kill dentry_update_name_case()
[sfrench/cifs-2.6.git] / lib / dma-direct.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * DMA operations that map physical memory directly without using an IOMMU or
4  * flushing caches.
5  */
6 #include <linux/export.h>
7 #include <linux/mm.h>
8 #include <linux/dma-direct.h>
9 #include <linux/scatterlist.h>
10 #include <linux/dma-contiguous.h>
11 #include <linux/pfn.h>
12 #include <linux/set_memory.h>
13
14 #define DIRECT_MAPPING_ERROR            0
15
16 /*
17  * Most architectures use ZONE_DMA for the first 16 Megabytes, but
18  * some use it for entirely different regions:
19  */
20 #ifndef ARCH_ZONE_DMA_BITS
21 #define ARCH_ZONE_DMA_BITS 24
22 #endif
23
24 /*
25  * For AMD SEV all DMA must be to unencrypted addresses.
26  */
27 static inline bool force_dma_unencrypted(void)
28 {
29         return sev_active();
30 }
31
32 static bool
33 check_addr(struct device *dev, dma_addr_t dma_addr, size_t size,
34                 const char *caller)
35 {
36         if (unlikely(dev && !dma_capable(dev, dma_addr, size))) {
37                 if (!dev->dma_mask) {
38                         dev_err(dev,
39                                 "%s: call on device without dma_mask\n",
40                                 caller);
41                         return false;
42                 }
43
44                 if (*dev->dma_mask >= DMA_BIT_MASK(32)) {
45                         dev_err(dev,
46                                 "%s: overflow %pad+%zu of device mask %llx\n",
47                                 caller, &dma_addr, size, *dev->dma_mask);
48                 }
49                 return false;
50         }
51         return true;
52 }
53
54 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
55 {
56         dma_addr_t addr = force_dma_unencrypted() ?
57                 __phys_to_dma(dev, phys) : phys_to_dma(dev, phys);
58         return addr + size - 1 <= dev->coherent_dma_mask;
59 }
60
61 void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
62                 gfp_t gfp, unsigned long attrs)
63 {
64         unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
65         int page_order = get_order(size);
66         struct page *page = NULL;
67         void *ret;
68
69         /* we always manually zero the memory once we are done: */
70         gfp &= ~__GFP_ZERO;
71
72         /* GFP_DMA32 and GFP_DMA are no ops without the corresponding zones: */
73         if (dev->coherent_dma_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
74                 gfp |= GFP_DMA;
75         if (dev->coherent_dma_mask <= DMA_BIT_MASK(32) && !(gfp & GFP_DMA))
76                 gfp |= GFP_DMA32;
77
78 again:
79         /* CMA can be used only in the context which permits sleeping */
80         if (gfpflags_allow_blocking(gfp)) {
81                 page = dma_alloc_from_contiguous(dev, count, page_order, gfp);
82                 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
83                         dma_release_from_contiguous(dev, page, count);
84                         page = NULL;
85                 }
86         }
87         if (!page)
88                 page = alloc_pages_node(dev_to_node(dev), gfp, page_order);
89
90         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
91                 __free_pages(page, page_order);
92                 page = NULL;
93
94                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
95                     dev->coherent_dma_mask < DMA_BIT_MASK(64) &&
96                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
97                         gfp |= GFP_DMA32;
98                         goto again;
99                 }
100
101                 if (IS_ENABLED(CONFIG_ZONE_DMA) &&
102                     dev->coherent_dma_mask < DMA_BIT_MASK(32) &&
103                     !(gfp & GFP_DMA)) {
104                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
105                         goto again;
106                 }
107         }
108
109         if (!page)
110                 return NULL;
111         ret = page_address(page);
112         if (force_dma_unencrypted()) {
113                 set_memory_decrypted((unsigned long)ret, 1 << page_order);
114                 *dma_handle = __phys_to_dma(dev, page_to_phys(page));
115         } else {
116                 *dma_handle = phys_to_dma(dev, page_to_phys(page));
117         }
118         memset(ret, 0, size);
119         return ret;
120 }
121
122 /*
123  * NOTE: this function must never look at the dma_addr argument, because we want
124  * to be able to use it as a helper for iommu implementations as well.
125  */
126 void dma_direct_free(struct device *dev, size_t size, void *cpu_addr,
127                 dma_addr_t dma_addr, unsigned long attrs)
128 {
129         unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
130         unsigned int page_order = get_order(size);
131
132         if (force_dma_unencrypted())
133                 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
134         if (!dma_release_from_contiguous(dev, virt_to_page(cpu_addr), count))
135                 free_pages((unsigned long)cpu_addr, page_order);
136 }
137
138 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
139                 unsigned long offset, size_t size, enum dma_data_direction dir,
140                 unsigned long attrs)
141 {
142         dma_addr_t dma_addr = phys_to_dma(dev, page_to_phys(page)) + offset;
143
144         if (!check_addr(dev, dma_addr, size, __func__))
145                 return DIRECT_MAPPING_ERROR;
146         return dma_addr;
147 }
148
149 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
150                 enum dma_data_direction dir, unsigned long attrs)
151 {
152         int i;
153         struct scatterlist *sg;
154
155         for_each_sg(sgl, sg, nents, i) {
156                 BUG_ON(!sg_page(sg));
157
158                 sg_dma_address(sg) = phys_to_dma(dev, sg_phys(sg));
159                 if (!check_addr(dev, sg_dma_address(sg), sg->length, __func__))
160                         return 0;
161                 sg_dma_len(sg) = sg->length;
162         }
163
164         return nents;
165 }
166
167 int dma_direct_supported(struct device *dev, u64 mask)
168 {
169 #ifdef CONFIG_ZONE_DMA
170         if (mask < DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
171                 return 0;
172 #else
173         /*
174          * Because 32-bit DMA masks are so common we expect every architecture
175          * to be able to satisfy them - either by not supporting more physical
176          * memory, or by providing a ZONE_DMA32.  If neither is the case, the
177          * architecture needs to use an IOMMU instead of the direct mapping.
178          */
179         if (mask < DMA_BIT_MASK(32))
180                 return 0;
181 #endif
182         /*
183          * Various PCI/PCIe bridges have broken support for > 32bit DMA even
184          * if the device itself might support it.
185          */
186         if (dev->dma_32bit_limit && mask > DMA_BIT_MASK(32))
187                 return 0;
188         return 1;
189 }
190
191 int dma_direct_mapping_error(struct device *dev, dma_addr_t dma_addr)
192 {
193         return dma_addr == DIRECT_MAPPING_ERROR;
194 }
195
196 const struct dma_map_ops dma_direct_ops = {
197         .alloc                  = dma_direct_alloc,
198         .free                   = dma_direct_free,
199         .map_page               = dma_direct_map_page,
200         .map_sg                 = dma_direct_map_sg,
201         .dma_supported          = dma_direct_supported,
202         .mapping_error          = dma_direct_mapping_error,
203 };
204 EXPORT_SYMBOL(dma_direct_ops);