kill dentry_update_name_case()
[sfrench/cifs-2.6.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/sched/clock.h>
10 #include <linux/trace_seq.h>
11 #include <linux/spinlock.h>
12 #include <linux/irq_work.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>      /* for self test */
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/oom.h>
26
27 #include <asm/local.h>
28
29 static void update_pages_handler(struct work_struct *work);
30
31 /*
32  * The ring buffer header is special. We must manually up keep it.
33  */
34 int ring_buffer_print_entry_header(struct trace_seq *s)
35 {
36         trace_seq_puts(s, "# compressed entry header\n");
37         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
38         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
39         trace_seq_puts(s, "\tarray       :   32 bits\n");
40         trace_seq_putc(s, '\n');
41         trace_seq_printf(s, "\tpadding     : type == %d\n",
42                          RINGBUF_TYPE_PADDING);
43         trace_seq_printf(s, "\ttime_extend : type == %d\n",
44                          RINGBUF_TYPE_TIME_EXTEND);
45         trace_seq_printf(s, "\ttime_stamp : type == %d\n",
46                          RINGBUF_TYPE_TIME_STAMP);
47         trace_seq_printf(s, "\tdata max type_len  == %d\n",
48                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
49
50         return !trace_seq_has_overflowed(s);
51 }
52
53 /*
54  * The ring buffer is made up of a list of pages. A separate list of pages is
55  * allocated for each CPU. A writer may only write to a buffer that is
56  * associated with the CPU it is currently executing on.  A reader may read
57  * from any per cpu buffer.
58  *
59  * The reader is special. For each per cpu buffer, the reader has its own
60  * reader page. When a reader has read the entire reader page, this reader
61  * page is swapped with another page in the ring buffer.
62  *
63  * Now, as long as the writer is off the reader page, the reader can do what
64  * ever it wants with that page. The writer will never write to that page
65  * again (as long as it is out of the ring buffer).
66  *
67  * Here's some silly ASCII art.
68  *
69  *   +------+
70  *   |reader|          RING BUFFER
71  *   |page  |
72  *   +------+        +---+   +---+   +---+
73  *                   |   |-->|   |-->|   |
74  *                   +---+   +---+   +---+
75  *                     ^               |
76  *                     |               |
77  *                     +---------------+
78  *
79  *
80  *   +------+
81  *   |reader|          RING BUFFER
82  *   |page  |------------------v
83  *   +------+        +---+   +---+   +---+
84  *                   |   |-->|   |-->|   |
85  *                   +---+   +---+   +---+
86  *                     ^               |
87  *                     |               |
88  *                     +---------------+
89  *
90  *
91  *   +------+
92  *   |reader|          RING BUFFER
93  *   |page  |------------------v
94  *   +------+        +---+   +---+   +---+
95  *      ^            |   |-->|   |-->|   |
96  *      |            +---+   +---+   +---+
97  *      |                              |
98  *      |                              |
99  *      +------------------------------+
100  *
101  *
102  *   +------+
103  *   |buffer|          RING BUFFER
104  *   |page  |------------------v
105  *   +------+        +---+   +---+   +---+
106  *      ^            |   |   |   |-->|   |
107  *      |   New      +---+   +---+   +---+
108  *      |  Reader------^               |
109  *      |   page                       |
110  *      +------------------------------+
111  *
112  *
113  * After we make this swap, the reader can hand this page off to the splice
114  * code and be done with it. It can even allocate a new page if it needs to
115  * and swap that into the ring buffer.
116  *
117  * We will be using cmpxchg soon to make all this lockless.
118  *
119  */
120
121 /* Used for individual buffers (after the counter) */
122 #define RB_BUFFER_OFF           (1 << 20)
123
124 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
125
126 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
127 #define RB_ALIGNMENT            4U
128 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
129 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
130
131 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
132 # define RB_FORCE_8BYTE_ALIGNMENT       0
133 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
134 #else
135 # define RB_FORCE_8BYTE_ALIGNMENT       1
136 # define RB_ARCH_ALIGNMENT              8U
137 #endif
138
139 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
140
141 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
142 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
143
144 enum {
145         RB_LEN_TIME_EXTEND = 8,
146         RB_LEN_TIME_STAMP =  8,
147 };
148
149 #define skip_time_extend(event) \
150         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
151
152 #define extended_time(event) \
153         (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
154
155 static inline int rb_null_event(struct ring_buffer_event *event)
156 {
157         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
158 }
159
160 static void rb_event_set_padding(struct ring_buffer_event *event)
161 {
162         /* padding has a NULL time_delta */
163         event->type_len = RINGBUF_TYPE_PADDING;
164         event->time_delta = 0;
165 }
166
167 static unsigned
168 rb_event_data_length(struct ring_buffer_event *event)
169 {
170         unsigned length;
171
172         if (event->type_len)
173                 length = event->type_len * RB_ALIGNMENT;
174         else
175                 length = event->array[0];
176         return length + RB_EVNT_HDR_SIZE;
177 }
178
179 /*
180  * Return the length of the given event. Will return
181  * the length of the time extend if the event is a
182  * time extend.
183  */
184 static inline unsigned
185 rb_event_length(struct ring_buffer_event *event)
186 {
187         switch (event->type_len) {
188         case RINGBUF_TYPE_PADDING:
189                 if (rb_null_event(event))
190                         /* undefined */
191                         return -1;
192                 return  event->array[0] + RB_EVNT_HDR_SIZE;
193
194         case RINGBUF_TYPE_TIME_EXTEND:
195                 return RB_LEN_TIME_EXTEND;
196
197         case RINGBUF_TYPE_TIME_STAMP:
198                 return RB_LEN_TIME_STAMP;
199
200         case RINGBUF_TYPE_DATA:
201                 return rb_event_data_length(event);
202         default:
203                 BUG();
204         }
205         /* not hit */
206         return 0;
207 }
208
209 /*
210  * Return total length of time extend and data,
211  *   or just the event length for all other events.
212  */
213 static inline unsigned
214 rb_event_ts_length(struct ring_buffer_event *event)
215 {
216         unsigned len = 0;
217
218         if (extended_time(event)) {
219                 /* time extends include the data event after it */
220                 len = RB_LEN_TIME_EXTEND;
221                 event = skip_time_extend(event);
222         }
223         return len + rb_event_length(event);
224 }
225
226 /**
227  * ring_buffer_event_length - return the length of the event
228  * @event: the event to get the length of
229  *
230  * Returns the size of the data load of a data event.
231  * If the event is something other than a data event, it
232  * returns the size of the event itself. With the exception
233  * of a TIME EXTEND, where it still returns the size of the
234  * data load of the data event after it.
235  */
236 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
237 {
238         unsigned length;
239
240         if (extended_time(event))
241                 event = skip_time_extend(event);
242
243         length = rb_event_length(event);
244         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
245                 return length;
246         length -= RB_EVNT_HDR_SIZE;
247         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
248                 length -= sizeof(event->array[0]);
249         return length;
250 }
251 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
252
253 /* inline for ring buffer fast paths */
254 static __always_inline void *
255 rb_event_data(struct ring_buffer_event *event)
256 {
257         if (extended_time(event))
258                 event = skip_time_extend(event);
259         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
260         /* If length is in len field, then array[0] has the data */
261         if (event->type_len)
262                 return (void *)&event->array[0];
263         /* Otherwise length is in array[0] and array[1] has the data */
264         return (void *)&event->array[1];
265 }
266
267 /**
268  * ring_buffer_event_data - return the data of the event
269  * @event: the event to get the data from
270  */
271 void *ring_buffer_event_data(struct ring_buffer_event *event)
272 {
273         return rb_event_data(event);
274 }
275 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
276
277 #define for_each_buffer_cpu(buffer, cpu)                \
278         for_each_cpu(cpu, buffer->cpumask)
279
280 #define TS_SHIFT        27
281 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
282 #define TS_DELTA_TEST   (~TS_MASK)
283
284 /**
285  * ring_buffer_event_time_stamp - return the event's extended timestamp
286  * @event: the event to get the timestamp of
287  *
288  * Returns the extended timestamp associated with a data event.
289  * An extended time_stamp is a 64-bit timestamp represented
290  * internally in a special way that makes the best use of space
291  * contained within a ring buffer event.  This function decodes
292  * it and maps it to a straight u64 value.
293  */
294 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
295 {
296         u64 ts;
297
298         ts = event->array[0];
299         ts <<= TS_SHIFT;
300         ts += event->time_delta;
301
302         return ts;
303 }
304
305 /* Flag when events were overwritten */
306 #define RB_MISSED_EVENTS        (1 << 31)
307 /* Missed count stored at end */
308 #define RB_MISSED_STORED        (1 << 30)
309
310 #define RB_MISSED_FLAGS         (RB_MISSED_EVENTS|RB_MISSED_STORED)
311
312 struct buffer_data_page {
313         u64              time_stamp;    /* page time stamp */
314         local_t          commit;        /* write committed index */
315         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
316 };
317
318 /*
319  * Note, the buffer_page list must be first. The buffer pages
320  * are allocated in cache lines, which means that each buffer
321  * page will be at the beginning of a cache line, and thus
322  * the least significant bits will be zero. We use this to
323  * add flags in the list struct pointers, to make the ring buffer
324  * lockless.
325  */
326 struct buffer_page {
327         struct list_head list;          /* list of buffer pages */
328         local_t          write;         /* index for next write */
329         unsigned         read;          /* index for next read */
330         local_t          entries;       /* entries on this page */
331         unsigned long    real_end;      /* real end of data */
332         struct buffer_data_page *page;  /* Actual data page */
333 };
334
335 /*
336  * The buffer page counters, write and entries, must be reset
337  * atomically when crossing page boundaries. To synchronize this
338  * update, two counters are inserted into the number. One is
339  * the actual counter for the write position or count on the page.
340  *
341  * The other is a counter of updaters. Before an update happens
342  * the update partition of the counter is incremented. This will
343  * allow the updater to update the counter atomically.
344  *
345  * The counter is 20 bits, and the state data is 12.
346  */
347 #define RB_WRITE_MASK           0xfffff
348 #define RB_WRITE_INTCNT         (1 << 20)
349
350 static void rb_init_page(struct buffer_data_page *bpage)
351 {
352         local_set(&bpage->commit, 0);
353 }
354
355 /**
356  * ring_buffer_page_len - the size of data on the page.
357  * @page: The page to read
358  *
359  * Returns the amount of data on the page, including buffer page header.
360  */
361 size_t ring_buffer_page_len(void *page)
362 {
363         struct buffer_data_page *bpage = page;
364
365         return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
366                 + BUF_PAGE_HDR_SIZE;
367 }
368
369 /*
370  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
371  * this issue out.
372  */
373 static void free_buffer_page(struct buffer_page *bpage)
374 {
375         free_page((unsigned long)bpage->page);
376         kfree(bpage);
377 }
378
379 /*
380  * We need to fit the time_stamp delta into 27 bits.
381  */
382 static inline int test_time_stamp(u64 delta)
383 {
384         if (delta & TS_DELTA_TEST)
385                 return 1;
386         return 0;
387 }
388
389 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
390
391 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
392 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
393
394 int ring_buffer_print_page_header(struct trace_seq *s)
395 {
396         struct buffer_data_page field;
397
398         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
399                          "offset:0;\tsize:%u;\tsigned:%u;\n",
400                          (unsigned int)sizeof(field.time_stamp),
401                          (unsigned int)is_signed_type(u64));
402
403         trace_seq_printf(s, "\tfield: local_t commit;\t"
404                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
405                          (unsigned int)offsetof(typeof(field), commit),
406                          (unsigned int)sizeof(field.commit),
407                          (unsigned int)is_signed_type(long));
408
409         trace_seq_printf(s, "\tfield: int overwrite;\t"
410                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
411                          (unsigned int)offsetof(typeof(field), commit),
412                          1,
413                          (unsigned int)is_signed_type(long));
414
415         trace_seq_printf(s, "\tfield: char data;\t"
416                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
417                          (unsigned int)offsetof(typeof(field), data),
418                          (unsigned int)BUF_PAGE_SIZE,
419                          (unsigned int)is_signed_type(char));
420
421         return !trace_seq_has_overflowed(s);
422 }
423
424 struct rb_irq_work {
425         struct irq_work                 work;
426         wait_queue_head_t               waiters;
427         wait_queue_head_t               full_waiters;
428         bool                            waiters_pending;
429         bool                            full_waiters_pending;
430         bool                            wakeup_full;
431 };
432
433 /*
434  * Structure to hold event state and handle nested events.
435  */
436 struct rb_event_info {
437         u64                     ts;
438         u64                     delta;
439         unsigned long           length;
440         struct buffer_page      *tail_page;
441         int                     add_timestamp;
442 };
443
444 /*
445  * Used for which event context the event is in.
446  *  NMI     = 0
447  *  IRQ     = 1
448  *  SOFTIRQ = 2
449  *  NORMAL  = 3
450  *
451  * See trace_recursive_lock() comment below for more details.
452  */
453 enum {
454         RB_CTX_NMI,
455         RB_CTX_IRQ,
456         RB_CTX_SOFTIRQ,
457         RB_CTX_NORMAL,
458         RB_CTX_MAX
459 };
460
461 /*
462  * head_page == tail_page && head == tail then buffer is empty.
463  */
464 struct ring_buffer_per_cpu {
465         int                             cpu;
466         atomic_t                        record_disabled;
467         struct ring_buffer              *buffer;
468         raw_spinlock_t                  reader_lock;    /* serialize readers */
469         arch_spinlock_t                 lock;
470         struct lock_class_key           lock_key;
471         struct buffer_data_page         *free_page;
472         unsigned long                   nr_pages;
473         unsigned int                    current_context;
474         struct list_head                *pages;
475         struct buffer_page              *head_page;     /* read from head */
476         struct buffer_page              *tail_page;     /* write to tail */
477         struct buffer_page              *commit_page;   /* committed pages */
478         struct buffer_page              *reader_page;
479         unsigned long                   lost_events;
480         unsigned long                   last_overrun;
481         unsigned long                   nest;
482         local_t                         entries_bytes;
483         local_t                         entries;
484         local_t                         overrun;
485         local_t                         commit_overrun;
486         local_t                         dropped_events;
487         local_t                         committing;
488         local_t                         commits;
489         unsigned long                   read;
490         unsigned long                   read_bytes;
491         u64                             write_stamp;
492         u64                             read_stamp;
493         /* ring buffer pages to update, > 0 to add, < 0 to remove */
494         long                            nr_pages_to_update;
495         struct list_head                new_pages; /* new pages to add */
496         struct work_struct              update_pages_work;
497         struct completion               update_done;
498
499         struct rb_irq_work              irq_work;
500 };
501
502 struct ring_buffer {
503         unsigned                        flags;
504         int                             cpus;
505         atomic_t                        record_disabled;
506         atomic_t                        resize_disabled;
507         cpumask_var_t                   cpumask;
508
509         struct lock_class_key           *reader_lock_key;
510
511         struct mutex                    mutex;
512
513         struct ring_buffer_per_cpu      **buffers;
514
515         struct hlist_node               node;
516         u64                             (*clock)(void);
517
518         struct rb_irq_work              irq_work;
519         bool                            time_stamp_abs;
520 };
521
522 struct ring_buffer_iter {
523         struct ring_buffer_per_cpu      *cpu_buffer;
524         unsigned long                   head;
525         struct buffer_page              *head_page;
526         struct buffer_page              *cache_reader_page;
527         unsigned long                   cache_read;
528         u64                             read_stamp;
529 };
530
531 /*
532  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
533  *
534  * Schedules a delayed work to wake up any task that is blocked on the
535  * ring buffer waiters queue.
536  */
537 static void rb_wake_up_waiters(struct irq_work *work)
538 {
539         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
540
541         wake_up_all(&rbwork->waiters);
542         if (rbwork->wakeup_full) {
543                 rbwork->wakeup_full = false;
544                 wake_up_all(&rbwork->full_waiters);
545         }
546 }
547
548 /**
549  * ring_buffer_wait - wait for input to the ring buffer
550  * @buffer: buffer to wait on
551  * @cpu: the cpu buffer to wait on
552  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
553  *
554  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
555  * as data is added to any of the @buffer's cpu buffers. Otherwise
556  * it will wait for data to be added to a specific cpu buffer.
557  */
558 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
559 {
560         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
561         DEFINE_WAIT(wait);
562         struct rb_irq_work *work;
563         int ret = 0;
564
565         /*
566          * Depending on what the caller is waiting for, either any
567          * data in any cpu buffer, or a specific buffer, put the
568          * caller on the appropriate wait queue.
569          */
570         if (cpu == RING_BUFFER_ALL_CPUS) {
571                 work = &buffer->irq_work;
572                 /* Full only makes sense on per cpu reads */
573                 full = false;
574         } else {
575                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
576                         return -ENODEV;
577                 cpu_buffer = buffer->buffers[cpu];
578                 work = &cpu_buffer->irq_work;
579         }
580
581
582         while (true) {
583                 if (full)
584                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
585                 else
586                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
587
588                 /*
589                  * The events can happen in critical sections where
590                  * checking a work queue can cause deadlocks.
591                  * After adding a task to the queue, this flag is set
592                  * only to notify events to try to wake up the queue
593                  * using irq_work.
594                  *
595                  * We don't clear it even if the buffer is no longer
596                  * empty. The flag only causes the next event to run
597                  * irq_work to do the work queue wake up. The worse
598                  * that can happen if we race with !trace_empty() is that
599                  * an event will cause an irq_work to try to wake up
600                  * an empty queue.
601                  *
602                  * There's no reason to protect this flag either, as
603                  * the work queue and irq_work logic will do the necessary
604                  * synchronization for the wake ups. The only thing
605                  * that is necessary is that the wake up happens after
606                  * a task has been queued. It's OK for spurious wake ups.
607                  */
608                 if (full)
609                         work->full_waiters_pending = true;
610                 else
611                         work->waiters_pending = true;
612
613                 if (signal_pending(current)) {
614                         ret = -EINTR;
615                         break;
616                 }
617
618                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
619                         break;
620
621                 if (cpu != RING_BUFFER_ALL_CPUS &&
622                     !ring_buffer_empty_cpu(buffer, cpu)) {
623                         unsigned long flags;
624                         bool pagebusy;
625
626                         if (!full)
627                                 break;
628
629                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
630                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
631                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
632
633                         if (!pagebusy)
634                                 break;
635                 }
636
637                 schedule();
638         }
639
640         if (full)
641                 finish_wait(&work->full_waiters, &wait);
642         else
643                 finish_wait(&work->waiters, &wait);
644
645         return ret;
646 }
647
648 /**
649  * ring_buffer_poll_wait - poll on buffer input
650  * @buffer: buffer to wait on
651  * @cpu: the cpu buffer to wait on
652  * @filp: the file descriptor
653  * @poll_table: The poll descriptor
654  *
655  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
656  * as data is added to any of the @buffer's cpu buffers. Otherwise
657  * it will wait for data to be added to a specific cpu buffer.
658  *
659  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
660  * zero otherwise.
661  */
662 __poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
663                           struct file *filp, poll_table *poll_table)
664 {
665         struct ring_buffer_per_cpu *cpu_buffer;
666         struct rb_irq_work *work;
667
668         if (cpu == RING_BUFFER_ALL_CPUS)
669                 work = &buffer->irq_work;
670         else {
671                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
672                         return -EINVAL;
673
674                 cpu_buffer = buffer->buffers[cpu];
675                 work = &cpu_buffer->irq_work;
676         }
677
678         poll_wait(filp, &work->waiters, poll_table);
679         work->waiters_pending = true;
680         /*
681          * There's a tight race between setting the waiters_pending and
682          * checking if the ring buffer is empty.  Once the waiters_pending bit
683          * is set, the next event will wake the task up, but we can get stuck
684          * if there's only a single event in.
685          *
686          * FIXME: Ideally, we need a memory barrier on the writer side as well,
687          * but adding a memory barrier to all events will cause too much of a
688          * performance hit in the fast path.  We only need a memory barrier when
689          * the buffer goes from empty to having content.  But as this race is
690          * extremely small, and it's not a problem if another event comes in, we
691          * will fix it later.
692          */
693         smp_mb();
694
695         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
696             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
697                 return EPOLLIN | EPOLLRDNORM;
698         return 0;
699 }
700
701 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
702 #define RB_WARN_ON(b, cond)                                             \
703         ({                                                              \
704                 int _____ret = unlikely(cond);                          \
705                 if (_____ret) {                                         \
706                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
707                                 struct ring_buffer_per_cpu *__b =       \
708                                         (void *)b;                      \
709                                 atomic_inc(&__b->buffer->record_disabled); \
710                         } else                                          \
711                                 atomic_inc(&b->record_disabled);        \
712                         WARN_ON(1);                                     \
713                 }                                                       \
714                 _____ret;                                               \
715         })
716
717 /* Up this if you want to test the TIME_EXTENTS and normalization */
718 #define DEBUG_SHIFT 0
719
720 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
721 {
722         /* shift to debug/test normalization and TIME_EXTENTS */
723         return buffer->clock() << DEBUG_SHIFT;
724 }
725
726 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
727 {
728         u64 time;
729
730         preempt_disable_notrace();
731         time = rb_time_stamp(buffer);
732         preempt_enable_no_resched_notrace();
733
734         return time;
735 }
736 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
737
738 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
739                                       int cpu, u64 *ts)
740 {
741         /* Just stupid testing the normalize function and deltas */
742         *ts >>= DEBUG_SHIFT;
743 }
744 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
745
746 /*
747  * Making the ring buffer lockless makes things tricky.
748  * Although writes only happen on the CPU that they are on,
749  * and they only need to worry about interrupts. Reads can
750  * happen on any CPU.
751  *
752  * The reader page is always off the ring buffer, but when the
753  * reader finishes with a page, it needs to swap its page with
754  * a new one from the buffer. The reader needs to take from
755  * the head (writes go to the tail). But if a writer is in overwrite
756  * mode and wraps, it must push the head page forward.
757  *
758  * Here lies the problem.
759  *
760  * The reader must be careful to replace only the head page, and
761  * not another one. As described at the top of the file in the
762  * ASCII art, the reader sets its old page to point to the next
763  * page after head. It then sets the page after head to point to
764  * the old reader page. But if the writer moves the head page
765  * during this operation, the reader could end up with the tail.
766  *
767  * We use cmpxchg to help prevent this race. We also do something
768  * special with the page before head. We set the LSB to 1.
769  *
770  * When the writer must push the page forward, it will clear the
771  * bit that points to the head page, move the head, and then set
772  * the bit that points to the new head page.
773  *
774  * We also don't want an interrupt coming in and moving the head
775  * page on another writer. Thus we use the second LSB to catch
776  * that too. Thus:
777  *
778  * head->list->prev->next        bit 1          bit 0
779  *                              -------        -------
780  * Normal page                     0              0
781  * Points to head page             0              1
782  * New head page                   1              0
783  *
784  * Note we can not trust the prev pointer of the head page, because:
785  *
786  * +----+       +-----+        +-----+
787  * |    |------>|  T  |---X--->|  N  |
788  * |    |<------|     |        |     |
789  * +----+       +-----+        +-----+
790  *   ^                           ^ |
791  *   |          +-----+          | |
792  *   +----------|  R  |----------+ |
793  *              |     |<-----------+
794  *              +-----+
795  *
796  * Key:  ---X-->  HEAD flag set in pointer
797  *         T      Tail page
798  *         R      Reader page
799  *         N      Next page
800  *
801  * (see __rb_reserve_next() to see where this happens)
802  *
803  *  What the above shows is that the reader just swapped out
804  *  the reader page with a page in the buffer, but before it
805  *  could make the new header point back to the new page added
806  *  it was preempted by a writer. The writer moved forward onto
807  *  the new page added by the reader and is about to move forward
808  *  again.
809  *
810  *  You can see, it is legitimate for the previous pointer of
811  *  the head (or any page) not to point back to itself. But only
812  *  temporarily.
813  */
814
815 #define RB_PAGE_NORMAL          0UL
816 #define RB_PAGE_HEAD            1UL
817 #define RB_PAGE_UPDATE          2UL
818
819
820 #define RB_FLAG_MASK            3UL
821
822 /* PAGE_MOVED is not part of the mask */
823 #define RB_PAGE_MOVED           4UL
824
825 /*
826  * rb_list_head - remove any bit
827  */
828 static struct list_head *rb_list_head(struct list_head *list)
829 {
830         unsigned long val = (unsigned long)list;
831
832         return (struct list_head *)(val & ~RB_FLAG_MASK);
833 }
834
835 /*
836  * rb_is_head_page - test if the given page is the head page
837  *
838  * Because the reader may move the head_page pointer, we can
839  * not trust what the head page is (it may be pointing to
840  * the reader page). But if the next page is a header page,
841  * its flags will be non zero.
842  */
843 static inline int
844 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
845                 struct buffer_page *page, struct list_head *list)
846 {
847         unsigned long val;
848
849         val = (unsigned long)list->next;
850
851         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
852                 return RB_PAGE_MOVED;
853
854         return val & RB_FLAG_MASK;
855 }
856
857 /*
858  * rb_is_reader_page
859  *
860  * The unique thing about the reader page, is that, if the
861  * writer is ever on it, the previous pointer never points
862  * back to the reader page.
863  */
864 static bool rb_is_reader_page(struct buffer_page *page)
865 {
866         struct list_head *list = page->list.prev;
867
868         return rb_list_head(list->next) != &page->list;
869 }
870
871 /*
872  * rb_set_list_to_head - set a list_head to be pointing to head.
873  */
874 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
875                                 struct list_head *list)
876 {
877         unsigned long *ptr;
878
879         ptr = (unsigned long *)&list->next;
880         *ptr |= RB_PAGE_HEAD;
881         *ptr &= ~RB_PAGE_UPDATE;
882 }
883
884 /*
885  * rb_head_page_activate - sets up head page
886  */
887 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
888 {
889         struct buffer_page *head;
890
891         head = cpu_buffer->head_page;
892         if (!head)
893                 return;
894
895         /*
896          * Set the previous list pointer to have the HEAD flag.
897          */
898         rb_set_list_to_head(cpu_buffer, head->list.prev);
899 }
900
901 static void rb_list_head_clear(struct list_head *list)
902 {
903         unsigned long *ptr = (unsigned long *)&list->next;
904
905         *ptr &= ~RB_FLAG_MASK;
906 }
907
908 /*
909  * rb_head_page_deactivate - clears head page ptr (for free list)
910  */
911 static void
912 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
913 {
914         struct list_head *hd;
915
916         /* Go through the whole list and clear any pointers found. */
917         rb_list_head_clear(cpu_buffer->pages);
918
919         list_for_each(hd, cpu_buffer->pages)
920                 rb_list_head_clear(hd);
921 }
922
923 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
924                             struct buffer_page *head,
925                             struct buffer_page *prev,
926                             int old_flag, int new_flag)
927 {
928         struct list_head *list;
929         unsigned long val = (unsigned long)&head->list;
930         unsigned long ret;
931
932         list = &prev->list;
933
934         val &= ~RB_FLAG_MASK;
935
936         ret = cmpxchg((unsigned long *)&list->next,
937                       val | old_flag, val | new_flag);
938
939         /* check if the reader took the page */
940         if ((ret & ~RB_FLAG_MASK) != val)
941                 return RB_PAGE_MOVED;
942
943         return ret & RB_FLAG_MASK;
944 }
945
946 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
947                                    struct buffer_page *head,
948                                    struct buffer_page *prev,
949                                    int old_flag)
950 {
951         return rb_head_page_set(cpu_buffer, head, prev,
952                                 old_flag, RB_PAGE_UPDATE);
953 }
954
955 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
956                                  struct buffer_page *head,
957                                  struct buffer_page *prev,
958                                  int old_flag)
959 {
960         return rb_head_page_set(cpu_buffer, head, prev,
961                                 old_flag, RB_PAGE_HEAD);
962 }
963
964 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
965                                    struct buffer_page *head,
966                                    struct buffer_page *prev,
967                                    int old_flag)
968 {
969         return rb_head_page_set(cpu_buffer, head, prev,
970                                 old_flag, RB_PAGE_NORMAL);
971 }
972
973 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
974                                struct buffer_page **bpage)
975 {
976         struct list_head *p = rb_list_head((*bpage)->list.next);
977
978         *bpage = list_entry(p, struct buffer_page, list);
979 }
980
981 static struct buffer_page *
982 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
983 {
984         struct buffer_page *head;
985         struct buffer_page *page;
986         struct list_head *list;
987         int i;
988
989         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
990                 return NULL;
991
992         /* sanity check */
993         list = cpu_buffer->pages;
994         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
995                 return NULL;
996
997         page = head = cpu_buffer->head_page;
998         /*
999          * It is possible that the writer moves the header behind
1000          * where we started, and we miss in one loop.
1001          * A second loop should grab the header, but we'll do
1002          * three loops just because I'm paranoid.
1003          */
1004         for (i = 0; i < 3; i++) {
1005                 do {
1006                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1007                                 cpu_buffer->head_page = page;
1008                                 return page;
1009                         }
1010                         rb_inc_page(cpu_buffer, &page);
1011                 } while (page != head);
1012         }
1013
1014         RB_WARN_ON(cpu_buffer, 1);
1015
1016         return NULL;
1017 }
1018
1019 static int rb_head_page_replace(struct buffer_page *old,
1020                                 struct buffer_page *new)
1021 {
1022         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1023         unsigned long val;
1024         unsigned long ret;
1025
1026         val = *ptr & ~RB_FLAG_MASK;
1027         val |= RB_PAGE_HEAD;
1028
1029         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1030
1031         return ret == val;
1032 }
1033
1034 /*
1035  * rb_tail_page_update - move the tail page forward
1036  */
1037 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1038                                struct buffer_page *tail_page,
1039                                struct buffer_page *next_page)
1040 {
1041         unsigned long old_entries;
1042         unsigned long old_write;
1043
1044         /*
1045          * The tail page now needs to be moved forward.
1046          *
1047          * We need to reset the tail page, but without messing
1048          * with possible erasing of data brought in by interrupts
1049          * that have moved the tail page and are currently on it.
1050          *
1051          * We add a counter to the write field to denote this.
1052          */
1053         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1054         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1055
1056         /*
1057          * Just make sure we have seen our old_write and synchronize
1058          * with any interrupts that come in.
1059          */
1060         barrier();
1061
1062         /*
1063          * If the tail page is still the same as what we think
1064          * it is, then it is up to us to update the tail
1065          * pointer.
1066          */
1067         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1068                 /* Zero the write counter */
1069                 unsigned long val = old_write & ~RB_WRITE_MASK;
1070                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1071
1072                 /*
1073                  * This will only succeed if an interrupt did
1074                  * not come in and change it. In which case, we
1075                  * do not want to modify it.
1076                  *
1077                  * We add (void) to let the compiler know that we do not care
1078                  * about the return value of these functions. We use the
1079                  * cmpxchg to only update if an interrupt did not already
1080                  * do it for us. If the cmpxchg fails, we don't care.
1081                  */
1082                 (void)local_cmpxchg(&next_page->write, old_write, val);
1083                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1084
1085                 /*
1086                  * No need to worry about races with clearing out the commit.
1087                  * it only can increment when a commit takes place. But that
1088                  * only happens in the outer most nested commit.
1089                  */
1090                 local_set(&next_page->page->commit, 0);
1091
1092                 /* Again, either we update tail_page or an interrupt does */
1093                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1094         }
1095 }
1096
1097 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1098                           struct buffer_page *bpage)
1099 {
1100         unsigned long val = (unsigned long)bpage;
1101
1102         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1103                 return 1;
1104
1105         return 0;
1106 }
1107
1108 /**
1109  * rb_check_list - make sure a pointer to a list has the last bits zero
1110  */
1111 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1112                          struct list_head *list)
1113 {
1114         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1115                 return 1;
1116         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1117                 return 1;
1118         return 0;
1119 }
1120
1121 /**
1122  * rb_check_pages - integrity check of buffer pages
1123  * @cpu_buffer: CPU buffer with pages to test
1124  *
1125  * As a safety measure we check to make sure the data pages have not
1126  * been corrupted.
1127  */
1128 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1129 {
1130         struct list_head *head = cpu_buffer->pages;
1131         struct buffer_page *bpage, *tmp;
1132
1133         /* Reset the head page if it exists */
1134         if (cpu_buffer->head_page)
1135                 rb_set_head_page(cpu_buffer);
1136
1137         rb_head_page_deactivate(cpu_buffer);
1138
1139         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1140                 return -1;
1141         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1142                 return -1;
1143
1144         if (rb_check_list(cpu_buffer, head))
1145                 return -1;
1146
1147         list_for_each_entry_safe(bpage, tmp, head, list) {
1148                 if (RB_WARN_ON(cpu_buffer,
1149                                bpage->list.next->prev != &bpage->list))
1150                         return -1;
1151                 if (RB_WARN_ON(cpu_buffer,
1152                                bpage->list.prev->next != &bpage->list))
1153                         return -1;
1154                 if (rb_check_list(cpu_buffer, &bpage->list))
1155                         return -1;
1156         }
1157
1158         rb_head_page_activate(cpu_buffer);
1159
1160         return 0;
1161 }
1162
1163 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1164 {
1165         struct buffer_page *bpage, *tmp;
1166         bool user_thread = current->mm != NULL;
1167         gfp_t mflags;
1168         long i;
1169
1170         /*
1171          * Check if the available memory is there first.
1172          * Note, si_mem_available() only gives us a rough estimate of available
1173          * memory. It may not be accurate. But we don't care, we just want
1174          * to prevent doing any allocation when it is obvious that it is
1175          * not going to succeed.
1176          */
1177         i = si_mem_available();
1178         if (i < nr_pages)
1179                 return -ENOMEM;
1180
1181         /*
1182          * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1183          * gracefully without invoking oom-killer and the system is not
1184          * destabilized.
1185          */
1186         mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1187
1188         /*
1189          * If a user thread allocates too much, and si_mem_available()
1190          * reports there's enough memory, even though there is not.
1191          * Make sure the OOM killer kills this thread. This can happen
1192          * even with RETRY_MAYFAIL because another task may be doing
1193          * an allocation after this task has taken all memory.
1194          * This is the task the OOM killer needs to take out during this
1195          * loop, even if it was triggered by an allocation somewhere else.
1196          */
1197         if (user_thread)
1198                 set_current_oom_origin();
1199         for (i = 0; i < nr_pages; i++) {
1200                 struct page *page;
1201
1202                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1203                                     mflags, cpu_to_node(cpu));
1204                 if (!bpage)
1205                         goto free_pages;
1206
1207                 list_add(&bpage->list, pages);
1208
1209                 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1210                 if (!page)
1211                         goto free_pages;
1212                 bpage->page = page_address(page);
1213                 rb_init_page(bpage->page);
1214
1215                 if (user_thread && fatal_signal_pending(current))
1216                         goto free_pages;
1217         }
1218         if (user_thread)
1219                 clear_current_oom_origin();
1220
1221         return 0;
1222
1223 free_pages:
1224         list_for_each_entry_safe(bpage, tmp, pages, list) {
1225                 list_del_init(&bpage->list);
1226                 free_buffer_page(bpage);
1227         }
1228         if (user_thread)
1229                 clear_current_oom_origin();
1230
1231         return -ENOMEM;
1232 }
1233
1234 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1235                              unsigned long nr_pages)
1236 {
1237         LIST_HEAD(pages);
1238
1239         WARN_ON(!nr_pages);
1240
1241         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1242                 return -ENOMEM;
1243
1244         /*
1245          * The ring buffer page list is a circular list that does not
1246          * start and end with a list head. All page list items point to
1247          * other pages.
1248          */
1249         cpu_buffer->pages = pages.next;
1250         list_del(&pages);
1251
1252         cpu_buffer->nr_pages = nr_pages;
1253
1254         rb_check_pages(cpu_buffer);
1255
1256         return 0;
1257 }
1258
1259 static struct ring_buffer_per_cpu *
1260 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1261 {
1262         struct ring_buffer_per_cpu *cpu_buffer;
1263         struct buffer_page *bpage;
1264         struct page *page;
1265         int ret;
1266
1267         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1268                                   GFP_KERNEL, cpu_to_node(cpu));
1269         if (!cpu_buffer)
1270                 return NULL;
1271
1272         cpu_buffer->cpu = cpu;
1273         cpu_buffer->buffer = buffer;
1274         raw_spin_lock_init(&cpu_buffer->reader_lock);
1275         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1276         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1277         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1278         init_completion(&cpu_buffer->update_done);
1279         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1280         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1281         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1282
1283         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1284                             GFP_KERNEL, cpu_to_node(cpu));
1285         if (!bpage)
1286                 goto fail_free_buffer;
1287
1288         rb_check_bpage(cpu_buffer, bpage);
1289
1290         cpu_buffer->reader_page = bpage;
1291         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1292         if (!page)
1293                 goto fail_free_reader;
1294         bpage->page = page_address(page);
1295         rb_init_page(bpage->page);
1296
1297         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1298         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1299
1300         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1301         if (ret < 0)
1302                 goto fail_free_reader;
1303
1304         cpu_buffer->head_page
1305                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1306         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1307
1308         rb_head_page_activate(cpu_buffer);
1309
1310         return cpu_buffer;
1311
1312  fail_free_reader:
1313         free_buffer_page(cpu_buffer->reader_page);
1314
1315  fail_free_buffer:
1316         kfree(cpu_buffer);
1317         return NULL;
1318 }
1319
1320 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1321 {
1322         struct list_head *head = cpu_buffer->pages;
1323         struct buffer_page *bpage, *tmp;
1324
1325         free_buffer_page(cpu_buffer->reader_page);
1326
1327         rb_head_page_deactivate(cpu_buffer);
1328
1329         if (head) {
1330                 list_for_each_entry_safe(bpage, tmp, head, list) {
1331                         list_del_init(&bpage->list);
1332                         free_buffer_page(bpage);
1333                 }
1334                 bpage = list_entry(head, struct buffer_page, list);
1335                 free_buffer_page(bpage);
1336         }
1337
1338         kfree(cpu_buffer);
1339 }
1340
1341 /**
1342  * __ring_buffer_alloc - allocate a new ring_buffer
1343  * @size: the size in bytes per cpu that is needed.
1344  * @flags: attributes to set for the ring buffer.
1345  *
1346  * Currently the only flag that is available is the RB_FL_OVERWRITE
1347  * flag. This flag means that the buffer will overwrite old data
1348  * when the buffer wraps. If this flag is not set, the buffer will
1349  * drop data when the tail hits the head.
1350  */
1351 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1352                                         struct lock_class_key *key)
1353 {
1354         struct ring_buffer *buffer;
1355         long nr_pages;
1356         int bsize;
1357         int cpu;
1358         int ret;
1359
1360         /* keep it in its own cache line */
1361         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1362                          GFP_KERNEL);
1363         if (!buffer)
1364                 return NULL;
1365
1366         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1367                 goto fail_free_buffer;
1368
1369         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1370         buffer->flags = flags;
1371         buffer->clock = trace_clock_local;
1372         buffer->reader_lock_key = key;
1373
1374         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1375         init_waitqueue_head(&buffer->irq_work.waiters);
1376
1377         /* need at least two pages */
1378         if (nr_pages < 2)
1379                 nr_pages = 2;
1380
1381         buffer->cpus = nr_cpu_ids;
1382
1383         bsize = sizeof(void *) * nr_cpu_ids;
1384         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1385                                   GFP_KERNEL);
1386         if (!buffer->buffers)
1387                 goto fail_free_cpumask;
1388
1389         cpu = raw_smp_processor_id();
1390         cpumask_set_cpu(cpu, buffer->cpumask);
1391         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1392         if (!buffer->buffers[cpu])
1393                 goto fail_free_buffers;
1394
1395         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1396         if (ret < 0)
1397                 goto fail_free_buffers;
1398
1399         mutex_init(&buffer->mutex);
1400
1401         return buffer;
1402
1403  fail_free_buffers:
1404         for_each_buffer_cpu(buffer, cpu) {
1405                 if (buffer->buffers[cpu])
1406                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1407         }
1408         kfree(buffer->buffers);
1409
1410  fail_free_cpumask:
1411         free_cpumask_var(buffer->cpumask);
1412
1413  fail_free_buffer:
1414         kfree(buffer);
1415         return NULL;
1416 }
1417 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1418
1419 /**
1420  * ring_buffer_free - free a ring buffer.
1421  * @buffer: the buffer to free.
1422  */
1423 void
1424 ring_buffer_free(struct ring_buffer *buffer)
1425 {
1426         int cpu;
1427
1428         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1429
1430         for_each_buffer_cpu(buffer, cpu)
1431                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1432
1433         kfree(buffer->buffers);
1434         free_cpumask_var(buffer->cpumask);
1435
1436         kfree(buffer);
1437 }
1438 EXPORT_SYMBOL_GPL(ring_buffer_free);
1439
1440 void ring_buffer_set_clock(struct ring_buffer *buffer,
1441                            u64 (*clock)(void))
1442 {
1443         buffer->clock = clock;
1444 }
1445
1446 void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs)
1447 {
1448         buffer->time_stamp_abs = abs;
1449 }
1450
1451 bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer)
1452 {
1453         return buffer->time_stamp_abs;
1454 }
1455
1456 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1457
1458 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1459 {
1460         return local_read(&bpage->entries) & RB_WRITE_MASK;
1461 }
1462
1463 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1464 {
1465         return local_read(&bpage->write) & RB_WRITE_MASK;
1466 }
1467
1468 static int
1469 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1470 {
1471         struct list_head *tail_page, *to_remove, *next_page;
1472         struct buffer_page *to_remove_page, *tmp_iter_page;
1473         struct buffer_page *last_page, *first_page;
1474         unsigned long nr_removed;
1475         unsigned long head_bit;
1476         int page_entries;
1477
1478         head_bit = 0;
1479
1480         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1481         atomic_inc(&cpu_buffer->record_disabled);
1482         /*
1483          * We don't race with the readers since we have acquired the reader
1484          * lock. We also don't race with writers after disabling recording.
1485          * This makes it easy to figure out the first and the last page to be
1486          * removed from the list. We unlink all the pages in between including
1487          * the first and last pages. This is done in a busy loop so that we
1488          * lose the least number of traces.
1489          * The pages are freed after we restart recording and unlock readers.
1490          */
1491         tail_page = &cpu_buffer->tail_page->list;
1492
1493         /*
1494          * tail page might be on reader page, we remove the next page
1495          * from the ring buffer
1496          */
1497         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1498                 tail_page = rb_list_head(tail_page->next);
1499         to_remove = tail_page;
1500
1501         /* start of pages to remove */
1502         first_page = list_entry(rb_list_head(to_remove->next),
1503                                 struct buffer_page, list);
1504
1505         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1506                 to_remove = rb_list_head(to_remove)->next;
1507                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1508         }
1509
1510         next_page = rb_list_head(to_remove)->next;
1511
1512         /*
1513          * Now we remove all pages between tail_page and next_page.
1514          * Make sure that we have head_bit value preserved for the
1515          * next page
1516          */
1517         tail_page->next = (struct list_head *)((unsigned long)next_page |
1518                                                 head_bit);
1519         next_page = rb_list_head(next_page);
1520         next_page->prev = tail_page;
1521
1522         /* make sure pages points to a valid page in the ring buffer */
1523         cpu_buffer->pages = next_page;
1524
1525         /* update head page */
1526         if (head_bit)
1527                 cpu_buffer->head_page = list_entry(next_page,
1528                                                 struct buffer_page, list);
1529
1530         /*
1531          * change read pointer to make sure any read iterators reset
1532          * themselves
1533          */
1534         cpu_buffer->read = 0;
1535
1536         /* pages are removed, resume tracing and then free the pages */
1537         atomic_dec(&cpu_buffer->record_disabled);
1538         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1539
1540         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1541
1542         /* last buffer page to remove */
1543         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1544                                 list);
1545         tmp_iter_page = first_page;
1546
1547         do {
1548                 to_remove_page = tmp_iter_page;
1549                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1550
1551                 /* update the counters */
1552                 page_entries = rb_page_entries(to_remove_page);
1553                 if (page_entries) {
1554                         /*
1555                          * If something was added to this page, it was full
1556                          * since it is not the tail page. So we deduct the
1557                          * bytes consumed in ring buffer from here.
1558                          * Increment overrun to account for the lost events.
1559                          */
1560                         local_add(page_entries, &cpu_buffer->overrun);
1561                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1562                 }
1563
1564                 /*
1565                  * We have already removed references to this list item, just
1566                  * free up the buffer_page and its page
1567                  */
1568                 free_buffer_page(to_remove_page);
1569                 nr_removed--;
1570
1571         } while (to_remove_page != last_page);
1572
1573         RB_WARN_ON(cpu_buffer, nr_removed);
1574
1575         return nr_removed == 0;
1576 }
1577
1578 static int
1579 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1580 {
1581         struct list_head *pages = &cpu_buffer->new_pages;
1582         int retries, success;
1583
1584         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1585         /*
1586          * We are holding the reader lock, so the reader page won't be swapped
1587          * in the ring buffer. Now we are racing with the writer trying to
1588          * move head page and the tail page.
1589          * We are going to adapt the reader page update process where:
1590          * 1. We first splice the start and end of list of new pages between
1591          *    the head page and its previous page.
1592          * 2. We cmpxchg the prev_page->next to point from head page to the
1593          *    start of new pages list.
1594          * 3. Finally, we update the head->prev to the end of new list.
1595          *
1596          * We will try this process 10 times, to make sure that we don't keep
1597          * spinning.
1598          */
1599         retries = 10;
1600         success = 0;
1601         while (retries--) {
1602                 struct list_head *head_page, *prev_page, *r;
1603                 struct list_head *last_page, *first_page;
1604                 struct list_head *head_page_with_bit;
1605
1606                 head_page = &rb_set_head_page(cpu_buffer)->list;
1607                 if (!head_page)
1608                         break;
1609                 prev_page = head_page->prev;
1610
1611                 first_page = pages->next;
1612                 last_page  = pages->prev;
1613
1614                 head_page_with_bit = (struct list_head *)
1615                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1616
1617                 last_page->next = head_page_with_bit;
1618                 first_page->prev = prev_page;
1619
1620                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1621
1622                 if (r == head_page_with_bit) {
1623                         /*
1624                          * yay, we replaced the page pointer to our new list,
1625                          * now, we just have to update to head page's prev
1626                          * pointer to point to end of list
1627                          */
1628                         head_page->prev = last_page;
1629                         success = 1;
1630                         break;
1631                 }
1632         }
1633
1634         if (success)
1635                 INIT_LIST_HEAD(pages);
1636         /*
1637          * If we weren't successful in adding in new pages, warn and stop
1638          * tracing
1639          */
1640         RB_WARN_ON(cpu_buffer, !success);
1641         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1642
1643         /* free pages if they weren't inserted */
1644         if (!success) {
1645                 struct buffer_page *bpage, *tmp;
1646                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1647                                          list) {
1648                         list_del_init(&bpage->list);
1649                         free_buffer_page(bpage);
1650                 }
1651         }
1652         return success;
1653 }
1654
1655 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1656 {
1657         int success;
1658
1659         if (cpu_buffer->nr_pages_to_update > 0)
1660                 success = rb_insert_pages(cpu_buffer);
1661         else
1662                 success = rb_remove_pages(cpu_buffer,
1663                                         -cpu_buffer->nr_pages_to_update);
1664
1665         if (success)
1666                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1667 }
1668
1669 static void update_pages_handler(struct work_struct *work)
1670 {
1671         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1672                         struct ring_buffer_per_cpu, update_pages_work);
1673         rb_update_pages(cpu_buffer);
1674         complete(&cpu_buffer->update_done);
1675 }
1676
1677 /**
1678  * ring_buffer_resize - resize the ring buffer
1679  * @buffer: the buffer to resize.
1680  * @size: the new size.
1681  * @cpu_id: the cpu buffer to resize
1682  *
1683  * Minimum size is 2 * BUF_PAGE_SIZE.
1684  *
1685  * Returns 0 on success and < 0 on failure.
1686  */
1687 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1688                         int cpu_id)
1689 {
1690         struct ring_buffer_per_cpu *cpu_buffer;
1691         unsigned long nr_pages;
1692         int cpu, err = 0;
1693
1694         /*
1695          * Always succeed at resizing a non-existent buffer:
1696          */
1697         if (!buffer)
1698                 return size;
1699
1700         /* Make sure the requested buffer exists */
1701         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1702             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1703                 return size;
1704
1705         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1706
1707         /* we need a minimum of two pages */
1708         if (nr_pages < 2)
1709                 nr_pages = 2;
1710
1711         size = nr_pages * BUF_PAGE_SIZE;
1712
1713         /*
1714          * Don't succeed if resizing is disabled, as a reader might be
1715          * manipulating the ring buffer and is expecting a sane state while
1716          * this is true.
1717          */
1718         if (atomic_read(&buffer->resize_disabled))
1719                 return -EBUSY;
1720
1721         /* prevent another thread from changing buffer sizes */
1722         mutex_lock(&buffer->mutex);
1723
1724         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1725                 /* calculate the pages to update */
1726                 for_each_buffer_cpu(buffer, cpu) {
1727                         cpu_buffer = buffer->buffers[cpu];
1728
1729                         cpu_buffer->nr_pages_to_update = nr_pages -
1730                                                         cpu_buffer->nr_pages;
1731                         /*
1732                          * nothing more to do for removing pages or no update
1733                          */
1734                         if (cpu_buffer->nr_pages_to_update <= 0)
1735                                 continue;
1736                         /*
1737                          * to add pages, make sure all new pages can be
1738                          * allocated without receiving ENOMEM
1739                          */
1740                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1741                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1742                                                 &cpu_buffer->new_pages, cpu)) {
1743                                 /* not enough memory for new pages */
1744                                 err = -ENOMEM;
1745                                 goto out_err;
1746                         }
1747                 }
1748
1749                 get_online_cpus();
1750                 /*
1751                  * Fire off all the required work handlers
1752                  * We can't schedule on offline CPUs, but it's not necessary
1753                  * since we can change their buffer sizes without any race.
1754                  */
1755                 for_each_buffer_cpu(buffer, cpu) {
1756                         cpu_buffer = buffer->buffers[cpu];
1757                         if (!cpu_buffer->nr_pages_to_update)
1758                                 continue;
1759
1760                         /* Can't run something on an offline CPU. */
1761                         if (!cpu_online(cpu)) {
1762                                 rb_update_pages(cpu_buffer);
1763                                 cpu_buffer->nr_pages_to_update = 0;
1764                         } else {
1765                                 schedule_work_on(cpu,
1766                                                 &cpu_buffer->update_pages_work);
1767                         }
1768                 }
1769
1770                 /* wait for all the updates to complete */
1771                 for_each_buffer_cpu(buffer, cpu) {
1772                         cpu_buffer = buffer->buffers[cpu];
1773                         if (!cpu_buffer->nr_pages_to_update)
1774                                 continue;
1775
1776                         if (cpu_online(cpu))
1777                                 wait_for_completion(&cpu_buffer->update_done);
1778                         cpu_buffer->nr_pages_to_update = 0;
1779                 }
1780
1781                 put_online_cpus();
1782         } else {
1783                 /* Make sure this CPU has been initialized */
1784                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1785                         goto out;
1786
1787                 cpu_buffer = buffer->buffers[cpu_id];
1788
1789                 if (nr_pages == cpu_buffer->nr_pages)
1790                         goto out;
1791
1792                 cpu_buffer->nr_pages_to_update = nr_pages -
1793                                                 cpu_buffer->nr_pages;
1794
1795                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1796                 if (cpu_buffer->nr_pages_to_update > 0 &&
1797                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1798                                             &cpu_buffer->new_pages, cpu_id)) {
1799                         err = -ENOMEM;
1800                         goto out_err;
1801                 }
1802
1803                 get_online_cpus();
1804
1805                 /* Can't run something on an offline CPU. */
1806                 if (!cpu_online(cpu_id))
1807                         rb_update_pages(cpu_buffer);
1808                 else {
1809                         schedule_work_on(cpu_id,
1810                                          &cpu_buffer->update_pages_work);
1811                         wait_for_completion(&cpu_buffer->update_done);
1812                 }
1813
1814                 cpu_buffer->nr_pages_to_update = 0;
1815                 put_online_cpus();
1816         }
1817
1818  out:
1819         /*
1820          * The ring buffer resize can happen with the ring buffer
1821          * enabled, so that the update disturbs the tracing as little
1822          * as possible. But if the buffer is disabled, we do not need
1823          * to worry about that, and we can take the time to verify
1824          * that the buffer is not corrupt.
1825          */
1826         if (atomic_read(&buffer->record_disabled)) {
1827                 atomic_inc(&buffer->record_disabled);
1828                 /*
1829                  * Even though the buffer was disabled, we must make sure
1830                  * that it is truly disabled before calling rb_check_pages.
1831                  * There could have been a race between checking
1832                  * record_disable and incrementing it.
1833                  */
1834                 synchronize_sched();
1835                 for_each_buffer_cpu(buffer, cpu) {
1836                         cpu_buffer = buffer->buffers[cpu];
1837                         rb_check_pages(cpu_buffer);
1838                 }
1839                 atomic_dec(&buffer->record_disabled);
1840         }
1841
1842         mutex_unlock(&buffer->mutex);
1843         return size;
1844
1845  out_err:
1846         for_each_buffer_cpu(buffer, cpu) {
1847                 struct buffer_page *bpage, *tmp;
1848
1849                 cpu_buffer = buffer->buffers[cpu];
1850                 cpu_buffer->nr_pages_to_update = 0;
1851
1852                 if (list_empty(&cpu_buffer->new_pages))
1853                         continue;
1854
1855                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1856                                         list) {
1857                         list_del_init(&bpage->list);
1858                         free_buffer_page(bpage);
1859                 }
1860         }
1861         mutex_unlock(&buffer->mutex);
1862         return err;
1863 }
1864 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1865
1866 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1867 {
1868         mutex_lock(&buffer->mutex);
1869         if (val)
1870                 buffer->flags |= RB_FL_OVERWRITE;
1871         else
1872                 buffer->flags &= ~RB_FL_OVERWRITE;
1873         mutex_unlock(&buffer->mutex);
1874 }
1875 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1876
1877 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1878 {
1879         return bpage->page->data + index;
1880 }
1881
1882 static __always_inline struct ring_buffer_event *
1883 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1884 {
1885         return __rb_page_index(cpu_buffer->reader_page,
1886                                cpu_buffer->reader_page->read);
1887 }
1888
1889 static __always_inline struct ring_buffer_event *
1890 rb_iter_head_event(struct ring_buffer_iter *iter)
1891 {
1892         return __rb_page_index(iter->head_page, iter->head);
1893 }
1894
1895 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1896 {
1897         return local_read(&bpage->page->commit);
1898 }
1899
1900 /* Size is determined by what has been committed */
1901 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1902 {
1903         return rb_page_commit(bpage);
1904 }
1905
1906 static __always_inline unsigned
1907 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1908 {
1909         return rb_page_commit(cpu_buffer->commit_page);
1910 }
1911
1912 static __always_inline unsigned
1913 rb_event_index(struct ring_buffer_event *event)
1914 {
1915         unsigned long addr = (unsigned long)event;
1916
1917         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1918 }
1919
1920 static void rb_inc_iter(struct ring_buffer_iter *iter)
1921 {
1922         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1923
1924         /*
1925          * The iterator could be on the reader page (it starts there).
1926          * But the head could have moved, since the reader was
1927          * found. Check for this case and assign the iterator
1928          * to the head page instead of next.
1929          */
1930         if (iter->head_page == cpu_buffer->reader_page)
1931                 iter->head_page = rb_set_head_page(cpu_buffer);
1932         else
1933                 rb_inc_page(cpu_buffer, &iter->head_page);
1934
1935         iter->read_stamp = iter->head_page->page->time_stamp;
1936         iter->head = 0;
1937 }
1938
1939 /*
1940  * rb_handle_head_page - writer hit the head page
1941  *
1942  * Returns: +1 to retry page
1943  *           0 to continue
1944  *          -1 on error
1945  */
1946 static int
1947 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1948                     struct buffer_page *tail_page,
1949                     struct buffer_page *next_page)
1950 {
1951         struct buffer_page *new_head;
1952         int entries;
1953         int type;
1954         int ret;
1955
1956         entries = rb_page_entries(next_page);
1957
1958         /*
1959          * The hard part is here. We need to move the head
1960          * forward, and protect against both readers on
1961          * other CPUs and writers coming in via interrupts.
1962          */
1963         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1964                                        RB_PAGE_HEAD);
1965
1966         /*
1967          * type can be one of four:
1968          *  NORMAL - an interrupt already moved it for us
1969          *  HEAD   - we are the first to get here.
1970          *  UPDATE - we are the interrupt interrupting
1971          *           a current move.
1972          *  MOVED  - a reader on another CPU moved the next
1973          *           pointer to its reader page. Give up
1974          *           and try again.
1975          */
1976
1977         switch (type) {
1978         case RB_PAGE_HEAD:
1979                 /*
1980                  * We changed the head to UPDATE, thus
1981                  * it is our responsibility to update
1982                  * the counters.
1983                  */
1984                 local_add(entries, &cpu_buffer->overrun);
1985                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1986
1987                 /*
1988                  * The entries will be zeroed out when we move the
1989                  * tail page.
1990                  */
1991
1992                 /* still more to do */
1993                 break;
1994
1995         case RB_PAGE_UPDATE:
1996                 /*
1997                  * This is an interrupt that interrupt the
1998                  * previous update. Still more to do.
1999                  */
2000                 break;
2001         case RB_PAGE_NORMAL:
2002                 /*
2003                  * An interrupt came in before the update
2004                  * and processed this for us.
2005                  * Nothing left to do.
2006                  */
2007                 return 1;
2008         case RB_PAGE_MOVED:
2009                 /*
2010                  * The reader is on another CPU and just did
2011                  * a swap with our next_page.
2012                  * Try again.
2013                  */
2014                 return 1;
2015         default:
2016                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2017                 return -1;
2018         }
2019
2020         /*
2021          * Now that we are here, the old head pointer is
2022          * set to UPDATE. This will keep the reader from
2023          * swapping the head page with the reader page.
2024          * The reader (on another CPU) will spin till
2025          * we are finished.
2026          *
2027          * We just need to protect against interrupts
2028          * doing the job. We will set the next pointer
2029          * to HEAD. After that, we set the old pointer
2030          * to NORMAL, but only if it was HEAD before.
2031          * otherwise we are an interrupt, and only
2032          * want the outer most commit to reset it.
2033          */
2034         new_head = next_page;
2035         rb_inc_page(cpu_buffer, &new_head);
2036
2037         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2038                                     RB_PAGE_NORMAL);
2039
2040         /*
2041          * Valid returns are:
2042          *  HEAD   - an interrupt came in and already set it.
2043          *  NORMAL - One of two things:
2044          *            1) We really set it.
2045          *            2) A bunch of interrupts came in and moved
2046          *               the page forward again.
2047          */
2048         switch (ret) {
2049         case RB_PAGE_HEAD:
2050         case RB_PAGE_NORMAL:
2051                 /* OK */
2052                 break;
2053         default:
2054                 RB_WARN_ON(cpu_buffer, 1);
2055                 return -1;
2056         }
2057
2058         /*
2059          * It is possible that an interrupt came in,
2060          * set the head up, then more interrupts came in
2061          * and moved it again. When we get back here,
2062          * the page would have been set to NORMAL but we
2063          * just set it back to HEAD.
2064          *
2065          * How do you detect this? Well, if that happened
2066          * the tail page would have moved.
2067          */
2068         if (ret == RB_PAGE_NORMAL) {
2069                 struct buffer_page *buffer_tail_page;
2070
2071                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2072                 /*
2073                  * If the tail had moved passed next, then we need
2074                  * to reset the pointer.
2075                  */
2076                 if (buffer_tail_page != tail_page &&
2077                     buffer_tail_page != next_page)
2078                         rb_head_page_set_normal(cpu_buffer, new_head,
2079                                                 next_page,
2080                                                 RB_PAGE_HEAD);
2081         }
2082
2083         /*
2084          * If this was the outer most commit (the one that
2085          * changed the original pointer from HEAD to UPDATE),
2086          * then it is up to us to reset it to NORMAL.
2087          */
2088         if (type == RB_PAGE_HEAD) {
2089                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2090                                               tail_page,
2091                                               RB_PAGE_UPDATE);
2092                 if (RB_WARN_ON(cpu_buffer,
2093                                ret != RB_PAGE_UPDATE))
2094                         return -1;
2095         }
2096
2097         return 0;
2098 }
2099
2100 static inline void
2101 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2102               unsigned long tail, struct rb_event_info *info)
2103 {
2104         struct buffer_page *tail_page = info->tail_page;
2105         struct ring_buffer_event *event;
2106         unsigned long length = info->length;
2107
2108         /*
2109          * Only the event that crossed the page boundary
2110          * must fill the old tail_page with padding.
2111          */
2112         if (tail >= BUF_PAGE_SIZE) {
2113                 /*
2114                  * If the page was filled, then we still need
2115                  * to update the real_end. Reset it to zero
2116                  * and the reader will ignore it.
2117                  */
2118                 if (tail == BUF_PAGE_SIZE)
2119                         tail_page->real_end = 0;
2120
2121                 local_sub(length, &tail_page->write);
2122                 return;
2123         }
2124
2125         event = __rb_page_index(tail_page, tail);
2126
2127         /* account for padding bytes */
2128         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2129
2130         /*
2131          * Save the original length to the meta data.
2132          * This will be used by the reader to add lost event
2133          * counter.
2134          */
2135         tail_page->real_end = tail;
2136
2137         /*
2138          * If this event is bigger than the minimum size, then
2139          * we need to be careful that we don't subtract the
2140          * write counter enough to allow another writer to slip
2141          * in on this page.
2142          * We put in a discarded commit instead, to make sure
2143          * that this space is not used again.
2144          *
2145          * If we are less than the minimum size, we don't need to
2146          * worry about it.
2147          */
2148         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2149                 /* No room for any events */
2150
2151                 /* Mark the rest of the page with padding */
2152                 rb_event_set_padding(event);
2153
2154                 /* Set the write back to the previous setting */
2155                 local_sub(length, &tail_page->write);
2156                 return;
2157         }
2158
2159         /* Put in a discarded event */
2160         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2161         event->type_len = RINGBUF_TYPE_PADDING;
2162         /* time delta must be non zero */
2163         event->time_delta = 1;
2164
2165         /* Set write to end of buffer */
2166         length = (tail + length) - BUF_PAGE_SIZE;
2167         local_sub(length, &tail_page->write);
2168 }
2169
2170 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2171
2172 /*
2173  * This is the slow path, force gcc not to inline it.
2174  */
2175 static noinline struct ring_buffer_event *
2176 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2177              unsigned long tail, struct rb_event_info *info)
2178 {
2179         struct buffer_page *tail_page = info->tail_page;
2180         struct buffer_page *commit_page = cpu_buffer->commit_page;
2181         struct ring_buffer *buffer = cpu_buffer->buffer;
2182         struct buffer_page *next_page;
2183         int ret;
2184
2185         next_page = tail_page;
2186
2187         rb_inc_page(cpu_buffer, &next_page);
2188
2189         /*
2190          * If for some reason, we had an interrupt storm that made
2191          * it all the way around the buffer, bail, and warn
2192          * about it.
2193          */
2194         if (unlikely(next_page == commit_page)) {
2195                 local_inc(&cpu_buffer->commit_overrun);
2196                 goto out_reset;
2197         }
2198
2199         /*
2200          * This is where the fun begins!
2201          *
2202          * We are fighting against races between a reader that
2203          * could be on another CPU trying to swap its reader
2204          * page with the buffer head.
2205          *
2206          * We are also fighting against interrupts coming in and
2207          * moving the head or tail on us as well.
2208          *
2209          * If the next page is the head page then we have filled
2210          * the buffer, unless the commit page is still on the
2211          * reader page.
2212          */
2213         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2214
2215                 /*
2216                  * If the commit is not on the reader page, then
2217                  * move the header page.
2218                  */
2219                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2220                         /*
2221                          * If we are not in overwrite mode,
2222                          * this is easy, just stop here.
2223                          */
2224                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2225                                 local_inc(&cpu_buffer->dropped_events);
2226                                 goto out_reset;
2227                         }
2228
2229                         ret = rb_handle_head_page(cpu_buffer,
2230                                                   tail_page,
2231                                                   next_page);
2232                         if (ret < 0)
2233                                 goto out_reset;
2234                         if (ret)
2235                                 goto out_again;
2236                 } else {
2237                         /*
2238                          * We need to be careful here too. The
2239                          * commit page could still be on the reader
2240                          * page. We could have a small buffer, and
2241                          * have filled up the buffer with events
2242                          * from interrupts and such, and wrapped.
2243                          *
2244                          * Note, if the tail page is also the on the
2245                          * reader_page, we let it move out.
2246                          */
2247                         if (unlikely((cpu_buffer->commit_page !=
2248                                       cpu_buffer->tail_page) &&
2249                                      (cpu_buffer->commit_page ==
2250                                       cpu_buffer->reader_page))) {
2251                                 local_inc(&cpu_buffer->commit_overrun);
2252                                 goto out_reset;
2253                         }
2254                 }
2255         }
2256
2257         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2258
2259  out_again:
2260
2261         rb_reset_tail(cpu_buffer, tail, info);
2262
2263         /* Commit what we have for now. */
2264         rb_end_commit(cpu_buffer);
2265         /* rb_end_commit() decs committing */
2266         local_inc(&cpu_buffer->committing);
2267
2268         /* fail and let the caller try again */
2269         return ERR_PTR(-EAGAIN);
2270
2271  out_reset:
2272         /* reset write */
2273         rb_reset_tail(cpu_buffer, tail, info);
2274
2275         return NULL;
2276 }
2277
2278 /* Slow path, do not inline */
2279 static noinline struct ring_buffer_event *
2280 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2281 {
2282         if (abs)
2283                 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2284         else
2285                 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2286
2287         /* Not the first event on the page, or not delta? */
2288         if (abs || rb_event_index(event)) {
2289                 event->time_delta = delta & TS_MASK;
2290                 event->array[0] = delta >> TS_SHIFT;
2291         } else {
2292                 /* nope, just zero it */
2293                 event->time_delta = 0;
2294                 event->array[0] = 0;
2295         }
2296
2297         return skip_time_extend(event);
2298 }
2299
2300 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2301                                      struct ring_buffer_event *event);
2302
2303 /**
2304  * rb_update_event - update event type and data
2305  * @event: the event to update
2306  * @type: the type of event
2307  * @length: the size of the event field in the ring buffer
2308  *
2309  * Update the type and data fields of the event. The length
2310  * is the actual size that is written to the ring buffer,
2311  * and with this, we can determine what to place into the
2312  * data field.
2313  */
2314 static void
2315 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2316                 struct ring_buffer_event *event,
2317                 struct rb_event_info *info)
2318 {
2319         unsigned length = info->length;
2320         u64 delta = info->delta;
2321
2322         /* Only a commit updates the timestamp */
2323         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2324                 delta = 0;
2325
2326         /*
2327          * If we need to add a timestamp, then we
2328          * add it to the start of the reserved space.
2329          */
2330         if (unlikely(info->add_timestamp)) {
2331                 bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2332
2333                 event = rb_add_time_stamp(event, info->delta, abs);
2334                 length -= RB_LEN_TIME_EXTEND;
2335                 delta = 0;
2336         }
2337
2338         event->time_delta = delta;
2339         length -= RB_EVNT_HDR_SIZE;
2340         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2341                 event->type_len = 0;
2342                 event->array[0] = length;
2343         } else
2344                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2345 }
2346
2347 static unsigned rb_calculate_event_length(unsigned length)
2348 {
2349         struct ring_buffer_event event; /* Used only for sizeof array */
2350
2351         /* zero length can cause confusions */
2352         if (!length)
2353                 length++;
2354
2355         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2356                 length += sizeof(event.array[0]);
2357
2358         length += RB_EVNT_HDR_SIZE;
2359         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2360
2361         /*
2362          * In case the time delta is larger than the 27 bits for it
2363          * in the header, we need to add a timestamp. If another
2364          * event comes in when trying to discard this one to increase
2365          * the length, then the timestamp will be added in the allocated
2366          * space of this event. If length is bigger than the size needed
2367          * for the TIME_EXTEND, then padding has to be used. The events
2368          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2369          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2370          * As length is a multiple of 4, we only need to worry if it
2371          * is 12 (RB_LEN_TIME_EXTEND + 4).
2372          */
2373         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2374                 length += RB_ALIGNMENT;
2375
2376         return length;
2377 }
2378
2379 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2380 static inline bool sched_clock_stable(void)
2381 {
2382         return true;
2383 }
2384 #endif
2385
2386 static inline int
2387 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2388                   struct ring_buffer_event *event)
2389 {
2390         unsigned long new_index, old_index;
2391         struct buffer_page *bpage;
2392         unsigned long index;
2393         unsigned long addr;
2394
2395         new_index = rb_event_index(event);
2396         old_index = new_index + rb_event_ts_length(event);
2397         addr = (unsigned long)event;
2398         addr &= PAGE_MASK;
2399
2400         bpage = READ_ONCE(cpu_buffer->tail_page);
2401
2402         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2403                 unsigned long write_mask =
2404                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2405                 unsigned long event_length = rb_event_length(event);
2406                 /*
2407                  * This is on the tail page. It is possible that
2408                  * a write could come in and move the tail page
2409                  * and write to the next page. That is fine
2410                  * because we just shorten what is on this page.
2411                  */
2412                 old_index += write_mask;
2413                 new_index += write_mask;
2414                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2415                 if (index == old_index) {
2416                         /* update counters */
2417                         local_sub(event_length, &cpu_buffer->entries_bytes);
2418                         return 1;
2419                 }
2420         }
2421
2422         /* could not discard */
2423         return 0;
2424 }
2425
2426 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2427 {
2428         local_inc(&cpu_buffer->committing);
2429         local_inc(&cpu_buffer->commits);
2430 }
2431
2432 static __always_inline void
2433 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2434 {
2435         unsigned long max_count;
2436
2437         /*
2438          * We only race with interrupts and NMIs on this CPU.
2439          * If we own the commit event, then we can commit
2440          * all others that interrupted us, since the interruptions
2441          * are in stack format (they finish before they come
2442          * back to us). This allows us to do a simple loop to
2443          * assign the commit to the tail.
2444          */
2445  again:
2446         max_count = cpu_buffer->nr_pages * 100;
2447
2448         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2449                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2450                         return;
2451                 if (RB_WARN_ON(cpu_buffer,
2452                                rb_is_reader_page(cpu_buffer->tail_page)))
2453                         return;
2454                 local_set(&cpu_buffer->commit_page->page->commit,
2455                           rb_page_write(cpu_buffer->commit_page));
2456                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2457                 /* Only update the write stamp if the page has an event */
2458                 if (rb_page_write(cpu_buffer->commit_page))
2459                         cpu_buffer->write_stamp =
2460                                 cpu_buffer->commit_page->page->time_stamp;
2461                 /* add barrier to keep gcc from optimizing too much */
2462                 barrier();
2463         }
2464         while (rb_commit_index(cpu_buffer) !=
2465                rb_page_write(cpu_buffer->commit_page)) {
2466
2467                 local_set(&cpu_buffer->commit_page->page->commit,
2468                           rb_page_write(cpu_buffer->commit_page));
2469                 RB_WARN_ON(cpu_buffer,
2470                            local_read(&cpu_buffer->commit_page->page->commit) &
2471                            ~RB_WRITE_MASK);
2472                 barrier();
2473         }
2474
2475         /* again, keep gcc from optimizing */
2476         barrier();
2477
2478         /*
2479          * If an interrupt came in just after the first while loop
2480          * and pushed the tail page forward, we will be left with
2481          * a dangling commit that will never go forward.
2482          */
2483         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2484                 goto again;
2485 }
2486
2487 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2488 {
2489         unsigned long commits;
2490
2491         if (RB_WARN_ON(cpu_buffer,
2492                        !local_read(&cpu_buffer->committing)))
2493                 return;
2494
2495  again:
2496         commits = local_read(&cpu_buffer->commits);
2497         /* synchronize with interrupts */
2498         barrier();
2499         if (local_read(&cpu_buffer->committing) == 1)
2500                 rb_set_commit_to_write(cpu_buffer);
2501
2502         local_dec(&cpu_buffer->committing);
2503
2504         /* synchronize with interrupts */
2505         barrier();
2506
2507         /*
2508          * Need to account for interrupts coming in between the
2509          * updating of the commit page and the clearing of the
2510          * committing counter.
2511          */
2512         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2513             !local_read(&cpu_buffer->committing)) {
2514                 local_inc(&cpu_buffer->committing);
2515                 goto again;
2516         }
2517 }
2518
2519 static inline void rb_event_discard(struct ring_buffer_event *event)
2520 {
2521         if (extended_time(event))
2522                 event = skip_time_extend(event);
2523
2524         /* array[0] holds the actual length for the discarded event */
2525         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2526         event->type_len = RINGBUF_TYPE_PADDING;
2527         /* time delta must be non zero */
2528         if (!event->time_delta)
2529                 event->time_delta = 1;
2530 }
2531
2532 static __always_inline bool
2533 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2534                    struct ring_buffer_event *event)
2535 {
2536         unsigned long addr = (unsigned long)event;
2537         unsigned long index;
2538
2539         index = rb_event_index(event);
2540         addr &= PAGE_MASK;
2541
2542         return cpu_buffer->commit_page->page == (void *)addr &&
2543                 rb_commit_index(cpu_buffer) == index;
2544 }
2545
2546 static __always_inline void
2547 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2548                       struct ring_buffer_event *event)
2549 {
2550         u64 delta;
2551
2552         /*
2553          * The event first in the commit queue updates the
2554          * time stamp.
2555          */
2556         if (rb_event_is_commit(cpu_buffer, event)) {
2557                 /*
2558                  * A commit event that is first on a page
2559                  * updates the write timestamp with the page stamp
2560                  */
2561                 if (!rb_event_index(event))
2562                         cpu_buffer->write_stamp =
2563                                 cpu_buffer->commit_page->page->time_stamp;
2564                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2565                         delta = ring_buffer_event_time_stamp(event);
2566                         cpu_buffer->write_stamp += delta;
2567                 } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2568                         delta = ring_buffer_event_time_stamp(event);
2569                         cpu_buffer->write_stamp = delta;
2570                 } else
2571                         cpu_buffer->write_stamp += event->time_delta;
2572         }
2573 }
2574
2575 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2576                       struct ring_buffer_event *event)
2577 {
2578         local_inc(&cpu_buffer->entries);
2579         rb_update_write_stamp(cpu_buffer, event);
2580         rb_end_commit(cpu_buffer);
2581 }
2582
2583 static __always_inline void
2584 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2585 {
2586         bool pagebusy;
2587
2588         if (buffer->irq_work.waiters_pending) {
2589                 buffer->irq_work.waiters_pending = false;
2590                 /* irq_work_queue() supplies it's own memory barriers */
2591                 irq_work_queue(&buffer->irq_work.work);
2592         }
2593
2594         if (cpu_buffer->irq_work.waiters_pending) {
2595                 cpu_buffer->irq_work.waiters_pending = false;
2596                 /* irq_work_queue() supplies it's own memory barriers */
2597                 irq_work_queue(&cpu_buffer->irq_work.work);
2598         }
2599
2600         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2601
2602         if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2603                 cpu_buffer->irq_work.wakeup_full = true;
2604                 cpu_buffer->irq_work.full_waiters_pending = false;
2605                 /* irq_work_queue() supplies it's own memory barriers */
2606                 irq_work_queue(&cpu_buffer->irq_work.work);
2607         }
2608 }
2609
2610 /*
2611  * The lock and unlock are done within a preempt disable section.
2612  * The current_context per_cpu variable can only be modified
2613  * by the current task between lock and unlock. But it can
2614  * be modified more than once via an interrupt. To pass this
2615  * information from the lock to the unlock without having to
2616  * access the 'in_interrupt()' functions again (which do show
2617  * a bit of overhead in something as critical as function tracing,
2618  * we use a bitmask trick.
2619  *
2620  *  bit 0 =  NMI context
2621  *  bit 1 =  IRQ context
2622  *  bit 2 =  SoftIRQ context
2623  *  bit 3 =  normal context.
2624  *
2625  * This works because this is the order of contexts that can
2626  * preempt other contexts. A SoftIRQ never preempts an IRQ
2627  * context.
2628  *
2629  * When the context is determined, the corresponding bit is
2630  * checked and set (if it was set, then a recursion of that context
2631  * happened).
2632  *
2633  * On unlock, we need to clear this bit. To do so, just subtract
2634  * 1 from the current_context and AND it to itself.
2635  *
2636  * (binary)
2637  *  101 - 1 = 100
2638  *  101 & 100 = 100 (clearing bit zero)
2639  *
2640  *  1010 - 1 = 1001
2641  *  1010 & 1001 = 1000 (clearing bit 1)
2642  *
2643  * The least significant bit can be cleared this way, and it
2644  * just so happens that it is the same bit corresponding to
2645  * the current context.
2646  */
2647
2648 static __always_inline int
2649 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2650 {
2651         unsigned int val = cpu_buffer->current_context;
2652         unsigned long pc = preempt_count();
2653         int bit;
2654
2655         if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2656                 bit = RB_CTX_NORMAL;
2657         else
2658                 bit = pc & NMI_MASK ? RB_CTX_NMI :
2659                         pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2660
2661         if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
2662                 return 1;
2663
2664         val |= (1 << (bit + cpu_buffer->nest));
2665         cpu_buffer->current_context = val;
2666
2667         return 0;
2668 }
2669
2670 static __always_inline void
2671 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2672 {
2673         cpu_buffer->current_context &=
2674                 cpu_buffer->current_context - (1 << cpu_buffer->nest);
2675 }
2676
2677 /* The recursive locking above uses 4 bits */
2678 #define NESTED_BITS 4
2679
2680 /**
2681  * ring_buffer_nest_start - Allow to trace while nested
2682  * @buffer: The ring buffer to modify
2683  *
2684  * The ring buffer has a safety mechanism to prevent recursion.
2685  * But there may be a case where a trace needs to be done while
2686  * tracing something else. In this case, calling this function
2687  * will allow this function to nest within a currently active
2688  * ring_buffer_lock_reserve().
2689  *
2690  * Call this function before calling another ring_buffer_lock_reserve() and
2691  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2692  */
2693 void ring_buffer_nest_start(struct ring_buffer *buffer)
2694 {
2695         struct ring_buffer_per_cpu *cpu_buffer;
2696         int cpu;
2697
2698         /* Enabled by ring_buffer_nest_end() */
2699         preempt_disable_notrace();
2700         cpu = raw_smp_processor_id();
2701         cpu_buffer = buffer->buffers[cpu];
2702         /* This is the shift value for the above recursive locking */
2703         cpu_buffer->nest += NESTED_BITS;
2704 }
2705
2706 /**
2707  * ring_buffer_nest_end - Allow to trace while nested
2708  * @buffer: The ring buffer to modify
2709  *
2710  * Must be called after ring_buffer_nest_start() and after the
2711  * ring_buffer_unlock_commit().
2712  */
2713 void ring_buffer_nest_end(struct ring_buffer *buffer)
2714 {
2715         struct ring_buffer_per_cpu *cpu_buffer;
2716         int cpu;
2717
2718         /* disabled by ring_buffer_nest_start() */
2719         cpu = raw_smp_processor_id();
2720         cpu_buffer = buffer->buffers[cpu];
2721         /* This is the shift value for the above recursive locking */
2722         cpu_buffer->nest -= NESTED_BITS;
2723         preempt_enable_notrace();
2724 }
2725
2726 /**
2727  * ring_buffer_unlock_commit - commit a reserved
2728  * @buffer: The buffer to commit to
2729  * @event: The event pointer to commit.
2730  *
2731  * This commits the data to the ring buffer, and releases any locks held.
2732  *
2733  * Must be paired with ring_buffer_lock_reserve.
2734  */
2735 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2736                               struct ring_buffer_event *event)
2737 {
2738         struct ring_buffer_per_cpu *cpu_buffer;
2739         int cpu = raw_smp_processor_id();
2740
2741         cpu_buffer = buffer->buffers[cpu];
2742
2743         rb_commit(cpu_buffer, event);
2744
2745         rb_wakeups(buffer, cpu_buffer);
2746
2747         trace_recursive_unlock(cpu_buffer);
2748
2749         preempt_enable_notrace();
2750
2751         return 0;
2752 }
2753 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2754
2755 static noinline void
2756 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2757                     struct rb_event_info *info)
2758 {
2759         WARN_ONCE(info->delta > (1ULL << 59),
2760                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2761                   (unsigned long long)info->delta,
2762                   (unsigned long long)info->ts,
2763                   (unsigned long long)cpu_buffer->write_stamp,
2764                   sched_clock_stable() ? "" :
2765                   "If you just came from a suspend/resume,\n"
2766                   "please switch to the trace global clock:\n"
2767                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2768                   "or add trace_clock=global to the kernel command line\n");
2769         info->add_timestamp = 1;
2770 }
2771
2772 static struct ring_buffer_event *
2773 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2774                   struct rb_event_info *info)
2775 {
2776         struct ring_buffer_event *event;
2777         struct buffer_page *tail_page;
2778         unsigned long tail, write;
2779
2780         /*
2781          * If the time delta since the last event is too big to
2782          * hold in the time field of the event, then we append a
2783          * TIME EXTEND event ahead of the data event.
2784          */
2785         if (unlikely(info->add_timestamp))
2786                 info->length += RB_LEN_TIME_EXTEND;
2787
2788         /* Don't let the compiler play games with cpu_buffer->tail_page */
2789         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2790         write = local_add_return(info->length, &tail_page->write);
2791
2792         /* set write to only the index of the write */
2793         write &= RB_WRITE_MASK;
2794         tail = write - info->length;
2795
2796         /*
2797          * If this is the first commit on the page, then it has the same
2798          * timestamp as the page itself.
2799          */
2800         if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
2801                 info->delta = 0;
2802
2803         /* See if we shot pass the end of this buffer page */
2804         if (unlikely(write > BUF_PAGE_SIZE))
2805                 return rb_move_tail(cpu_buffer, tail, info);
2806
2807         /* We reserved something on the buffer */
2808
2809         event = __rb_page_index(tail_page, tail);
2810         rb_update_event(cpu_buffer, event, info);
2811
2812         local_inc(&tail_page->entries);
2813
2814         /*
2815          * If this is the first commit on the page, then update
2816          * its timestamp.
2817          */
2818         if (!tail)
2819                 tail_page->page->time_stamp = info->ts;
2820
2821         /* account for these added bytes */
2822         local_add(info->length, &cpu_buffer->entries_bytes);
2823
2824         return event;
2825 }
2826
2827 static __always_inline struct ring_buffer_event *
2828 rb_reserve_next_event(struct ring_buffer *buffer,
2829                       struct ring_buffer_per_cpu *cpu_buffer,
2830                       unsigned long length)
2831 {
2832         struct ring_buffer_event *event;
2833         struct rb_event_info info;
2834         int nr_loops = 0;
2835         u64 diff;
2836
2837         rb_start_commit(cpu_buffer);
2838
2839 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2840         /*
2841          * Due to the ability to swap a cpu buffer from a buffer
2842          * it is possible it was swapped before we committed.
2843          * (committing stops a swap). We check for it here and
2844          * if it happened, we have to fail the write.
2845          */
2846         barrier();
2847         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2848                 local_dec(&cpu_buffer->committing);
2849                 local_dec(&cpu_buffer->commits);
2850                 return NULL;
2851         }
2852 #endif
2853
2854         info.length = rb_calculate_event_length(length);
2855  again:
2856         info.add_timestamp = 0;
2857         info.delta = 0;
2858
2859         /*
2860          * We allow for interrupts to reenter here and do a trace.
2861          * If one does, it will cause this original code to loop
2862          * back here. Even with heavy interrupts happening, this
2863          * should only happen a few times in a row. If this happens
2864          * 1000 times in a row, there must be either an interrupt
2865          * storm or we have something buggy.
2866          * Bail!
2867          */
2868         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2869                 goto out_fail;
2870
2871         info.ts = rb_time_stamp(cpu_buffer->buffer);
2872         diff = info.ts - cpu_buffer->write_stamp;
2873
2874         /* make sure this diff is calculated here */
2875         barrier();
2876
2877         if (ring_buffer_time_stamp_abs(buffer)) {
2878                 info.delta = info.ts;
2879                 rb_handle_timestamp(cpu_buffer, &info);
2880         } else /* Did the write stamp get updated already? */
2881                 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2882                 info.delta = diff;
2883                 if (unlikely(test_time_stamp(info.delta)))
2884                         rb_handle_timestamp(cpu_buffer, &info);
2885         }
2886
2887         event = __rb_reserve_next(cpu_buffer, &info);
2888
2889         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2890                 if (info.add_timestamp)
2891                         info.length -= RB_LEN_TIME_EXTEND;
2892                 goto again;
2893         }
2894
2895         if (!event)
2896                 goto out_fail;
2897
2898         return event;
2899
2900  out_fail:
2901         rb_end_commit(cpu_buffer);
2902         return NULL;
2903 }
2904
2905 /**
2906  * ring_buffer_lock_reserve - reserve a part of the buffer
2907  * @buffer: the ring buffer to reserve from
2908  * @length: the length of the data to reserve (excluding event header)
2909  *
2910  * Returns a reserved event on the ring buffer to copy directly to.
2911  * The user of this interface will need to get the body to write into
2912  * and can use the ring_buffer_event_data() interface.
2913  *
2914  * The length is the length of the data needed, not the event length
2915  * which also includes the event header.
2916  *
2917  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2918  * If NULL is returned, then nothing has been allocated or locked.
2919  */
2920 struct ring_buffer_event *
2921 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2922 {
2923         struct ring_buffer_per_cpu *cpu_buffer;
2924         struct ring_buffer_event *event;
2925         int cpu;
2926
2927         /* If we are tracing schedule, we don't want to recurse */
2928         preempt_disable_notrace();
2929
2930         if (unlikely(atomic_read(&buffer->record_disabled)))
2931                 goto out;
2932
2933         cpu = raw_smp_processor_id();
2934
2935         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2936                 goto out;
2937
2938         cpu_buffer = buffer->buffers[cpu];
2939
2940         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2941                 goto out;
2942
2943         if (unlikely(length > BUF_MAX_DATA_SIZE))
2944                 goto out;
2945
2946         if (unlikely(trace_recursive_lock(cpu_buffer)))
2947                 goto out;
2948
2949         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2950         if (!event)
2951                 goto out_unlock;
2952
2953         return event;
2954
2955  out_unlock:
2956         trace_recursive_unlock(cpu_buffer);
2957  out:
2958         preempt_enable_notrace();
2959         return NULL;
2960 }
2961 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2962
2963 /*
2964  * Decrement the entries to the page that an event is on.
2965  * The event does not even need to exist, only the pointer
2966  * to the page it is on. This may only be called before the commit
2967  * takes place.
2968  */
2969 static inline void
2970 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2971                    struct ring_buffer_event *event)
2972 {
2973         unsigned long addr = (unsigned long)event;
2974         struct buffer_page *bpage = cpu_buffer->commit_page;
2975         struct buffer_page *start;
2976
2977         addr &= PAGE_MASK;
2978
2979         /* Do the likely case first */
2980         if (likely(bpage->page == (void *)addr)) {
2981                 local_dec(&bpage->entries);
2982                 return;
2983         }
2984
2985         /*
2986          * Because the commit page may be on the reader page we
2987          * start with the next page and check the end loop there.
2988          */
2989         rb_inc_page(cpu_buffer, &bpage);
2990         start = bpage;
2991         do {
2992                 if (bpage->page == (void *)addr) {
2993                         local_dec(&bpage->entries);
2994                         return;
2995                 }
2996                 rb_inc_page(cpu_buffer, &bpage);
2997         } while (bpage != start);
2998
2999         /* commit not part of this buffer?? */
3000         RB_WARN_ON(cpu_buffer, 1);
3001 }
3002
3003 /**
3004  * ring_buffer_commit_discard - discard an event that has not been committed
3005  * @buffer: the ring buffer
3006  * @event: non committed event to discard
3007  *
3008  * Sometimes an event that is in the ring buffer needs to be ignored.
3009  * This function lets the user discard an event in the ring buffer
3010  * and then that event will not be read later.
3011  *
3012  * This function only works if it is called before the item has been
3013  * committed. It will try to free the event from the ring buffer
3014  * if another event has not been added behind it.
3015  *
3016  * If another event has been added behind it, it will set the event
3017  * up as discarded, and perform the commit.
3018  *
3019  * If this function is called, do not call ring_buffer_unlock_commit on
3020  * the event.
3021  */
3022 void ring_buffer_discard_commit(struct ring_buffer *buffer,
3023                                 struct ring_buffer_event *event)
3024 {
3025         struct ring_buffer_per_cpu *cpu_buffer;
3026         int cpu;
3027
3028         /* The event is discarded regardless */
3029         rb_event_discard(event);
3030
3031         cpu = smp_processor_id();
3032         cpu_buffer = buffer->buffers[cpu];
3033
3034         /*
3035          * This must only be called if the event has not been
3036          * committed yet. Thus we can assume that preemption
3037          * is still disabled.
3038          */
3039         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3040
3041         rb_decrement_entry(cpu_buffer, event);
3042         if (rb_try_to_discard(cpu_buffer, event))
3043                 goto out;
3044
3045         /*
3046          * The commit is still visible by the reader, so we
3047          * must still update the timestamp.
3048          */
3049         rb_update_write_stamp(cpu_buffer, event);
3050  out:
3051         rb_end_commit(cpu_buffer);
3052
3053         trace_recursive_unlock(cpu_buffer);
3054
3055         preempt_enable_notrace();
3056
3057 }
3058 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3059
3060 /**
3061  * ring_buffer_write - write data to the buffer without reserving
3062  * @buffer: The ring buffer to write to.
3063  * @length: The length of the data being written (excluding the event header)
3064  * @data: The data to write to the buffer.
3065  *
3066  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3067  * one function. If you already have the data to write to the buffer, it
3068  * may be easier to simply call this function.
3069  *
3070  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3071  * and not the length of the event which would hold the header.
3072  */
3073 int ring_buffer_write(struct ring_buffer *buffer,
3074                       unsigned long length,
3075                       void *data)
3076 {
3077         struct ring_buffer_per_cpu *cpu_buffer;
3078         struct ring_buffer_event *event;
3079         void *body;
3080         int ret = -EBUSY;
3081         int cpu;
3082
3083         preempt_disable_notrace();
3084
3085         if (atomic_read(&buffer->record_disabled))
3086                 goto out;
3087
3088         cpu = raw_smp_processor_id();
3089
3090         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3091                 goto out;
3092
3093         cpu_buffer = buffer->buffers[cpu];
3094
3095         if (atomic_read(&cpu_buffer->record_disabled))
3096                 goto out;
3097
3098         if (length > BUF_MAX_DATA_SIZE)
3099                 goto out;
3100
3101         if (unlikely(trace_recursive_lock(cpu_buffer)))
3102                 goto out;
3103
3104         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3105         if (!event)
3106                 goto out_unlock;
3107
3108         body = rb_event_data(event);
3109
3110         memcpy(body, data, length);
3111
3112         rb_commit(cpu_buffer, event);
3113
3114         rb_wakeups(buffer, cpu_buffer);
3115
3116         ret = 0;
3117
3118  out_unlock:
3119         trace_recursive_unlock(cpu_buffer);
3120
3121  out:
3122         preempt_enable_notrace();
3123
3124         return ret;
3125 }
3126 EXPORT_SYMBOL_GPL(ring_buffer_write);
3127
3128 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3129 {
3130         struct buffer_page *reader = cpu_buffer->reader_page;
3131         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3132         struct buffer_page *commit = cpu_buffer->commit_page;
3133
3134         /* In case of error, head will be NULL */
3135         if (unlikely(!head))
3136                 return true;
3137
3138         return reader->read == rb_page_commit(reader) &&
3139                 (commit == reader ||
3140                  (commit == head &&
3141                   head->read == rb_page_commit(commit)));
3142 }
3143
3144 /**
3145  * ring_buffer_record_disable - stop all writes into the buffer
3146  * @buffer: The ring buffer to stop writes to.
3147  *
3148  * This prevents all writes to the buffer. Any attempt to write
3149  * to the buffer after this will fail and return NULL.
3150  *
3151  * The caller should call synchronize_sched() after this.
3152  */
3153 void ring_buffer_record_disable(struct ring_buffer *buffer)
3154 {
3155         atomic_inc(&buffer->record_disabled);
3156 }
3157 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3158
3159 /**
3160  * ring_buffer_record_enable - enable writes to the buffer
3161  * @buffer: The ring buffer to enable writes
3162  *
3163  * Note, multiple disables will need the same number of enables
3164  * to truly enable the writing (much like preempt_disable).
3165  */
3166 void ring_buffer_record_enable(struct ring_buffer *buffer)
3167 {
3168         atomic_dec(&buffer->record_disabled);
3169 }
3170 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3171
3172 /**
3173  * ring_buffer_record_off - stop all writes into the buffer
3174  * @buffer: The ring buffer to stop writes to.
3175  *
3176  * This prevents all writes to the buffer. Any attempt to write
3177  * to the buffer after this will fail and return NULL.
3178  *
3179  * This is different than ring_buffer_record_disable() as
3180  * it works like an on/off switch, where as the disable() version
3181  * must be paired with a enable().
3182  */
3183 void ring_buffer_record_off(struct ring_buffer *buffer)
3184 {
3185         unsigned int rd;
3186         unsigned int new_rd;
3187
3188         do {
3189                 rd = atomic_read(&buffer->record_disabled);
3190                 new_rd = rd | RB_BUFFER_OFF;
3191         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3192 }
3193 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3194
3195 /**
3196  * ring_buffer_record_on - restart writes into the buffer
3197  * @buffer: The ring buffer to start writes to.
3198  *
3199  * This enables all writes to the buffer that was disabled by
3200  * ring_buffer_record_off().
3201  *
3202  * This is different than ring_buffer_record_enable() as
3203  * it works like an on/off switch, where as the enable() version
3204  * must be paired with a disable().
3205  */
3206 void ring_buffer_record_on(struct ring_buffer *buffer)
3207 {
3208         unsigned int rd;
3209         unsigned int new_rd;
3210
3211         do {
3212                 rd = atomic_read(&buffer->record_disabled);
3213                 new_rd = rd & ~RB_BUFFER_OFF;
3214         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3215 }
3216 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3217
3218 /**
3219  * ring_buffer_record_is_on - return true if the ring buffer can write
3220  * @buffer: The ring buffer to see if write is enabled
3221  *
3222  * Returns true if the ring buffer is in a state that it accepts writes.
3223  */
3224 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3225 {
3226         return !atomic_read(&buffer->record_disabled);
3227 }
3228
3229 /**
3230  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3231  * @buffer: The ring buffer to stop writes to.
3232  * @cpu: The CPU buffer to stop
3233  *
3234  * This prevents all writes to the buffer. Any attempt to write
3235  * to the buffer after this will fail and return NULL.
3236  *
3237  * The caller should call synchronize_sched() after this.
3238  */
3239 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3240 {
3241         struct ring_buffer_per_cpu *cpu_buffer;
3242
3243         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3244                 return;
3245
3246         cpu_buffer = buffer->buffers[cpu];
3247         atomic_inc(&cpu_buffer->record_disabled);
3248 }
3249 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3250
3251 /**
3252  * ring_buffer_record_enable_cpu - enable writes to the buffer
3253  * @buffer: The ring buffer to enable writes
3254  * @cpu: The CPU to enable.
3255  *
3256  * Note, multiple disables will need the same number of enables
3257  * to truly enable the writing (much like preempt_disable).
3258  */
3259 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3260 {
3261         struct ring_buffer_per_cpu *cpu_buffer;
3262
3263         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3264                 return;
3265
3266         cpu_buffer = buffer->buffers[cpu];
3267         atomic_dec(&cpu_buffer->record_disabled);
3268 }
3269 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3270
3271 /*
3272  * The total entries in the ring buffer is the running counter
3273  * of entries entered into the ring buffer, minus the sum of
3274  * the entries read from the ring buffer and the number of
3275  * entries that were overwritten.
3276  */
3277 static inline unsigned long
3278 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3279 {
3280         return local_read(&cpu_buffer->entries) -
3281                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3282 }
3283
3284 /**
3285  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3286  * @buffer: The ring buffer
3287  * @cpu: The per CPU buffer to read from.
3288  */
3289 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3290 {
3291         unsigned long flags;
3292         struct ring_buffer_per_cpu *cpu_buffer;
3293         struct buffer_page *bpage;
3294         u64 ret = 0;
3295
3296         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3297                 return 0;
3298
3299         cpu_buffer = buffer->buffers[cpu];
3300         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3301         /*
3302          * if the tail is on reader_page, oldest time stamp is on the reader
3303          * page
3304          */
3305         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3306                 bpage = cpu_buffer->reader_page;
3307         else
3308                 bpage = rb_set_head_page(cpu_buffer);
3309         if (bpage)
3310                 ret = bpage->page->time_stamp;
3311         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3312
3313         return ret;
3314 }
3315 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3316
3317 /**
3318  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3319  * @buffer: The ring buffer
3320  * @cpu: The per CPU buffer to read from.
3321  */
3322 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3323 {
3324         struct ring_buffer_per_cpu *cpu_buffer;
3325         unsigned long ret;
3326
3327         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3328                 return 0;
3329
3330         cpu_buffer = buffer->buffers[cpu];
3331         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3332
3333         return ret;
3334 }
3335 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3336
3337 /**
3338  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3339  * @buffer: The ring buffer
3340  * @cpu: The per CPU buffer to get the entries from.
3341  */
3342 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3343 {
3344         struct ring_buffer_per_cpu *cpu_buffer;
3345
3346         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3347                 return 0;
3348
3349         cpu_buffer = buffer->buffers[cpu];
3350
3351         return rb_num_of_entries(cpu_buffer);
3352 }
3353 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3354
3355 /**
3356  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3357  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3358  * @buffer: The ring buffer
3359  * @cpu: The per CPU buffer to get the number of overruns from
3360  */
3361 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3362 {
3363         struct ring_buffer_per_cpu *cpu_buffer;
3364         unsigned long ret;
3365
3366         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3367                 return 0;
3368
3369         cpu_buffer = buffer->buffers[cpu];
3370         ret = local_read(&cpu_buffer->overrun);
3371
3372         return ret;
3373 }
3374 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3375
3376 /**
3377  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3378  * commits failing due to the buffer wrapping around while there are uncommitted
3379  * events, such as during an interrupt storm.
3380  * @buffer: The ring buffer
3381  * @cpu: The per CPU buffer to get the number of overruns from
3382  */
3383 unsigned long
3384 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3385 {
3386         struct ring_buffer_per_cpu *cpu_buffer;
3387         unsigned long ret;
3388
3389         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3390                 return 0;
3391
3392         cpu_buffer = buffer->buffers[cpu];
3393         ret = local_read(&cpu_buffer->commit_overrun);
3394
3395         return ret;
3396 }
3397 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3398
3399 /**
3400  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3401  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3402  * @buffer: The ring buffer
3403  * @cpu: The per CPU buffer to get the number of overruns from
3404  */
3405 unsigned long
3406 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3407 {
3408         struct ring_buffer_per_cpu *cpu_buffer;
3409         unsigned long ret;
3410
3411         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3412                 return 0;
3413
3414         cpu_buffer = buffer->buffers[cpu];
3415         ret = local_read(&cpu_buffer->dropped_events);
3416
3417         return ret;
3418 }
3419 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3420
3421 /**
3422  * ring_buffer_read_events_cpu - get the number of events successfully read
3423  * @buffer: The ring buffer
3424  * @cpu: The per CPU buffer to get the number of events read
3425  */
3426 unsigned long
3427 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3428 {
3429         struct ring_buffer_per_cpu *cpu_buffer;
3430
3431         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3432                 return 0;
3433
3434         cpu_buffer = buffer->buffers[cpu];
3435         return cpu_buffer->read;
3436 }
3437 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3438
3439 /**
3440  * ring_buffer_entries - get the number of entries in a buffer
3441  * @buffer: The ring buffer
3442  *
3443  * Returns the total number of entries in the ring buffer
3444  * (all CPU entries)
3445  */
3446 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3447 {
3448         struct ring_buffer_per_cpu *cpu_buffer;
3449         unsigned long entries = 0;
3450         int cpu;
3451
3452         /* if you care about this being correct, lock the buffer */
3453         for_each_buffer_cpu(buffer, cpu) {
3454                 cpu_buffer = buffer->buffers[cpu];
3455                 entries += rb_num_of_entries(cpu_buffer);
3456         }
3457
3458         return entries;
3459 }
3460 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3461
3462 /**
3463  * ring_buffer_overruns - get the number of overruns in buffer
3464  * @buffer: The ring buffer
3465  *
3466  * Returns the total number of overruns in the ring buffer
3467  * (all CPU entries)
3468  */
3469 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3470 {
3471         struct ring_buffer_per_cpu *cpu_buffer;
3472         unsigned long overruns = 0;
3473         int cpu;
3474
3475         /* if you care about this being correct, lock the buffer */
3476         for_each_buffer_cpu(buffer, cpu) {
3477                 cpu_buffer = buffer->buffers[cpu];
3478                 overruns += local_read(&cpu_buffer->overrun);
3479         }
3480
3481         return overruns;
3482 }
3483 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3484
3485 static void rb_iter_reset(struct ring_buffer_iter *iter)
3486 {
3487         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3488
3489         /* Iterator usage is expected to have record disabled */
3490         iter->head_page = cpu_buffer->reader_page;
3491         iter->head = cpu_buffer->reader_page->read;
3492
3493         iter->cache_reader_page = iter->head_page;
3494         iter->cache_read = cpu_buffer->read;
3495
3496         if (iter->head)
3497                 iter->read_stamp = cpu_buffer->read_stamp;
3498         else
3499                 iter->read_stamp = iter->head_page->page->time_stamp;
3500 }
3501
3502 /**
3503  * ring_buffer_iter_reset - reset an iterator
3504  * @iter: The iterator to reset
3505  *
3506  * Resets the iterator, so that it will start from the beginning
3507  * again.
3508  */
3509 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3510 {
3511         struct ring_buffer_per_cpu *cpu_buffer;
3512         unsigned long flags;
3513
3514         if (!iter)
3515                 return;
3516
3517         cpu_buffer = iter->cpu_buffer;
3518
3519         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3520         rb_iter_reset(iter);
3521         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3522 }
3523 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3524
3525 /**
3526  * ring_buffer_iter_empty - check if an iterator has no more to read
3527  * @iter: The iterator to check
3528  */
3529 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3530 {
3531         struct ring_buffer_per_cpu *cpu_buffer;
3532         struct buffer_page *reader;
3533         struct buffer_page *head_page;
3534         struct buffer_page *commit_page;
3535         unsigned commit;
3536
3537         cpu_buffer = iter->cpu_buffer;
3538
3539         /* Remember, trace recording is off when iterator is in use */
3540         reader = cpu_buffer->reader_page;
3541         head_page = cpu_buffer->head_page;
3542         commit_page = cpu_buffer->commit_page;
3543         commit = rb_page_commit(commit_page);
3544
3545         return ((iter->head_page == commit_page && iter->head == commit) ||
3546                 (iter->head_page == reader && commit_page == head_page &&
3547                  head_page->read == commit &&
3548                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
3549 }
3550 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3551
3552 static void
3553 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3554                      struct ring_buffer_event *event)
3555 {
3556         u64 delta;
3557
3558         switch (event->type_len) {
3559         case RINGBUF_TYPE_PADDING:
3560                 return;
3561
3562         case RINGBUF_TYPE_TIME_EXTEND:
3563                 delta = ring_buffer_event_time_stamp(event);
3564                 cpu_buffer->read_stamp += delta;
3565                 return;
3566
3567         case RINGBUF_TYPE_TIME_STAMP:
3568                 delta = ring_buffer_event_time_stamp(event);
3569                 cpu_buffer->read_stamp = delta;
3570                 return;
3571
3572         case RINGBUF_TYPE_DATA:
3573                 cpu_buffer->read_stamp += event->time_delta;
3574                 return;
3575
3576         default:
3577                 BUG();
3578         }
3579         return;
3580 }
3581
3582 static void
3583 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3584                           struct ring_buffer_event *event)
3585 {
3586         u64 delta;
3587
3588         switch (event->type_len) {
3589         case RINGBUF_TYPE_PADDING:
3590                 return;
3591
3592         case RINGBUF_TYPE_TIME_EXTEND:
3593                 delta = ring_buffer_event_time_stamp(event);
3594                 iter->read_stamp += delta;
3595                 return;
3596
3597         case RINGBUF_TYPE_TIME_STAMP:
3598                 delta = ring_buffer_event_time_stamp(event);
3599                 iter->read_stamp = delta;
3600                 return;
3601
3602         case RINGBUF_TYPE_DATA:
3603                 iter->read_stamp += event->time_delta;
3604                 return;
3605
3606         default:
3607                 BUG();
3608         }
3609         return;
3610 }
3611
3612 static struct buffer_page *
3613 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3614 {
3615         struct buffer_page *reader = NULL;
3616         unsigned long overwrite;
3617         unsigned long flags;
3618         int nr_loops = 0;
3619         int ret;
3620
3621         local_irq_save(flags);
3622         arch_spin_lock(&cpu_buffer->lock);
3623
3624  again:
3625         /*
3626          * This should normally only loop twice. But because the
3627          * start of the reader inserts an empty page, it causes
3628          * a case where we will loop three times. There should be no
3629          * reason to loop four times (that I know of).
3630          */
3631         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3632                 reader = NULL;
3633                 goto out;
3634         }
3635
3636         reader = cpu_buffer->reader_page;
3637
3638         /* If there's more to read, return this page */
3639         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3640                 goto out;
3641
3642         /* Never should we have an index greater than the size */
3643         if (RB_WARN_ON(cpu_buffer,
3644                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3645                 goto out;
3646
3647         /* check if we caught up to the tail */
3648         reader = NULL;
3649         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3650                 goto out;
3651
3652         /* Don't bother swapping if the ring buffer is empty */
3653         if (rb_num_of_entries(cpu_buffer) == 0)
3654                 goto out;
3655
3656         /*
3657          * Reset the reader page to size zero.
3658          */
3659         local_set(&cpu_buffer->reader_page->write, 0);
3660         local_set(&cpu_buffer->reader_page->entries, 0);
3661         local_set(&cpu_buffer->reader_page->page->commit, 0);
3662         cpu_buffer->reader_page->real_end = 0;
3663
3664  spin:
3665         /*
3666          * Splice the empty reader page into the list around the head.
3667          */
3668         reader = rb_set_head_page(cpu_buffer);
3669         if (!reader)
3670                 goto out;
3671         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3672         cpu_buffer->reader_page->list.prev = reader->list.prev;
3673
3674         /*
3675          * cpu_buffer->pages just needs to point to the buffer, it
3676          *  has no specific buffer page to point to. Lets move it out
3677          *  of our way so we don't accidentally swap it.
3678          */
3679         cpu_buffer->pages = reader->list.prev;
3680
3681         /* The reader page will be pointing to the new head */
3682         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3683
3684         /*
3685          * We want to make sure we read the overruns after we set up our
3686          * pointers to the next object. The writer side does a
3687          * cmpxchg to cross pages which acts as the mb on the writer
3688          * side. Note, the reader will constantly fail the swap
3689          * while the writer is updating the pointers, so this
3690          * guarantees that the overwrite recorded here is the one we
3691          * want to compare with the last_overrun.
3692          */
3693         smp_mb();
3694         overwrite = local_read(&(cpu_buffer->overrun));
3695
3696         /*
3697          * Here's the tricky part.
3698          *
3699          * We need to move the pointer past the header page.
3700          * But we can only do that if a writer is not currently
3701          * moving it. The page before the header page has the
3702          * flag bit '1' set if it is pointing to the page we want.
3703          * but if the writer is in the process of moving it
3704          * than it will be '2' or already moved '0'.
3705          */
3706
3707         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3708
3709         /*
3710          * If we did not convert it, then we must try again.
3711          */
3712         if (!ret)
3713                 goto spin;
3714
3715         /*
3716          * Yeah! We succeeded in replacing the page.
3717          *
3718          * Now make the new head point back to the reader page.
3719          */
3720         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3721         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3722
3723         /* Finally update the reader page to the new head */
3724         cpu_buffer->reader_page = reader;
3725         cpu_buffer->reader_page->read = 0;
3726
3727         if (overwrite != cpu_buffer->last_overrun) {
3728                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3729                 cpu_buffer->last_overrun = overwrite;
3730         }
3731
3732         goto again;
3733
3734  out:
3735         /* Update the read_stamp on the first event */
3736         if (reader && reader->read == 0)
3737                 cpu_buffer->read_stamp = reader->page->time_stamp;
3738
3739         arch_spin_unlock(&cpu_buffer->lock);
3740         local_irq_restore(flags);
3741
3742         return reader;
3743 }
3744
3745 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3746 {
3747         struct ring_buffer_event *event;
3748         struct buffer_page *reader;
3749         unsigned length;
3750
3751         reader = rb_get_reader_page(cpu_buffer);
3752
3753         /* This function should not be called when buffer is empty */
3754         if (RB_WARN_ON(cpu_buffer, !reader))
3755                 return;
3756
3757         event = rb_reader_event(cpu_buffer);
3758
3759         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3760                 cpu_buffer->read++;
3761
3762         rb_update_read_stamp(cpu_buffer, event);
3763
3764         length = rb_event_length(event);
3765         cpu_buffer->reader_page->read += length;
3766 }
3767
3768 static void rb_advance_iter(struct ring_buffer_iter *iter)
3769 {
3770         struct ring_buffer_per_cpu *cpu_buffer;
3771         struct ring_buffer_event *event;
3772         unsigned length;
3773
3774         cpu_buffer = iter->cpu_buffer;
3775
3776         /*
3777          * Check if we are at the end of the buffer.
3778          */
3779         if (iter->head >= rb_page_size(iter->head_page)) {
3780                 /* discarded commits can make the page empty */
3781                 if (iter->head_page == cpu_buffer->commit_page)
3782                         return;
3783                 rb_inc_iter(iter);
3784                 return;
3785         }
3786
3787         event = rb_iter_head_event(iter);
3788
3789         length = rb_event_length(event);
3790
3791         /*
3792          * This should not be called to advance the header if we are
3793          * at the tail of the buffer.
3794          */
3795         if (RB_WARN_ON(cpu_buffer,
3796                        (iter->head_page == cpu_buffer->commit_page) &&
3797                        (iter->head + length > rb_commit_index(cpu_buffer))))
3798                 return;
3799
3800         rb_update_iter_read_stamp(iter, event);
3801
3802         iter->head += length;
3803
3804         /* check for end of page padding */
3805         if ((iter->head >= rb_page_size(iter->head_page)) &&
3806             (iter->head_page != cpu_buffer->commit_page))
3807                 rb_inc_iter(iter);
3808 }
3809
3810 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3811 {
3812         return cpu_buffer->lost_events;
3813 }
3814
3815 static struct ring_buffer_event *
3816 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3817                unsigned long *lost_events)
3818 {
3819         struct ring_buffer_event *event;
3820         struct buffer_page *reader;
3821         int nr_loops = 0;
3822
3823         if (ts)
3824                 *ts = 0;
3825  again:
3826         /*
3827          * We repeat when a time extend is encountered.
3828          * Since the time extend is always attached to a data event,
3829          * we should never loop more than once.
3830          * (We never hit the following condition more than twice).
3831          */
3832         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3833                 return NULL;
3834
3835         reader = rb_get_reader_page(cpu_buffer);
3836         if (!reader)
3837                 return NULL;
3838
3839         event = rb_reader_event(cpu_buffer);
3840
3841         switch (event->type_len) {
3842         case RINGBUF_TYPE_PADDING:
3843                 if (rb_null_event(event))
3844                         RB_WARN_ON(cpu_buffer, 1);
3845                 /*
3846                  * Because the writer could be discarding every
3847                  * event it creates (which would probably be bad)
3848                  * if we were to go back to "again" then we may never
3849                  * catch up, and will trigger the warn on, or lock
3850                  * the box. Return the padding, and we will release
3851                  * the current locks, and try again.
3852                  */
3853                 return event;
3854
3855         case RINGBUF_TYPE_TIME_EXTEND:
3856                 /* Internal data, OK to advance */
3857                 rb_advance_reader(cpu_buffer);
3858                 goto again;
3859
3860         case RINGBUF_TYPE_TIME_STAMP:
3861                 if (ts) {
3862                         *ts = ring_buffer_event_time_stamp(event);
3863                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3864                                                          cpu_buffer->cpu, ts);
3865                 }
3866                 /* Internal data, OK to advance */
3867                 rb_advance_reader(cpu_buffer);
3868                 goto again;
3869
3870         case RINGBUF_TYPE_DATA:
3871                 if (ts && !(*ts)) {
3872                         *ts = cpu_buffer->read_stamp + event->time_delta;
3873                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3874                                                          cpu_buffer->cpu, ts);
3875                 }
3876                 if (lost_events)
3877                         *lost_events = rb_lost_events(cpu_buffer);
3878                 return event;
3879
3880         default:
3881                 BUG();
3882         }
3883
3884         return NULL;
3885 }
3886 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3887
3888 static struct ring_buffer_event *
3889 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3890 {
3891         struct ring_buffer *buffer;
3892         struct ring_buffer_per_cpu *cpu_buffer;
3893         struct ring_buffer_event *event;
3894         int nr_loops = 0;
3895
3896         if (ts)
3897                 *ts = 0;
3898
3899         cpu_buffer = iter->cpu_buffer;
3900         buffer = cpu_buffer->buffer;
3901
3902         /*
3903          * Check if someone performed a consuming read to
3904          * the buffer. A consuming read invalidates the iterator
3905          * and we need to reset the iterator in this case.
3906          */
3907         if (unlikely(iter->cache_read != cpu_buffer->read ||
3908                      iter->cache_reader_page != cpu_buffer->reader_page))
3909                 rb_iter_reset(iter);
3910
3911  again:
3912         if (ring_buffer_iter_empty(iter))
3913                 return NULL;
3914
3915         /*
3916          * We repeat when a time extend is encountered or we hit
3917          * the end of the page. Since the time extend is always attached
3918          * to a data event, we should never loop more than three times.
3919          * Once for going to next page, once on time extend, and
3920          * finally once to get the event.
3921          * (We never hit the following condition more than thrice).
3922          */
3923         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3924                 return NULL;
3925
3926         if (rb_per_cpu_empty(cpu_buffer))
3927                 return NULL;
3928
3929         if (iter->head >= rb_page_size(iter->head_page)) {
3930                 rb_inc_iter(iter);
3931                 goto again;
3932         }
3933
3934         event = rb_iter_head_event(iter);
3935
3936         switch (event->type_len) {
3937         case RINGBUF_TYPE_PADDING:
3938                 if (rb_null_event(event)) {
3939                         rb_inc_iter(iter);
3940                         goto again;
3941                 }
3942                 rb_advance_iter(iter);
3943                 return event;
3944
3945         case RINGBUF_TYPE_TIME_EXTEND:
3946                 /* Internal data, OK to advance */
3947                 rb_advance_iter(iter);
3948                 goto again;
3949
3950         case RINGBUF_TYPE_TIME_STAMP:
3951                 if (ts) {
3952                         *ts = ring_buffer_event_time_stamp(event);
3953                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3954                                                          cpu_buffer->cpu, ts);
3955                 }
3956                 /* Internal data, OK to advance */
3957                 rb_advance_iter(iter);
3958                 goto again;
3959
3960         case RINGBUF_TYPE_DATA:
3961                 if (ts && !(*ts)) {
3962                         *ts = iter->read_stamp + event->time_delta;
3963                         ring_buffer_normalize_time_stamp(buffer,
3964                                                          cpu_buffer->cpu, ts);
3965                 }
3966                 return event;
3967
3968         default:
3969                 BUG();
3970         }
3971
3972         return NULL;
3973 }
3974 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3975
3976 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3977 {
3978         if (likely(!in_nmi())) {
3979                 raw_spin_lock(&cpu_buffer->reader_lock);
3980                 return true;
3981         }
3982
3983         /*
3984          * If an NMI die dumps out the content of the ring buffer
3985          * trylock must be used to prevent a deadlock if the NMI
3986          * preempted a task that holds the ring buffer locks. If
3987          * we get the lock then all is fine, if not, then continue
3988          * to do the read, but this can corrupt the ring buffer,
3989          * so it must be permanently disabled from future writes.
3990          * Reading from NMI is a oneshot deal.
3991          */
3992         if (raw_spin_trylock(&cpu_buffer->reader_lock))
3993                 return true;
3994
3995         /* Continue without locking, but disable the ring buffer */
3996         atomic_inc(&cpu_buffer->record_disabled);
3997         return false;
3998 }
3999
4000 static inline void
4001 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4002 {
4003         if (likely(locked))
4004                 raw_spin_unlock(&cpu_buffer->reader_lock);
4005         return;
4006 }
4007
4008 /**
4009  * ring_buffer_peek - peek at the next event to be read
4010  * @buffer: The ring buffer to read
4011  * @cpu: The cpu to peak at
4012  * @ts: The timestamp counter of this event.
4013  * @lost_events: a variable to store if events were lost (may be NULL)
4014  *
4015  * This will return the event that will be read next, but does
4016  * not consume the data.
4017  */
4018 struct ring_buffer_event *
4019 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
4020                  unsigned long *lost_events)
4021 {
4022         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4023         struct ring_buffer_event *event;
4024         unsigned long flags;
4025         bool dolock;
4026
4027         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4028                 return NULL;
4029
4030  again:
4031         local_irq_save(flags);
4032         dolock = rb_reader_lock(cpu_buffer);
4033         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4034         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4035                 rb_advance_reader(cpu_buffer);
4036         rb_reader_unlock(cpu_buffer, dolock);
4037         local_irq_restore(flags);
4038
4039         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4040                 goto again;
4041
4042         return event;
4043 }
4044
4045 /**
4046  * ring_buffer_iter_peek - peek at the next event to be read
4047  * @iter: The ring buffer iterator
4048  * @ts: The timestamp counter of this event.
4049  *
4050  * This will return the event that will be read next, but does
4051  * not increment the iterator.
4052  */
4053 struct ring_buffer_event *
4054 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4055 {
4056         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4057         struct ring_buffer_event *event;
4058         unsigned long flags;
4059
4060  again:
4061         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4062         event = rb_iter_peek(iter, ts);
4063         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4064
4065         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4066                 goto again;
4067
4068         return event;
4069 }
4070
4071 /**
4072  * ring_buffer_consume - return an event and consume it
4073  * @buffer: The ring buffer to get the next event from
4074  * @cpu: the cpu to read the buffer from
4075  * @ts: a variable to store the timestamp (may be NULL)
4076  * @lost_events: a variable to store if events were lost (may be NULL)
4077  *
4078  * Returns the next event in the ring buffer, and that event is consumed.
4079  * Meaning, that sequential reads will keep returning a different event,
4080  * and eventually empty the ring buffer if the producer is slower.
4081  */
4082 struct ring_buffer_event *
4083 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4084                     unsigned long *lost_events)
4085 {
4086         struct ring_buffer_per_cpu *cpu_buffer;
4087         struct ring_buffer_event *event = NULL;
4088         unsigned long flags;
4089         bool dolock;
4090
4091  again:
4092         /* might be called in atomic */
4093         preempt_disable();
4094
4095         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4096                 goto out;
4097
4098         cpu_buffer = buffer->buffers[cpu];
4099         local_irq_save(flags);
4100         dolock = rb_reader_lock(cpu_buffer);
4101
4102         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4103         if (event) {
4104                 cpu_buffer->lost_events = 0;
4105                 rb_advance_reader(cpu_buffer);
4106         }
4107
4108         rb_reader_unlock(cpu_buffer, dolock);
4109         local_irq_restore(flags);
4110
4111  out:
4112         preempt_enable();
4113
4114         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4115                 goto again;
4116
4117         return event;
4118 }
4119 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4120
4121 /**
4122  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4123  * @buffer: The ring buffer to read from
4124  * @cpu: The cpu buffer to iterate over
4125  *
4126  * This performs the initial preparations necessary to iterate
4127  * through the buffer.  Memory is allocated, buffer recording
4128  * is disabled, and the iterator pointer is returned to the caller.
4129  *
4130  * Disabling buffer recording prevents the reading from being
4131  * corrupted. This is not a consuming read, so a producer is not
4132  * expected.
4133  *
4134  * After a sequence of ring_buffer_read_prepare calls, the user is
4135  * expected to make at least one call to ring_buffer_read_prepare_sync.
4136  * Afterwards, ring_buffer_read_start is invoked to get things going
4137  * for real.
4138  *
4139  * This overall must be paired with ring_buffer_read_finish.
4140  */
4141 struct ring_buffer_iter *
4142 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4143 {
4144         struct ring_buffer_per_cpu *cpu_buffer;
4145         struct ring_buffer_iter *iter;
4146
4147         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4148                 return NULL;
4149
4150         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4151         if (!iter)
4152                 return NULL;
4153
4154         cpu_buffer = buffer->buffers[cpu];
4155
4156         iter->cpu_buffer = cpu_buffer;
4157
4158         atomic_inc(&buffer->resize_disabled);
4159         atomic_inc(&cpu_buffer->record_disabled);
4160
4161         return iter;
4162 }
4163 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4164
4165 /**
4166  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4167  *
4168  * All previously invoked ring_buffer_read_prepare calls to prepare
4169  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4170  * calls on those iterators are allowed.
4171  */
4172 void
4173 ring_buffer_read_prepare_sync(void)
4174 {
4175         synchronize_sched();
4176 }
4177 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4178
4179 /**
4180  * ring_buffer_read_start - start a non consuming read of the buffer
4181  * @iter: The iterator returned by ring_buffer_read_prepare
4182  *
4183  * This finalizes the startup of an iteration through the buffer.
4184  * The iterator comes from a call to ring_buffer_read_prepare and
4185  * an intervening ring_buffer_read_prepare_sync must have been
4186  * performed.
4187  *
4188  * Must be paired with ring_buffer_read_finish.
4189  */
4190 void
4191 ring_buffer_read_start(struct ring_buffer_iter *iter)
4192 {
4193         struct ring_buffer_per_cpu *cpu_buffer;
4194         unsigned long flags;
4195
4196         if (!iter)
4197                 return;
4198
4199         cpu_buffer = iter->cpu_buffer;
4200
4201         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4202         arch_spin_lock(&cpu_buffer->lock);
4203         rb_iter_reset(iter);
4204         arch_spin_unlock(&cpu_buffer->lock);
4205         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4206 }
4207 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4208
4209 /**
4210  * ring_buffer_read_finish - finish reading the iterator of the buffer
4211  * @iter: The iterator retrieved by ring_buffer_start
4212  *
4213  * This re-enables the recording to the buffer, and frees the
4214  * iterator.
4215  */
4216 void
4217 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4218 {
4219         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4220         unsigned long flags;
4221
4222         /*
4223          * Ring buffer is disabled from recording, here's a good place
4224          * to check the integrity of the ring buffer.
4225          * Must prevent readers from trying to read, as the check
4226          * clears the HEAD page and readers require it.
4227          */
4228         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4229         rb_check_pages(cpu_buffer);
4230         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4231
4232         atomic_dec(&cpu_buffer->record_disabled);
4233         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4234         kfree(iter);
4235 }
4236 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4237
4238 /**
4239  * ring_buffer_read - read the next item in the ring buffer by the iterator
4240  * @iter: The ring buffer iterator
4241  * @ts: The time stamp of the event read.
4242  *
4243  * This reads the next event in the ring buffer and increments the iterator.
4244  */
4245 struct ring_buffer_event *
4246 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4247 {
4248         struct ring_buffer_event *event;
4249         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4250         unsigned long flags;
4251
4252         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4253  again:
4254         event = rb_iter_peek(iter, ts);
4255         if (!event)
4256                 goto out;
4257
4258         if (event->type_len == RINGBUF_TYPE_PADDING)
4259                 goto again;
4260
4261         rb_advance_iter(iter);
4262  out:
4263         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4264
4265         return event;
4266 }
4267 EXPORT_SYMBOL_GPL(ring_buffer_read);
4268
4269 /**
4270  * ring_buffer_size - return the size of the ring buffer (in bytes)
4271  * @buffer: The ring buffer.
4272  */
4273 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4274 {
4275         /*
4276          * Earlier, this method returned
4277          *      BUF_PAGE_SIZE * buffer->nr_pages
4278          * Since the nr_pages field is now removed, we have converted this to
4279          * return the per cpu buffer value.
4280          */
4281         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4282                 return 0;
4283
4284         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4285 }
4286 EXPORT_SYMBOL_GPL(ring_buffer_size);
4287
4288 static void
4289 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4290 {
4291         rb_head_page_deactivate(cpu_buffer);
4292
4293         cpu_buffer->head_page
4294                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4295         local_set(&cpu_buffer->head_page->write, 0);
4296         local_set(&cpu_buffer->head_page->entries, 0);
4297         local_set(&cpu_buffer->head_page->page->commit, 0);
4298
4299         cpu_buffer->head_page->read = 0;
4300
4301         cpu_buffer->tail_page = cpu_buffer->head_page;
4302         cpu_buffer->commit_page = cpu_buffer->head_page;
4303
4304         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4305         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4306         local_set(&cpu_buffer->reader_page->write, 0);
4307         local_set(&cpu_buffer->reader_page->entries, 0);
4308         local_set(&cpu_buffer->reader_page->page->commit, 0);
4309         cpu_buffer->reader_page->read = 0;
4310
4311         local_set(&cpu_buffer->entries_bytes, 0);
4312         local_set(&cpu_buffer->overrun, 0);
4313         local_set(&cpu_buffer->commit_overrun, 0);
4314         local_set(&cpu_buffer->dropped_events, 0);
4315         local_set(&cpu_buffer->entries, 0);
4316         local_set(&cpu_buffer->committing, 0);
4317         local_set(&cpu_buffer->commits, 0);
4318         cpu_buffer->read = 0;
4319         cpu_buffer->read_bytes = 0;
4320
4321         cpu_buffer->write_stamp = 0;
4322         cpu_buffer->read_stamp = 0;
4323
4324         cpu_buffer->lost_events = 0;
4325         cpu_buffer->last_overrun = 0;
4326
4327         rb_head_page_activate(cpu_buffer);
4328 }
4329
4330 /**
4331  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4332  * @buffer: The ring buffer to reset a per cpu buffer of
4333  * @cpu: The CPU buffer to be reset
4334  */
4335 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4336 {
4337         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4338         unsigned long flags;
4339
4340         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4341                 return;
4342
4343         atomic_inc(&buffer->resize_disabled);
4344         atomic_inc(&cpu_buffer->record_disabled);
4345
4346         /* Make sure all commits have finished */
4347         synchronize_sched();
4348
4349         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4350
4351         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4352                 goto out;
4353
4354         arch_spin_lock(&cpu_buffer->lock);
4355
4356         rb_reset_cpu(cpu_buffer);
4357
4358         arch_spin_unlock(&cpu_buffer->lock);
4359
4360  out:
4361         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4362
4363         atomic_dec(&cpu_buffer->record_disabled);
4364         atomic_dec(&buffer->resize_disabled);
4365 }
4366 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4367
4368 /**
4369  * ring_buffer_reset - reset a ring buffer
4370  * @buffer: The ring buffer to reset all cpu buffers
4371  */
4372 void ring_buffer_reset(struct ring_buffer *buffer)
4373 {
4374         int cpu;
4375
4376         for_each_buffer_cpu(buffer, cpu)
4377                 ring_buffer_reset_cpu(buffer, cpu);
4378 }
4379 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4380
4381 /**
4382  * rind_buffer_empty - is the ring buffer empty?
4383  * @buffer: The ring buffer to test
4384  */
4385 bool ring_buffer_empty(struct ring_buffer *buffer)
4386 {
4387         struct ring_buffer_per_cpu *cpu_buffer;
4388         unsigned long flags;
4389         bool dolock;
4390         int cpu;
4391         int ret;
4392
4393         /* yes this is racy, but if you don't like the race, lock the buffer */
4394         for_each_buffer_cpu(buffer, cpu) {
4395                 cpu_buffer = buffer->buffers[cpu];
4396                 local_irq_save(flags);
4397                 dolock = rb_reader_lock(cpu_buffer);
4398                 ret = rb_per_cpu_empty(cpu_buffer);
4399                 rb_reader_unlock(cpu_buffer, dolock);
4400                 local_irq_restore(flags);
4401
4402                 if (!ret)
4403                         return false;
4404         }
4405
4406         return true;
4407 }
4408 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4409
4410 /**
4411  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4412  * @buffer: The ring buffer
4413  * @cpu: The CPU buffer to test
4414  */
4415 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4416 {
4417         struct ring_buffer_per_cpu *cpu_buffer;
4418         unsigned long flags;
4419         bool dolock;
4420         int ret;
4421
4422         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4423                 return true;
4424
4425         cpu_buffer = buffer->buffers[cpu];
4426         local_irq_save(flags);
4427         dolock = rb_reader_lock(cpu_buffer);
4428         ret = rb_per_cpu_empty(cpu_buffer);
4429         rb_reader_unlock(cpu_buffer, dolock);
4430         local_irq_restore(flags);
4431
4432         return ret;
4433 }
4434 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4435
4436 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4437 /**
4438  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4439  * @buffer_a: One buffer to swap with
4440  * @buffer_b: The other buffer to swap with
4441  *
4442  * This function is useful for tracers that want to take a "snapshot"
4443  * of a CPU buffer and has another back up buffer lying around.
4444  * it is expected that the tracer handles the cpu buffer not being
4445  * used at the moment.
4446  */
4447 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4448                          struct ring_buffer *buffer_b, int cpu)
4449 {
4450         struct ring_buffer_per_cpu *cpu_buffer_a;
4451         struct ring_buffer_per_cpu *cpu_buffer_b;
4452         int ret = -EINVAL;
4453
4454         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4455             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4456                 goto out;
4457
4458         cpu_buffer_a = buffer_a->buffers[cpu];
4459         cpu_buffer_b = buffer_b->buffers[cpu];
4460
4461         /* At least make sure the two buffers are somewhat the same */
4462         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4463                 goto out;
4464
4465         ret = -EAGAIN;
4466
4467         if (atomic_read(&buffer_a->record_disabled))
4468                 goto out;
4469
4470         if (atomic_read(&buffer_b->record_disabled))
4471                 goto out;
4472
4473         if (atomic_read(&cpu_buffer_a->record_disabled))
4474                 goto out;
4475
4476         if (atomic_read(&cpu_buffer_b->record_disabled))
4477                 goto out;
4478
4479         /*
4480          * We can't do a synchronize_sched here because this
4481          * function can be called in atomic context.
4482          * Normally this will be called from the same CPU as cpu.
4483          * If not it's up to the caller to protect this.
4484          */
4485         atomic_inc(&cpu_buffer_a->record_disabled);
4486         atomic_inc(&cpu_buffer_b->record_disabled);
4487
4488         ret = -EBUSY;
4489         if (local_read(&cpu_buffer_a->committing))
4490                 goto out_dec;
4491         if (local_read(&cpu_buffer_b->committing))
4492                 goto out_dec;
4493
4494         buffer_a->buffers[cpu] = cpu_buffer_b;
4495         buffer_b->buffers[cpu] = cpu_buffer_a;
4496
4497         cpu_buffer_b->buffer = buffer_a;
4498         cpu_buffer_a->buffer = buffer_b;
4499
4500         ret = 0;
4501
4502 out_dec:
4503         atomic_dec(&cpu_buffer_a->record_disabled);
4504         atomic_dec(&cpu_buffer_b->record_disabled);
4505 out:
4506         return ret;
4507 }
4508 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4509 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4510
4511 /**
4512  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4513  * @buffer: the buffer to allocate for.
4514  * @cpu: the cpu buffer to allocate.
4515  *
4516  * This function is used in conjunction with ring_buffer_read_page.
4517  * When reading a full page from the ring buffer, these functions
4518  * can be used to speed up the process. The calling function should
4519  * allocate a few pages first with this function. Then when it
4520  * needs to get pages from the ring buffer, it passes the result
4521  * of this function into ring_buffer_read_page, which will swap
4522  * the page that was allocated, with the read page of the buffer.
4523  *
4524  * Returns:
4525  *  The page allocated, or ERR_PTR
4526  */
4527 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4528 {
4529         struct ring_buffer_per_cpu *cpu_buffer;
4530         struct buffer_data_page *bpage = NULL;
4531         unsigned long flags;
4532         struct page *page;
4533
4534         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4535                 return ERR_PTR(-ENODEV);
4536
4537         cpu_buffer = buffer->buffers[cpu];
4538         local_irq_save(flags);
4539         arch_spin_lock(&cpu_buffer->lock);
4540
4541         if (cpu_buffer->free_page) {
4542                 bpage = cpu_buffer->free_page;
4543                 cpu_buffer->free_page = NULL;
4544         }
4545
4546         arch_spin_unlock(&cpu_buffer->lock);
4547         local_irq_restore(flags);
4548
4549         if (bpage)
4550                 goto out;
4551
4552         page = alloc_pages_node(cpu_to_node(cpu),
4553                                 GFP_KERNEL | __GFP_NORETRY, 0);
4554         if (!page)
4555                 return ERR_PTR(-ENOMEM);
4556
4557         bpage = page_address(page);
4558
4559  out:
4560         rb_init_page(bpage);
4561
4562         return bpage;
4563 }
4564 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4565
4566 /**
4567  * ring_buffer_free_read_page - free an allocated read page
4568  * @buffer: the buffer the page was allocate for
4569  * @cpu: the cpu buffer the page came from
4570  * @data: the page to free
4571  *
4572  * Free a page allocated from ring_buffer_alloc_read_page.
4573  */
4574 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4575 {
4576         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4577         struct buffer_data_page *bpage = data;
4578         struct page *page = virt_to_page(bpage);
4579         unsigned long flags;
4580
4581         /* If the page is still in use someplace else, we can't reuse it */
4582         if (page_ref_count(page) > 1)
4583                 goto out;
4584
4585         local_irq_save(flags);
4586         arch_spin_lock(&cpu_buffer->lock);
4587
4588         if (!cpu_buffer->free_page) {
4589                 cpu_buffer->free_page = bpage;
4590                 bpage = NULL;
4591         }
4592
4593         arch_spin_unlock(&cpu_buffer->lock);
4594         local_irq_restore(flags);
4595
4596  out:
4597         free_page((unsigned long)bpage);
4598 }
4599 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4600
4601 /**
4602  * ring_buffer_read_page - extract a page from the ring buffer
4603  * @buffer: buffer to extract from
4604  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4605  * @len: amount to extract
4606  * @cpu: the cpu of the buffer to extract
4607  * @full: should the extraction only happen when the page is full.
4608  *
4609  * This function will pull out a page from the ring buffer and consume it.
4610  * @data_page must be the address of the variable that was returned
4611  * from ring_buffer_alloc_read_page. This is because the page might be used
4612  * to swap with a page in the ring buffer.
4613  *
4614  * for example:
4615  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4616  *      if (IS_ERR(rpage))
4617  *              return PTR_ERR(rpage);
4618  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4619  *      if (ret >= 0)
4620  *              process_page(rpage, ret);
4621  *
4622  * When @full is set, the function will not return true unless
4623  * the writer is off the reader page.
4624  *
4625  * Note: it is up to the calling functions to handle sleeps and wakeups.
4626  *  The ring buffer can be used anywhere in the kernel and can not
4627  *  blindly call wake_up. The layer that uses the ring buffer must be
4628  *  responsible for that.
4629  *
4630  * Returns:
4631  *  >=0 if data has been transferred, returns the offset of consumed data.
4632  *  <0 if no data has been transferred.
4633  */
4634 int ring_buffer_read_page(struct ring_buffer *buffer,
4635                           void **data_page, size_t len, int cpu, int full)
4636 {
4637         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4638         struct ring_buffer_event *event;
4639         struct buffer_data_page *bpage;
4640         struct buffer_page *reader;
4641         unsigned long missed_events;
4642         unsigned long flags;
4643         unsigned int commit;
4644         unsigned int read;
4645         u64 save_timestamp;
4646         int ret = -1;
4647
4648         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4649                 goto out;
4650
4651         /*
4652          * If len is not big enough to hold the page header, then
4653          * we can not copy anything.
4654          */
4655         if (len <= BUF_PAGE_HDR_SIZE)
4656                 goto out;
4657
4658         len -= BUF_PAGE_HDR_SIZE;
4659
4660         if (!data_page)
4661                 goto out;
4662
4663         bpage = *data_page;
4664         if (!bpage)
4665                 goto out;
4666
4667         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4668
4669         reader = rb_get_reader_page(cpu_buffer);
4670         if (!reader)
4671                 goto out_unlock;
4672
4673         event = rb_reader_event(cpu_buffer);
4674
4675         read = reader->read;
4676         commit = rb_page_commit(reader);
4677
4678         /* Check if any events were dropped */
4679         missed_events = cpu_buffer->lost_events;
4680
4681         /*
4682          * If this page has been partially read or
4683          * if len is not big enough to read the rest of the page or
4684          * a writer is still on the page, then
4685          * we must copy the data from the page to the buffer.
4686          * Otherwise, we can simply swap the page with the one passed in.
4687          */
4688         if (read || (len < (commit - read)) ||
4689             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4690                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4691                 unsigned int rpos = read;
4692                 unsigned int pos = 0;
4693                 unsigned int size;
4694
4695                 if (full)
4696                         goto out_unlock;
4697
4698                 if (len > (commit - read))
4699                         len = (commit - read);
4700
4701                 /* Always keep the time extend and data together */
4702                 size = rb_event_ts_length(event);
4703
4704                 if (len < size)
4705                         goto out_unlock;
4706
4707                 /* save the current timestamp, since the user will need it */
4708                 save_timestamp = cpu_buffer->read_stamp;
4709
4710                 /* Need to copy one event at a time */
4711                 do {
4712                         /* We need the size of one event, because
4713                          * rb_advance_reader only advances by one event,
4714                          * whereas rb_event_ts_length may include the size of
4715                          * one or two events.
4716                          * We have already ensured there's enough space if this
4717                          * is a time extend. */
4718                         size = rb_event_length(event);
4719                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4720
4721                         len -= size;
4722
4723                         rb_advance_reader(cpu_buffer);
4724                         rpos = reader->read;
4725                         pos += size;
4726
4727                         if (rpos >= commit)
4728                                 break;
4729
4730                         event = rb_reader_event(cpu_buffer);
4731                         /* Always keep the time extend and data together */
4732                         size = rb_event_ts_length(event);
4733                 } while (len >= size);
4734
4735                 /* update bpage */
4736                 local_set(&bpage->commit, pos);
4737                 bpage->time_stamp = save_timestamp;
4738
4739                 /* we copied everything to the beginning */
4740                 read = 0;
4741         } else {
4742                 /* update the entry counter */
4743                 cpu_buffer->read += rb_page_entries(reader);
4744                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4745
4746                 /* swap the pages */
4747                 rb_init_page(bpage);
4748                 bpage = reader->page;
4749                 reader->page = *data_page;
4750                 local_set(&reader->write, 0);
4751                 local_set(&reader->entries, 0);
4752                 reader->read = 0;
4753                 *data_page = bpage;
4754
4755                 /*
4756                  * Use the real_end for the data size,
4757                  * This gives us a chance to store the lost events
4758                  * on the page.
4759                  */
4760                 if (reader->real_end)
4761                         local_set(&bpage->commit, reader->real_end);
4762         }
4763         ret = read;
4764
4765         cpu_buffer->lost_events = 0;
4766
4767         commit = local_read(&bpage->commit);
4768         /*
4769          * Set a flag in the commit field if we lost events
4770          */
4771         if (missed_events) {
4772                 /* If there is room at the end of the page to save the
4773                  * missed events, then record it there.
4774                  */
4775                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4776                         memcpy(&bpage->data[commit], &missed_events,
4777                                sizeof(missed_events));
4778                         local_add(RB_MISSED_STORED, &bpage->commit);
4779                         commit += sizeof(missed_events);
4780                 }
4781                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4782         }
4783
4784         /*
4785          * This page may be off to user land. Zero it out here.
4786          */
4787         if (commit < BUF_PAGE_SIZE)
4788                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4789
4790  out_unlock:
4791         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4792
4793  out:
4794         return ret;
4795 }
4796 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4797
4798 /*
4799  * We only allocate new buffers, never free them if the CPU goes down.
4800  * If we were to free the buffer, then the user would lose any trace that was in
4801  * the buffer.
4802  */
4803 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4804 {
4805         struct ring_buffer *buffer;
4806         long nr_pages_same;
4807         int cpu_i;
4808         unsigned long nr_pages;
4809
4810         buffer = container_of(node, struct ring_buffer, node);
4811         if (cpumask_test_cpu(cpu, buffer->cpumask))
4812                 return 0;
4813
4814         nr_pages = 0;
4815         nr_pages_same = 1;
4816         /* check if all cpu sizes are same */
4817         for_each_buffer_cpu(buffer, cpu_i) {
4818                 /* fill in the size from first enabled cpu */
4819                 if (nr_pages == 0)
4820                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
4821                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4822                         nr_pages_same = 0;
4823                         break;
4824                 }
4825         }
4826         /* allocate minimum pages, user can later expand it */
4827         if (!nr_pages_same)
4828                 nr_pages = 2;
4829         buffer->buffers[cpu] =
4830                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4831         if (!buffer->buffers[cpu]) {
4832                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4833                      cpu);
4834                 return -ENOMEM;
4835         }
4836         smp_wmb();
4837         cpumask_set_cpu(cpu, buffer->cpumask);
4838         return 0;
4839 }
4840
4841 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4842 /*
4843  * This is a basic integrity check of the ring buffer.
4844  * Late in the boot cycle this test will run when configured in.
4845  * It will kick off a thread per CPU that will go into a loop
4846  * writing to the per cpu ring buffer various sizes of data.
4847  * Some of the data will be large items, some small.
4848  *
4849  * Another thread is created that goes into a spin, sending out
4850  * IPIs to the other CPUs to also write into the ring buffer.
4851  * this is to test the nesting ability of the buffer.
4852  *
4853  * Basic stats are recorded and reported. If something in the
4854  * ring buffer should happen that's not expected, a big warning
4855  * is displayed and all ring buffers are disabled.
4856  */
4857 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4858
4859 struct rb_test_data {
4860         struct ring_buffer      *buffer;
4861         unsigned long           events;
4862         unsigned long           bytes_written;
4863         unsigned long           bytes_alloc;
4864         unsigned long           bytes_dropped;
4865         unsigned long           events_nested;
4866         unsigned long           bytes_written_nested;
4867         unsigned long           bytes_alloc_nested;
4868         unsigned long           bytes_dropped_nested;
4869         int                     min_size_nested;
4870         int                     max_size_nested;
4871         int                     max_size;
4872         int                     min_size;
4873         int                     cpu;
4874         int                     cnt;
4875 };
4876
4877 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4878
4879 /* 1 meg per cpu */
4880 #define RB_TEST_BUFFER_SIZE     1048576
4881
4882 static char rb_string[] __initdata =
4883         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4884         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4885         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4886
4887 static bool rb_test_started __initdata;
4888
4889 struct rb_item {
4890         int size;
4891         char str[];
4892 };
4893
4894 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4895 {
4896         struct ring_buffer_event *event;
4897         struct rb_item *item;
4898         bool started;
4899         int event_len;
4900         int size;
4901         int len;
4902         int cnt;
4903
4904         /* Have nested writes different that what is written */
4905         cnt = data->cnt + (nested ? 27 : 0);
4906
4907         /* Multiply cnt by ~e, to make some unique increment */
4908         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4909
4910         len = size + sizeof(struct rb_item);
4911
4912         started = rb_test_started;
4913         /* read rb_test_started before checking buffer enabled */
4914         smp_rmb();
4915
4916         event = ring_buffer_lock_reserve(data->buffer, len);
4917         if (!event) {
4918                 /* Ignore dropped events before test starts. */
4919                 if (started) {
4920                         if (nested)
4921                                 data->bytes_dropped += len;
4922                         else
4923                                 data->bytes_dropped_nested += len;
4924                 }
4925                 return len;
4926         }
4927
4928         event_len = ring_buffer_event_length(event);
4929
4930         if (RB_WARN_ON(data->buffer, event_len < len))
4931                 goto out;
4932
4933         item = ring_buffer_event_data(event);
4934         item->size = size;
4935         memcpy(item->str, rb_string, size);
4936
4937         if (nested) {
4938                 data->bytes_alloc_nested += event_len;
4939                 data->bytes_written_nested += len;
4940                 data->events_nested++;
4941                 if (!data->min_size_nested || len < data->min_size_nested)
4942                         data->min_size_nested = len;
4943                 if (len > data->max_size_nested)
4944                         data->max_size_nested = len;
4945         } else {
4946                 data->bytes_alloc += event_len;
4947                 data->bytes_written += len;
4948                 data->events++;
4949                 if (!data->min_size || len < data->min_size)
4950                         data->max_size = len;
4951                 if (len > data->max_size)
4952                         data->max_size = len;
4953         }
4954
4955  out:
4956         ring_buffer_unlock_commit(data->buffer, event);
4957
4958         return 0;
4959 }
4960
4961 static __init int rb_test(void *arg)
4962 {
4963         struct rb_test_data *data = arg;
4964
4965         while (!kthread_should_stop()) {
4966                 rb_write_something(data, false);
4967                 data->cnt++;
4968
4969                 set_current_state(TASK_INTERRUPTIBLE);
4970                 /* Now sleep between a min of 100-300us and a max of 1ms */
4971                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4972         }
4973
4974         return 0;
4975 }
4976
4977 static __init void rb_ipi(void *ignore)
4978 {
4979         struct rb_test_data *data;
4980         int cpu = smp_processor_id();
4981
4982         data = &rb_data[cpu];
4983         rb_write_something(data, true);
4984 }
4985
4986 static __init int rb_hammer_test(void *arg)
4987 {
4988         while (!kthread_should_stop()) {
4989
4990                 /* Send an IPI to all cpus to write data! */
4991                 smp_call_function(rb_ipi, NULL, 1);
4992                 /* No sleep, but for non preempt, let others run */
4993                 schedule();
4994         }
4995
4996         return 0;
4997 }
4998
4999 static __init int test_ringbuffer(void)
5000 {
5001         struct task_struct *rb_hammer;
5002         struct ring_buffer *buffer;
5003         int cpu;
5004         int ret = 0;
5005
5006         pr_info("Running ring buffer tests...\n");
5007
5008         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5009         if (WARN_ON(!buffer))
5010                 return 0;
5011
5012         /* Disable buffer so that threads can't write to it yet */
5013         ring_buffer_record_off(buffer);
5014
5015         for_each_online_cpu(cpu) {
5016                 rb_data[cpu].buffer = buffer;
5017                 rb_data[cpu].cpu = cpu;
5018                 rb_data[cpu].cnt = cpu;
5019                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5020                                                  "rbtester/%d", cpu);
5021                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5022                         pr_cont("FAILED\n");
5023                         ret = PTR_ERR(rb_threads[cpu]);
5024                         goto out_free;
5025                 }
5026
5027                 kthread_bind(rb_threads[cpu], cpu);
5028                 wake_up_process(rb_threads[cpu]);
5029         }
5030
5031         /* Now create the rb hammer! */
5032         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5033         if (WARN_ON(IS_ERR(rb_hammer))) {
5034                 pr_cont("FAILED\n");
5035                 ret = PTR_ERR(rb_hammer);
5036                 goto out_free;
5037         }
5038
5039         ring_buffer_record_on(buffer);
5040         /*
5041          * Show buffer is enabled before setting rb_test_started.
5042          * Yes there's a small race window where events could be
5043          * dropped and the thread wont catch it. But when a ring
5044          * buffer gets enabled, there will always be some kind of
5045          * delay before other CPUs see it. Thus, we don't care about
5046          * those dropped events. We care about events dropped after
5047          * the threads see that the buffer is active.
5048          */
5049         smp_wmb();
5050         rb_test_started = true;
5051
5052         set_current_state(TASK_INTERRUPTIBLE);
5053         /* Just run for 10 seconds */;
5054         schedule_timeout(10 * HZ);
5055
5056         kthread_stop(rb_hammer);
5057
5058  out_free:
5059         for_each_online_cpu(cpu) {
5060                 if (!rb_threads[cpu])
5061                         break;
5062                 kthread_stop(rb_threads[cpu]);
5063         }
5064         if (ret) {
5065                 ring_buffer_free(buffer);
5066                 return ret;
5067         }
5068
5069         /* Report! */
5070         pr_info("finished\n");
5071         for_each_online_cpu(cpu) {
5072                 struct ring_buffer_event *event;
5073                 struct rb_test_data *data = &rb_data[cpu];
5074                 struct rb_item *item;
5075                 unsigned long total_events;
5076                 unsigned long total_dropped;
5077                 unsigned long total_written;
5078                 unsigned long total_alloc;
5079                 unsigned long total_read = 0;
5080                 unsigned long total_size = 0;
5081                 unsigned long total_len = 0;
5082                 unsigned long total_lost = 0;
5083                 unsigned long lost;
5084                 int big_event_size;
5085                 int small_event_size;
5086
5087                 ret = -1;
5088
5089                 total_events = data->events + data->events_nested;
5090                 total_written = data->bytes_written + data->bytes_written_nested;
5091                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5092                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5093
5094                 big_event_size = data->max_size + data->max_size_nested;
5095                 small_event_size = data->min_size + data->min_size_nested;
5096
5097                 pr_info("CPU %d:\n", cpu);
5098                 pr_info("              events:    %ld\n", total_events);
5099                 pr_info("       dropped bytes:    %ld\n", total_dropped);
5100                 pr_info("       alloced bytes:    %ld\n", total_alloc);
5101                 pr_info("       written bytes:    %ld\n", total_written);
5102                 pr_info("       biggest event:    %d\n", big_event_size);
5103                 pr_info("      smallest event:    %d\n", small_event_size);
5104
5105                 if (RB_WARN_ON(buffer, total_dropped))
5106                         break;
5107
5108                 ret = 0;
5109
5110                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5111                         total_lost += lost;
5112                         item = ring_buffer_event_data(event);
5113                         total_len += ring_buffer_event_length(event);
5114                         total_size += item->size + sizeof(struct rb_item);
5115                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5116                                 pr_info("FAILED!\n");
5117                                 pr_info("buffer had: %.*s\n", item->size, item->str);
5118                                 pr_info("expected:   %.*s\n", item->size, rb_string);
5119                                 RB_WARN_ON(buffer, 1);
5120                                 ret = -1;
5121                                 break;
5122                         }
5123                         total_read++;
5124                 }
5125                 if (ret)
5126                         break;
5127
5128                 ret = -1;
5129
5130                 pr_info("         read events:   %ld\n", total_read);
5131                 pr_info("         lost events:   %ld\n", total_lost);
5132                 pr_info("        total events:   %ld\n", total_lost + total_read);
5133                 pr_info("  recorded len bytes:   %ld\n", total_len);
5134                 pr_info(" recorded size bytes:   %ld\n", total_size);
5135                 if (total_lost)
5136                         pr_info(" With dropped events, record len and size may not match\n"
5137                                 " alloced and written from above\n");
5138                 if (!total_lost) {
5139                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
5140                                        total_size != total_written))
5141                                 break;
5142                 }
5143                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5144                         break;
5145
5146                 ret = 0;
5147         }
5148         if (!ret)
5149                 pr_info("Ring buffer PASSED!\n");
5150
5151         ring_buffer_free(buffer);
5152         return 0;
5153 }
5154
5155 late_initcall(test_ringbuffer);
5156 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */