Merge branch 'akpm' (patches from Andrew)
[sfrench/cifs-2.6.git] / kernel / time / tick-broadcast.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains functions which emulate a local clock-event
4  * device via a broadcast event source.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/profile.h>
16 #include <linux/sched.h>
17 #include <linux/smp.h>
18 #include <linux/module.h>
19
20 #include "tick-internal.h"
21
22 /*
23  * Broadcast support for broken x86 hardware, where the local apic
24  * timer stops in C3 state.
25  */
26
27 static struct tick_device tick_broadcast_device;
28 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
29 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
30 static cpumask_var_t tmpmask __cpumask_var_read_mostly;
31 static int tick_broadcast_forced;
32
33 static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
34
35 #ifdef CONFIG_TICK_ONESHOT
36 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc);
37 static void tick_broadcast_clear_oneshot(int cpu);
38 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
39 #else
40 static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); }
41 static inline void tick_broadcast_clear_oneshot(int cpu) { }
42 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
43 #endif
44
45 /*
46  * Debugging: see timer_list.c
47  */
48 struct tick_device *tick_get_broadcast_device(void)
49 {
50         return &tick_broadcast_device;
51 }
52
53 struct cpumask *tick_get_broadcast_mask(void)
54 {
55         return tick_broadcast_mask;
56 }
57
58 /*
59  * Start the device in periodic mode
60  */
61 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
62 {
63         if (bc)
64                 tick_setup_periodic(bc, 1);
65 }
66
67 /*
68  * Check, if the device can be utilized as broadcast device:
69  */
70 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
71                                         struct clock_event_device *newdev)
72 {
73         if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
74             (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
75             (newdev->features & CLOCK_EVT_FEAT_C3STOP))
76                 return false;
77
78         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
79             !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
80                 return false;
81
82         return !curdev || newdev->rating > curdev->rating;
83 }
84
85 /*
86  * Conditionally install/replace broadcast device
87  */
88 void tick_install_broadcast_device(struct clock_event_device *dev)
89 {
90         struct clock_event_device *cur = tick_broadcast_device.evtdev;
91
92         if (!tick_check_broadcast_device(cur, dev))
93                 return;
94
95         if (!try_module_get(dev->owner))
96                 return;
97
98         clockevents_exchange_device(cur, dev);
99         if (cur)
100                 cur->event_handler = clockevents_handle_noop;
101         tick_broadcast_device.evtdev = dev;
102         if (!cpumask_empty(tick_broadcast_mask))
103                 tick_broadcast_start_periodic(dev);
104         /*
105          * Inform all cpus about this. We might be in a situation
106          * where we did not switch to oneshot mode because the per cpu
107          * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
108          * of a oneshot capable broadcast device. Without that
109          * notification the systems stays stuck in periodic mode
110          * forever.
111          */
112         if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
113                 tick_clock_notify();
114 }
115
116 /*
117  * Check, if the device is the broadcast device
118  */
119 int tick_is_broadcast_device(struct clock_event_device *dev)
120 {
121         return (dev && tick_broadcast_device.evtdev == dev);
122 }
123
124 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
125 {
126         int ret = -ENODEV;
127
128         if (tick_is_broadcast_device(dev)) {
129                 raw_spin_lock(&tick_broadcast_lock);
130                 ret = __clockevents_update_freq(dev, freq);
131                 raw_spin_unlock(&tick_broadcast_lock);
132         }
133         return ret;
134 }
135
136
137 static void err_broadcast(const struct cpumask *mask)
138 {
139         pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
140 }
141
142 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
143 {
144         if (!dev->broadcast)
145                 dev->broadcast = tick_broadcast;
146         if (!dev->broadcast) {
147                 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
148                              dev->name);
149                 dev->broadcast = err_broadcast;
150         }
151 }
152
153 /*
154  * Check, if the device is disfunctional and a place holder, which
155  * needs to be handled by the broadcast device.
156  */
157 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
158 {
159         struct clock_event_device *bc = tick_broadcast_device.evtdev;
160         unsigned long flags;
161         int ret = 0;
162
163         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
164
165         /*
166          * Devices might be registered with both periodic and oneshot
167          * mode disabled. This signals, that the device needs to be
168          * operated from the broadcast device and is a placeholder for
169          * the cpu local device.
170          */
171         if (!tick_device_is_functional(dev)) {
172                 dev->event_handler = tick_handle_periodic;
173                 tick_device_setup_broadcast_func(dev);
174                 cpumask_set_cpu(cpu, tick_broadcast_mask);
175                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
176                         tick_broadcast_start_periodic(bc);
177                 else
178                         tick_broadcast_setup_oneshot(bc);
179                 ret = 1;
180         } else {
181                 /*
182                  * Clear the broadcast bit for this cpu if the
183                  * device is not power state affected.
184                  */
185                 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
186                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
187                 else
188                         tick_device_setup_broadcast_func(dev);
189
190                 /*
191                  * Clear the broadcast bit if the CPU is not in
192                  * periodic broadcast on state.
193                  */
194                 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
195                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
196
197                 switch (tick_broadcast_device.mode) {
198                 case TICKDEV_MODE_ONESHOT:
199                         /*
200                          * If the system is in oneshot mode we can
201                          * unconditionally clear the oneshot mask bit,
202                          * because the CPU is running and therefore
203                          * not in an idle state which causes the power
204                          * state affected device to stop. Let the
205                          * caller initialize the device.
206                          */
207                         tick_broadcast_clear_oneshot(cpu);
208                         ret = 0;
209                         break;
210
211                 case TICKDEV_MODE_PERIODIC:
212                         /*
213                          * If the system is in periodic mode, check
214                          * whether the broadcast device can be
215                          * switched off now.
216                          */
217                         if (cpumask_empty(tick_broadcast_mask) && bc)
218                                 clockevents_shutdown(bc);
219                         /*
220                          * If we kept the cpu in the broadcast mask,
221                          * tell the caller to leave the per cpu device
222                          * in shutdown state. The periodic interrupt
223                          * is delivered by the broadcast device, if
224                          * the broadcast device exists and is not
225                          * hrtimer based.
226                          */
227                         if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
228                                 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
229                         break;
230                 default:
231                         break;
232                 }
233         }
234         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
235         return ret;
236 }
237
238 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
239 int tick_receive_broadcast(void)
240 {
241         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
242         struct clock_event_device *evt = td->evtdev;
243
244         if (!evt)
245                 return -ENODEV;
246
247         if (!evt->event_handler)
248                 return -EINVAL;
249
250         evt->event_handler(evt);
251         return 0;
252 }
253 #endif
254
255 /*
256  * Broadcast the event to the cpus, which are set in the mask (mangled).
257  */
258 static bool tick_do_broadcast(struct cpumask *mask)
259 {
260         int cpu = smp_processor_id();
261         struct tick_device *td;
262         bool local = false;
263
264         /*
265          * Check, if the current cpu is in the mask
266          */
267         if (cpumask_test_cpu(cpu, mask)) {
268                 struct clock_event_device *bc = tick_broadcast_device.evtdev;
269
270                 cpumask_clear_cpu(cpu, mask);
271                 /*
272                  * We only run the local handler, if the broadcast
273                  * device is not hrtimer based. Otherwise we run into
274                  * a hrtimer recursion.
275                  *
276                  * local timer_interrupt()
277                  *   local_handler()
278                  *     expire_hrtimers()
279                  *       bc_handler()
280                  *         local_handler()
281                  *           expire_hrtimers()
282                  */
283                 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
284         }
285
286         if (!cpumask_empty(mask)) {
287                 /*
288                  * It might be necessary to actually check whether the devices
289                  * have different broadcast functions. For now, just use the
290                  * one of the first device. This works as long as we have this
291                  * misfeature only on x86 (lapic)
292                  */
293                 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
294                 td->evtdev->broadcast(mask);
295         }
296         return local;
297 }
298
299 /*
300  * Periodic broadcast:
301  * - invoke the broadcast handlers
302  */
303 static bool tick_do_periodic_broadcast(void)
304 {
305         cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
306         return tick_do_broadcast(tmpmask);
307 }
308
309 /*
310  * Event handler for periodic broadcast ticks
311  */
312 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
313 {
314         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
315         bool bc_local;
316
317         raw_spin_lock(&tick_broadcast_lock);
318
319         /* Handle spurious interrupts gracefully */
320         if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
321                 raw_spin_unlock(&tick_broadcast_lock);
322                 return;
323         }
324
325         bc_local = tick_do_periodic_broadcast();
326
327         if (clockevent_state_oneshot(dev)) {
328                 ktime_t next = ktime_add(dev->next_event, tick_period);
329
330                 clockevents_program_event(dev, next, true);
331         }
332         raw_spin_unlock(&tick_broadcast_lock);
333
334         /*
335          * We run the handler of the local cpu after dropping
336          * tick_broadcast_lock because the handler might deadlock when
337          * trying to switch to oneshot mode.
338          */
339         if (bc_local)
340                 td->evtdev->event_handler(td->evtdev);
341 }
342
343 /**
344  * tick_broadcast_control - Enable/disable or force broadcast mode
345  * @mode:       The selected broadcast mode
346  *
347  * Called when the system enters a state where affected tick devices
348  * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
349  */
350 void tick_broadcast_control(enum tick_broadcast_mode mode)
351 {
352         struct clock_event_device *bc, *dev;
353         struct tick_device *td;
354         int cpu, bc_stopped;
355         unsigned long flags;
356
357         /* Protects also the local clockevent device. */
358         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
359         td = this_cpu_ptr(&tick_cpu_device);
360         dev = td->evtdev;
361
362         /*
363          * Is the device not affected by the powerstate ?
364          */
365         if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
366                 goto out;
367
368         if (!tick_device_is_functional(dev))
369                 goto out;
370
371         cpu = smp_processor_id();
372         bc = tick_broadcast_device.evtdev;
373         bc_stopped = cpumask_empty(tick_broadcast_mask);
374
375         switch (mode) {
376         case TICK_BROADCAST_FORCE:
377                 tick_broadcast_forced = 1;
378                 /* fall through */
379         case TICK_BROADCAST_ON:
380                 cpumask_set_cpu(cpu, tick_broadcast_on);
381                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
382                         /*
383                          * Only shutdown the cpu local device, if:
384                          *
385                          * - the broadcast device exists
386                          * - the broadcast device is not a hrtimer based one
387                          * - the broadcast device is in periodic mode to
388                          *   avoid a hickup during switch to oneshot mode
389                          */
390                         if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
391                             tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
392                                 clockevents_shutdown(dev);
393                 }
394                 break;
395
396         case TICK_BROADCAST_OFF:
397                 if (tick_broadcast_forced)
398                         break;
399                 cpumask_clear_cpu(cpu, tick_broadcast_on);
400                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
401                         if (tick_broadcast_device.mode ==
402                             TICKDEV_MODE_PERIODIC)
403                                 tick_setup_periodic(dev, 0);
404                 }
405                 break;
406         }
407
408         if (bc) {
409                 if (cpumask_empty(tick_broadcast_mask)) {
410                         if (!bc_stopped)
411                                 clockevents_shutdown(bc);
412                 } else if (bc_stopped) {
413                         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
414                                 tick_broadcast_start_periodic(bc);
415                         else
416                                 tick_broadcast_setup_oneshot(bc);
417                 }
418         }
419 out:
420         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
421 }
422 EXPORT_SYMBOL_GPL(tick_broadcast_control);
423
424 /*
425  * Set the periodic handler depending on broadcast on/off
426  */
427 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
428 {
429         if (!broadcast)
430                 dev->event_handler = tick_handle_periodic;
431         else
432                 dev->event_handler = tick_handle_periodic_broadcast;
433 }
434
435 #ifdef CONFIG_HOTPLUG_CPU
436 /*
437  * Remove a CPU from broadcasting
438  */
439 void tick_shutdown_broadcast(unsigned int cpu)
440 {
441         struct clock_event_device *bc;
442         unsigned long flags;
443
444         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
445
446         bc = tick_broadcast_device.evtdev;
447         cpumask_clear_cpu(cpu, tick_broadcast_mask);
448         cpumask_clear_cpu(cpu, tick_broadcast_on);
449
450         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
451                 if (bc && cpumask_empty(tick_broadcast_mask))
452                         clockevents_shutdown(bc);
453         }
454
455         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
456 }
457 #endif
458
459 void tick_suspend_broadcast(void)
460 {
461         struct clock_event_device *bc;
462         unsigned long flags;
463
464         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
465
466         bc = tick_broadcast_device.evtdev;
467         if (bc)
468                 clockevents_shutdown(bc);
469
470         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
471 }
472
473 /*
474  * This is called from tick_resume_local() on a resuming CPU. That's
475  * called from the core resume function, tick_unfreeze() and the magic XEN
476  * resume hackery.
477  *
478  * In none of these cases the broadcast device mode can change and the
479  * bit of the resuming CPU in the broadcast mask is safe as well.
480  */
481 bool tick_resume_check_broadcast(void)
482 {
483         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
484                 return false;
485         else
486                 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
487 }
488
489 void tick_resume_broadcast(void)
490 {
491         struct clock_event_device *bc;
492         unsigned long flags;
493
494         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
495
496         bc = tick_broadcast_device.evtdev;
497
498         if (bc) {
499                 clockevents_tick_resume(bc);
500
501                 switch (tick_broadcast_device.mode) {
502                 case TICKDEV_MODE_PERIODIC:
503                         if (!cpumask_empty(tick_broadcast_mask))
504                                 tick_broadcast_start_periodic(bc);
505                         break;
506                 case TICKDEV_MODE_ONESHOT:
507                         if (!cpumask_empty(tick_broadcast_mask))
508                                 tick_resume_broadcast_oneshot(bc);
509                         break;
510                 }
511         }
512         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
513 }
514
515 #ifdef CONFIG_TICK_ONESHOT
516
517 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
518 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
519 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
520
521 /*
522  * Exposed for debugging: see timer_list.c
523  */
524 struct cpumask *tick_get_broadcast_oneshot_mask(void)
525 {
526         return tick_broadcast_oneshot_mask;
527 }
528
529 /*
530  * Called before going idle with interrupts disabled. Checks whether a
531  * broadcast event from the other core is about to happen. We detected
532  * that in tick_broadcast_oneshot_control(). The callsite can use this
533  * to avoid a deep idle transition as we are about to get the
534  * broadcast IPI right away.
535  */
536 int tick_check_broadcast_expired(void)
537 {
538         return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
539 }
540
541 /*
542  * Set broadcast interrupt affinity
543  */
544 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
545                                         const struct cpumask *cpumask)
546 {
547         if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
548                 return;
549
550         if (cpumask_equal(bc->cpumask, cpumask))
551                 return;
552
553         bc->cpumask = cpumask;
554         irq_set_affinity(bc->irq, bc->cpumask);
555 }
556
557 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
558                                      ktime_t expires)
559 {
560         if (!clockevent_state_oneshot(bc))
561                 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
562
563         clockevents_program_event(bc, expires, 1);
564         tick_broadcast_set_affinity(bc, cpumask_of(cpu));
565 }
566
567 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
568 {
569         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
570 }
571
572 /*
573  * Called from irq_enter() when idle was interrupted to reenable the
574  * per cpu device.
575  */
576 void tick_check_oneshot_broadcast_this_cpu(void)
577 {
578         if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
579                 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
580
581                 /*
582                  * We might be in the middle of switching over from
583                  * periodic to oneshot. If the CPU has not yet
584                  * switched over, leave the device alone.
585                  */
586                 if (td->mode == TICKDEV_MODE_ONESHOT) {
587                         clockevents_switch_state(td->evtdev,
588                                               CLOCK_EVT_STATE_ONESHOT);
589                 }
590         }
591 }
592
593 /*
594  * Handle oneshot mode broadcasting
595  */
596 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
597 {
598         struct tick_device *td;
599         ktime_t now, next_event;
600         int cpu, next_cpu = 0;
601         bool bc_local;
602
603         raw_spin_lock(&tick_broadcast_lock);
604         dev->next_event = KTIME_MAX;
605         next_event = KTIME_MAX;
606         cpumask_clear(tmpmask);
607         now = ktime_get();
608         /* Find all expired events */
609         for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
610                 /*
611                  * Required for !SMP because for_each_cpu() reports
612                  * unconditionally CPU0 as set on UP kernels.
613                  */
614                 if (!IS_ENABLED(CONFIG_SMP) &&
615                     cpumask_empty(tick_broadcast_oneshot_mask))
616                         break;
617
618                 td = &per_cpu(tick_cpu_device, cpu);
619                 if (td->evtdev->next_event <= now) {
620                         cpumask_set_cpu(cpu, tmpmask);
621                         /*
622                          * Mark the remote cpu in the pending mask, so
623                          * it can avoid reprogramming the cpu local
624                          * timer in tick_broadcast_oneshot_control().
625                          */
626                         cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
627                 } else if (td->evtdev->next_event < next_event) {
628                         next_event = td->evtdev->next_event;
629                         next_cpu = cpu;
630                 }
631         }
632
633         /*
634          * Remove the current cpu from the pending mask. The event is
635          * delivered immediately in tick_do_broadcast() !
636          */
637         cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
638
639         /* Take care of enforced broadcast requests */
640         cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
641         cpumask_clear(tick_broadcast_force_mask);
642
643         /*
644          * Sanity check. Catch the case where we try to broadcast to
645          * offline cpus.
646          */
647         if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
648                 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
649
650         /*
651          * Wakeup the cpus which have an expired event.
652          */
653         bc_local = tick_do_broadcast(tmpmask);
654
655         /*
656          * Two reasons for reprogram:
657          *
658          * - The global event did not expire any CPU local
659          * events. This happens in dyntick mode, as the maximum PIT
660          * delta is quite small.
661          *
662          * - There are pending events on sleeping CPUs which were not
663          * in the event mask
664          */
665         if (next_event != KTIME_MAX)
666                 tick_broadcast_set_event(dev, next_cpu, next_event);
667
668         raw_spin_unlock(&tick_broadcast_lock);
669
670         if (bc_local) {
671                 td = this_cpu_ptr(&tick_cpu_device);
672                 td->evtdev->event_handler(td->evtdev);
673         }
674 }
675
676 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
677 {
678         if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
679                 return 0;
680         if (bc->next_event == KTIME_MAX)
681                 return 0;
682         return bc->bound_on == cpu ? -EBUSY : 0;
683 }
684
685 static void broadcast_shutdown_local(struct clock_event_device *bc,
686                                      struct clock_event_device *dev)
687 {
688         /*
689          * For hrtimer based broadcasting we cannot shutdown the cpu
690          * local device if our own event is the first one to expire or
691          * if we own the broadcast timer.
692          */
693         if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
694                 if (broadcast_needs_cpu(bc, smp_processor_id()))
695                         return;
696                 if (dev->next_event < bc->next_event)
697                         return;
698         }
699         clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
700 }
701
702 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
703 {
704         struct clock_event_device *bc, *dev;
705         int cpu, ret = 0;
706         ktime_t now;
707
708         /*
709          * If there is no broadcast device, tell the caller not to go
710          * into deep idle.
711          */
712         if (!tick_broadcast_device.evtdev)
713                 return -EBUSY;
714
715         dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
716
717         raw_spin_lock(&tick_broadcast_lock);
718         bc = tick_broadcast_device.evtdev;
719         cpu = smp_processor_id();
720
721         if (state == TICK_BROADCAST_ENTER) {
722                 /*
723                  * If the current CPU owns the hrtimer broadcast
724                  * mechanism, it cannot go deep idle and we do not add
725                  * the CPU to the broadcast mask. We don't have to go
726                  * through the EXIT path as the local timer is not
727                  * shutdown.
728                  */
729                 ret = broadcast_needs_cpu(bc, cpu);
730                 if (ret)
731                         goto out;
732
733                 /*
734                  * If the broadcast device is in periodic mode, we
735                  * return.
736                  */
737                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
738                         /* If it is a hrtimer based broadcast, return busy */
739                         if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
740                                 ret = -EBUSY;
741                         goto out;
742                 }
743
744                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
745                         WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
746
747                         /* Conditionally shut down the local timer. */
748                         broadcast_shutdown_local(bc, dev);
749
750                         /*
751                          * We only reprogram the broadcast timer if we
752                          * did not mark ourself in the force mask and
753                          * if the cpu local event is earlier than the
754                          * broadcast event. If the current CPU is in
755                          * the force mask, then we are going to be
756                          * woken by the IPI right away; we return
757                          * busy, so the CPU does not try to go deep
758                          * idle.
759                          */
760                         if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
761                                 ret = -EBUSY;
762                         } else if (dev->next_event < bc->next_event) {
763                                 tick_broadcast_set_event(bc, cpu, dev->next_event);
764                                 /*
765                                  * In case of hrtimer broadcasts the
766                                  * programming might have moved the
767                                  * timer to this cpu. If yes, remove
768                                  * us from the broadcast mask and
769                                  * return busy.
770                                  */
771                                 ret = broadcast_needs_cpu(bc, cpu);
772                                 if (ret) {
773                                         cpumask_clear_cpu(cpu,
774                                                 tick_broadcast_oneshot_mask);
775                                 }
776                         }
777                 }
778         } else {
779                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
780                         clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
781                         /*
782                          * The cpu which was handling the broadcast
783                          * timer marked this cpu in the broadcast
784                          * pending mask and fired the broadcast
785                          * IPI. So we are going to handle the expired
786                          * event anyway via the broadcast IPI
787                          * handler. No need to reprogram the timer
788                          * with an already expired event.
789                          */
790                         if (cpumask_test_and_clear_cpu(cpu,
791                                        tick_broadcast_pending_mask))
792                                 goto out;
793
794                         /*
795                          * Bail out if there is no next event.
796                          */
797                         if (dev->next_event == KTIME_MAX)
798                                 goto out;
799                         /*
800                          * If the pending bit is not set, then we are
801                          * either the CPU handling the broadcast
802                          * interrupt or we got woken by something else.
803                          *
804                          * We are not longer in the broadcast mask, so
805                          * if the cpu local expiry time is already
806                          * reached, we would reprogram the cpu local
807                          * timer with an already expired event.
808                          *
809                          * This can lead to a ping-pong when we return
810                          * to idle and therefor rearm the broadcast
811                          * timer before the cpu local timer was able
812                          * to fire. This happens because the forced
813                          * reprogramming makes sure that the event
814                          * will happen in the future and depending on
815                          * the min_delta setting this might be far
816                          * enough out that the ping-pong starts.
817                          *
818                          * If the cpu local next_event has expired
819                          * then we know that the broadcast timer
820                          * next_event has expired as well and
821                          * broadcast is about to be handled. So we
822                          * avoid reprogramming and enforce that the
823                          * broadcast handler, which did not run yet,
824                          * will invoke the cpu local handler.
825                          *
826                          * We cannot call the handler directly from
827                          * here, because we might be in a NOHZ phase
828                          * and we did not go through the irq_enter()
829                          * nohz fixups.
830                          */
831                         now = ktime_get();
832                         if (dev->next_event <= now) {
833                                 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
834                                 goto out;
835                         }
836                         /*
837                          * We got woken by something else. Reprogram
838                          * the cpu local timer device.
839                          */
840                         tick_program_event(dev->next_event, 1);
841                 }
842         }
843 out:
844         raw_spin_unlock(&tick_broadcast_lock);
845         return ret;
846 }
847
848 /*
849  * Reset the one shot broadcast for a cpu
850  *
851  * Called with tick_broadcast_lock held
852  */
853 static void tick_broadcast_clear_oneshot(int cpu)
854 {
855         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
856         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
857 }
858
859 static void tick_broadcast_init_next_event(struct cpumask *mask,
860                                            ktime_t expires)
861 {
862         struct tick_device *td;
863         int cpu;
864
865         for_each_cpu(cpu, mask) {
866                 td = &per_cpu(tick_cpu_device, cpu);
867                 if (td->evtdev)
868                         td->evtdev->next_event = expires;
869         }
870 }
871
872 /**
873  * tick_broadcast_setup_oneshot - setup the broadcast device
874  */
875 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
876 {
877         int cpu = smp_processor_id();
878
879         if (!bc)
880                 return;
881
882         /* Set it up only once ! */
883         if (bc->event_handler != tick_handle_oneshot_broadcast) {
884                 int was_periodic = clockevent_state_periodic(bc);
885
886                 bc->event_handler = tick_handle_oneshot_broadcast;
887
888                 /*
889                  * We must be careful here. There might be other CPUs
890                  * waiting for periodic broadcast. We need to set the
891                  * oneshot_mask bits for those and program the
892                  * broadcast device to fire.
893                  */
894                 cpumask_copy(tmpmask, tick_broadcast_mask);
895                 cpumask_clear_cpu(cpu, tmpmask);
896                 cpumask_or(tick_broadcast_oneshot_mask,
897                            tick_broadcast_oneshot_mask, tmpmask);
898
899                 if (was_periodic && !cpumask_empty(tmpmask)) {
900                         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
901                         tick_broadcast_init_next_event(tmpmask,
902                                                        tick_next_period);
903                         tick_broadcast_set_event(bc, cpu, tick_next_period);
904                 } else
905                         bc->next_event = KTIME_MAX;
906         } else {
907                 /*
908                  * The first cpu which switches to oneshot mode sets
909                  * the bit for all other cpus which are in the general
910                  * (periodic) broadcast mask. So the bit is set and
911                  * would prevent the first broadcast enter after this
912                  * to program the bc device.
913                  */
914                 tick_broadcast_clear_oneshot(cpu);
915         }
916 }
917
918 /*
919  * Select oneshot operating mode for the broadcast device
920  */
921 void tick_broadcast_switch_to_oneshot(void)
922 {
923         struct clock_event_device *bc;
924         unsigned long flags;
925
926         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
927
928         tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
929         bc = tick_broadcast_device.evtdev;
930         if (bc)
931                 tick_broadcast_setup_oneshot(bc);
932
933         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
934 }
935
936 #ifdef CONFIG_HOTPLUG_CPU
937 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
938 {
939         struct clock_event_device *bc;
940         unsigned long flags;
941
942         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
943         bc = tick_broadcast_device.evtdev;
944
945         if (bc && broadcast_needs_cpu(bc, deadcpu)) {
946                 /* This moves the broadcast assignment to this CPU: */
947                 clockevents_program_event(bc, bc->next_event, 1);
948         }
949         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
950 }
951
952 /*
953  * Remove a dead CPU from broadcasting
954  */
955 void tick_shutdown_broadcast_oneshot(unsigned int cpu)
956 {
957         unsigned long flags;
958
959         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
960
961         /*
962          * Clear the broadcast masks for the dead cpu, but do not stop
963          * the broadcast device!
964          */
965         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
966         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
967         cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
968
969         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
970 }
971 #endif
972
973 /*
974  * Check, whether the broadcast device is in one shot mode
975  */
976 int tick_broadcast_oneshot_active(void)
977 {
978         return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
979 }
980
981 /*
982  * Check whether the broadcast device supports oneshot.
983  */
984 bool tick_broadcast_oneshot_available(void)
985 {
986         struct clock_event_device *bc = tick_broadcast_device.evtdev;
987
988         return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
989 }
990
991 #else
992 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
993 {
994         struct clock_event_device *bc = tick_broadcast_device.evtdev;
995
996         if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
997                 return -EBUSY;
998
999         return 0;
1000 }
1001 #endif
1002
1003 void __init tick_broadcast_init(void)
1004 {
1005         zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1006         zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1007         zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1008 #ifdef CONFIG_TICK_ONESHOT
1009         zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1010         zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1011         zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1012 #endif
1013 }