md/bitmap: remove rcu annotation from pointer arithmetic.
[sfrench/cifs-2.6.git] / lib / rhashtable.c
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7  *
8  * Code partially derived from nft_hash
9  * Rewritten with rehash code from br_multicast plus single list
10  * pointer as suggested by Josh Triplett
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/log2.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/mm.h>
24 #include <linux/jhash.h>
25 #include <linux/random.h>
26 #include <linux/rhashtable.h>
27 #include <linux/err.h>
28
29 #define HASH_DEFAULT_SIZE       64UL
30 #define HASH_MIN_SIZE           4U
31 #define BUCKET_LOCKS_PER_CPU   128UL
32
33 static u32 head_hashfn(struct rhashtable *ht,
34                        const struct bucket_table *tbl,
35                        const struct rhash_head *he)
36 {
37         return rht_head_hashfn(ht, tbl, he, ht->p);
38 }
39
40 #ifdef CONFIG_PROVE_LOCKING
41 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
42
43 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
44 {
45         return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
46 }
47 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
48
49 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
50 {
51         spinlock_t *lock = rht_bucket_lock(tbl, hash);
52
53         return (debug_locks) ? lockdep_is_held(lock) : 1;
54 }
55 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
56 #else
57 #define ASSERT_RHT_MUTEX(HT)
58 #endif
59
60
61 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
62                               gfp_t gfp)
63 {
64         unsigned int i, size;
65 #if defined(CONFIG_PROVE_LOCKING)
66         unsigned int nr_pcpus = 2;
67 #else
68         unsigned int nr_pcpus = num_possible_cpus();
69 #endif
70
71         nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
72         size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
73
74         /* Never allocate more than 0.5 locks per bucket */
75         size = min_t(unsigned int, size, tbl->size >> 1);
76
77         if (sizeof(spinlock_t) != 0) {
78 #ifdef CONFIG_NUMA
79                 if (size * sizeof(spinlock_t) > PAGE_SIZE &&
80                     gfp == GFP_KERNEL)
81                         tbl->locks = vmalloc(size * sizeof(spinlock_t));
82                 else
83 #endif
84                 tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
85                                            gfp);
86                 if (!tbl->locks)
87                         return -ENOMEM;
88                 for (i = 0; i < size; i++)
89                         spin_lock_init(&tbl->locks[i]);
90         }
91         tbl->locks_mask = size - 1;
92
93         return 0;
94 }
95
96 static void bucket_table_free(const struct bucket_table *tbl)
97 {
98         if (tbl)
99                 kvfree(tbl->locks);
100
101         kvfree(tbl);
102 }
103
104 static void bucket_table_free_rcu(struct rcu_head *head)
105 {
106         bucket_table_free(container_of(head, struct bucket_table, rcu));
107 }
108
109 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
110                                                size_t nbuckets,
111                                                gfp_t gfp)
112 {
113         struct bucket_table *tbl = NULL;
114         size_t size;
115         int i;
116
117         size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
118         if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
119             gfp != GFP_KERNEL)
120                 tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
121         if (tbl == NULL && gfp == GFP_KERNEL)
122                 tbl = vzalloc(size);
123         if (tbl == NULL)
124                 return NULL;
125
126         tbl->size = nbuckets;
127
128         if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
129                 bucket_table_free(tbl);
130                 return NULL;
131         }
132
133         INIT_LIST_HEAD(&tbl->walkers);
134
135         get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
136
137         for (i = 0; i < nbuckets; i++)
138                 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
139
140         return tbl;
141 }
142
143 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
144                                                   struct bucket_table *tbl)
145 {
146         struct bucket_table *new_tbl;
147
148         do {
149                 new_tbl = tbl;
150                 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
151         } while (tbl);
152
153         return new_tbl;
154 }
155
156 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
157 {
158         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
159         struct bucket_table *new_tbl = rhashtable_last_table(ht,
160                 rht_dereference_rcu(old_tbl->future_tbl, ht));
161         struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
162         int err = -ENOENT;
163         struct rhash_head *head, *next, *entry;
164         spinlock_t *new_bucket_lock;
165         unsigned int new_hash;
166
167         rht_for_each(entry, old_tbl, old_hash) {
168                 err = 0;
169                 next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
170
171                 if (rht_is_a_nulls(next))
172                         break;
173
174                 pprev = &entry->next;
175         }
176
177         if (err)
178                 goto out;
179
180         new_hash = head_hashfn(ht, new_tbl, entry);
181
182         new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
183
184         spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
185         head = rht_dereference_bucket(new_tbl->buckets[new_hash],
186                                       new_tbl, new_hash);
187
188         if (rht_is_a_nulls(head))
189                 INIT_RHT_NULLS_HEAD(entry->next, ht, new_hash);
190         else
191                 RCU_INIT_POINTER(entry->next, head);
192
193         rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
194         spin_unlock(new_bucket_lock);
195
196         rcu_assign_pointer(*pprev, next);
197
198 out:
199         return err;
200 }
201
202 static void rhashtable_rehash_chain(struct rhashtable *ht,
203                                     unsigned int old_hash)
204 {
205         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
206         spinlock_t *old_bucket_lock;
207
208         old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
209
210         spin_lock_bh(old_bucket_lock);
211         while (!rhashtable_rehash_one(ht, old_hash))
212                 ;
213         old_tbl->rehash++;
214         spin_unlock_bh(old_bucket_lock);
215 }
216
217 static int rhashtable_rehash_attach(struct rhashtable *ht,
218                                     struct bucket_table *old_tbl,
219                                     struct bucket_table *new_tbl)
220 {
221         /* Protect future_tbl using the first bucket lock. */
222         spin_lock_bh(old_tbl->locks);
223
224         /* Did somebody beat us to it? */
225         if (rcu_access_pointer(old_tbl->future_tbl)) {
226                 spin_unlock_bh(old_tbl->locks);
227                 return -EEXIST;
228         }
229
230         /* Make insertions go into the new, empty table right away. Deletions
231          * and lookups will be attempted in both tables until we synchronize.
232          */
233         rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
234
235         /* Ensure the new table is visible to readers. */
236         smp_wmb();
237
238         spin_unlock_bh(old_tbl->locks);
239
240         return 0;
241 }
242
243 static int rhashtable_rehash_table(struct rhashtable *ht)
244 {
245         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
246         struct bucket_table *new_tbl;
247         struct rhashtable_walker *walker;
248         unsigned int old_hash;
249
250         new_tbl = rht_dereference(old_tbl->future_tbl, ht);
251         if (!new_tbl)
252                 return 0;
253
254         for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
255                 rhashtable_rehash_chain(ht, old_hash);
256
257         /* Publish the new table pointer. */
258         rcu_assign_pointer(ht->tbl, new_tbl);
259
260         spin_lock(&ht->lock);
261         list_for_each_entry(walker, &old_tbl->walkers, list)
262                 walker->tbl = NULL;
263         spin_unlock(&ht->lock);
264
265         /* Wait for readers. All new readers will see the new
266          * table, and thus no references to the old table will
267          * remain.
268          */
269         call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
270
271         return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
272 }
273
274 /**
275  * rhashtable_expand - Expand hash table while allowing concurrent lookups
276  * @ht:         the hash table to expand
277  *
278  * A secondary bucket array is allocated and the hash entries are migrated.
279  *
280  * This function may only be called in a context where it is safe to call
281  * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
282  *
283  * The caller must ensure that no concurrent resizing occurs by holding
284  * ht->mutex.
285  *
286  * It is valid to have concurrent insertions and deletions protected by per
287  * bucket locks or concurrent RCU protected lookups and traversals.
288  */
289 static int rhashtable_expand(struct rhashtable *ht)
290 {
291         struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
292         int err;
293
294         ASSERT_RHT_MUTEX(ht);
295
296         old_tbl = rhashtable_last_table(ht, old_tbl);
297
298         new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
299         if (new_tbl == NULL)
300                 return -ENOMEM;
301
302         err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
303         if (err)
304                 bucket_table_free(new_tbl);
305
306         return err;
307 }
308
309 /**
310  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
311  * @ht:         the hash table to shrink
312  *
313  * This function shrinks the hash table to fit, i.e., the smallest
314  * size would not cause it to expand right away automatically.
315  *
316  * The caller must ensure that no concurrent resizing occurs by holding
317  * ht->mutex.
318  *
319  * The caller must ensure that no concurrent table mutations take place.
320  * It is however valid to have concurrent lookups if they are RCU protected.
321  *
322  * It is valid to have concurrent insertions and deletions protected by per
323  * bucket locks or concurrent RCU protected lookups and traversals.
324  */
325 static int rhashtable_shrink(struct rhashtable *ht)
326 {
327         struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
328         unsigned int size;
329         int err;
330
331         ASSERT_RHT_MUTEX(ht);
332
333         size = roundup_pow_of_two(atomic_read(&ht->nelems) * 3 / 2);
334         if (size < ht->p.min_size)
335                 size = ht->p.min_size;
336
337         if (old_tbl->size <= size)
338                 return 0;
339
340         if (rht_dereference(old_tbl->future_tbl, ht))
341                 return -EEXIST;
342
343         new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
344         if (new_tbl == NULL)
345                 return -ENOMEM;
346
347         err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
348         if (err)
349                 bucket_table_free(new_tbl);
350
351         return err;
352 }
353
354 static void rht_deferred_worker(struct work_struct *work)
355 {
356         struct rhashtable *ht;
357         struct bucket_table *tbl;
358         int err = 0;
359
360         ht = container_of(work, struct rhashtable, run_work);
361         mutex_lock(&ht->mutex);
362
363         tbl = rht_dereference(ht->tbl, ht);
364         tbl = rhashtable_last_table(ht, tbl);
365
366         if (rht_grow_above_75(ht, tbl))
367                 rhashtable_expand(ht);
368         else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
369                 rhashtable_shrink(ht);
370
371         err = rhashtable_rehash_table(ht);
372
373         mutex_unlock(&ht->mutex);
374
375         if (err)
376                 schedule_work(&ht->run_work);
377 }
378
379 static bool rhashtable_check_elasticity(struct rhashtable *ht,
380                                         struct bucket_table *tbl,
381                                         unsigned int hash)
382 {
383         unsigned int elasticity = ht->elasticity;
384         struct rhash_head *head;
385
386         rht_for_each(head, tbl, hash)
387                 if (!--elasticity)
388                         return true;
389
390         return false;
391 }
392
393 int rhashtable_insert_rehash(struct rhashtable *ht)
394 {
395         struct bucket_table *old_tbl;
396         struct bucket_table *new_tbl;
397         struct bucket_table *tbl;
398         unsigned int size;
399         int err;
400
401         old_tbl = rht_dereference_rcu(ht->tbl, ht);
402         tbl = rhashtable_last_table(ht, old_tbl);
403
404         size = tbl->size;
405
406         if (rht_grow_above_75(ht, tbl))
407                 size *= 2;
408         /* Do not schedule more than one rehash */
409         else if (old_tbl != tbl)
410                 return -EBUSY;
411
412         new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
413         if (new_tbl == NULL) {
414                 /* Schedule async resize/rehash to try allocation
415                  * non-atomic context.
416                  */
417                 schedule_work(&ht->run_work);
418                 return -ENOMEM;
419         }
420
421         err = rhashtable_rehash_attach(ht, tbl, new_tbl);
422         if (err) {
423                 bucket_table_free(new_tbl);
424                 if (err == -EEXIST)
425                         err = 0;
426         } else
427                 schedule_work(&ht->run_work);
428
429         return err;
430 }
431 EXPORT_SYMBOL_GPL(rhashtable_insert_rehash);
432
433 int rhashtable_insert_slow(struct rhashtable *ht, const void *key,
434                            struct rhash_head *obj,
435                            struct bucket_table *tbl)
436 {
437         struct rhash_head *head;
438         unsigned int hash;
439         int err;
440
441         tbl = rhashtable_last_table(ht, tbl);
442         hash = head_hashfn(ht, tbl, obj);
443         spin_lock_nested(rht_bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING);
444
445         err = -EEXIST;
446         if (key && rhashtable_lookup_fast(ht, key, ht->p))
447                 goto exit;
448
449         err = -EAGAIN;
450         if (rhashtable_check_elasticity(ht, tbl, hash) ||
451             rht_grow_above_100(ht, tbl))
452                 goto exit;
453
454         err = 0;
455
456         head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
457
458         RCU_INIT_POINTER(obj->next, head);
459
460         rcu_assign_pointer(tbl->buckets[hash], obj);
461
462         atomic_inc(&ht->nelems);
463
464 exit:
465         spin_unlock(rht_bucket_lock(tbl, hash));
466
467         return err;
468 }
469 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
470
471 /**
472  * rhashtable_walk_init - Initialise an iterator
473  * @ht:         Table to walk over
474  * @iter:       Hash table Iterator
475  *
476  * This function prepares a hash table walk.
477  *
478  * Note that if you restart a walk after rhashtable_walk_stop you
479  * may see the same object twice.  Also, you may miss objects if
480  * there are removals in between rhashtable_walk_stop and the next
481  * call to rhashtable_walk_start.
482  *
483  * For a completely stable walk you should construct your own data
484  * structure outside the hash table.
485  *
486  * This function may sleep so you must not call it from interrupt
487  * context or with spin locks held.
488  *
489  * You must call rhashtable_walk_exit if this function returns
490  * successfully.
491  */
492 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
493 {
494         iter->ht = ht;
495         iter->p = NULL;
496         iter->slot = 0;
497         iter->skip = 0;
498
499         iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
500         if (!iter->walker)
501                 return -ENOMEM;
502
503         mutex_lock(&ht->mutex);
504         iter->walker->tbl = rht_dereference(ht->tbl, ht);
505         list_add(&iter->walker->list, &iter->walker->tbl->walkers);
506         mutex_unlock(&ht->mutex);
507
508         return 0;
509 }
510 EXPORT_SYMBOL_GPL(rhashtable_walk_init);
511
512 /**
513  * rhashtable_walk_exit - Free an iterator
514  * @iter:       Hash table Iterator
515  *
516  * This function frees resources allocated by rhashtable_walk_init.
517  */
518 void rhashtable_walk_exit(struct rhashtable_iter *iter)
519 {
520         mutex_lock(&iter->ht->mutex);
521         if (iter->walker->tbl)
522                 list_del(&iter->walker->list);
523         mutex_unlock(&iter->ht->mutex);
524         kfree(iter->walker);
525 }
526 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
527
528 /**
529  * rhashtable_walk_start - Start a hash table walk
530  * @iter:       Hash table iterator
531  *
532  * Start a hash table walk.  Note that we take the RCU lock in all
533  * cases including when we return an error.  So you must always call
534  * rhashtable_walk_stop to clean up.
535  *
536  * Returns zero if successful.
537  *
538  * Returns -EAGAIN if resize event occured.  Note that the iterator
539  * will rewind back to the beginning and you may use it immediately
540  * by calling rhashtable_walk_next.
541  */
542 int rhashtable_walk_start(struct rhashtable_iter *iter)
543         __acquires(RCU)
544 {
545         struct rhashtable *ht = iter->ht;
546
547         mutex_lock(&ht->mutex);
548
549         if (iter->walker->tbl)
550                 list_del(&iter->walker->list);
551
552         rcu_read_lock();
553
554         mutex_unlock(&ht->mutex);
555
556         if (!iter->walker->tbl) {
557                 iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht);
558                 return -EAGAIN;
559         }
560
561         return 0;
562 }
563 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
564
565 /**
566  * rhashtable_walk_next - Return the next object and advance the iterator
567  * @iter:       Hash table iterator
568  *
569  * Note that you must call rhashtable_walk_stop when you are finished
570  * with the walk.
571  *
572  * Returns the next object or NULL when the end of the table is reached.
573  *
574  * Returns -EAGAIN if resize event occured.  Note that the iterator
575  * will rewind back to the beginning and you may continue to use it.
576  */
577 void *rhashtable_walk_next(struct rhashtable_iter *iter)
578 {
579         struct bucket_table *tbl = iter->walker->tbl;
580         struct rhashtable *ht = iter->ht;
581         struct rhash_head *p = iter->p;
582         void *obj = NULL;
583
584         if (p) {
585                 p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
586                 goto next;
587         }
588
589         for (; iter->slot < tbl->size; iter->slot++) {
590                 int skip = iter->skip;
591
592                 rht_for_each_rcu(p, tbl, iter->slot) {
593                         if (!skip)
594                                 break;
595                         skip--;
596                 }
597
598 next:
599                 if (!rht_is_a_nulls(p)) {
600                         iter->skip++;
601                         iter->p = p;
602                         obj = rht_obj(ht, p);
603                         goto out;
604                 }
605
606                 iter->skip = 0;
607         }
608
609         /* Ensure we see any new tables. */
610         smp_rmb();
611
612         iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht);
613         if (iter->walker->tbl) {
614                 iter->slot = 0;
615                 iter->skip = 0;
616                 return ERR_PTR(-EAGAIN);
617         }
618
619         iter->p = NULL;
620
621 out:
622
623         return obj;
624 }
625 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
626
627 /**
628  * rhashtable_walk_stop - Finish a hash table walk
629  * @iter:       Hash table iterator
630  *
631  * Finish a hash table walk.
632  */
633 void rhashtable_walk_stop(struct rhashtable_iter *iter)
634         __releases(RCU)
635 {
636         struct rhashtable *ht;
637         struct bucket_table *tbl = iter->walker->tbl;
638
639         if (!tbl)
640                 goto out;
641
642         ht = iter->ht;
643
644         spin_lock(&ht->lock);
645         if (tbl->rehash < tbl->size)
646                 list_add(&iter->walker->list, &tbl->walkers);
647         else
648                 iter->walker->tbl = NULL;
649         spin_unlock(&ht->lock);
650
651         iter->p = NULL;
652
653 out:
654         rcu_read_unlock();
655 }
656 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
657
658 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
659 {
660         return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
661                    (unsigned long)params->min_size);
662 }
663
664 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
665 {
666         return jhash2(key, length, seed);
667 }
668
669 /**
670  * rhashtable_init - initialize a new hash table
671  * @ht:         hash table to be initialized
672  * @params:     configuration parameters
673  *
674  * Initializes a new hash table based on the provided configuration
675  * parameters. A table can be configured either with a variable or
676  * fixed length key:
677  *
678  * Configuration Example 1: Fixed length keys
679  * struct test_obj {
680  *      int                     key;
681  *      void *                  my_member;
682  *      struct rhash_head       node;
683  * };
684  *
685  * struct rhashtable_params params = {
686  *      .head_offset = offsetof(struct test_obj, node),
687  *      .key_offset = offsetof(struct test_obj, key),
688  *      .key_len = sizeof(int),
689  *      .hashfn = jhash,
690  *      .nulls_base = (1U << RHT_BASE_SHIFT),
691  * };
692  *
693  * Configuration Example 2: Variable length keys
694  * struct test_obj {
695  *      [...]
696  *      struct rhash_head       node;
697  * };
698  *
699  * u32 my_hash_fn(const void *data, u32 len, u32 seed)
700  * {
701  *      struct test_obj *obj = data;
702  *
703  *      return [... hash ...];
704  * }
705  *
706  * struct rhashtable_params params = {
707  *      .head_offset = offsetof(struct test_obj, node),
708  *      .hashfn = jhash,
709  *      .obj_hashfn = my_hash_fn,
710  * };
711  */
712 int rhashtable_init(struct rhashtable *ht,
713                     const struct rhashtable_params *params)
714 {
715         struct bucket_table *tbl;
716         size_t size;
717
718         size = HASH_DEFAULT_SIZE;
719
720         if ((!params->key_len && !params->obj_hashfn) ||
721             (params->obj_hashfn && !params->obj_cmpfn))
722                 return -EINVAL;
723
724         if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
725                 return -EINVAL;
726
727         if (params->nelem_hint)
728                 size = rounded_hashtable_size(params);
729
730         memset(ht, 0, sizeof(*ht));
731         mutex_init(&ht->mutex);
732         spin_lock_init(&ht->lock);
733         memcpy(&ht->p, params, sizeof(*params));
734
735         if (params->min_size)
736                 ht->p.min_size = roundup_pow_of_two(params->min_size);
737
738         if (params->max_size)
739                 ht->p.max_size = rounddown_pow_of_two(params->max_size);
740
741         ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
742
743         /* The maximum (not average) chain length grows with the
744          * size of the hash table, at a rate of (log N)/(log log N).
745          * The value of 16 is selected so that even if the hash
746          * table grew to 2^32 you would not expect the maximum
747          * chain length to exceed it unless we are under attack
748          * (or extremely unlucky).
749          *
750          * As this limit is only to detect attacks, we don't need
751          * to set it to a lower value as you'd need the chain
752          * length to vastly exceed 16 to have any real effect
753          * on the system.
754          */
755         if (!params->insecure_elasticity)
756                 ht->elasticity = 16;
757
758         if (params->locks_mul)
759                 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
760         else
761                 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
762
763         ht->key_len = ht->p.key_len;
764         if (!params->hashfn) {
765                 ht->p.hashfn = jhash;
766
767                 if (!(ht->key_len & (sizeof(u32) - 1))) {
768                         ht->key_len /= sizeof(u32);
769                         ht->p.hashfn = rhashtable_jhash2;
770                 }
771         }
772
773         tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
774         if (tbl == NULL)
775                 return -ENOMEM;
776
777         atomic_set(&ht->nelems, 0);
778
779         RCU_INIT_POINTER(ht->tbl, tbl);
780
781         INIT_WORK(&ht->run_work, rht_deferred_worker);
782
783         return 0;
784 }
785 EXPORT_SYMBOL_GPL(rhashtable_init);
786
787 /**
788  * rhashtable_free_and_destroy - free elements and destroy hash table
789  * @ht:         the hash table to destroy
790  * @free_fn:    callback to release resources of element
791  * @arg:        pointer passed to free_fn
792  *
793  * Stops an eventual async resize. If defined, invokes free_fn for each
794  * element to releasal resources. Please note that RCU protected
795  * readers may still be accessing the elements. Releasing of resources
796  * must occur in a compatible manner. Then frees the bucket array.
797  *
798  * This function will eventually sleep to wait for an async resize
799  * to complete. The caller is responsible that no further write operations
800  * occurs in parallel.
801  */
802 void rhashtable_free_and_destroy(struct rhashtable *ht,
803                                  void (*free_fn)(void *ptr, void *arg),
804                                  void *arg)
805 {
806         const struct bucket_table *tbl;
807         unsigned int i;
808
809         cancel_work_sync(&ht->run_work);
810
811         mutex_lock(&ht->mutex);
812         tbl = rht_dereference(ht->tbl, ht);
813         if (free_fn) {
814                 for (i = 0; i < tbl->size; i++) {
815                         struct rhash_head *pos, *next;
816
817                         for (pos = rht_dereference(tbl->buckets[i], ht),
818                              next = !rht_is_a_nulls(pos) ?
819                                         rht_dereference(pos->next, ht) : NULL;
820                              !rht_is_a_nulls(pos);
821                              pos = next,
822                              next = !rht_is_a_nulls(pos) ?
823                                         rht_dereference(pos->next, ht) : NULL)
824                                 free_fn(rht_obj(ht, pos), arg);
825                 }
826         }
827
828         bucket_table_free(tbl);
829         mutex_unlock(&ht->mutex);
830 }
831 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
832
833 void rhashtable_destroy(struct rhashtable *ht)
834 {
835         return rhashtable_free_and_destroy(ht, NULL, NULL);
836 }
837 EXPORT_SYMBOL_GPL(rhashtable_destroy);