mm, compaction: extend pageblock_skip_persistent() to all compound pages
[sfrench/cifs-2.6.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include "internal.h"
26
27 #ifdef CONFIG_COMPACTION
28 static inline void count_compact_event(enum vm_event_item item)
29 {
30         count_vm_event(item);
31 }
32
33 static inline void count_compact_events(enum vm_event_item item, long delta)
34 {
35         count_vm_events(item, delta);
36 }
37 #else
38 #define count_compact_event(item) do { } while (0)
39 #define count_compact_events(item, delta) do { } while (0)
40 #endif
41
42 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/compaction.h>
46
47 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
48 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
49 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
50 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
51
52 static unsigned long release_freepages(struct list_head *freelist)
53 {
54         struct page *page, *next;
55         unsigned long high_pfn = 0;
56
57         list_for_each_entry_safe(page, next, freelist, lru) {
58                 unsigned long pfn = page_to_pfn(page);
59                 list_del(&page->lru);
60                 __free_page(page);
61                 if (pfn > high_pfn)
62                         high_pfn = pfn;
63         }
64
65         return high_pfn;
66 }
67
68 static void map_pages(struct list_head *list)
69 {
70         unsigned int i, order, nr_pages;
71         struct page *page, *next;
72         LIST_HEAD(tmp_list);
73
74         list_for_each_entry_safe(page, next, list, lru) {
75                 list_del(&page->lru);
76
77                 order = page_private(page);
78                 nr_pages = 1 << order;
79
80                 post_alloc_hook(page, order, __GFP_MOVABLE);
81                 if (order)
82                         split_page(page, order);
83
84                 for (i = 0; i < nr_pages; i++) {
85                         list_add(&page->lru, &tmp_list);
86                         page++;
87                 }
88         }
89
90         list_splice(&tmp_list, list);
91 }
92
93 #ifdef CONFIG_COMPACTION
94
95 int PageMovable(struct page *page)
96 {
97         struct address_space *mapping;
98
99         VM_BUG_ON_PAGE(!PageLocked(page), page);
100         if (!__PageMovable(page))
101                 return 0;
102
103         mapping = page_mapping(page);
104         if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
105                 return 1;
106
107         return 0;
108 }
109 EXPORT_SYMBOL(PageMovable);
110
111 void __SetPageMovable(struct page *page, struct address_space *mapping)
112 {
113         VM_BUG_ON_PAGE(!PageLocked(page), page);
114         VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
115         page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
116 }
117 EXPORT_SYMBOL(__SetPageMovable);
118
119 void __ClearPageMovable(struct page *page)
120 {
121         VM_BUG_ON_PAGE(!PageLocked(page), page);
122         VM_BUG_ON_PAGE(!PageMovable(page), page);
123         /*
124          * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
125          * flag so that VM can catch up released page by driver after isolation.
126          * With it, VM migration doesn't try to put it back.
127          */
128         page->mapping = (void *)((unsigned long)page->mapping &
129                                 PAGE_MAPPING_MOVABLE);
130 }
131 EXPORT_SYMBOL(__ClearPageMovable);
132
133 /* Do not skip compaction more than 64 times */
134 #define COMPACT_MAX_DEFER_SHIFT 6
135
136 /*
137  * Compaction is deferred when compaction fails to result in a page
138  * allocation success. 1 << compact_defer_limit compactions are skipped up
139  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
140  */
141 void defer_compaction(struct zone *zone, int order)
142 {
143         zone->compact_considered = 0;
144         zone->compact_defer_shift++;
145
146         if (order < zone->compact_order_failed)
147                 zone->compact_order_failed = order;
148
149         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
150                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
151
152         trace_mm_compaction_defer_compaction(zone, order);
153 }
154
155 /* Returns true if compaction should be skipped this time */
156 bool compaction_deferred(struct zone *zone, int order)
157 {
158         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
159
160         if (order < zone->compact_order_failed)
161                 return false;
162
163         /* Avoid possible overflow */
164         if (++zone->compact_considered > defer_limit)
165                 zone->compact_considered = defer_limit;
166
167         if (zone->compact_considered >= defer_limit)
168                 return false;
169
170         trace_mm_compaction_deferred(zone, order);
171
172         return true;
173 }
174
175 /*
176  * Update defer tracking counters after successful compaction of given order,
177  * which means an allocation either succeeded (alloc_success == true) or is
178  * expected to succeed.
179  */
180 void compaction_defer_reset(struct zone *zone, int order,
181                 bool alloc_success)
182 {
183         if (alloc_success) {
184                 zone->compact_considered = 0;
185                 zone->compact_defer_shift = 0;
186         }
187         if (order >= zone->compact_order_failed)
188                 zone->compact_order_failed = order + 1;
189
190         trace_mm_compaction_defer_reset(zone, order);
191 }
192
193 /* Returns true if restarting compaction after many failures */
194 bool compaction_restarting(struct zone *zone, int order)
195 {
196         if (order < zone->compact_order_failed)
197                 return false;
198
199         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
200                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
201 }
202
203 /* Returns true if the pageblock should be scanned for pages to isolate. */
204 static inline bool isolation_suitable(struct compact_control *cc,
205                                         struct page *page)
206 {
207         if (cc->ignore_skip_hint)
208                 return true;
209
210         return !get_pageblock_skip(page);
211 }
212
213 static void reset_cached_positions(struct zone *zone)
214 {
215         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
216         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
217         zone->compact_cached_free_pfn =
218                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
219 }
220
221 /*
222  * Compound pages of >= pageblock_order should consistenly be skipped until
223  * released. It is always pointless to compact pages of such order (if they are
224  * migratable), and the pageblocks they occupy cannot contain any free pages.
225  */
226 static bool pageblock_skip_persistent(struct page *page)
227 {
228         if (!PageCompound(page))
229                 return false;
230
231         page = compound_head(page);
232
233         if (compound_order(page) >= pageblock_order)
234                 return true;
235
236         return false;
237 }
238
239 /*
240  * This function is called to clear all cached information on pageblocks that
241  * should be skipped for page isolation when the migrate and free page scanner
242  * meet.
243  */
244 static void __reset_isolation_suitable(struct zone *zone)
245 {
246         unsigned long start_pfn = zone->zone_start_pfn;
247         unsigned long end_pfn = zone_end_pfn(zone);
248         unsigned long pfn;
249
250         zone->compact_blockskip_flush = false;
251
252         /* Walk the zone and mark every pageblock as suitable for isolation */
253         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
254                 struct page *page;
255
256                 cond_resched();
257
258                 page = pfn_to_online_page(pfn);
259                 if (!page)
260                         continue;
261                 if (zone != page_zone(page))
262                         continue;
263                 if (pageblock_skip_persistent(page))
264                         continue;
265
266                 clear_pageblock_skip(page);
267         }
268
269         reset_cached_positions(zone);
270 }
271
272 void reset_isolation_suitable(pg_data_t *pgdat)
273 {
274         int zoneid;
275
276         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
277                 struct zone *zone = &pgdat->node_zones[zoneid];
278                 if (!populated_zone(zone))
279                         continue;
280
281                 /* Only flush if a full compaction finished recently */
282                 if (zone->compact_blockskip_flush)
283                         __reset_isolation_suitable(zone);
284         }
285 }
286
287 /*
288  * If no pages were isolated then mark this pageblock to be skipped in the
289  * future. The information is later cleared by __reset_isolation_suitable().
290  */
291 static void update_pageblock_skip(struct compact_control *cc,
292                         struct page *page, unsigned long nr_isolated,
293                         bool migrate_scanner)
294 {
295         struct zone *zone = cc->zone;
296         unsigned long pfn;
297
298         if (cc->ignore_skip_hint)
299                 return;
300
301         if (!page)
302                 return;
303
304         if (nr_isolated)
305                 return;
306
307         set_pageblock_skip(page);
308
309         pfn = page_to_pfn(page);
310
311         /* Update where async and sync compaction should restart */
312         if (migrate_scanner) {
313                 if (pfn > zone->compact_cached_migrate_pfn[0])
314                         zone->compact_cached_migrate_pfn[0] = pfn;
315                 if (cc->mode != MIGRATE_ASYNC &&
316                     pfn > zone->compact_cached_migrate_pfn[1])
317                         zone->compact_cached_migrate_pfn[1] = pfn;
318         } else {
319                 if (pfn < zone->compact_cached_free_pfn)
320                         zone->compact_cached_free_pfn = pfn;
321         }
322 }
323 #else
324 static inline bool isolation_suitable(struct compact_control *cc,
325                                         struct page *page)
326 {
327         return true;
328 }
329
330 static inline bool pageblock_skip_persistent(struct page *page)
331 {
332         return false;
333 }
334
335 static inline void update_pageblock_skip(struct compact_control *cc,
336                         struct page *page, unsigned long nr_isolated,
337                         bool migrate_scanner)
338 {
339 }
340 #endif /* CONFIG_COMPACTION */
341
342 /*
343  * Compaction requires the taking of some coarse locks that are potentially
344  * very heavily contended. For async compaction, back out if the lock cannot
345  * be taken immediately. For sync compaction, spin on the lock if needed.
346  *
347  * Returns true if the lock is held
348  * Returns false if the lock is not held and compaction should abort
349  */
350 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
351                                                 struct compact_control *cc)
352 {
353         if (cc->mode == MIGRATE_ASYNC) {
354                 if (!spin_trylock_irqsave(lock, *flags)) {
355                         cc->contended = true;
356                         return false;
357                 }
358         } else {
359                 spin_lock_irqsave(lock, *flags);
360         }
361
362         return true;
363 }
364
365 /*
366  * Compaction requires the taking of some coarse locks that are potentially
367  * very heavily contended. The lock should be periodically unlocked to avoid
368  * having disabled IRQs for a long time, even when there is nobody waiting on
369  * the lock. It might also be that allowing the IRQs will result in
370  * need_resched() becoming true. If scheduling is needed, async compaction
371  * aborts. Sync compaction schedules.
372  * Either compaction type will also abort if a fatal signal is pending.
373  * In either case if the lock was locked, it is dropped and not regained.
374  *
375  * Returns true if compaction should abort due to fatal signal pending, or
376  *              async compaction due to need_resched()
377  * Returns false when compaction can continue (sync compaction might have
378  *              scheduled)
379  */
380 static bool compact_unlock_should_abort(spinlock_t *lock,
381                 unsigned long flags, bool *locked, struct compact_control *cc)
382 {
383         if (*locked) {
384                 spin_unlock_irqrestore(lock, flags);
385                 *locked = false;
386         }
387
388         if (fatal_signal_pending(current)) {
389                 cc->contended = true;
390                 return true;
391         }
392
393         if (need_resched()) {
394                 if (cc->mode == MIGRATE_ASYNC) {
395                         cc->contended = true;
396                         return true;
397                 }
398                 cond_resched();
399         }
400
401         return false;
402 }
403
404 /*
405  * Aside from avoiding lock contention, compaction also periodically checks
406  * need_resched() and either schedules in sync compaction or aborts async
407  * compaction. This is similar to what compact_unlock_should_abort() does, but
408  * is used where no lock is concerned.
409  *
410  * Returns false when no scheduling was needed, or sync compaction scheduled.
411  * Returns true when async compaction should abort.
412  */
413 static inline bool compact_should_abort(struct compact_control *cc)
414 {
415         /* async compaction aborts if contended */
416         if (need_resched()) {
417                 if (cc->mode == MIGRATE_ASYNC) {
418                         cc->contended = true;
419                         return true;
420                 }
421
422                 cond_resched();
423         }
424
425         return false;
426 }
427
428 /*
429  * Isolate free pages onto a private freelist. If @strict is true, will abort
430  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
431  * (even though it may still end up isolating some pages).
432  */
433 static unsigned long isolate_freepages_block(struct compact_control *cc,
434                                 unsigned long *start_pfn,
435                                 unsigned long end_pfn,
436                                 struct list_head *freelist,
437                                 bool strict)
438 {
439         int nr_scanned = 0, total_isolated = 0;
440         struct page *cursor, *valid_page = NULL;
441         unsigned long flags = 0;
442         bool locked = false;
443         unsigned long blockpfn = *start_pfn;
444         unsigned int order;
445
446         cursor = pfn_to_page(blockpfn);
447
448         /* Isolate free pages. */
449         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
450                 int isolated;
451                 struct page *page = cursor;
452
453                 /*
454                  * Periodically drop the lock (if held) regardless of its
455                  * contention, to give chance to IRQs. Abort if fatal signal
456                  * pending or async compaction detects need_resched()
457                  */
458                 if (!(blockpfn % SWAP_CLUSTER_MAX)
459                     && compact_unlock_should_abort(&cc->zone->lock, flags,
460                                                                 &locked, cc))
461                         break;
462
463                 nr_scanned++;
464                 if (!pfn_valid_within(blockpfn))
465                         goto isolate_fail;
466
467                 if (!valid_page)
468                         valid_page = page;
469
470                 /*
471                  * For compound pages such as THP and hugetlbfs, we can save
472                  * potentially a lot of iterations if we skip them at once.
473                  * The check is racy, but we can consider only valid values
474                  * and the only danger is skipping too much.
475                  */
476                 if (PageCompound(page)) {
477                         const unsigned int order = compound_order(page);
478
479                         if (pageblock_skip_persistent(page, order)) {
480                                 set_pageblock_skip(page);
481                                 blockpfn = end_pfn;
482                         } else if (likely(order < MAX_ORDER)) {
483                                 blockpfn += (1UL << order) - 1;
484                                 cursor += (1UL << order) - 1;
485                         }
486                         goto isolate_fail;
487                 }
488
489                 if (!PageBuddy(page))
490                         goto isolate_fail;
491
492                 /*
493                  * If we already hold the lock, we can skip some rechecking.
494                  * Note that if we hold the lock now, checked_pageblock was
495                  * already set in some previous iteration (or strict is true),
496                  * so it is correct to skip the suitable migration target
497                  * recheck as well.
498                  */
499                 if (!locked) {
500                         /*
501                          * The zone lock must be held to isolate freepages.
502                          * Unfortunately this is a very coarse lock and can be
503                          * heavily contended if there are parallel allocations
504                          * or parallel compactions. For async compaction do not
505                          * spin on the lock and we acquire the lock as late as
506                          * possible.
507                          */
508                         locked = compact_trylock_irqsave(&cc->zone->lock,
509                                                                 &flags, cc);
510                         if (!locked)
511                                 break;
512
513                         /* Recheck this is a buddy page under lock */
514                         if (!PageBuddy(page))
515                                 goto isolate_fail;
516                 }
517
518                 /* Found a free page, will break it into order-0 pages */
519                 order = page_order(page);
520                 isolated = __isolate_free_page(page, order);
521                 if (!isolated)
522                         break;
523                 set_page_private(page, order);
524
525                 total_isolated += isolated;
526                 cc->nr_freepages += isolated;
527                 list_add_tail(&page->lru, freelist);
528
529                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
530                         blockpfn += isolated;
531                         break;
532                 }
533                 /* Advance to the end of split page */
534                 blockpfn += isolated - 1;
535                 cursor += isolated - 1;
536                 continue;
537
538 isolate_fail:
539                 if (strict)
540                         break;
541                 else
542                         continue;
543
544         }
545
546         if (locked)
547                 spin_unlock_irqrestore(&cc->zone->lock, flags);
548
549         /*
550          * There is a tiny chance that we have read bogus compound_order(),
551          * so be careful to not go outside of the pageblock.
552          */
553         if (unlikely(blockpfn > end_pfn))
554                 blockpfn = end_pfn;
555
556         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
557                                         nr_scanned, total_isolated);
558
559         /* Record how far we have got within the block */
560         *start_pfn = blockpfn;
561
562         /*
563          * If strict isolation is requested by CMA then check that all the
564          * pages requested were isolated. If there were any failures, 0 is
565          * returned and CMA will fail.
566          */
567         if (strict && blockpfn < end_pfn)
568                 total_isolated = 0;
569
570         /* Update the pageblock-skip if the whole pageblock was scanned */
571         if (blockpfn == end_pfn)
572                 update_pageblock_skip(cc, valid_page, total_isolated, false);
573
574         cc->total_free_scanned += nr_scanned;
575         if (total_isolated)
576                 count_compact_events(COMPACTISOLATED, total_isolated);
577         return total_isolated;
578 }
579
580 /**
581  * isolate_freepages_range() - isolate free pages.
582  * @start_pfn: The first PFN to start isolating.
583  * @end_pfn:   The one-past-last PFN.
584  *
585  * Non-free pages, invalid PFNs, or zone boundaries within the
586  * [start_pfn, end_pfn) range are considered errors, cause function to
587  * undo its actions and return zero.
588  *
589  * Otherwise, function returns one-past-the-last PFN of isolated page
590  * (which may be greater then end_pfn if end fell in a middle of
591  * a free page).
592  */
593 unsigned long
594 isolate_freepages_range(struct compact_control *cc,
595                         unsigned long start_pfn, unsigned long end_pfn)
596 {
597         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
598         LIST_HEAD(freelist);
599
600         pfn = start_pfn;
601         block_start_pfn = pageblock_start_pfn(pfn);
602         if (block_start_pfn < cc->zone->zone_start_pfn)
603                 block_start_pfn = cc->zone->zone_start_pfn;
604         block_end_pfn = pageblock_end_pfn(pfn);
605
606         for (; pfn < end_pfn; pfn += isolated,
607                                 block_start_pfn = block_end_pfn,
608                                 block_end_pfn += pageblock_nr_pages) {
609                 /* Protect pfn from changing by isolate_freepages_block */
610                 unsigned long isolate_start_pfn = pfn;
611
612                 block_end_pfn = min(block_end_pfn, end_pfn);
613
614                 /*
615                  * pfn could pass the block_end_pfn if isolated freepage
616                  * is more than pageblock order. In this case, we adjust
617                  * scanning range to right one.
618                  */
619                 if (pfn >= block_end_pfn) {
620                         block_start_pfn = pageblock_start_pfn(pfn);
621                         block_end_pfn = pageblock_end_pfn(pfn);
622                         block_end_pfn = min(block_end_pfn, end_pfn);
623                 }
624
625                 if (!pageblock_pfn_to_page(block_start_pfn,
626                                         block_end_pfn, cc->zone))
627                         break;
628
629                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
630                                                 block_end_pfn, &freelist, true);
631
632                 /*
633                  * In strict mode, isolate_freepages_block() returns 0 if
634                  * there are any holes in the block (ie. invalid PFNs or
635                  * non-free pages).
636                  */
637                 if (!isolated)
638                         break;
639
640                 /*
641                  * If we managed to isolate pages, it is always (1 << n) *
642                  * pageblock_nr_pages for some non-negative n.  (Max order
643                  * page may span two pageblocks).
644                  */
645         }
646
647         /* __isolate_free_page() does not map the pages */
648         map_pages(&freelist);
649
650         if (pfn < end_pfn) {
651                 /* Loop terminated early, cleanup. */
652                 release_freepages(&freelist);
653                 return 0;
654         }
655
656         /* We don't use freelists for anything. */
657         return pfn;
658 }
659
660 /* Similar to reclaim, but different enough that they don't share logic */
661 static bool too_many_isolated(struct zone *zone)
662 {
663         unsigned long active, inactive, isolated;
664
665         inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
666                         node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
667         active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
668                         node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
669         isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
670                         node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
671
672         return isolated > (inactive + active) / 2;
673 }
674
675 /**
676  * isolate_migratepages_block() - isolate all migrate-able pages within
677  *                                a single pageblock
678  * @cc:         Compaction control structure.
679  * @low_pfn:    The first PFN to isolate
680  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
681  * @isolate_mode: Isolation mode to be used.
682  *
683  * Isolate all pages that can be migrated from the range specified by
684  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
685  * Returns zero if there is a fatal signal pending, otherwise PFN of the
686  * first page that was not scanned (which may be both less, equal to or more
687  * than end_pfn).
688  *
689  * The pages are isolated on cc->migratepages list (not required to be empty),
690  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
691  * is neither read nor updated.
692  */
693 static unsigned long
694 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
695                         unsigned long end_pfn, isolate_mode_t isolate_mode)
696 {
697         struct zone *zone = cc->zone;
698         unsigned long nr_scanned = 0, nr_isolated = 0;
699         struct lruvec *lruvec;
700         unsigned long flags = 0;
701         bool locked = false;
702         struct page *page = NULL, *valid_page = NULL;
703         unsigned long start_pfn = low_pfn;
704         bool skip_on_failure = false;
705         unsigned long next_skip_pfn = 0;
706
707         /*
708          * Ensure that there are not too many pages isolated from the LRU
709          * list by either parallel reclaimers or compaction. If there are,
710          * delay for some time until fewer pages are isolated
711          */
712         while (unlikely(too_many_isolated(zone))) {
713                 /* async migration should just abort */
714                 if (cc->mode == MIGRATE_ASYNC)
715                         return 0;
716
717                 congestion_wait(BLK_RW_ASYNC, HZ/10);
718
719                 if (fatal_signal_pending(current))
720                         return 0;
721         }
722
723         if (compact_should_abort(cc))
724                 return 0;
725
726         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
727                 skip_on_failure = true;
728                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
729         }
730
731         /* Time to isolate some pages for migration */
732         for (; low_pfn < end_pfn; low_pfn++) {
733
734                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
735                         /*
736                          * We have isolated all migration candidates in the
737                          * previous order-aligned block, and did not skip it due
738                          * to failure. We should migrate the pages now and
739                          * hopefully succeed compaction.
740                          */
741                         if (nr_isolated)
742                                 break;
743
744                         /*
745                          * We failed to isolate in the previous order-aligned
746                          * block. Set the new boundary to the end of the
747                          * current block. Note we can't simply increase
748                          * next_skip_pfn by 1 << order, as low_pfn might have
749                          * been incremented by a higher number due to skipping
750                          * a compound or a high-order buddy page in the
751                          * previous loop iteration.
752                          */
753                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
754                 }
755
756                 /*
757                  * Periodically drop the lock (if held) regardless of its
758                  * contention, to give chance to IRQs. Abort async compaction
759                  * if contended.
760                  */
761                 if (!(low_pfn % SWAP_CLUSTER_MAX)
762                     && compact_unlock_should_abort(zone_lru_lock(zone), flags,
763                                                                 &locked, cc))
764                         break;
765
766                 if (!pfn_valid_within(low_pfn))
767                         goto isolate_fail;
768                 nr_scanned++;
769
770                 page = pfn_to_page(low_pfn);
771
772                 if (!valid_page)
773                         valid_page = page;
774
775                 /*
776                  * Skip if free. We read page order here without zone lock
777                  * which is generally unsafe, but the race window is small and
778                  * the worst thing that can happen is that we skip some
779                  * potential isolation targets.
780                  */
781                 if (PageBuddy(page)) {
782                         unsigned long freepage_order = page_order_unsafe(page);
783
784                         /*
785                          * Without lock, we cannot be sure that what we got is
786                          * a valid page order. Consider only values in the
787                          * valid order range to prevent low_pfn overflow.
788                          */
789                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
790                                 low_pfn += (1UL << freepage_order) - 1;
791                         continue;
792                 }
793
794                 /*
795                  * Regardless of being on LRU, compound pages such as THP and
796                  * hugetlbfs are not to be compacted. We can potentially save
797                  * a lot of iterations if we skip them at once. The check is
798                  * racy, but we can consider only valid values and the only
799                  * danger is skipping too much.
800                  */
801                 if (PageCompound(page)) {
802                         const unsigned int order = compound_order(page);
803
804                         if (pageblock_skip_persistent(page, order)) {
805                                 set_pageblock_skip(page);
806                                 low_pfn = end_pfn;
807                         } else if (likely(order < MAX_ORDER))
808                                 low_pfn += (1UL << order) - 1;
809                         goto isolate_fail;
810                 }
811
812                 /*
813                  * Check may be lockless but that's ok as we recheck later.
814                  * It's possible to migrate LRU and non-lru movable pages.
815                  * Skip any other type of page
816                  */
817                 if (!PageLRU(page)) {
818                         /*
819                          * __PageMovable can return false positive so we need
820                          * to verify it under page_lock.
821                          */
822                         if (unlikely(__PageMovable(page)) &&
823                                         !PageIsolated(page)) {
824                                 if (locked) {
825                                         spin_unlock_irqrestore(zone_lru_lock(zone),
826                                                                         flags);
827                                         locked = false;
828                                 }
829
830                                 if (!isolate_movable_page(page, isolate_mode))
831                                         goto isolate_success;
832                         }
833
834                         goto isolate_fail;
835                 }
836
837                 /*
838                  * Migration will fail if an anonymous page is pinned in memory,
839                  * so avoid taking lru_lock and isolating it unnecessarily in an
840                  * admittedly racy check.
841                  */
842                 if (!page_mapping(page) &&
843                     page_count(page) > page_mapcount(page))
844                         goto isolate_fail;
845
846                 /*
847                  * Only allow to migrate anonymous pages in GFP_NOFS context
848                  * because those do not depend on fs locks.
849                  */
850                 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
851                         goto isolate_fail;
852
853                 /* If we already hold the lock, we can skip some rechecking */
854                 if (!locked) {
855                         locked = compact_trylock_irqsave(zone_lru_lock(zone),
856                                                                 &flags, cc);
857                         if (!locked)
858                                 break;
859
860                         /* Recheck PageLRU and PageCompound under lock */
861                         if (!PageLRU(page))
862                                 goto isolate_fail;
863
864                         /*
865                          * Page become compound since the non-locked check,
866                          * and it's on LRU. It can only be a THP so the order
867                          * is safe to read and it's 0 for tail pages.
868                          */
869                         if (unlikely(PageCompound(page))) {
870                                 const unsigned int order = compound_order(page);
871
872                                 if (pageblock_skip_persistent(page, order)) {
873                                         set_pageblock_skip(page);
874                                         low_pfn = end_pfn;
875                                 } else
876                                         low_pfn += (1UL << order) - 1;
877                                 goto isolate_fail;
878                         }
879                 }
880
881                 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
882
883                 /* Try isolate the page */
884                 if (__isolate_lru_page(page, isolate_mode) != 0)
885                         goto isolate_fail;
886
887                 VM_BUG_ON_PAGE(PageCompound(page), page);
888
889                 /* Successfully isolated */
890                 del_page_from_lru_list(page, lruvec, page_lru(page));
891                 inc_node_page_state(page,
892                                 NR_ISOLATED_ANON + page_is_file_cache(page));
893
894 isolate_success:
895                 list_add(&page->lru, &cc->migratepages);
896                 cc->nr_migratepages++;
897                 nr_isolated++;
898
899                 /*
900                  * Record where we could have freed pages by migration and not
901                  * yet flushed them to buddy allocator.
902                  * - this is the lowest page that was isolated and likely be
903                  * then freed by migration.
904                  */
905                 if (!cc->last_migrated_pfn)
906                         cc->last_migrated_pfn = low_pfn;
907
908                 /* Avoid isolating too much */
909                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
910                         ++low_pfn;
911                         break;
912                 }
913
914                 continue;
915 isolate_fail:
916                 if (!skip_on_failure)
917                         continue;
918
919                 /*
920                  * We have isolated some pages, but then failed. Release them
921                  * instead of migrating, as we cannot form the cc->order buddy
922                  * page anyway.
923                  */
924                 if (nr_isolated) {
925                         if (locked) {
926                                 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
927                                 locked = false;
928                         }
929                         putback_movable_pages(&cc->migratepages);
930                         cc->nr_migratepages = 0;
931                         cc->last_migrated_pfn = 0;
932                         nr_isolated = 0;
933                 }
934
935                 if (low_pfn < next_skip_pfn) {
936                         low_pfn = next_skip_pfn - 1;
937                         /*
938                          * The check near the loop beginning would have updated
939                          * next_skip_pfn too, but this is a bit simpler.
940                          */
941                         next_skip_pfn += 1UL << cc->order;
942                 }
943         }
944
945         /*
946          * The PageBuddy() check could have potentially brought us outside
947          * the range to be scanned.
948          */
949         if (unlikely(low_pfn > end_pfn))
950                 low_pfn = end_pfn;
951
952         if (locked)
953                 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
954
955         /*
956          * Update the pageblock-skip information and cached scanner pfn,
957          * if the whole pageblock was scanned without isolating any page.
958          */
959         if (low_pfn == end_pfn)
960                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
961
962         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
963                                                 nr_scanned, nr_isolated);
964
965         cc->total_migrate_scanned += nr_scanned;
966         if (nr_isolated)
967                 count_compact_events(COMPACTISOLATED, nr_isolated);
968
969         return low_pfn;
970 }
971
972 /**
973  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
974  * @cc:        Compaction control structure.
975  * @start_pfn: The first PFN to start isolating.
976  * @end_pfn:   The one-past-last PFN.
977  *
978  * Returns zero if isolation fails fatally due to e.g. pending signal.
979  * Otherwise, function returns one-past-the-last PFN of isolated page
980  * (which may be greater than end_pfn if end fell in a middle of a THP page).
981  */
982 unsigned long
983 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
984                                                         unsigned long end_pfn)
985 {
986         unsigned long pfn, block_start_pfn, block_end_pfn;
987
988         /* Scan block by block. First and last block may be incomplete */
989         pfn = start_pfn;
990         block_start_pfn = pageblock_start_pfn(pfn);
991         if (block_start_pfn < cc->zone->zone_start_pfn)
992                 block_start_pfn = cc->zone->zone_start_pfn;
993         block_end_pfn = pageblock_end_pfn(pfn);
994
995         for (; pfn < end_pfn; pfn = block_end_pfn,
996                                 block_start_pfn = block_end_pfn,
997                                 block_end_pfn += pageblock_nr_pages) {
998
999                 block_end_pfn = min(block_end_pfn, end_pfn);
1000
1001                 if (!pageblock_pfn_to_page(block_start_pfn,
1002                                         block_end_pfn, cc->zone))
1003                         continue;
1004
1005                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1006                                                         ISOLATE_UNEVICTABLE);
1007
1008                 if (!pfn)
1009                         break;
1010
1011                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1012                         break;
1013         }
1014
1015         return pfn;
1016 }
1017
1018 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1019 #ifdef CONFIG_COMPACTION
1020
1021 static bool suitable_migration_source(struct compact_control *cc,
1022                                                         struct page *page)
1023 {
1024         int block_mt;
1025
1026         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1027                 return true;
1028
1029         block_mt = get_pageblock_migratetype(page);
1030
1031         if (cc->migratetype == MIGRATE_MOVABLE)
1032                 return is_migrate_movable(block_mt);
1033         else
1034                 return block_mt == cc->migratetype;
1035 }
1036
1037 /* Returns true if the page is within a block suitable for migration to */
1038 static bool suitable_migration_target(struct compact_control *cc,
1039                                                         struct page *page)
1040 {
1041         /* If the page is a large free page, then disallow migration */
1042         if (PageBuddy(page)) {
1043                 /*
1044                  * We are checking page_order without zone->lock taken. But
1045                  * the only small danger is that we skip a potentially suitable
1046                  * pageblock, so it's not worth to check order for valid range.
1047                  */
1048                 if (page_order_unsafe(page) >= pageblock_order)
1049                         return false;
1050         }
1051
1052         if (cc->ignore_block_suitable)
1053                 return true;
1054
1055         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1056         if (is_migrate_movable(get_pageblock_migratetype(page)))
1057                 return true;
1058
1059         /* Otherwise skip the block */
1060         return false;
1061 }
1062
1063 /*
1064  * Test whether the free scanner has reached the same or lower pageblock than
1065  * the migration scanner, and compaction should thus terminate.
1066  */
1067 static inline bool compact_scanners_met(struct compact_control *cc)
1068 {
1069         return (cc->free_pfn >> pageblock_order)
1070                 <= (cc->migrate_pfn >> pageblock_order);
1071 }
1072
1073 /*
1074  * Based on information in the current compact_control, find blocks
1075  * suitable for isolating free pages from and then isolate them.
1076  */
1077 static void isolate_freepages(struct compact_control *cc)
1078 {
1079         struct zone *zone = cc->zone;
1080         struct page *page;
1081         unsigned long block_start_pfn;  /* start of current pageblock */
1082         unsigned long isolate_start_pfn; /* exact pfn we start at */
1083         unsigned long block_end_pfn;    /* end of current pageblock */
1084         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1085         struct list_head *freelist = &cc->freepages;
1086
1087         /*
1088          * Initialise the free scanner. The starting point is where we last
1089          * successfully isolated from, zone-cached value, or the end of the
1090          * zone when isolating for the first time. For looping we also need
1091          * this pfn aligned down to the pageblock boundary, because we do
1092          * block_start_pfn -= pageblock_nr_pages in the for loop.
1093          * For ending point, take care when isolating in last pageblock of a
1094          * a zone which ends in the middle of a pageblock.
1095          * The low boundary is the end of the pageblock the migration scanner
1096          * is using.
1097          */
1098         isolate_start_pfn = cc->free_pfn;
1099         block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1100         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1101                                                 zone_end_pfn(zone));
1102         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1103
1104         /*
1105          * Isolate free pages until enough are available to migrate the
1106          * pages on cc->migratepages. We stop searching if the migrate
1107          * and free page scanners meet or enough free pages are isolated.
1108          */
1109         for (; block_start_pfn >= low_pfn;
1110                                 block_end_pfn = block_start_pfn,
1111                                 block_start_pfn -= pageblock_nr_pages,
1112                                 isolate_start_pfn = block_start_pfn) {
1113                 /*
1114                  * This can iterate a massively long zone without finding any
1115                  * suitable migration targets, so periodically check if we need
1116                  * to schedule, or even abort async compaction.
1117                  */
1118                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1119                                                 && compact_should_abort(cc))
1120                         break;
1121
1122                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1123                                                                         zone);
1124                 if (!page)
1125                         continue;
1126
1127                 /* Check the block is suitable for migration */
1128                 if (!suitable_migration_target(cc, page))
1129                         continue;
1130
1131                 /* If isolation recently failed, do not retry */
1132                 if (!isolation_suitable(cc, page))
1133                         continue;
1134
1135                 /* Found a block suitable for isolating free pages from. */
1136                 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1137                                         freelist, false);
1138
1139                 /*
1140                  * If we isolated enough freepages, or aborted due to lock
1141                  * contention, terminate.
1142                  */
1143                 if ((cc->nr_freepages >= cc->nr_migratepages)
1144                                                         || cc->contended) {
1145                         if (isolate_start_pfn >= block_end_pfn) {
1146                                 /*
1147                                  * Restart at previous pageblock if more
1148                                  * freepages can be isolated next time.
1149                                  */
1150                                 isolate_start_pfn =
1151                                         block_start_pfn - pageblock_nr_pages;
1152                         }
1153                         break;
1154                 } else if (isolate_start_pfn < block_end_pfn) {
1155                         /*
1156                          * If isolation failed early, do not continue
1157                          * needlessly.
1158                          */
1159                         break;
1160                 }
1161         }
1162
1163         /* __isolate_free_page() does not map the pages */
1164         map_pages(freelist);
1165
1166         /*
1167          * Record where the free scanner will restart next time. Either we
1168          * broke from the loop and set isolate_start_pfn based on the last
1169          * call to isolate_freepages_block(), or we met the migration scanner
1170          * and the loop terminated due to isolate_start_pfn < low_pfn
1171          */
1172         cc->free_pfn = isolate_start_pfn;
1173 }
1174
1175 /*
1176  * This is a migrate-callback that "allocates" freepages by taking pages
1177  * from the isolated freelists in the block we are migrating to.
1178  */
1179 static struct page *compaction_alloc(struct page *migratepage,
1180                                         unsigned long data,
1181                                         int **result)
1182 {
1183         struct compact_control *cc = (struct compact_control *)data;
1184         struct page *freepage;
1185
1186         /*
1187          * Isolate free pages if necessary, and if we are not aborting due to
1188          * contention.
1189          */
1190         if (list_empty(&cc->freepages)) {
1191                 if (!cc->contended)
1192                         isolate_freepages(cc);
1193
1194                 if (list_empty(&cc->freepages))
1195                         return NULL;
1196         }
1197
1198         freepage = list_entry(cc->freepages.next, struct page, lru);
1199         list_del(&freepage->lru);
1200         cc->nr_freepages--;
1201
1202         return freepage;
1203 }
1204
1205 /*
1206  * This is a migrate-callback that "frees" freepages back to the isolated
1207  * freelist.  All pages on the freelist are from the same zone, so there is no
1208  * special handling needed for NUMA.
1209  */
1210 static void compaction_free(struct page *page, unsigned long data)
1211 {
1212         struct compact_control *cc = (struct compact_control *)data;
1213
1214         list_add(&page->lru, &cc->freepages);
1215         cc->nr_freepages++;
1216 }
1217
1218 /* possible outcome of isolate_migratepages */
1219 typedef enum {
1220         ISOLATE_ABORT,          /* Abort compaction now */
1221         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1222         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1223 } isolate_migrate_t;
1224
1225 /*
1226  * Allow userspace to control policy on scanning the unevictable LRU for
1227  * compactable pages.
1228  */
1229 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1230
1231 /*
1232  * Isolate all pages that can be migrated from the first suitable block,
1233  * starting at the block pointed to by the migrate scanner pfn within
1234  * compact_control.
1235  */
1236 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1237                                         struct compact_control *cc)
1238 {
1239         unsigned long block_start_pfn;
1240         unsigned long block_end_pfn;
1241         unsigned long low_pfn;
1242         struct page *page;
1243         const isolate_mode_t isolate_mode =
1244                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1245                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1246
1247         /*
1248          * Start at where we last stopped, or beginning of the zone as
1249          * initialized by compact_zone()
1250          */
1251         low_pfn = cc->migrate_pfn;
1252         block_start_pfn = pageblock_start_pfn(low_pfn);
1253         if (block_start_pfn < zone->zone_start_pfn)
1254                 block_start_pfn = zone->zone_start_pfn;
1255
1256         /* Only scan within a pageblock boundary */
1257         block_end_pfn = pageblock_end_pfn(low_pfn);
1258
1259         /*
1260          * Iterate over whole pageblocks until we find the first suitable.
1261          * Do not cross the free scanner.
1262          */
1263         for (; block_end_pfn <= cc->free_pfn;
1264                         low_pfn = block_end_pfn,
1265                         block_start_pfn = block_end_pfn,
1266                         block_end_pfn += pageblock_nr_pages) {
1267
1268                 /*
1269                  * This can potentially iterate a massively long zone with
1270                  * many pageblocks unsuitable, so periodically check if we
1271                  * need to schedule, or even abort async compaction.
1272                  */
1273                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1274                                                 && compact_should_abort(cc))
1275                         break;
1276
1277                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1278                                                                         zone);
1279                 if (!page)
1280                         continue;
1281
1282                 /* If isolation recently failed, do not retry */
1283                 if (!isolation_suitable(cc, page))
1284                         continue;
1285
1286                 /*
1287                  * For async compaction, also only scan in MOVABLE blocks.
1288                  * Async compaction is optimistic to see if the minimum amount
1289                  * of work satisfies the allocation.
1290                  */
1291                 if (!suitable_migration_source(cc, page))
1292                         continue;
1293
1294                 /* Perform the isolation */
1295                 low_pfn = isolate_migratepages_block(cc, low_pfn,
1296                                                 block_end_pfn, isolate_mode);
1297
1298                 if (!low_pfn || cc->contended)
1299                         return ISOLATE_ABORT;
1300
1301                 /*
1302                  * Either we isolated something and proceed with migration. Or
1303                  * we failed and compact_zone should decide if we should
1304                  * continue or not.
1305                  */
1306                 break;
1307         }
1308
1309         /* Record where migration scanner will be restarted. */
1310         cc->migrate_pfn = low_pfn;
1311
1312         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1313 }
1314
1315 /*
1316  * order == -1 is expected when compacting via
1317  * /proc/sys/vm/compact_memory
1318  */
1319 static inline bool is_via_compact_memory(int order)
1320 {
1321         return order == -1;
1322 }
1323
1324 static enum compact_result __compact_finished(struct zone *zone,
1325                                                 struct compact_control *cc)
1326 {
1327         unsigned int order;
1328         const int migratetype = cc->migratetype;
1329
1330         if (cc->contended || fatal_signal_pending(current))
1331                 return COMPACT_CONTENDED;
1332
1333         /* Compaction run completes if the migrate and free scanner meet */
1334         if (compact_scanners_met(cc)) {
1335                 /* Let the next compaction start anew. */
1336                 reset_cached_positions(zone);
1337
1338                 /*
1339                  * Mark that the PG_migrate_skip information should be cleared
1340                  * by kswapd when it goes to sleep. kcompactd does not set the
1341                  * flag itself as the decision to be clear should be directly
1342                  * based on an allocation request.
1343                  */
1344                 if (cc->direct_compaction)
1345                         zone->compact_blockskip_flush = true;
1346
1347                 if (cc->whole_zone)
1348                         return COMPACT_COMPLETE;
1349                 else
1350                         return COMPACT_PARTIAL_SKIPPED;
1351         }
1352
1353         if (is_via_compact_memory(cc->order))
1354                 return COMPACT_CONTINUE;
1355
1356         if (cc->finishing_block) {
1357                 /*
1358                  * We have finished the pageblock, but better check again that
1359                  * we really succeeded.
1360                  */
1361                 if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1362                         cc->finishing_block = false;
1363                 else
1364                         return COMPACT_CONTINUE;
1365         }
1366
1367         /* Direct compactor: Is a suitable page free? */
1368         for (order = cc->order; order < MAX_ORDER; order++) {
1369                 struct free_area *area = &zone->free_area[order];
1370                 bool can_steal;
1371
1372                 /* Job done if page is free of the right migratetype */
1373                 if (!list_empty(&area->free_list[migratetype]))
1374                         return COMPACT_SUCCESS;
1375
1376 #ifdef CONFIG_CMA
1377                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1378                 if (migratetype == MIGRATE_MOVABLE &&
1379                         !list_empty(&area->free_list[MIGRATE_CMA]))
1380                         return COMPACT_SUCCESS;
1381 #endif
1382                 /*
1383                  * Job done if allocation would steal freepages from
1384                  * other migratetype buddy lists.
1385                  */
1386                 if (find_suitable_fallback(area, order, migratetype,
1387                                                 true, &can_steal) != -1) {
1388
1389                         /* movable pages are OK in any pageblock */
1390                         if (migratetype == MIGRATE_MOVABLE)
1391                                 return COMPACT_SUCCESS;
1392
1393                         /*
1394                          * We are stealing for a non-movable allocation. Make
1395                          * sure we finish compacting the current pageblock
1396                          * first so it is as free as possible and we won't
1397                          * have to steal another one soon. This only applies
1398                          * to sync compaction, as async compaction operates
1399                          * on pageblocks of the same migratetype.
1400                          */
1401                         if (cc->mode == MIGRATE_ASYNC ||
1402                                         IS_ALIGNED(cc->migrate_pfn,
1403                                                         pageblock_nr_pages)) {
1404                                 return COMPACT_SUCCESS;
1405                         }
1406
1407                         cc->finishing_block = true;
1408                         return COMPACT_CONTINUE;
1409                 }
1410         }
1411
1412         return COMPACT_NO_SUITABLE_PAGE;
1413 }
1414
1415 static enum compact_result compact_finished(struct zone *zone,
1416                         struct compact_control *cc)
1417 {
1418         int ret;
1419
1420         ret = __compact_finished(zone, cc);
1421         trace_mm_compaction_finished(zone, cc->order, ret);
1422         if (ret == COMPACT_NO_SUITABLE_PAGE)
1423                 ret = COMPACT_CONTINUE;
1424
1425         return ret;
1426 }
1427
1428 /*
1429  * compaction_suitable: Is this suitable to run compaction on this zone now?
1430  * Returns
1431  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1432  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1433  *   COMPACT_CONTINUE - If compaction should run now
1434  */
1435 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1436                                         unsigned int alloc_flags,
1437                                         int classzone_idx,
1438                                         unsigned long wmark_target)
1439 {
1440         unsigned long watermark;
1441
1442         if (is_via_compact_memory(order))
1443                 return COMPACT_CONTINUE;
1444
1445         watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1446         /*
1447          * If watermarks for high-order allocation are already met, there
1448          * should be no need for compaction at all.
1449          */
1450         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1451                                                                 alloc_flags))
1452                 return COMPACT_SUCCESS;
1453
1454         /*
1455          * Watermarks for order-0 must be met for compaction to be able to
1456          * isolate free pages for migration targets. This means that the
1457          * watermark and alloc_flags have to match, or be more pessimistic than
1458          * the check in __isolate_free_page(). We don't use the direct
1459          * compactor's alloc_flags, as they are not relevant for freepage
1460          * isolation. We however do use the direct compactor's classzone_idx to
1461          * skip over zones where lowmem reserves would prevent allocation even
1462          * if compaction succeeds.
1463          * For costly orders, we require low watermark instead of min for
1464          * compaction to proceed to increase its chances.
1465          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1466          * suitable migration targets
1467          */
1468         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1469                                 low_wmark_pages(zone) : min_wmark_pages(zone);
1470         watermark += compact_gap(order);
1471         if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1472                                                 ALLOC_CMA, wmark_target))
1473                 return COMPACT_SKIPPED;
1474
1475         return COMPACT_CONTINUE;
1476 }
1477
1478 enum compact_result compaction_suitable(struct zone *zone, int order,
1479                                         unsigned int alloc_flags,
1480                                         int classzone_idx)
1481 {
1482         enum compact_result ret;
1483         int fragindex;
1484
1485         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1486                                     zone_page_state(zone, NR_FREE_PAGES));
1487         /*
1488          * fragmentation index determines if allocation failures are due to
1489          * low memory or external fragmentation
1490          *
1491          * index of -1000 would imply allocations might succeed depending on
1492          * watermarks, but we already failed the high-order watermark check
1493          * index towards 0 implies failure is due to lack of memory
1494          * index towards 1000 implies failure is due to fragmentation
1495          *
1496          * Only compact if a failure would be due to fragmentation. Also
1497          * ignore fragindex for non-costly orders where the alternative to
1498          * a successful reclaim/compaction is OOM. Fragindex and the
1499          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1500          * excessive compaction for costly orders, but it should not be at the
1501          * expense of system stability.
1502          */
1503         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1504                 fragindex = fragmentation_index(zone, order);
1505                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1506                         ret = COMPACT_NOT_SUITABLE_ZONE;
1507         }
1508
1509         trace_mm_compaction_suitable(zone, order, ret);
1510         if (ret == COMPACT_NOT_SUITABLE_ZONE)
1511                 ret = COMPACT_SKIPPED;
1512
1513         return ret;
1514 }
1515
1516 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1517                 int alloc_flags)
1518 {
1519         struct zone *zone;
1520         struct zoneref *z;
1521
1522         /*
1523          * Make sure at least one zone would pass __compaction_suitable if we continue
1524          * retrying the reclaim.
1525          */
1526         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1527                                         ac->nodemask) {
1528                 unsigned long available;
1529                 enum compact_result compact_result;
1530
1531                 /*
1532                  * Do not consider all the reclaimable memory because we do not
1533                  * want to trash just for a single high order allocation which
1534                  * is even not guaranteed to appear even if __compaction_suitable
1535                  * is happy about the watermark check.
1536                  */
1537                 available = zone_reclaimable_pages(zone) / order;
1538                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1539                 compact_result = __compaction_suitable(zone, order, alloc_flags,
1540                                 ac_classzone_idx(ac), available);
1541                 if (compact_result != COMPACT_SKIPPED)
1542                         return true;
1543         }
1544
1545         return false;
1546 }
1547
1548 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1549 {
1550         enum compact_result ret;
1551         unsigned long start_pfn = zone->zone_start_pfn;
1552         unsigned long end_pfn = zone_end_pfn(zone);
1553         const bool sync = cc->mode != MIGRATE_ASYNC;
1554
1555         cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1556         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1557                                                         cc->classzone_idx);
1558         /* Compaction is likely to fail */
1559         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1560                 return ret;
1561
1562         /* huh, compaction_suitable is returning something unexpected */
1563         VM_BUG_ON(ret != COMPACT_CONTINUE);
1564
1565         /*
1566          * Clear pageblock skip if there were failures recently and compaction
1567          * is about to be retried after being deferred.
1568          */
1569         if (compaction_restarting(zone, cc->order))
1570                 __reset_isolation_suitable(zone);
1571
1572         /*
1573          * Setup to move all movable pages to the end of the zone. Used cached
1574          * information on where the scanners should start (unless we explicitly
1575          * want to compact the whole zone), but check that it is initialised
1576          * by ensuring the values are within zone boundaries.
1577          */
1578         if (cc->whole_zone) {
1579                 cc->migrate_pfn = start_pfn;
1580                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1581         } else {
1582                 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1583                 cc->free_pfn = zone->compact_cached_free_pfn;
1584                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1585                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1586                         zone->compact_cached_free_pfn = cc->free_pfn;
1587                 }
1588                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1589                         cc->migrate_pfn = start_pfn;
1590                         zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1591                         zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1592                 }
1593
1594                 if (cc->migrate_pfn == start_pfn)
1595                         cc->whole_zone = true;
1596         }
1597
1598         cc->last_migrated_pfn = 0;
1599
1600         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1601                                 cc->free_pfn, end_pfn, sync);
1602
1603         migrate_prep_local();
1604
1605         while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1606                 int err;
1607
1608                 switch (isolate_migratepages(zone, cc)) {
1609                 case ISOLATE_ABORT:
1610                         ret = COMPACT_CONTENDED;
1611                         putback_movable_pages(&cc->migratepages);
1612                         cc->nr_migratepages = 0;
1613                         goto out;
1614                 case ISOLATE_NONE:
1615                         /*
1616                          * We haven't isolated and migrated anything, but
1617                          * there might still be unflushed migrations from
1618                          * previous cc->order aligned block.
1619                          */
1620                         goto check_drain;
1621                 case ISOLATE_SUCCESS:
1622                         ;
1623                 }
1624
1625                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1626                                 compaction_free, (unsigned long)cc, cc->mode,
1627                                 MR_COMPACTION);
1628
1629                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1630                                                         &cc->migratepages);
1631
1632                 /* All pages were either migrated or will be released */
1633                 cc->nr_migratepages = 0;
1634                 if (err) {
1635                         putback_movable_pages(&cc->migratepages);
1636                         /*
1637                          * migrate_pages() may return -ENOMEM when scanners meet
1638                          * and we want compact_finished() to detect it
1639                          */
1640                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
1641                                 ret = COMPACT_CONTENDED;
1642                                 goto out;
1643                         }
1644                         /*
1645                          * We failed to migrate at least one page in the current
1646                          * order-aligned block, so skip the rest of it.
1647                          */
1648                         if (cc->direct_compaction &&
1649                                                 (cc->mode == MIGRATE_ASYNC)) {
1650                                 cc->migrate_pfn = block_end_pfn(
1651                                                 cc->migrate_pfn - 1, cc->order);
1652                                 /* Draining pcplists is useless in this case */
1653                                 cc->last_migrated_pfn = 0;
1654
1655                         }
1656                 }
1657
1658 check_drain:
1659                 /*
1660                  * Has the migration scanner moved away from the previous
1661                  * cc->order aligned block where we migrated from? If yes,
1662                  * flush the pages that were freed, so that they can merge and
1663                  * compact_finished() can detect immediately if allocation
1664                  * would succeed.
1665                  */
1666                 if (cc->order > 0 && cc->last_migrated_pfn) {
1667                         int cpu;
1668                         unsigned long current_block_start =
1669                                 block_start_pfn(cc->migrate_pfn, cc->order);
1670
1671                         if (cc->last_migrated_pfn < current_block_start) {
1672                                 cpu = get_cpu();
1673                                 lru_add_drain_cpu(cpu);
1674                                 drain_local_pages(zone);
1675                                 put_cpu();
1676                                 /* No more flushing until we migrate again */
1677                                 cc->last_migrated_pfn = 0;
1678                         }
1679                 }
1680
1681         }
1682
1683 out:
1684         /*
1685          * Release free pages and update where the free scanner should restart,
1686          * so we don't leave any returned pages behind in the next attempt.
1687          */
1688         if (cc->nr_freepages > 0) {
1689                 unsigned long free_pfn = release_freepages(&cc->freepages);
1690
1691                 cc->nr_freepages = 0;
1692                 VM_BUG_ON(free_pfn == 0);
1693                 /* The cached pfn is always the first in a pageblock */
1694                 free_pfn = pageblock_start_pfn(free_pfn);
1695                 /*
1696                  * Only go back, not forward. The cached pfn might have been
1697                  * already reset to zone end in compact_finished()
1698                  */
1699                 if (free_pfn > zone->compact_cached_free_pfn)
1700                         zone->compact_cached_free_pfn = free_pfn;
1701         }
1702
1703         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
1704         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
1705
1706         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1707                                 cc->free_pfn, end_pfn, sync, ret);
1708
1709         return ret;
1710 }
1711
1712 static enum compact_result compact_zone_order(struct zone *zone, int order,
1713                 gfp_t gfp_mask, enum compact_priority prio,
1714                 unsigned int alloc_flags, int classzone_idx)
1715 {
1716         enum compact_result ret;
1717         struct compact_control cc = {
1718                 .nr_freepages = 0,
1719                 .nr_migratepages = 0,
1720                 .total_migrate_scanned = 0,
1721                 .total_free_scanned = 0,
1722                 .order = order,
1723                 .gfp_mask = gfp_mask,
1724                 .zone = zone,
1725                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
1726                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
1727                 .alloc_flags = alloc_flags,
1728                 .classzone_idx = classzone_idx,
1729                 .direct_compaction = true,
1730                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
1731                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1732                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1733         };
1734         INIT_LIST_HEAD(&cc.freepages);
1735         INIT_LIST_HEAD(&cc.migratepages);
1736
1737         ret = compact_zone(zone, &cc);
1738
1739         VM_BUG_ON(!list_empty(&cc.freepages));
1740         VM_BUG_ON(!list_empty(&cc.migratepages));
1741
1742         return ret;
1743 }
1744
1745 int sysctl_extfrag_threshold = 500;
1746
1747 /**
1748  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1749  * @gfp_mask: The GFP mask of the current allocation
1750  * @order: The order of the current allocation
1751  * @alloc_flags: The allocation flags of the current allocation
1752  * @ac: The context of current allocation
1753  * @mode: The migration mode for async, sync light, or sync migration
1754  *
1755  * This is the main entry point for direct page compaction.
1756  */
1757 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1758                 unsigned int alloc_flags, const struct alloc_context *ac,
1759                 enum compact_priority prio)
1760 {
1761         int may_perform_io = gfp_mask & __GFP_IO;
1762         struct zoneref *z;
1763         struct zone *zone;
1764         enum compact_result rc = COMPACT_SKIPPED;
1765
1766         /*
1767          * Check if the GFP flags allow compaction - GFP_NOIO is really
1768          * tricky context because the migration might require IO
1769          */
1770         if (!may_perform_io)
1771                 return COMPACT_SKIPPED;
1772
1773         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1774
1775         /* Compact each zone in the list */
1776         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1777                                                                 ac->nodemask) {
1778                 enum compact_result status;
1779
1780                 if (prio > MIN_COMPACT_PRIORITY
1781                                         && compaction_deferred(zone, order)) {
1782                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1783                         continue;
1784                 }
1785
1786                 status = compact_zone_order(zone, order, gfp_mask, prio,
1787                                         alloc_flags, ac_classzone_idx(ac));
1788                 rc = max(status, rc);
1789
1790                 /* The allocation should succeed, stop compacting */
1791                 if (status == COMPACT_SUCCESS) {
1792                         /*
1793                          * We think the allocation will succeed in this zone,
1794                          * but it is not certain, hence the false. The caller
1795                          * will repeat this with true if allocation indeed
1796                          * succeeds in this zone.
1797                          */
1798                         compaction_defer_reset(zone, order, false);
1799
1800                         break;
1801                 }
1802
1803                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1804                                         status == COMPACT_PARTIAL_SKIPPED))
1805                         /*
1806                          * We think that allocation won't succeed in this zone
1807                          * so we defer compaction there. If it ends up
1808                          * succeeding after all, it will be reset.
1809                          */
1810                         defer_compaction(zone, order);
1811
1812                 /*
1813                  * We might have stopped compacting due to need_resched() in
1814                  * async compaction, or due to a fatal signal detected. In that
1815                  * case do not try further zones
1816                  */
1817                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1818                                         || fatal_signal_pending(current))
1819                         break;
1820         }
1821
1822         return rc;
1823 }
1824
1825
1826 /* Compact all zones within a node */
1827 static void compact_node(int nid)
1828 {
1829         pg_data_t *pgdat = NODE_DATA(nid);
1830         int zoneid;
1831         struct zone *zone;
1832         struct compact_control cc = {
1833                 .order = -1,
1834                 .total_migrate_scanned = 0,
1835                 .total_free_scanned = 0,
1836                 .mode = MIGRATE_SYNC,
1837                 .ignore_skip_hint = true,
1838                 .whole_zone = true,
1839                 .gfp_mask = GFP_KERNEL,
1840         };
1841
1842
1843         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1844
1845                 zone = &pgdat->node_zones[zoneid];
1846                 if (!populated_zone(zone))
1847                         continue;
1848
1849                 cc.nr_freepages = 0;
1850                 cc.nr_migratepages = 0;
1851                 cc.zone = zone;
1852                 INIT_LIST_HEAD(&cc.freepages);
1853                 INIT_LIST_HEAD(&cc.migratepages);
1854
1855                 compact_zone(zone, &cc);
1856
1857                 VM_BUG_ON(!list_empty(&cc.freepages));
1858                 VM_BUG_ON(!list_empty(&cc.migratepages));
1859         }
1860 }
1861
1862 /* Compact all nodes in the system */
1863 static void compact_nodes(void)
1864 {
1865         int nid;
1866
1867         /* Flush pending updates to the LRU lists */
1868         lru_add_drain_all();
1869
1870         for_each_online_node(nid)
1871                 compact_node(nid);
1872 }
1873
1874 /* The written value is actually unused, all memory is compacted */
1875 int sysctl_compact_memory;
1876
1877 /*
1878  * This is the entry point for compacting all nodes via
1879  * /proc/sys/vm/compact_memory
1880  */
1881 int sysctl_compaction_handler(struct ctl_table *table, int write,
1882                         void __user *buffer, size_t *length, loff_t *ppos)
1883 {
1884         if (write)
1885                 compact_nodes();
1886
1887         return 0;
1888 }
1889
1890 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1891                         void __user *buffer, size_t *length, loff_t *ppos)
1892 {
1893         proc_dointvec_minmax(table, write, buffer, length, ppos);
1894
1895         return 0;
1896 }
1897
1898 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1899 static ssize_t sysfs_compact_node(struct device *dev,
1900                         struct device_attribute *attr,
1901                         const char *buf, size_t count)
1902 {
1903         int nid = dev->id;
1904
1905         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1906                 /* Flush pending updates to the LRU lists */
1907                 lru_add_drain_all();
1908
1909                 compact_node(nid);
1910         }
1911
1912         return count;
1913 }
1914 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1915
1916 int compaction_register_node(struct node *node)
1917 {
1918         return device_create_file(&node->dev, &dev_attr_compact);
1919 }
1920
1921 void compaction_unregister_node(struct node *node)
1922 {
1923         return device_remove_file(&node->dev, &dev_attr_compact);
1924 }
1925 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1926
1927 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1928 {
1929         return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1930 }
1931
1932 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1933 {
1934         int zoneid;
1935         struct zone *zone;
1936         enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1937
1938         for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1939                 zone = &pgdat->node_zones[zoneid];
1940
1941                 if (!populated_zone(zone))
1942                         continue;
1943
1944                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1945                                         classzone_idx) == COMPACT_CONTINUE)
1946                         return true;
1947         }
1948
1949         return false;
1950 }
1951
1952 static void kcompactd_do_work(pg_data_t *pgdat)
1953 {
1954         /*
1955          * With no special task, compact all zones so that a page of requested
1956          * order is allocatable.
1957          */
1958         int zoneid;
1959         struct zone *zone;
1960         struct compact_control cc = {
1961                 .order = pgdat->kcompactd_max_order,
1962                 .total_migrate_scanned = 0,
1963                 .total_free_scanned = 0,
1964                 .classzone_idx = pgdat->kcompactd_classzone_idx,
1965                 .mode = MIGRATE_SYNC_LIGHT,
1966                 .ignore_skip_hint = false,
1967                 .gfp_mask = GFP_KERNEL,
1968         };
1969         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1970                                                         cc.classzone_idx);
1971         count_compact_event(KCOMPACTD_WAKE);
1972
1973         for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1974                 int status;
1975
1976                 zone = &pgdat->node_zones[zoneid];
1977                 if (!populated_zone(zone))
1978                         continue;
1979
1980                 if (compaction_deferred(zone, cc.order))
1981                         continue;
1982
1983                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1984                                                         COMPACT_CONTINUE)
1985                         continue;
1986
1987                 cc.nr_freepages = 0;
1988                 cc.nr_migratepages = 0;
1989                 cc.total_migrate_scanned = 0;
1990                 cc.total_free_scanned = 0;
1991                 cc.zone = zone;
1992                 INIT_LIST_HEAD(&cc.freepages);
1993                 INIT_LIST_HEAD(&cc.migratepages);
1994
1995                 if (kthread_should_stop())
1996                         return;
1997                 status = compact_zone(zone, &cc);
1998
1999                 if (status == COMPACT_SUCCESS) {
2000                         compaction_defer_reset(zone, cc.order, false);
2001                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2002                         /*
2003                          * We use sync migration mode here, so we defer like
2004                          * sync direct compaction does.
2005                          */
2006                         defer_compaction(zone, cc.order);
2007                 }
2008
2009                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2010                                      cc.total_migrate_scanned);
2011                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2012                                      cc.total_free_scanned);
2013
2014                 VM_BUG_ON(!list_empty(&cc.freepages));
2015                 VM_BUG_ON(!list_empty(&cc.migratepages));
2016         }
2017
2018         /*
2019          * Regardless of success, we are done until woken up next. But remember
2020          * the requested order/classzone_idx in case it was higher/tighter than
2021          * our current ones
2022          */
2023         if (pgdat->kcompactd_max_order <= cc.order)
2024                 pgdat->kcompactd_max_order = 0;
2025         if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2026                 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2027 }
2028
2029 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2030 {
2031         if (!order)
2032                 return;
2033
2034         if (pgdat->kcompactd_max_order < order)
2035                 pgdat->kcompactd_max_order = order;
2036
2037         if (pgdat->kcompactd_classzone_idx > classzone_idx)
2038                 pgdat->kcompactd_classzone_idx = classzone_idx;
2039
2040         /*
2041          * Pairs with implicit barrier in wait_event_freezable()
2042          * such that wakeups are not missed.
2043          */
2044         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2045                 return;
2046
2047         if (!kcompactd_node_suitable(pgdat))
2048                 return;
2049
2050         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2051                                                         classzone_idx);
2052         wake_up_interruptible(&pgdat->kcompactd_wait);
2053 }
2054
2055 /*
2056  * The background compaction daemon, started as a kernel thread
2057  * from the init process.
2058  */
2059 static int kcompactd(void *p)
2060 {
2061         pg_data_t *pgdat = (pg_data_t*)p;
2062         struct task_struct *tsk = current;
2063
2064         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2065
2066         if (!cpumask_empty(cpumask))
2067                 set_cpus_allowed_ptr(tsk, cpumask);
2068
2069         set_freezable();
2070
2071         pgdat->kcompactd_max_order = 0;
2072         pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2073
2074         while (!kthread_should_stop()) {
2075                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2076                 wait_event_freezable(pgdat->kcompactd_wait,
2077                                 kcompactd_work_requested(pgdat));
2078
2079                 kcompactd_do_work(pgdat);
2080         }
2081
2082         return 0;
2083 }
2084
2085 /*
2086  * This kcompactd start function will be called by init and node-hot-add.
2087  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2088  */
2089 int kcompactd_run(int nid)
2090 {
2091         pg_data_t *pgdat = NODE_DATA(nid);
2092         int ret = 0;
2093
2094         if (pgdat->kcompactd)
2095                 return 0;
2096
2097         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2098         if (IS_ERR(pgdat->kcompactd)) {
2099                 pr_err("Failed to start kcompactd on node %d\n", nid);
2100                 ret = PTR_ERR(pgdat->kcompactd);
2101                 pgdat->kcompactd = NULL;
2102         }
2103         return ret;
2104 }
2105
2106 /*
2107  * Called by memory hotplug when all memory in a node is offlined. Caller must
2108  * hold mem_hotplug_begin/end().
2109  */
2110 void kcompactd_stop(int nid)
2111 {
2112         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2113
2114         if (kcompactd) {
2115                 kthread_stop(kcompactd);
2116                 NODE_DATA(nid)->kcompactd = NULL;
2117         }
2118 }
2119
2120 /*
2121  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2122  * not required for correctness. So if the last cpu in a node goes
2123  * away, we get changed to run anywhere: as the first one comes back,
2124  * restore their cpu bindings.
2125  */
2126 static int kcompactd_cpu_online(unsigned int cpu)
2127 {
2128         int nid;
2129
2130         for_each_node_state(nid, N_MEMORY) {
2131                 pg_data_t *pgdat = NODE_DATA(nid);
2132                 const struct cpumask *mask;
2133
2134                 mask = cpumask_of_node(pgdat->node_id);
2135
2136                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2137                         /* One of our CPUs online: restore mask */
2138                         set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2139         }
2140         return 0;
2141 }
2142
2143 static int __init kcompactd_init(void)
2144 {
2145         int nid;
2146         int ret;
2147
2148         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2149                                         "mm/compaction:online",
2150                                         kcompactd_cpu_online, NULL);
2151         if (ret < 0) {
2152                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2153                 return ret;
2154         }
2155
2156         for_each_node_state(nid, N_MEMORY)
2157                 kcompactd_run(nid);
2158         return 0;
2159 }
2160 subsys_initcall(kcompactd_init)
2161
2162 #endif /* CONFIG_COMPACTION */