438 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1439 {
1440         void **pagep;
1441         struct page *head, *page;
1442
1443         rcu_read_lock();
1444 repeat:
1445         page = NULL;
1446         pagep = radix_tree_lookup_slot(&mapping->i_pages, offset);
1447         if (pagep) {
1448                 page = radix_tree_deref_slot(pagep);
1449                 if (unlikely(!page))
1450                         goto out;
1451                 if (radix_tree_exception(page)) {
1452                         if (radix_tree_deref_retry(page))
1453                                 goto repeat;
1454                         /*
1455                          * A shadow entry of a recently evicted page,
1456                          * or a swap entry from shmem/tmpfs.  Return
1457                          * it without attempting to raise page count.
1458                          */
1459                         goto out;
1460                 }
1461
1462                 head = compound_head(page);
1463                 if (!page_cache_get_speculative(head))
1464                         goto repeat;
1465
1466                 /* The page was split under us? */
1467                 if (compound_head(page) != head) {
1468                         put_page(head);
1469                         goto repeat;
1470                 }
1471
1472                 /*
1473                  * Has the page moved?
1474                  * This is part of the lockless pagecache protocol. See
1475                  * include/linux/pagemap.h for details.
1476                  */
1477                 if (unlikely(page != *pagep)) {
1478                         put_page(head);
1479                         goto repeat;
1480                 }
1481         }
1482 out:
1483         rcu_read_unlock();
1484
1485         return page;
1486 }
1487 EXPORT_SYMBOL(find_get_entry);
1488
1489 /**
1490  * find_lock_entry - locate, pin and lock a page cache entry
1491  * @mapping: the address_space to search
1492  * @offset: the page cache index
1493  *
1494  * Looks up the page cache slot at @mapping & @offset.  If there is a
1495  * page cache page, it is returned locked and with an increased
1496  * refcount.
1497  *
1498  * If the slot holds a shadow entry of a previously evicted page, or a
1499  * swap entry from shmem/tmpfs, it is returned.
1500  *
1501  * Otherwise, %NULL is returned.
1502  *
1503  * find_lock_entry() may sleep.
1504  */
1505 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1506 {
1507         struct page *page;
1508
1509 repeat:
1510         page = find_get_entry(mapping, offset);
1511         if (page && !radix_tree_exception(page)) {
1512                 lock_page(page);
1513                 /* Has the page been truncated? */
1514                 if (unlikely(page_mapping(page) != mapping)) {
1515                         unlock_page(page);
1516                         put_page(page);
1517                         goto repeat;
1518                 }
1519                 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1520         }
1521         return page;
1522 }
1523 EXPORT_SYMBOL(find_lock_entry);
1524
1525 /**
1526  * pagecache_get_page - find and get a page reference
1527  * @mapping: the address_space to search
1528  * @offset: the page index
1529  * @fgp_flags: PCG flags
1530  * @gfp_mask: gfp mask to use for the page cache data page allocation
1531  *
1532  * Looks up the page cache slot at @mapping & @offset.
1533  *
1534  * PCG flags modify how the page is returned.
1535  *
1536  * @fgp_flags can be:
1537  *
1538  * - FGP_ACCESSED: the page will be marked accessed
1539  * - FGP_LOCK: Page is return locked
1540  * - FGP_CREAT: If page is not present then a new page is allocated using
1541  *   @gfp_mask and added to the page cache and the VM's LRU
1542  *   list. The page is returned locked and with an increased
1543  *   refcount. Otherwise, NULL is returned.
1544  *
1545  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1546  * if the GFP flags specified for FGP_CREAT are atomic.
1547  *
1548  * If there is a page cache page, it is returned with an increased refcount.
1549  */
1550 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1551         int fgp_flags, gfp_t gfp_mask)
1552 {
1553         struct page *page;
1554
1555 repeat:
1556         page = find_get_entry(mapping, offset);
1557         if (radix_tree_exceptional_entry(page))
1558                 page = NULL;
1559         if (!page)
1560                 goto no_page;
1561
1562         if (fgp_flags & FGP_LOCK) {
1563                 if (fgp_flags & FGP_NOWAIT) {
1564                         if (!trylock_page(page)) {
1565                                 put_page(page);
1566                                 return NULL;
1567                         }
1568                 } else {
1569                         lock_page(page);
1570                 }
1571
1572                 /* Has the page been truncated? */
1573                 if (unlikely(page->mapping != mapping)) {
1574                         unlock_page(page);
1575                         put_page(page);
1576                         goto repeat;
1577                 }
1578                 VM_BUG_ON_PAGE(page->index != offset, page);
1579         }
1580
1581         if (page && (fgp_flags & FGP_ACCESSED))
1582                 mark_page_accessed(page);
1583
1584 no_page:
1585         if (!page && (fgp_flags & FGP_CREAT)) {
1586                 int err;
1587                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1588                         gfp_mask |= __GFP_WRITE;
1589                 if (fgp_flags & FGP_NOFS)
1590                         gfp_mask &= ~__GFP_FS;
1591
1592                 page = __page_cache_alloc(gfp_mask);
1593                 if (!page)
1594                         return NULL;
1595
1596                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1597                         fgp_flags |= FGP_LOCK;
1598
1599                 /* Init accessed so avoid atomic mark_page_accessed later */
1600                 if (fgp_flags & FGP_ACCESSED)
1601                         __SetPageReferenced(page);
1602
1603                 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1604                 if (unlikely(err)) {
1605                         put_page(page);
1606                         page = NULL;
1607                         if (err == -EEXIST)
1608                                 goto repeat;
1609                 }
1610         }
1611
1612         return page;
1613 }
1614 EXPORT_SYMBOL(pagecache_get_page);
1615
1616 /**
1617  * find_get_entries - gang pagecache lookup
1618  * @mapping:    The address_space to search
1619  * @start:      The starting page cache index
1620  * @nr_entries: The maximum number of entries
1621  * @entries:    Where the resulting entries are placed
1622  * @indices:    The cache indices corresponding to the entries in @entries
1623  *
1624  * find_get_entries() will search for and return a group of up to
1625  * @nr_entries entries in the mapping.  The entries are placed at
1626  * @entries.  find_get_entries() takes a reference against any actual
1627  * pages it returns.
1628  *
1629  * The search returns a group of mapping-contiguous page cache entries
1630  * with ascending indexes.  There may be holes in the indices due to
1631  * not-present pages.
1632  *
1633  * Any shadow entries of evicted pages, or swap entries from
1634  * shmem/tmpfs, are included in the returned array.
1635  *
1636  * find_get_entries() returns the number of pages and shadow entries
1637  * which were found.
1638  */
1639 unsigned find_get_entries(struct address_space *mapping,
1640                           pgoff_t start, unsigned int nr_entries,
1641                           struct page **entries, pgoff_t *indices)
1642 {
1643         void **slot;
1644         unsigned int ret = 0;
1645         struct radix_tree_iter iter;
1646
1647         if (!nr_entries)
1648                 return 0;
1649
1650         rcu_read_lock();
1651         radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1652                 struct page *head, *page;
1653 repeat:
1654                 page = radix_tree_deref_slot(slot);
1655                 if (unlikely(!page))
1656                         continue;
1657                 if (radix_tree_exception(page)) {
1658                         if (radix_tree_deref_retry(page)) {
1659                                 slot = radix_tree_iter_retry(&iter);
1660                                 continue;
1661                         }
1662                         /*
1663                          * A shadow entry of a recently evicted page, a swap
1664                          * entry from shmem/tmpfs or a DAX entry.  Return it
1665                          * without attempting to raise page count.
1666                          */
1667                         goto export;
1668                 }
1669
1670                 head = compound_head(page);
1671                 if (!page_cache_get_speculative(head))
1672                         goto repeat;
1673
1674                 /* The page was split under us? */
1675                 if (compound_head(page) != head) {
1676                         put_page(head);
1677                         goto repeat;
1678                 }
1679
1680                 /* Has the page moved? */
1681                 if (unlikely(page != *slot)) {
1682                         put_page(head);
1683                         goto repeat;
1684                 }
1685 export:
1686                 indices[ret] = iter.index;
1687                 entries[ret] = page;
1688                 if (++ret == nr_entries)
1689                         break;
1690         }
1691         rcu_read_unlock();
1692         return ret;
1693 }
1694
1695 /**
1696  * find_get_pages_range - gang pagecache lookup
1697  * @mapping:    The address_space to search
1698  * @start:      The starting page index
1699  * @end:        The final page index (inclusive)
1700  * @nr_pages:   The maximum number of pages
1701  * @pages:      Where the resulting pages are placed
1702  *
1703  * find_get_pages_range() will search for and return a group of up to @nr_pages
1704  * pages in the mapping starting at index @start and up to index @end
1705  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1706  * a reference against the returned pages.
1707  *
1708  * The search returns a group of mapping-contiguous pages with ascending
1709  * indexes.  There may be holes in the indices due to not-present pages.
1710  * We also update @start to index the next page for the traversal.
1711  *
1712  * find_get_pages_range() returns the number of pages which were found. If this
1713  * number is smaller than @nr_pages, the end of specified range has been
1714  * reached.
1715  */
1716 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1717                               pgoff_t end, unsigned int nr_pages,
1718                               struct page **pages)
1719 {
1720         struct radix_tree_iter iter;
1721         void **slot;
1722         unsigned ret = 0;
1723
1724         if (unlikely(!nr_pages))
1725                 return 0;
1726
1727         rcu_read_lock();
1728         radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, *start) {
1729                 struct page *head, *page;
1730
1731                 if (iter.index > end)
1732                         break;
1733 repeat:
1734                 page = radix_tree_deref_slot(slot);
1735                 if (unlikely(!page))
1736                         continue;
1737
1738                 if (radix_tree_exception(page)) {
1739                         if (radix_tree_deref_retry(page)) {
1740                                 slot = radix_tree_iter_retry(&iter);
1741                                 continue;
1742                         }
1743                         /*
1744                          * A shadow entry of a recently evicted page,
1745                          * or a swap entry from shmem/tmpfs.  Skip
1746                          * over it.
1747                          */
1748                         continue;
1749                 }
1750
1751                 head = compound_head(page);
1752                 if (!page_cache_get_speculative(head))
1753                         goto repeat;
1754
1755                 /* The page was split under us? */
1756                 if (compound_head(page) != head) {
1757                         put_page(head);
1758                         goto repeat;
1759                 }
1760
1761                 /* Has the page moved? */
1762                 if (unlikely(page != *slot)) {
1763                         put_page(head);
1764                         goto repeat;
1765                 }
1766
1767                 pages[ret] = page;
1768                 if (++ret == nr_pages) {
1769                         *start = pages[ret - 1]->index + 1;
1770                         goto out;
1771                 }
1772         }
1773
1774         /*
1775          * We come here when there is no page beyond @end. We take care to not
1776          * overflow the index @start as it confuses some of the callers. This
1777          * breaks the iteration when there is page at index -1 but that is
1778          * already broken anyway.
1779          */
1780         if (end == (pgoff_t)-1)
1781                 *start = (pgoff_t)-1;
1782         else
1783                 *start = end + 1;
1784 out:
1785         rcu_read_unlock();
1786
1787         return ret;
1788 }
1789
1790 /**
1791  * find_get_pages_contig - gang contiguous pagecache lookup
1792  * @mapping:    The address_space to search
1793  * @index:      The starting page index
1794  * @nr_pages:   The maximum number of pages
1795  * @pages:      Where the resulting pages are placed
1796  *
1797  * find_get_pages_contig() works exactly like find_get_pages(), except
1798  * that the returned number of pages are guaranteed to be contiguous.
1799  *
1800  * find_get_pages_contig() returns the number of pages which were found.
1801  */
1802 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1803                                unsigned int nr_pages, struct page **pages)
1804 {
1805         struct radix_tree_iter iter;
1806         void **slot;
1807         unsigned int ret = 0;
1808
1809         if (unlikely(!nr_pages))
1810                 return 0;
1811
1812         rcu_read_lock();
1813         radix_tree_for_each_contig(slot, &mapping->i_pages, &iter, index) {
1814                 struct page *head, *page;
1815 repeat:
1816                 page = radix_tree_deref_slot(slot);
1817                 /* The hole, there no reason to continue */
1818                 if (unlikely(!page))
1819                         break;
1820
1821                 if (radix_tree_exception(page)) {
1822                         if (radix_tree_deref_retry(page)) {
1823                                 slot = radix_tree_iter_retry(&iter);
1824                                 continue;
1825                         }
1826                         /*
1827                          * A shadow entry of a recently evicted page,
1828                          * or a swap entry from shmem/tmpfs.  Stop
1829                          * looking for contiguous pages.
1830                          */
1831                         break;
1832                 }
1833
1834                 head = compound_head(page);
1835                 if (!page_cache_get_speculative(head))
1836                         goto repeat;
1837
1838                 /* The page was split under us? */
1839                 if (compound_head(page) != head) {
1840                         put_page(head);
1841                         goto repeat;
1842                 }
1843
1844                 /* Has the page moved? */
1845                 if (unlikely(page != *slot)) {
1846                         put_page(head);
1847                         goto repeat;
1848                 }
1849
1850                 /*
1851                  * must check mapping and index after taking the ref.
1852                  * otherwise we can get both false positives and false
1853                  * negatives, which is just confusing to the caller.
1854                  */
1855                 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1856                         put_page(page);
1857                         break;
1858                 }
1859
1860                 pages[ret] = page;
1861                 if (++ret == nr_pages)
1862                         break;
1863         }
1864         rcu_read_unlock();
1865         return ret;
1866 }
1867 EXPORT_SYMBOL(find_get_pages_contig);
1868
1869 /**
1870  * find_get_pages_range_tag - find and return pages in given range matching @tag
1871  * @mapping:    the address_space to search
1872  * @index:      the starting page index
1873  * @end:        The final page index (inclusive)
1874  * @tag:        the tag index
1875  * @nr_pages:   the maximum number of pages
1876  * @pages:      where the resulting pages are placed
1877  *
1878  * Like find_get_pages, except we only return pages which are tagged with
1879  * @tag.   We update @index to index the next page for the traversal.
1880  */
1881 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1882                         pgoff_t end, int tag, unsigned int nr_pages,
1883                         struct page **pages)
1884 {
1885         struct radix_tree_iter iter;
1886         void **slot;
1887         unsigned ret = 0;
1888
1889         if (unlikely(!nr_pages))
1890                 return 0;
1891
1892         rcu_read_lock();
1893         radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, *index, tag) {
1894                 struct page *head, *page;
1895
1896                 if (iter.index > end)
1897                         break;
1898 repeat:
1899                 page = radix_tree_deref_slot(slot);
1900                 if (unlikely(!page))
1901                         continue;
1902
1903                 if (radix_tree_exception(page)) {
1904                         if (radix_tree_deref_retry(page)) {
1905                                 slot = radix_tree_iter_retry(&iter);
1906                                 continue;
1907                         }
1908                         /*
1909                          * A shadow entry of a recently evicted page.
1910                          *
1911                          * Those entries should never be tagged, but
1912                          * this tree walk is lockless and the tags are
1913                          * looked up in bulk, one radix tree node at a
1914                          * time, so there is a sizable window for page
1915                          * reclaim to evict a page we saw tagged.
1916                          *
1917                          * Skip over it.
1918                          */
1919                         continue;
1920                 }
1921
1922                 head = compound_head(page);
1923                 if (!page_cache_get_speculative(head))
1924                         goto repeat;
1925
1926                 /* The page was split under us? */
1927                 if (compound_head(page) != head) {
1928                         put_page(head);
1929                         goto repeat;
1930                 }
1931
1932                 /* Has the page moved? */
1933                 if (unlikely(page != *slot)) {
1934                         put_page(head);
1935                         goto repeat;
1936                 }
1937
1938                 pages[ret] = page;
1939                 if (++ret == nr_pages) {
1940                         *index = pages[ret - 1]->index + 1;
1941                         goto out;
1942                 }
1943         }
1944
1945         /*
1946          * We come here when we got at @end. We take care to not overflow the
1947          * index @index as it confuses some of the callers. This breaks the
1948          * iteration when there is page at index -1 but that is already broken
1949          * anyway.
1950          */
1951         if (end == (pgoff_t)-1)
1952                 *index = (pgoff_t)-1;
1953         else
1954                 *index = end + 1;
1955 out:
1956         rcu_read_unlock();
1957
1958         return ret;
1959 }
1960 EXPORT_SYMBOL(find_get_pages_range_tag);
1961
1962 /**
1963  * find_get_entries_tag - find and return entries that match @tag
1964  * @mapping:    the address_space to search
1965  * @start:      the starting page cache index
1966  * @tag:        the tag index
1967  * @nr_entries: the maximum number of entries
1968  * @entries:    where the resulting entries are placed
1969  * @indices:    the cache indices corresponding to the entries in @entries
1970  *
1971  * Like find_get_entries, except we only return entries which are tagged with
1972  * @tag.
1973  */
1974 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1975                         int tag, unsigned int nr_entries,
1976                         struct page **entries, pgoff_t *indices)
1977 {
1978         void **slot;
1979         unsigned int ret = 0;
1980         struct radix_tree_iter iter;
1981
1982         if (!nr_entries)
1983                 return 0;
1984
1985         rcu_read_lock();
1986         radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start, tag) {
1987                 struct page *head, *page;
1988 repeat:
1989                 page = radix_tree_deref_slot(slot);
1990                 if (unlikely(!page))
1991                         continue;
1992                 if (radix_tree_exception(page)) {
1993                         if (radix_tree_deref_retry(page)) {
1994                                 slot = radix_tree_iter_retry(&iter);
1995                                 continue;
1996                         }
1997
1998                         /*
1999                          * A shadow entry of a recently evicted page, a swap
2000                          * entry from shmem/tmpfs or a DAX entry.  Return it
2001                          * without attempting to raise page count.
2002                          */
2003                         goto export;
2004                 }
2005
2006                 head = compound_head(page);
2007                 if (!page_cache_get_speculative(head))
2008                         goto repeat;
2009
2010                 /* The page was split under us? */
2011                 if (compound_head(page) != head) {
2012                         put_page(head);
2013                         goto repeat;
2014                 }
2015
2016                 /* Has the page moved? */
2017                 if (unlikely(page != *slot)) {
2018                         put_page(head);
2019                         goto repeat;
2020                 }
2021 export:
2022                 indices[ret] = iter.index;
2023                 entries[ret] = page;
2024                 if (++ret == nr_entries)
2025                         break;
2026         }
2027         rcu_read_unlock();
2028         return ret;
2029 }
2030 EXPORT_SYMBOL(find_get_entries_tag);
2031
2032 /*
2033  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2034  * a _large_ part of the i/o request. Imagine the worst scenario:
2035  *
2036  *      ---R__________________________________________B__________
2037  *         ^ reading here                             ^ bad block(assume 4k)
2038  *
2039  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2040  * => failing the whole request => read(R) => read(R+1) =>
2041  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2042  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2043  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2044  *
2045  * It is going insane. Fix it by quickly scaling down the readahead size.
2046  */
2047 static void shrink_readahead_size_eio(struct file *filp,
2048                                         struct file_ra_state *ra)
2049 {
2050         ra->ra_pages /= 4;
2051 }
2052
2053 /**
2054  * generic_file_buffered_read - generic file read routine
2055  * @iocb:       the iocb to read
2056  * @iter:       data destination
2057  * @written:    already copied
2058  *
2059  * This is a generic file read routine, and uses the
2060  * mapping->a_ops->readpage() function for the actual low-level stuff.
2061  *
2062  * This is really ugly. But the goto's actually try to clarify some
2063  * of the logic when it comes to error handling etc.
2064  */
2065 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2066                 struct iov_iter *iter, ssize_t written)
2067 {
2068         struct file *filp = iocb->ki_filp;
2069         struct address_space *mapping = filp->f_mapping;
2070         struct inode *inode = mapping->host;
2071         struct file_ra_state *ra = &filp->f_ra;
2072         loff_t *ppos = &iocb->ki_pos;
2073         pgoff_t index;
2074         pgoff_t last_index;
2075         pgoff_t prev_index;
2076         unsigned long offset;      /* offset into pagecache page */
2077         unsigned int prev_offset;
2078         int error = 0;
2079
2080         if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2081                 return 0;
2082         iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2083
2084         index = *ppos >> PAGE_SHIFT;
2085         prev_index = ra->prev_pos >> PAGE_SHIFT;
2086         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2087         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2088         offset = *ppos & ~PAGE_MASK;
2089
2090         for (;;) {
2091                 struct page *page;
2092                 pgoff_t end_index;
2093                 loff_t isize;
2094                 unsigned long nr, ret;
2095
2096                 cond_resched();
2097 find_page:
2098                 if (fatal_signal_pending(current)) {
2099                         error = -EINTR;
2100                         goto out;
2101                 }
2102
2103                 page = find_get_page(mapping, index);
2104                 if (!page) {
2105                         if (iocb->ki_flags & IOCB_NOWAIT)
2106                                 goto would_block;
2107                         page_cache_sync_readahead(mapping,
2108                                         ra, filp,
2109                                         index, last_index - index);
2110                         page = find_get_page(mapping, index);
2111                         if (unlikely(page == NULL))
2112                                 goto no_cached_page;
2113                 }
2114                 if (PageReadahead(page)) {
2115                         page_cache_async_readahead(mapping,
2116                                         ra, filp, page,
2117                                         index, last_index - index);
2118                 }
2119                 if (!PageUptodate(page)) {
2120                         if (iocb->ki_flags & IOCB_NOWAIT) {
2121                                 put_page(page);
2122                                 goto would_block;
2123                         }
2124
2125                         /*
2126                          * See comment in do_read_cache_page on why
2127                          * wait_on_page_locked is used to avoid unnecessarily
2128                          * serialisations and why it's safe.
2129                          */
2130                         error = wait_on_page_locked_killable(page);
2131                         if (unlikely(error))
2132                                 goto readpage_error;
2133                         if (PageUptodate(page))
2134                                 goto page_ok;
2135
2136                         if (inode->i_blkbits == PAGE_SHIFT ||
2137                                         !mapping->a_ops->is_partially_uptodate)
2138                                 goto page_not_up_to_date;
2139                         /* pipes can't handle partially uptodate pages */
2140                         if (unlikely(iter->type & ITER_PIPE))
2141                                 goto page_not_up_to_date;
2142                         if (!trylock_page(page))
2143                                 goto page_not_up_to_date;
2144                         /* Did it get truncated before we got the lock? */
2145                         if (!page->mapping)
2146                                 goto page_not_up_to_date_locked;
2147                         if (!mapping->a_ops->is_partially_uptodate(page,
2148                                                         offset, iter->count))
2149                                 goto page_not_up_to_date_locked;
2150                         unlock_page(page);
2151                 }
2152 page_ok:
2153                 /*
2154                  * i_size must be checked after we know the page is Uptodate.
2155                  *
2156                  * Checking i_size after the check allows us to calculate
2157                  * the correct value for "nr", which means the zero-filled
2158                  * part of the page is not copied back to userspace (unless
2159                  * another truncate extends the file - this is desired though).
2160                  */
2161
2162                 isize = i_size_read(inode);
2163                 end_index = (isize - 1) >> PAGE_SHIFT;
2164                 if (unlikely(!isize || index > end_index)) {
2165                         put_page(page);
2166                         goto out;
2167                 }
2168
2169                 /* nr is the maximum number of bytes to copy from this page */
2170                 nr = PAGE_SIZE;
2171                 if (index == end_index) {
2172                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
2173                         if (nr <= offset) {
2174                                 put_page(page);
2175                                 goto out;
2176                         }
2177                 }
2178                 nr = nr - offset;
2179
2180                 /* If users can be writing to this page using arbitrary
2181                  * virtual addresses, take care about potential aliasing
2182                  * before reading the page on the kernel side.
2183                  */
2184                 if (mapping_writably_mapped(mapping))
2185                         flush_dcache_page(page);
2186
2187                 /*
2188                  * When a sequential read accesses a page several times,
2189                  * only mark it as accessed the first time.
2190                  */
2191                 if (prev_index != index || offset != prev_offset)
2192                         mark_page_accessed(page);
2193                 prev_index = index;
2194
2195                 /*
2196                  * Ok, we have the page, and it's up-to-date, so
2197                  * now we can copy it to user space...
2198                  */
2199
2200                 ret = copy_page_to_iter(page, offset, nr, iter);
2201                 offset += ret;
2202                 index += offset >> PAGE_SHIFT;
2203                 offset &= ~PAGE_MASK;
2204                 prev_offset = offset;
2205
2206                 put_page(page);
2207                 written += ret;
2208                 if (!iov_iter_count(iter))
2209                         goto out;
2210                 if (ret < nr) {
2211                         error = -EFAULT;
2212                         goto out;
2213                 }
2214                 continue;
2215
2216 page_not_up_to_date:
2217                 /* Get exclusive access to the page ... */
2218                 error = lock_page_killable(page);
2219                 if (unlikely(error))
2220                         goto readpage_error;
2221
2222 page_not_up_to_date_locked:
2223                 /* Did it get truncated before we got the lock? */
2224                 if (!page->mapping) {
2225                         unlock_page(page);
2226                         put_page(page);
2227                         continue;
2228                 }
2229
2230                 /* Did somebody else fill it already? */
2231                 if (PageUptodate(page)) {
2232                         unlock_page(page);
2233                         goto page_ok;
2234                 }
2235
2236 readpage:
2237                 /*
2238                  * A previous I/O error may have been due to temporary
2239                  * failures, eg. multipath errors.
2240                  * PG_error will be set again if readpage fails.
2241                  */
2242                 ClearPageError(page);
2243                 /* Start the actual read. The read will unlock the page. */
2244                 error = mapping->a_ops->readpage(filp, page);
2245
2246                 if (unlikely(error)) {
2247                         if (error == AOP_TRUNCATED_PAGE) {
2248                                 put_page(page);
2249                                 error = 0;
2250                                 goto find_page;
2251                         }
2252                         goto readpage_error;
2253                 }
2254
2255                 if (!PageUptodate(page)) {
2256                         error = lock_page_killable(page);
2257                         if (unlikely(error))
2258                                 goto readpage_error;
2259                         if (!PageUptodate(page)) {
2260                                 if (page->mapping == NULL) {
2261                                         /*
2262                                          * invalidate_mapping_pages got it
2263                                          */
2264                                         unlock_page(page);
2265                                         put_page(page);
2266                                         goto find_page;
2267                                 }
2268                                 unlock_page(page);
2269                                 shrink_readahead_size_eio(filp, ra);
2270                                 error = -EIO;
2271                                 goto readpage_error;
2272                         }
2273                         unlock_page(page);
2274                 }
2275
2276                 goto page_ok;
2277
2278 readpage_error:
2279                 /* UHHUH! A synchronous read error occurred. Report it */
2280                 put_page(page);
2281                 goto out;
2282
2283 no_cached_page:
2284                 /*
2285                  * Ok, it wasn't cached, so we need to create a new
2286                  * page..
2287                  */
2288                 page = page_cache_alloc(mapping);
2289                 if (!page) {
2290                         error = -ENOMEM;
2291                         goto out;
2292                 }
2293                 error = add_to_page_cache_lru(page, mapping, index,
2294                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
2295                 if (error) {
2296                         put_page(page);
2297                         if (error == -EEXIST) {
2298                                 error = 0;
2299                                 goto find_page;
2300                         }
2301                         goto out;
2302                 }
2303                 goto readpage;
2304         }
2305
2306 would_block:
2307         error = -EAGAIN;
2308 out:
2309         ra->prev_pos = prev_index;
2310         ra->prev_pos <<= PAGE_SHIFT;
2311         ra->prev_pos |= prev_offset;
2312
2313         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2314         file_accessed(filp);
2315         return written ? written : error;
2316 }
2317
2318 /**
2319  * generic_file_read_iter - generic filesystem read routine
2320  * @iocb:       kernel I/O control block
2321  * @iter:       destination for the data read
2322  *
2323  * This is the "read_iter()" routine for all filesystems
2324  * that can use the page cache directly.
2325  */
2326 ssize_t
2327 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2328 {
2329         size_t count = iov_iter_count(iter);
2330         ssize_t retval = 0;
2331
2332         if (!count)
2333                 goto out; /* skip atime */
2334
2335         if (iocb->ki_flags & IOCB_DIRECT) {
2336                 struct file *file = iocb->ki_filp;
2337                 struct address_space *mapping = file->f_mapping;
2338                 struct inode *inode = mapping->host;
2339                 loff_t size;
2340
2341                 size = i_size_read(inode);
2342                 if (iocb->ki_flags & IOCB_NOWAIT) {
2343                         if (filemap_range_has_page(mapping, iocb->ki_pos,
2344                                                    iocb->ki_pos + count - 1))
2345                                 return -EAGAIN;
2346                 } else {
2347                         retval = filemap_write_and_wait_range(mapping,
2348                                                 iocb->ki_pos,
2349                                                 iocb->ki_pos + count - 1);
2350                         if (retval < 0)
2351                                 goto out;
2352                 }
2353
2354                 file_accessed(file);
2355
2356                 retval = mapping->a_ops->direct_IO(iocb, iter);
2357                 if (retval >= 0) {
2358                         iocb->ki_pos += retval;
2359                         count -= retval;
2360                 }
2361                 iov_iter_revert(iter, count - iov_iter_count(iter));
2362
2363                 /*
2364                  * Btrfs can have a short DIO read if we encounter
2365                  * compressed extents, so if there was an error, or if
2366                  * we've already read everything we wanted to, or if
2367                  * there was a short read because we hit EOF, go ahead
2368                  * and return.  Otherwise fallthrough to buffered io for
2369                  * the rest of the read.  Buffered reads will not work for
2370                  * DAX files, so don't bother trying.
2371                  */
2372                 if (retval < 0 || !count || iocb->ki_pos >= size ||
2373                     IS_DAX(inode))
2374                         goto out;
2375         }
2376
2377         retval = generic_file_buffered_read(iocb, iter, retval);
2378 out:
2379         return retval;
2380 }
2381 EXPORT_SYMBOL(generic_file_read_iter);
2382
2383 #ifdef CONFIG_MMU
2384 /**
2385  * page_cache_read - adds requested page to the page cache if not already there
2386  * @file:       file to read
2387  * @offset:     page index
2388  * @gfp_mask:   memory allocation flags
2389  *
2390  * This adds the requested page to the page cache if it isn't already there,
2391  * and schedules an I/O to read in its contents from disk.
2392  */
2393 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2394 {
2395         struct address_space *mapping = file->f_mapping;
2396         struct page *page;
2397         int ret;
2398
2399         do {
2400                 page = __page_cache_alloc(gfp_mask);
2401                 if (!page)
2402                         return -ENOMEM;
2403
2404                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
2405                 if (ret == 0)
2406                         ret = mapping->a_ops->readpage(file, page);
2407                 else if (ret == -EEXIST)
2408                         ret = 0; /* losing race to add is OK */
2409
2410                 put_page(page);
2411
2412         } while (ret == AOP_TRUNCATED_PAGE);
2413
2414         return ret;
2415 }
2416
2417 #define MMAP_LOTSAMISS  (100)
2418
2419 /*
2420  * Synchronous readahead happens when we don't even find
2421  * a page in the page cache at all.
2422  */
2423 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2424                                    struct file_ra_state *ra,
2425                                    struct file *file,
2426                                    pgoff_t offset)
2427 {
2428         struct address_space *mapping = file->f_mapping;
2429
2430         /* If we don't want any read-ahead, don't bother */
2431         if (vma->vm_flags & VM_RAND_READ)
2432                 return;
2433         if (!ra->ra_pages)
2434                 return;
2435
2436         if (vma->vm_flags & VM_SEQ_READ) {
2437                 page_cache_sync_readahead(mapping, ra, file, offset,
2438                                           ra->ra_pages);
2439                 return;
2440         }
2441
2442         /* Avoid banging the cache line if not needed */
2443         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2444                 ra->mmap_miss++;
2445
2446         /*
2447          * Do we miss much more than hit in this file? If so,
2448          * stop bothering with read-ahead. It will only hurt.
2449          */
2450         if (ra->mmap_miss > MMAP_LOTSAMISS)
2451                 return;
2452
2453         /*
2454          * mmap read-around
2455          */
2456         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2457         ra->size = ra->ra_pages;
2458         ra->async_size = ra->ra_pages / 4;
2459         ra_submit(ra, mapping, file);
2460 }
2461
2462 /*
2463  * Asynchronous readahead happens when we find the page and PG_readahead,
2464  * so we want to possibly extend the readahead further..
2465  */
2466 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2467                                     struct file_ra_state *ra,
2468                                     struct file *file,
2469                                     struct page *page,
2470                                     pgoff_t offset)
2471 {
2472         struct address_space *mapping = file->f_mapping;
2473
2474         /* If we don't want any read-ahead, don't bother */
2475         if (vma->vm_flags & VM_RAND_READ)
2476                 return;
2477         if (ra->mmap_miss > 0)
2478                 ra->mmap_miss--;
2479         if (PageReadahead(page))
2480                 page_cache_async_readahead(mapping, ra, file,
2481                                            page, offset, ra->ra_pages);
2482 }
2483
2484 /**
2485  * filemap_fault - read in file data for page fault handling
2486  * @vmf:        struct vm_fault containing details of the fault
2487  *
2488  * filemap_fault() is invoked via the vma operations vector for a
2489  * mapped memory region to read in file data during a page fault.
2490  *
2491  * The goto's are kind of ugly, but this streamlines the normal case of having
2492  * it in the page cache, and handles the special cases reasonably without
2493  * having a lot of duplicated code.
2494  *
2495  * vma->vm_mm->mmap_sem must be held on entry.
2496  *
2497  * If our return value has VM_FAULT_RETRY set, it's because
2498  * lock_page_or_retry() returned 0.
2499  * The mmap_sem has usually been released in this case.
2500  * See __lock_page_or_retry() for the exception.
2501  *
2502  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2503  * has not been released.
2504  *
2505  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2506  */
2507 vm_fault_t filemap_fault(struct vm_fault *vmf)
2508 {
2509         int error;
2510         struct file *file = vmf->vma->vm_file;
2511         struct address_space *mapping = file->f_mapping;
2512         struct file_ra_state *ra = &file->f_ra;
2513         struct inode *inode = mapping->host;
2514         pgoff_t offset = vmf->pgoff;
2515         pgoff_t max_off;
2516         struct page *page;
2517         vm_fault_t ret = 0;
2518
2519         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2520         if (unlikely(offset >= max_off))
2521                 return VM_FAULT_SIGBUS;
2522
2523         /*
2524          * Do we have something in the page cache already?
2525          */
2526         page = find_get_page(mapping, offset);
2527         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2528                 /*
2529                  * We found the page, so try async readahead before
2530                  * waiting for the lock.
2531                  */
2532                 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2533         } else if (!page) {
2534                 /* No page in the page cache at all */
2535                 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2536                 count_vm_event(PGMAJFAULT);
2537                 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2538                 ret = VM_FAULT_MAJOR;
2539 retry_find:
2540                 page = find_get_page(mapping, offset);
2541                 if (!page)
2542                         goto no_cached_page;
2543         }
2544
2545         if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2546                 put_page(page);
2547                 return ret | VM_FAULT_RETRY;
2548         }
2549
2550         /* Did it get truncated? */
2551         if (unlikely(page->mapping != mapping)) {
2552                 unlock_page(page);
2553                 put_page(page);
2554                 goto retry_find;
2555         }
2556         VM_BUG_ON_PAGE(page->index != offset, page);
2557
2558         /*
2559          * We have a locked page in the page cache, now we need to check
2560          * that it's up-to-date. If not, it is going to be due to an error.
2561          */
2562         if (unlikely(!PageUptodate(page)))
2563                 goto page_not_uptodate;
2564
2565         /*
2566          * Found the page and have a reference on it.
2567          * We must recheck i_size under page lock.
2568          */
2569         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2570         if (unlikely(offset >= max_off)) {
2571                 unlock_page(page);
2572                 put_page(page);
2573                 return VM_FAULT_SIGBUS;
2574         }
2575
2576         vmf->page = page;
2577         return ret | VM_FAULT_LOCKED;
2578
2579 no_cached_page:
2580         /*
2581          * We're only likely to ever get here if MADV_RANDOM is in
2582          * effect.
2583          */
2584         error = page_cache_read(file, offset, vmf->gfp_mask);
2585
2586         /*
2587          * The page we want has now been added to the page cache.
2588          * In the unlikely event that someone removed it in the
2589          * meantime, we'll just come back here and read it again.
2590          */
2591         if (error >= 0)
2592                 goto retry_find;
2593
2594         /*
2595          * An error return from page_cache_read can result if the
2596          * system is low on memory, or a problem occurs while trying
2597          * to schedule I/O.
2598          */
2599         if (error == -ENOMEM)
2600                 return VM_FAULT_OOM;
2601         return VM_FAULT_SIGBUS;
2602
2603 page_not_uptodate:
2604         /*
2605          * Umm, take care of errors if the page isn't up-to-date.
2606          * Try to re-read it _once_. We do this synchronously,
2607          * because there really aren't any performance issues here
2608          * and we need to check for errors.
2609          */
2610         ClearPageError(page);
2611         error = mapping->a_ops->readpage(file, page);
2612         if (!error) {
2613                 wait_on_page_locked(page);
2614                 if (!PageUptodate(page))
2615                         error = -EIO;
2616         }
2617         put_page(page);
2618
2619         if (!error || error == AOP_TRUNCATED_PAGE)
2620                 goto retry_find;
2621
2622         /* Things didn't work out. Return zero to tell the mm layer so. */
2623         shrink_readahead_size_eio(file, ra);
2624         return VM_FAULT_SIGBUS;
2625 }
2626 EXPORT_SYMBOL(filemap_fault);
2627
2628 void filemap_map_pages(struct vm_fault *vmf,
2629                 pgoff_t start_pgoff, pgoff_t end_pgoff)
2630 {
2631         struct radix_tree_iter iter;
2632         void **slot;
2633         struct file *file = vmf->vma->vm_file;
2634         struct address_space *mapping = file->f_mapping;
2635         pgoff_t last_pgoff = start_pgoff;
2636         unsigned long max_idx;
2637         struct page *head, *page;
2638
2639         rcu_read_lock();
2640         radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start_pgoff) {
2641                 if (iter.index > end_pgoff)
2642                         break;
2643 repeat:
2644                 page = radix_tree_deref_slot(slot);
2645                 if (unlikely(!page))
2646                         goto next;
2647                 if (radix_tree_exception(page)) {
2648                         if (radix_tree_deref_retry(page)) {
2649                                 slot = radix_tree_iter_retry(&iter);
2650                                 continue;
2651                         }
2652                         goto next;
2653                 }
2654
2655                 head = compound_head(page);
2656                 if (!page_cache_get_speculative(head))
2657                         goto repeat;
2658
2659                 /* The page was split under us? */
2660                 if (compound_head(page) != head) {
2661                         put_page(head);
2662                         goto repeat;
2663                 }
2664
2665                 /* Has the page moved? */
2666                 if (unlikely(page != *slot)) {
2667                         put_page(head);
2668                         goto repeat;
2669                 }
2670
2671                 if (!PageUptodate(page) ||
2672                                 PageReadahead(page) ||
2673                                 PageHWPoison(page))
2674                         goto skip;
2675                 if (!trylock_page(page))
2676                         goto skip;
2677
2678                 if (page->mapping != mapping || !PageUptodate(page))
2679                         goto unlock;
2680
2681                 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2682                 if (page->index >= max_idx)
2683                         goto unlock;
2684
2685                 if (file->f_ra.mmap_miss > 0)
2686                         file->f_ra.mmap_miss--;
2687
2688                 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2689                 if (vmf->pte)
2690                         vmf->pte += iter.index - last_pgoff;
2691                 last_pgoff = iter.index;
2692                 if (alloc_set_pte(vmf, NULL, page))
2693                         goto unlock;
2694                 unlock_page(page);
2695                 goto next;
2696 unlock:
2697                 unlock_page(page);
2698 skip:
2699                 put_page(page);
2700 next:
2701                 /* Huge page is mapped? No need to proceed. */
2702                 if (pmd_trans_huge(*vmf->pmd))
2703                         break;
2704                 if (iter.index == end_pgoff)
2705                         break;
2706         }
2707         rcu_read_unlock();
2708 }
2709 EXPORT_SYMBOL(filemap_map_pages);
2710
2711 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2712 {
2713         struct page *page = vmf->page;
2714         struct inode *inode = file_inode(vmf->vma->vm_file);
2715         vm_fault_t ret = VM_FAULT_LOCKED;
2716
2717         sb_start_pagefault(inode->i_sb);
2718         file_update_time(vmf->vma->vm_file);
2719         lock_page(page);
2720         if (page->mapping != inode->i_mapping) {
2721                 unlock_page(page);
2722                 ret = VM_FAULT_NOPAGE;
2723                 goto out;
2724         }
2725         /*
2726          * We mark the page dirty already here so that when freeze is in
2727          * progress, we are guaranteed that writeback during freezing will
2728          * see the dirty page and writeprotect it again.
2729          */
2730         set_page_dirty(page);
2731         wait_for_stable_page(page);
2732 out:
2733         sb_end_pagefault(inode->i_sb);
2734         return ret;
2735 }
2736
2737 const struct vm_operations_struct generic_file_vm_ops = {
2738         .fault          = filemap_fault,
2739         .map_pages      = filemap_map_pages,
2740         .page_mkwrite   = filemap_page_mkwrite,
2741 };
2742
2743 /* This is used for a general mmap of a disk file */
2744
2745 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2746 {
2747         struct address_space *mapping = file->f_mapping;
2748
2749         if (!mapping->a_ops->readpage)
2750                 return -ENOEXEC;
2751         file_accessed(file);
2752         vma->vm_ops = &generic_file_vm_ops;
2753         return 0;
2754 }
2755
2756 /*
2757  * This is for filesystems which do not implement ->writepage.
2758  */
2759 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2760 {
2761         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2762                 return -EINVAL;
2763         return generic_file_mmap(file, vma);
2764 }
2765 #else
2766 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2767 {
2768         return VM_FAULT_SIGBUS;
2769 }
2770 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2771 {
2772         return -ENOSYS;
2773 }
2774 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2775 {
2776         return -ENOSYS;
2777 }
2778 #endif /* CONFIG_MMU */
2779
2780 EXPORT_SYMBOL(filemap_page_mkwrite);
2781 EXPORT_SYMBOL(generic_file_mmap);
2782 EXPORT_SYMBOL(generic_file_readonly_mmap);
2783
2784 static struct page *wait_on_page_read(struct page *page)
2785 {
2786         if (!IS_ERR(page)) {
2787                 wait_on_page_locked(page);
2788                 if (!PageUptodate(page)) {
2789                         put_page(page);
2790                         page = ERR_PTR(-EIO);
2791                 }
2792         }
2793         return page;
2794 }
2795
2796 static struct page *do_read_cache_page(struct address_space *mapping,
2797                                 pgoff_t index,
2798                                 int (*filler)(void *, struct page *),
2799                                 void *data,
2800                                 gfp_t gfp)
2801 {
2802         struct page *page;
2803         int err;
2804 repeat:
2805         page = find_get_page(mapping, index);
2806         if (!page) {
2807                 page = __page_cache_alloc(gfp);
2808                 if (!page)
2809                         return ERR_PTR(-ENOMEM);
2810                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2811                 if (unlikely(err)) {
2812                         put_page(page);
2813                         if (err == -EEXIST)
2814                                 goto repeat;
2815                         /* Presumably ENOMEM for radix tree node */
2816                         return ERR_PTR(err);
2817                 }
2818
2819 filler:
2820                 err = filler(data, page);
2821                 if (err < 0) {
2822                         put_page(page);
2823                         return ERR_PTR(err);
2824                 }
2825
2826                 page = wait_on_page_read(page);
2827                 if (IS_ERR(page))
2828                         return page;
2829                 goto out;
2830         }
2831         if (PageUptodate(page))
2832                 goto out;
2833
2834         /*
2835          * Page is not up to date and may be locked due one of the following
2836          * case a: Page is being filled and the page lock is held
2837          * case b: Read/write error clearing the page uptodate status
2838          * case c: Truncation in progress (page locked)
2839          * case d: Reclaim in progress
2840          *
2841          * Case a, the page will be up to date when the page is unlocked.
2842          *    There is no need to serialise on the page lock here as the page
2843          *    is pinned so the lock gives no additional protection. Even if the
2844          *    the page is truncated, the data is still valid if PageUptodate as
2845          *    it's a race vs truncate race.
2846          * Case b, the page will not be up to date
2847          * Case c, the page may be truncated but in itself, the data may still
2848          *    be valid after IO completes as it's a read vs truncate race. The
2849          *    operation must restart if the page is not uptodate on unlock but
2850          *    otherwise serialising on page lock to stabilise the mapping gives
2851          *    no additional guarantees to the caller as the page lock is
2852          *    released before return.
2853          * Case d, similar to truncation. If reclaim holds the page lock, it
2854          *    will be a race with remove_mapping that determines if the mapping
2855          *    is valid on unlock but otherwise the data is valid and there is
2856          *    no need to serialise with page lock.
2857          *
2858          * As the page lock gives no additional guarantee, we optimistically
2859          * wait on the page to be unlocked and check if it's up to date and
2860          * use the page if it is. Otherwise, the page lock is required to
2861          * distinguish between the different cases. The motivation is that we
2862          * avoid spurious serialisations and wakeups when multiple processes
2863          * wait on the same page for IO to complete.
2864          */
2865         wait_on_page_locked(page);
2866         if (PageUptodate(page))
2867                 goto out;
2868
2869         /* Distinguish between all the cases under the safety of the lock */
2870         lock_page(page);
2871
2872         /* Case c or d, restart the operation */
2873         if (!page->mapping) {
2874                 unlock_page(page);
2875                 put_page(page);
2876                 goto repeat;
2877         }
2878
2879         /* Someone else locked and filled the page in a very small window */
2880         if (PageUptodate(page)) {
2881                 unlock_page(page);
2882                 goto out;
2883         }
2884         goto filler;
2885
2886 out:
2887         mark_page_accessed(page);
2888         return page;
2889 }
2890
2891 /**
2892  * read_cache_page - read into page cache, fill it if needed
2893  * @mapping:    the page's address_space
2894  * @index:      the page index
2895  * @filler:     function to perform the read
2896  * @data:       first arg to filler(data, page) function, often left as NULL
2897  *
2898  * Read into the page cache. If a page already exists, and PageUptodate() is
2899  * not set, try to fill the page and wait for it to become unlocked.
2900  *
2901  * If the page does not get brought uptodate, return -EIO.
2902  */
2903 struct page *read_cache_page(struct address_space *mapping,
2904                                 pgoff_t index,
2905                                 int (*filler)(void *, struct page *),
2906                                 void *data)
2907 {
2908         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2909 }
2910 EXPORT_SYMBOL(read_cache_page);
2911
2912 /**
2913  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2914  * @mapping:    the page's address_space
2915  * @index:      the page index
2916  * @gfp:        the page allocator flags to use if allocating
2917  *
2918  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2919  * any new page allocations done using the specified allocation flags.
2920  *
2921  * If the page does not get brought uptodate, return -EIO.
2922  */
2923 struct page *read_cache_page_gfp(struct address_space *mapping,
2924                                 pgoff_t index,
2925                                 gfp_t gfp)
2926 {
2927         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2928
2929         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2930 }
2931 EXPORT_SYMBOL(read_cache_page_gfp);
2932
2933 /*
2934  * Performs necessary checks before doing a write
2935  *
2936  * Can adjust writing position or amount of bytes to write.
2937  * Returns appropriate error code that caller should return or
2938  * zero in case that write should be allowed.
2939  */
2940 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2941 {
2942         struct file *file = iocb->ki_filp;
2943         struct inode *inode = file->f_mapping->host;
2944         unsigned long limit = rlimit(RLIMIT_FSIZE);
2945         loff_t pos;
2946
2947         if (!iov_iter_count(from))
2948                 return 0;
2949
2950         /* FIXME: this is for backwards compatibility with 2.4 */
2951         if (iocb->ki_flags & IOCB_APPEND)
2952                 iocb->ki_pos = i_size_read(inode);
2953
2954         pos = iocb->ki_pos;
2955
2956         if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2957                 return -EINVAL;
2958
2959         if (limit != RLIM_INFINITY) {
2960                 if (iocb->ki_pos >= limit) {
2961                         send_sig(SIGXFSZ, current, 0);
2962                         return -EFBIG;
2963                 }
2964                 iov_iter_truncate(from, limit - (unsigned long)pos);
2965         }
2966
2967         /*
2968          * LFS rule
2969          */
2970         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2971                                 !(file->f_flags & O_LARGEFILE))) {
2972                 if (pos >= MAX_NON_LFS)
2973                         return -EFBIG;
2974                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2975         }
2976
2977         /*
2978          * Are we about to exceed the fs block limit ?
2979          *
2980          * If we have written data it becomes a short write.  If we have
2981          * exceeded without writing data we send a signal and return EFBIG.
2982          * Linus frestrict idea will clean these up nicely..
2983          */
2984         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2985                 return -EFBIG;
2986
2987         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2988         return iov_iter_count(from);
2989 }
2990 EXPORT_SYMBOL(generic_write_checks);
2991
2992 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2993                                 loff_t pos, unsigned len, unsigned flags,
2994                                 struct page **pagep, void **fsdata)
2995 {
2996         const struct address_space_operations *aops = mapping->a_ops;
2997
2998         return aops->write_begin(file, mapping, pos, len, flags,
2999                                                         pagep, fsdata);
3000 }
3001 EXPORT_SYMBOL(pagecache_write_begin);
3002
3003 int pagecache_write_end(struct file *file, struct address_space *mapping,
3004                                 loff_t pos, unsigned len, unsigned copied,
3005                                 struct page *page, void *fsdata)
3006 {
3007         const struct address_space_operations *aops = mapping->a_ops;
3008
3009         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3010 }
3011 EXPORT_SYMBOL(pagecache_write_end);
3012
3013 ssize_t
3014 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3015 {
3016         struct file     *file = iocb->ki_filp;
3017         struct address_space *mapping = file->f_mapping;
3018         struct inode    *inode = mapping->host;
3019         loff_t          pos = iocb->ki_pos;
3020         ssize_t         written;
3021         size_t          write_len;
3022         pgoff_t         end;
3023
3024         write_len = iov_iter_count(from);
3025         end = (pos + write_len - 1) >> PAGE_SHIFT;
3026
3027         if (iocb->ki_flags & IOCB_NOWAIT) {
3028                 /* If there are pages to writeback, return */
3029                 if (filemap_range_has_page(inode->i_mapping, pos,
3030                                            pos + write_len))
3031                         return -EAGAIN;
3032         } else {
3033                 written = filemap_write_and_wait_range(mapping, pos,
3034                                                         pos + write_len - 1);
3035                 if (written)
3036                         goto out;
3037         }
3038
3039         /*
3040          * After a write we want buffered reads to be sure to go to disk to get
3041          * the new data.  We invalidate clean cached page from the region we're
3042          * about to write.  We do this *before* the write so that we can return
3043          * without clobbering -EIOCBQUEUED from ->direct_IO().
3044          */
3045         written = invalidate_inode_pages2_range(mapping,
3046                                         pos >> PAGE_SHIFT, end);
3047         /*
3048          * If a page can not be invalidated, return 0 to fall back
3049          * to buffered write.
3050          */
3051         if (written) {
3052                 if (written == -EBUSY)
3053                         return 0;
3054                 goto out;
3055         }
3056
3057         written = mapping->a_ops->direct_IO(iocb, from);
3058
3059         /*
3060          * Finally, try again to invalidate clean pages which might have been
3061          * cached by non-direct readahead, or faulted in by get_user_pages()
3062          * if the source of the write was an mmap'ed region of the file
3063          * we're writing.  Either one is a pretty crazy thing to do,
3064          * so we don't support it 100%.  If this invalidation
3065          * fails, tough, the write still worked...
3066          *
3067          * Most of the time we do not need this since dio_complete() will do
3068          * the invalidation for us. However there are some file systems that
3069          * do not end up with dio_complete() being called, so let's not break
3070          * them by removing it completely
3071          */
3072         if (mapping->nrpages)
3073                 invalidate_inode_pages2_range(mapping,
3074                                         pos >> PAGE_SHIFT, end);
3075
3076         if (written > 0) {
3077                 pos += written;
3078                 write_len -= written;
3079                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3080                         i_size_write(inode, pos);
3081                         mark_inode_dirty(inode);
3082                 }
3083                 iocb->ki_pos = pos;
3084         }
3085         iov_iter_revert(from, write_len - iov_iter_count(from));
3086 out:
3087         return written;
3088 }
3089 EXPORT_SYMBOL(generic_file_direct_write);
3090
3091 /*
3092  * Find or create a page at the given pagecache position. Return the locked
3093  * page. This function is specifically for buffered writes.
3094  */
3095 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3096                                         pgoff_t index, unsigned flags)
3097 {
3098         struct page *page;
3099         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3100
3101         if (flags & AOP_FLAG_NOFS)
3102                 fgp_flags |= FGP_NOFS;
3103
3104         page = pagecache_get_page(mapping, index, fgp_flags,
3105                         mapping_gfp_mask(mapping));
3106         if (page)
3107                 wait_for_stable_page(page);
3108
3109         return page;
3110 }
3111 EXPORT_SYMBOL(grab_cache_page_write_begin);
3112
3113 ssize_t generic_perform_write(struct file *file,
3114                                 struct iov_iter *i, loff_t pos)
3115 {
3116         struct address_space *mapping = file->f_mapping;
3117         const struct address_space_operations *a_ops = mapping->a_ops;
3118         long status = 0;
3119         ssize_t written = 0;
3120         unsigned int flags = 0;
3121
3122         do {
3123                 struct page *page;
3124                 unsigned long offset;   /* Offset into pagecache page */
3125                 unsigned long bytes;    /* Bytes to write to page */
3126                 size_t copied;          /* Bytes copied from user */
3127                 void *fsdata;
3128
3129                 offset = (pos & (PAGE_SIZE - 1));
3130                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3131                                                 iov_iter_count(i));
3132
3133 again:
3134                 /*
3135                  * Bring in the user page that we will copy from _first_.
3136                  * Otherwise there's a nasty deadlock on copying from the
3137                  * same page as we're writing to, without it being marked
3138                  * up-to-date.
3139                  *
3140                  * Not only is this an optimisation, but it is also required
3141                  * to check that the address is actually valid, when atomic
3142                  * usercopies are used, below.
3143                  */
3144                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3145                         status = -EFAULT;
3146                         break;
3147                 }
3148
3149                 if (fatal_signal_pending(current)) {
3150                         status = -EINTR;
3151                         break;
3152                 }
3153
3154                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3155                                                 &page, &fsdata);
3156                 if (unlikely(status < 0))
3157                         break;
3158
3159                 if (mapping_writably_mapped(mapping))
3160                         flush_dcache_page(page);
3161
3162                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3163                 flush_dcache_page(page);
3164
3165                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3166                                                 page, fsdata);
3167                 if (unlikely(status < 0))
3168                         break;
3169                 copied = status;
3170
3171                 cond_resched();
3172
3173                 iov_iter_advance(i, copied);
3174                 if (unlikely(copied == 0)) {
3175                         /*
3176                          * If we were unable to copy any data at all, we must
3177                          * fall back to a single segment length write.
3178                          *
3179                          * If we didn't fallback here, we could livelock
3180                          * because not all segments in the iov can be copied at
3181                          * once without a pagefault.
3182                          */
3183                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
3184                                                 iov_iter_single_seg_count(i));
3185                         goto again;
3186                 }
3187                 pos += copied;
3188                 written += copied;
3189
3190                 balance_dirty_pages_ratelimited(mapping);
3191         } while (iov_iter_count(i));
3192
3193         return written ? written : status;
3194 }
3195 EXPORT_SYMBOL(generic_perform_write);
3196
3197 /**
3198  * __generic_file_write_iter - write data to a file
3199  * @iocb:       IO state structure (file, offset, etc.)
3200  * @from:       iov_iter with data to write
3201  *
3202  * This function does all the work needed for actually writing data to a
3203  * file. It does all basic checks, removes SUID from the file, updates
3204  * modification times and calls proper subroutines depending on whether we
3205  * do direct IO or a standard buffered write.
3206  *
3207  * It expects i_mutex to be grabbed unless we work on a block device or similar
3208  * object which does not need locking at all.
3209  *
3210  * This function does *not* take care of syncing data in case of O_SYNC write.
3211  * A caller has to handle it. This is mainly due to the fact that we want to
3212  * avoid syncing under i_mutex.
3213  */
3214 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3215 {
3216         struct file *file = iocb->ki_filp;
3217         struct address_space * mapping = file->f_mapping;
3218         struct inode    *inode = mapping->host;
3219         ssize_t         written = 0;
3220         ssize_t         err;
3221         ssize_t         status;
3222
3223         /* We can write back this queue in page reclaim */
3224         current->backing_dev_info = inode_to_bdi(inode);
3225         err = file_remove_privs(file);
3226         if (err)
3227                 goto out;
3228
3229         err = file_update_time(file);
3230         if (err)
3231                 goto out;
3232
3233         if (iocb->ki_flags & IOCB_DIRECT) {
3234                 loff_t pos, endbyte;
3235
3236                 written = generic_file_direct_write(iocb, from);
3237                 /*
3238                  * If the write stopped short of completing, fall back to
3239                  * buffered writes.  Some filesystems do this for writes to
3240                  * holes, for example.  For DAX files, a buffered write will
3241                  * not succeed (even if it did, DAX does not handle dirty
3242                  * page-cache pages correctly).
3243                  */
3244                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3245                         goto out;
3246
3247                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3248                 /*
3249                  * If generic_perform_write() returned a synchronous error
3250                  * then we want to return the number of bytes which were
3251                  * direct-written, or the error code if that was zero.  Note
3252                  * that this differs from normal direct-io semantics, which
3253                  * will return -EFOO even if some bytes were written.
3254                  */
3255                 if (unlikely(status < 0)) {
3256                         err = status;
3257                         goto out;
3258                 }
3259                 /*
3260                  * We need to ensure that the page cache pages are written to
3261                  * disk and invalidated to preserve the expected O_DIRECT
3262                  * semantics.
3263                  */
3264                 endbyte = pos + status - 1;
3265                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3266                 if (err == 0) {
3267                         iocb->ki_pos = endbyte + 1;
3268                         written += status;
3269                         invalidate_mapping_pages(mapping,
3270                                                  pos >> PAGE_SHIFT,
3271                                                  endbyte >> PAGE_SHIFT);
3272                 } else {
3273                         /*
3274                          * We don't know how much we wrote, so just return
3275                          * the number of bytes which were direct-written
3276                          */
3277                 }
3278         } else {
3279                 written = generic_perform_write(file, from, iocb->ki_pos);
3280                 if (likely(written > 0))
3281                         iocb->ki_pos += written;
3282         }
3283 out:
3284         current->backing_dev_info = NULL;
3285         return written ? written : err;
3286 }
3287 EXPORT_SYMBOL(__generic_file_write_iter);
3288
3289 /**
3290  * generic_file_write_iter - write data to a file
3291  * @iocb:       IO state structure
3292  * @from:       iov_iter with data to write
3293  *
3294  * This is a wrapper around __generic_file_write_iter() to be used by most
3295  * filesystems. It takes care of syncing the file in case of O_SYNC file
3296  * and acquires i_mutex as needed.
3297  */
3298 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3299 {
3300         struct file *file = iocb->ki_filp;
3301         struct inode *inode = file->f_mapping->host;
3302         ssize_t ret;
3303
3304         inode_lock(inode);
3305         ret = generic_write_checks(iocb, from);
3306         if (ret > 0)
3307                 ret = __generic_file_write_iter(iocb, from);
3308         inode_unlock(inode);
3309
3310         if (ret > 0)
3311                 ret = generic_write_sync(iocb, ret);
3312         return ret;
3313 }
3314 EXPORT_SYMBOL(generic_file_write_iter);
3315
3316 /**
3317  * try_to_release_page() - release old fs-specific metadata on a page
3318  *
3319  * @page: the page which the kernel is trying to free
3320  * @gfp_mask: memory allocation flags (and I/O mode)
3321  *
3322  * The address_space is to try to release any data against the page
3323  * (presumably at page->private).  If the release was successful, return '1'.
3324  * Otherwise return zero.
3325  *
3326  * This may also be called if PG_fscache is set on a page, indicating that the
3327  * page is known to the local caching routines.
3328  *
3329  * The @gfp_mask argument specifies whether I/O may be performed to release
3330  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3331  *
3332  */
3333 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3334 {
3335         struct address_space * const mapping = page->mapping;
3336
3337         BUG_ON(!PageLocked(page));
3338         if (PageWriteback(page))
3339                 return 0;
3340
3341         if (mapping && mapping->a_ops->releasepage)
3342                 return mapping->a_ops->releasepage(page, gfp_mask);
3343         return try_to_free_buffers(page);
3344 }
3345
3346 EXPORT_SYMBOL(try_to_release_page);