spi: SPI_TI_QSPI should depend on HAS_DMA
[sfrench/cifs-2.6.git] / kernel / time / tick-broadcast.c
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
23
24 #include "tick-internal.h"
25
26 /*
27  * Broadcast support for broken x86 hardware, where the local apic
28  * timer stops in C3 state.
29  */
30
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
33 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
34 static cpumask_var_t tmpmask __cpumask_var_read_mostly;
35 static int tick_broadcast_forced;
36
37 static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
38
39 #ifdef CONFIG_TICK_ONESHOT
40 static void tick_broadcast_clear_oneshot(int cpu);
41 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
42 #else
43 static inline void tick_broadcast_clear_oneshot(int cpu) { }
44 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
45 #endif
46
47 /*
48  * Debugging: see timer_list.c
49  */
50 struct tick_device *tick_get_broadcast_device(void)
51 {
52         return &tick_broadcast_device;
53 }
54
55 struct cpumask *tick_get_broadcast_mask(void)
56 {
57         return tick_broadcast_mask;
58 }
59
60 /*
61  * Start the device in periodic mode
62  */
63 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
64 {
65         if (bc)
66                 tick_setup_periodic(bc, 1);
67 }
68
69 /*
70  * Check, if the device can be utilized as broadcast device:
71  */
72 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
73                                         struct clock_event_device *newdev)
74 {
75         if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
76             (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
77             (newdev->features & CLOCK_EVT_FEAT_C3STOP))
78                 return false;
79
80         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
81             !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
82                 return false;
83
84         return !curdev || newdev->rating > curdev->rating;
85 }
86
87 /*
88  * Conditionally install/replace broadcast device
89  */
90 void tick_install_broadcast_device(struct clock_event_device *dev)
91 {
92         struct clock_event_device *cur = tick_broadcast_device.evtdev;
93
94         if (!tick_check_broadcast_device(cur, dev))
95                 return;
96
97         if (!try_module_get(dev->owner))
98                 return;
99
100         clockevents_exchange_device(cur, dev);
101         if (cur)
102                 cur->event_handler = clockevents_handle_noop;
103         tick_broadcast_device.evtdev = dev;
104         if (!cpumask_empty(tick_broadcast_mask))
105                 tick_broadcast_start_periodic(dev);
106         /*
107          * Inform all cpus about this. We might be in a situation
108          * where we did not switch to oneshot mode because the per cpu
109          * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
110          * of a oneshot capable broadcast device. Without that
111          * notification the systems stays stuck in periodic mode
112          * forever.
113          */
114         if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
115                 tick_clock_notify();
116 }
117
118 /*
119  * Check, if the device is the broadcast device
120  */
121 int tick_is_broadcast_device(struct clock_event_device *dev)
122 {
123         return (dev && tick_broadcast_device.evtdev == dev);
124 }
125
126 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
127 {
128         int ret = -ENODEV;
129
130         if (tick_is_broadcast_device(dev)) {
131                 raw_spin_lock(&tick_broadcast_lock);
132                 ret = __clockevents_update_freq(dev, freq);
133                 raw_spin_unlock(&tick_broadcast_lock);
134         }
135         return ret;
136 }
137
138
139 static void err_broadcast(const struct cpumask *mask)
140 {
141         pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
142 }
143
144 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
145 {
146         if (!dev->broadcast)
147                 dev->broadcast = tick_broadcast;
148         if (!dev->broadcast) {
149                 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
150                              dev->name);
151                 dev->broadcast = err_broadcast;
152         }
153 }
154
155 /*
156  * Check, if the device is disfunctional and a place holder, which
157  * needs to be handled by the broadcast device.
158  */
159 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
160 {
161         struct clock_event_device *bc = tick_broadcast_device.evtdev;
162         unsigned long flags;
163         int ret = 0;
164
165         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
166
167         /*
168          * Devices might be registered with both periodic and oneshot
169          * mode disabled. This signals, that the device needs to be
170          * operated from the broadcast device and is a placeholder for
171          * the cpu local device.
172          */
173         if (!tick_device_is_functional(dev)) {
174                 dev->event_handler = tick_handle_periodic;
175                 tick_device_setup_broadcast_func(dev);
176                 cpumask_set_cpu(cpu, tick_broadcast_mask);
177                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
178                         tick_broadcast_start_periodic(bc);
179                 else
180                         tick_broadcast_setup_oneshot(bc);
181                 ret = 1;
182         } else {
183                 /*
184                  * Clear the broadcast bit for this cpu if the
185                  * device is not power state affected.
186                  */
187                 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
188                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
189                 else
190                         tick_device_setup_broadcast_func(dev);
191
192                 /*
193                  * Clear the broadcast bit if the CPU is not in
194                  * periodic broadcast on state.
195                  */
196                 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
197                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
198
199                 switch (tick_broadcast_device.mode) {
200                 case TICKDEV_MODE_ONESHOT:
201                         /*
202                          * If the system is in oneshot mode we can
203                          * unconditionally clear the oneshot mask bit,
204                          * because the CPU is running and therefore
205                          * not in an idle state which causes the power
206                          * state affected device to stop. Let the
207                          * caller initialize the device.
208                          */
209                         tick_broadcast_clear_oneshot(cpu);
210                         ret = 0;
211                         break;
212
213                 case TICKDEV_MODE_PERIODIC:
214                         /*
215                          * If the system is in periodic mode, check
216                          * whether the broadcast device can be
217                          * switched off now.
218                          */
219                         if (cpumask_empty(tick_broadcast_mask) && bc)
220                                 clockevents_shutdown(bc);
221                         /*
222                          * If we kept the cpu in the broadcast mask,
223                          * tell the caller to leave the per cpu device
224                          * in shutdown state. The periodic interrupt
225                          * is delivered by the broadcast device, if
226                          * the broadcast device exists and is not
227                          * hrtimer based.
228                          */
229                         if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
230                                 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
231                         break;
232                 default:
233                         break;
234                 }
235         }
236         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
237         return ret;
238 }
239
240 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
241 int tick_receive_broadcast(void)
242 {
243         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
244         struct clock_event_device *evt = td->evtdev;
245
246         if (!evt)
247                 return -ENODEV;
248
249         if (!evt->event_handler)
250                 return -EINVAL;
251
252         evt->event_handler(evt);
253         return 0;
254 }
255 #endif
256
257 /*
258  * Broadcast the event to the cpus, which are set in the mask (mangled).
259  */
260 static bool tick_do_broadcast(struct cpumask *mask)
261 {
262         int cpu = smp_processor_id();
263         struct tick_device *td;
264         bool local = false;
265
266         /*
267          * Check, if the current cpu is in the mask
268          */
269         if (cpumask_test_cpu(cpu, mask)) {
270                 struct clock_event_device *bc = tick_broadcast_device.evtdev;
271
272                 cpumask_clear_cpu(cpu, mask);
273                 /*
274                  * We only run the local handler, if the broadcast
275                  * device is not hrtimer based. Otherwise we run into
276                  * a hrtimer recursion.
277                  *
278                  * local timer_interrupt()
279                  *   local_handler()
280                  *     expire_hrtimers()
281                  *       bc_handler()
282                  *         local_handler()
283                  *           expire_hrtimers()
284                  */
285                 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
286         }
287
288         if (!cpumask_empty(mask)) {
289                 /*
290                  * It might be necessary to actually check whether the devices
291                  * have different broadcast functions. For now, just use the
292                  * one of the first device. This works as long as we have this
293                  * misfeature only on x86 (lapic)
294                  */
295                 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
296                 td->evtdev->broadcast(mask);
297         }
298         return local;
299 }
300
301 /*
302  * Periodic broadcast:
303  * - invoke the broadcast handlers
304  */
305 static bool tick_do_periodic_broadcast(void)
306 {
307         cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
308         return tick_do_broadcast(tmpmask);
309 }
310
311 /*
312  * Event handler for periodic broadcast ticks
313  */
314 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
315 {
316         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
317         bool bc_local;
318
319         raw_spin_lock(&tick_broadcast_lock);
320
321         /* Handle spurious interrupts gracefully */
322         if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
323                 raw_spin_unlock(&tick_broadcast_lock);
324                 return;
325         }
326
327         bc_local = tick_do_periodic_broadcast();
328
329         if (clockevent_state_oneshot(dev)) {
330                 ktime_t next = ktime_add(dev->next_event, tick_period);
331
332                 clockevents_program_event(dev, next, true);
333         }
334         raw_spin_unlock(&tick_broadcast_lock);
335
336         /*
337          * We run the handler of the local cpu after dropping
338          * tick_broadcast_lock because the handler might deadlock when
339          * trying to switch to oneshot mode.
340          */
341         if (bc_local)
342                 td->evtdev->event_handler(td->evtdev);
343 }
344
345 /**
346  * tick_broadcast_control - Enable/disable or force broadcast mode
347  * @mode:       The selected broadcast mode
348  *
349  * Called when the system enters a state where affected tick devices
350  * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
351  */
352 void tick_broadcast_control(enum tick_broadcast_mode mode)
353 {
354         struct clock_event_device *bc, *dev;
355         struct tick_device *td;
356         int cpu, bc_stopped;
357         unsigned long flags;
358
359         /* Protects also the local clockevent device. */
360         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
361         td = this_cpu_ptr(&tick_cpu_device);
362         dev = td->evtdev;
363
364         /*
365          * Is the device not affected by the powerstate ?
366          */
367         if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
368                 goto out;
369
370         if (!tick_device_is_functional(dev))
371                 goto out;
372
373         cpu = smp_processor_id();
374         bc = tick_broadcast_device.evtdev;
375         bc_stopped = cpumask_empty(tick_broadcast_mask);
376
377         switch (mode) {
378         case TICK_BROADCAST_FORCE:
379                 tick_broadcast_forced = 1;
380         case TICK_BROADCAST_ON:
381                 cpumask_set_cpu(cpu, tick_broadcast_on);
382                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
383                         /*
384                          * Only shutdown the cpu local device, if:
385                          *
386                          * - the broadcast device exists
387                          * - the broadcast device is not a hrtimer based one
388                          * - the broadcast device is in periodic mode to
389                          *   avoid a hickup during switch to oneshot mode
390                          */
391                         if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
392                             tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
393                                 clockevents_shutdown(dev);
394                 }
395                 break;
396
397         case TICK_BROADCAST_OFF:
398                 if (tick_broadcast_forced)
399                         break;
400                 cpumask_clear_cpu(cpu, tick_broadcast_on);
401                 if (!tick_device_is_functional(dev))
402                         break;
403                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
404                         if (tick_broadcast_device.mode ==
405                             TICKDEV_MODE_PERIODIC)
406                                 tick_setup_periodic(dev, 0);
407                 }
408                 break;
409         }
410
411         if (bc) {
412                 if (cpumask_empty(tick_broadcast_mask)) {
413                         if (!bc_stopped)
414                                 clockevents_shutdown(bc);
415                 } else if (bc_stopped) {
416                         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
417                                 tick_broadcast_start_periodic(bc);
418                         else
419                                 tick_broadcast_setup_oneshot(bc);
420                 }
421         }
422 out:
423         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
424 }
425 EXPORT_SYMBOL_GPL(tick_broadcast_control);
426
427 /*
428  * Set the periodic handler depending on broadcast on/off
429  */
430 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
431 {
432         if (!broadcast)
433                 dev->event_handler = tick_handle_periodic;
434         else
435                 dev->event_handler = tick_handle_periodic_broadcast;
436 }
437
438 #ifdef CONFIG_HOTPLUG_CPU
439 /*
440  * Remove a CPU from broadcasting
441  */
442 void tick_shutdown_broadcast(unsigned int cpu)
443 {
444         struct clock_event_device *bc;
445         unsigned long flags;
446
447         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
448
449         bc = tick_broadcast_device.evtdev;
450         cpumask_clear_cpu(cpu, tick_broadcast_mask);
451         cpumask_clear_cpu(cpu, tick_broadcast_on);
452
453         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
454                 if (bc && cpumask_empty(tick_broadcast_mask))
455                         clockevents_shutdown(bc);
456         }
457
458         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
459 }
460 #endif
461
462 void tick_suspend_broadcast(void)
463 {
464         struct clock_event_device *bc;
465         unsigned long flags;
466
467         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
468
469         bc = tick_broadcast_device.evtdev;
470         if (bc)
471                 clockevents_shutdown(bc);
472
473         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
474 }
475
476 /*
477  * This is called from tick_resume_local() on a resuming CPU. That's
478  * called from the core resume function, tick_unfreeze() and the magic XEN
479  * resume hackery.
480  *
481  * In none of these cases the broadcast device mode can change and the
482  * bit of the resuming CPU in the broadcast mask is safe as well.
483  */
484 bool tick_resume_check_broadcast(void)
485 {
486         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
487                 return false;
488         else
489                 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
490 }
491
492 void tick_resume_broadcast(void)
493 {
494         struct clock_event_device *bc;
495         unsigned long flags;
496
497         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
498
499         bc = tick_broadcast_device.evtdev;
500
501         if (bc) {
502                 clockevents_tick_resume(bc);
503
504                 switch (tick_broadcast_device.mode) {
505                 case TICKDEV_MODE_PERIODIC:
506                         if (!cpumask_empty(tick_broadcast_mask))
507                                 tick_broadcast_start_periodic(bc);
508                         break;
509                 case TICKDEV_MODE_ONESHOT:
510                         if (!cpumask_empty(tick_broadcast_mask))
511                                 tick_resume_broadcast_oneshot(bc);
512                         break;
513                 }
514         }
515         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
516 }
517
518 #ifdef CONFIG_TICK_ONESHOT
519
520 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
521 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
522 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
523
524 /*
525  * Exposed for debugging: see timer_list.c
526  */
527 struct cpumask *tick_get_broadcast_oneshot_mask(void)
528 {
529         return tick_broadcast_oneshot_mask;
530 }
531
532 /*
533  * Called before going idle with interrupts disabled. Checks whether a
534  * broadcast event from the other core is about to happen. We detected
535  * that in tick_broadcast_oneshot_control(). The callsite can use this
536  * to avoid a deep idle transition as we are about to get the
537  * broadcast IPI right away.
538  */
539 int tick_check_broadcast_expired(void)
540 {
541         return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
542 }
543
544 /*
545  * Set broadcast interrupt affinity
546  */
547 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
548                                         const struct cpumask *cpumask)
549 {
550         if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
551                 return;
552
553         if (cpumask_equal(bc->cpumask, cpumask))
554                 return;
555
556         bc->cpumask = cpumask;
557         irq_set_affinity(bc->irq, bc->cpumask);
558 }
559
560 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
561                                      ktime_t expires)
562 {
563         if (!clockevent_state_oneshot(bc))
564                 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
565
566         clockevents_program_event(bc, expires, 1);
567         tick_broadcast_set_affinity(bc, cpumask_of(cpu));
568 }
569
570 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
571 {
572         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
573 }
574
575 /*
576  * Called from irq_enter() when idle was interrupted to reenable the
577  * per cpu device.
578  */
579 void tick_check_oneshot_broadcast_this_cpu(void)
580 {
581         if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
582                 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
583
584                 /*
585                  * We might be in the middle of switching over from
586                  * periodic to oneshot. If the CPU has not yet
587                  * switched over, leave the device alone.
588                  */
589                 if (td->mode == TICKDEV_MODE_ONESHOT) {
590                         clockevents_switch_state(td->evtdev,
591                                               CLOCK_EVT_STATE_ONESHOT);
592                 }
593         }
594 }
595
596 /*
597  * Handle oneshot mode broadcasting
598  */
599 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
600 {
601         struct tick_device *td;
602         ktime_t now, next_event;
603         int cpu, next_cpu = 0;
604         bool bc_local;
605
606         raw_spin_lock(&tick_broadcast_lock);
607         dev->next_event = KTIME_MAX;
608         next_event = KTIME_MAX;
609         cpumask_clear(tmpmask);
610         now = ktime_get();
611         /* Find all expired events */
612         for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
613                 td = &per_cpu(tick_cpu_device, cpu);
614                 if (td->evtdev->next_event <= now) {
615                         cpumask_set_cpu(cpu, tmpmask);
616                         /*
617                          * Mark the remote cpu in the pending mask, so
618                          * it can avoid reprogramming the cpu local
619                          * timer in tick_broadcast_oneshot_control().
620                          */
621                         cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
622                 } else if (td->evtdev->next_event < next_event) {
623                         next_event = td->evtdev->next_event;
624                         next_cpu = cpu;
625                 }
626         }
627
628         /*
629          * Remove the current cpu from the pending mask. The event is
630          * delivered immediately in tick_do_broadcast() !
631          */
632         cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
633
634         /* Take care of enforced broadcast requests */
635         cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
636         cpumask_clear(tick_broadcast_force_mask);
637
638         /*
639          * Sanity check. Catch the case where we try to broadcast to
640          * offline cpus.
641          */
642         if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
643                 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
644
645         /*
646          * Wakeup the cpus which have an expired event.
647          */
648         bc_local = tick_do_broadcast(tmpmask);
649
650         /*
651          * Two reasons for reprogram:
652          *
653          * - The global event did not expire any CPU local
654          * events. This happens in dyntick mode, as the maximum PIT
655          * delta is quite small.
656          *
657          * - There are pending events on sleeping CPUs which were not
658          * in the event mask
659          */
660         if (next_event != KTIME_MAX)
661                 tick_broadcast_set_event(dev, next_cpu, next_event);
662
663         raw_spin_unlock(&tick_broadcast_lock);
664
665         if (bc_local) {
666                 td = this_cpu_ptr(&tick_cpu_device);
667                 td->evtdev->event_handler(td->evtdev);
668         }
669 }
670
671 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
672 {
673         if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
674                 return 0;
675         if (bc->next_event == KTIME_MAX)
676                 return 0;
677         return bc->bound_on == cpu ? -EBUSY : 0;
678 }
679
680 static void broadcast_shutdown_local(struct clock_event_device *bc,
681                                      struct clock_event_device *dev)
682 {
683         /*
684          * For hrtimer based broadcasting we cannot shutdown the cpu
685          * local device if our own event is the first one to expire or
686          * if we own the broadcast timer.
687          */
688         if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
689                 if (broadcast_needs_cpu(bc, smp_processor_id()))
690                         return;
691                 if (dev->next_event < bc->next_event)
692                         return;
693         }
694         clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
695 }
696
697 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
698 {
699         struct clock_event_device *bc, *dev;
700         int cpu, ret = 0;
701         ktime_t now;
702
703         /*
704          * If there is no broadcast device, tell the caller not to go
705          * into deep idle.
706          */
707         if (!tick_broadcast_device.evtdev)
708                 return -EBUSY;
709
710         dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
711
712         raw_spin_lock(&tick_broadcast_lock);
713         bc = tick_broadcast_device.evtdev;
714         cpu = smp_processor_id();
715
716         if (state == TICK_BROADCAST_ENTER) {
717                 /*
718                  * If the current CPU owns the hrtimer broadcast
719                  * mechanism, it cannot go deep idle and we do not add
720                  * the CPU to the broadcast mask. We don't have to go
721                  * through the EXIT path as the local timer is not
722                  * shutdown.
723                  */
724                 ret = broadcast_needs_cpu(bc, cpu);
725                 if (ret)
726                         goto out;
727
728                 /*
729                  * If the broadcast device is in periodic mode, we
730                  * return.
731                  */
732                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
733                         /* If it is a hrtimer based broadcast, return busy */
734                         if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
735                                 ret = -EBUSY;
736                         goto out;
737                 }
738
739                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
740                         WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
741
742                         /* Conditionally shut down the local timer. */
743                         broadcast_shutdown_local(bc, dev);
744
745                         /*
746                          * We only reprogram the broadcast timer if we
747                          * did not mark ourself in the force mask and
748                          * if the cpu local event is earlier than the
749                          * broadcast event. If the current CPU is in
750                          * the force mask, then we are going to be
751                          * woken by the IPI right away; we return
752                          * busy, so the CPU does not try to go deep
753                          * idle.
754                          */
755                         if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
756                                 ret = -EBUSY;
757                         } else if (dev->next_event < bc->next_event) {
758                                 tick_broadcast_set_event(bc, cpu, dev->next_event);
759                                 /*
760                                  * In case of hrtimer broadcasts the
761                                  * programming might have moved the
762                                  * timer to this cpu. If yes, remove
763                                  * us from the broadcast mask and
764                                  * return busy.
765                                  */
766                                 ret = broadcast_needs_cpu(bc, cpu);
767                                 if (ret) {
768                                         cpumask_clear_cpu(cpu,
769                                                 tick_broadcast_oneshot_mask);
770                                 }
771                         }
772                 }
773         } else {
774                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
775                         clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
776                         /*
777                          * The cpu which was handling the broadcast
778                          * timer marked this cpu in the broadcast
779                          * pending mask and fired the broadcast
780                          * IPI. So we are going to handle the expired
781                          * event anyway via the broadcast IPI
782                          * handler. No need to reprogram the timer
783                          * with an already expired event.
784                          */
785                         if (cpumask_test_and_clear_cpu(cpu,
786                                        tick_broadcast_pending_mask))
787                                 goto out;
788
789                         /*
790                          * Bail out if there is no next event.
791                          */
792                         if (dev->next_event == KTIME_MAX)
793                                 goto out;
794                         /*
795                          * If the pending bit is not set, then we are
796                          * either the CPU handling the broadcast
797                          * interrupt or we got woken by something else.
798                          *
799                          * We are not longer in the broadcast mask, so
800                          * if the cpu local expiry time is already
801                          * reached, we would reprogram the cpu local
802                          * timer with an already expired event.
803                          *
804                          * This can lead to a ping-pong when we return
805                          * to idle and therefor rearm the broadcast
806                          * timer before the cpu local timer was able
807                          * to fire. This happens because the forced
808                          * reprogramming makes sure that the event
809                          * will happen in the future and depending on
810                          * the min_delta setting this might be far
811                          * enough out that the ping-pong starts.
812                          *
813                          * If the cpu local next_event has expired
814                          * then we know that the broadcast timer
815                          * next_event has expired as well and
816                          * broadcast is about to be handled. So we
817                          * avoid reprogramming and enforce that the
818                          * broadcast handler, which did not run yet,
819                          * will invoke the cpu local handler.
820                          *
821                          * We cannot call the handler directly from
822                          * here, because we might be in a NOHZ phase
823                          * and we did not go through the irq_enter()
824                          * nohz fixups.
825                          */
826                         now = ktime_get();
827                         if (dev->next_event <= now) {
828                                 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
829                                 goto out;
830                         }
831                         /*
832                          * We got woken by something else. Reprogram
833                          * the cpu local timer device.
834                          */
835                         tick_program_event(dev->next_event, 1);
836                 }
837         }
838 out:
839         raw_spin_unlock(&tick_broadcast_lock);
840         return ret;
841 }
842
843 /*
844  * Reset the one shot broadcast for a cpu
845  *
846  * Called with tick_broadcast_lock held
847  */
848 static void tick_broadcast_clear_oneshot(int cpu)
849 {
850         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
851         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
852 }
853
854 static void tick_broadcast_init_next_event(struct cpumask *mask,
855                                            ktime_t expires)
856 {
857         struct tick_device *td;
858         int cpu;
859
860         for_each_cpu(cpu, mask) {
861                 td = &per_cpu(tick_cpu_device, cpu);
862                 if (td->evtdev)
863                         td->evtdev->next_event = expires;
864         }
865 }
866
867 /**
868  * tick_broadcast_setup_oneshot - setup the broadcast device
869  */
870 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
871 {
872         int cpu = smp_processor_id();
873
874         if (!bc)
875                 return;
876
877         /* Set it up only once ! */
878         if (bc->event_handler != tick_handle_oneshot_broadcast) {
879                 int was_periodic = clockevent_state_periodic(bc);
880
881                 bc->event_handler = tick_handle_oneshot_broadcast;
882
883                 /*
884                  * We must be careful here. There might be other CPUs
885                  * waiting for periodic broadcast. We need to set the
886                  * oneshot_mask bits for those and program the
887                  * broadcast device to fire.
888                  */
889                 cpumask_copy(tmpmask, tick_broadcast_mask);
890                 cpumask_clear_cpu(cpu, tmpmask);
891                 cpumask_or(tick_broadcast_oneshot_mask,
892                            tick_broadcast_oneshot_mask, tmpmask);
893
894                 if (was_periodic && !cpumask_empty(tmpmask)) {
895                         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
896                         tick_broadcast_init_next_event(tmpmask,
897                                                        tick_next_period);
898                         tick_broadcast_set_event(bc, cpu, tick_next_period);
899                 } else
900                         bc->next_event = KTIME_MAX;
901         } else {
902                 /*
903                  * The first cpu which switches to oneshot mode sets
904                  * the bit for all other cpus which are in the general
905                  * (periodic) broadcast mask. So the bit is set and
906                  * would prevent the first broadcast enter after this
907                  * to program the bc device.
908                  */
909                 tick_broadcast_clear_oneshot(cpu);
910         }
911 }
912
913 /*
914  * Select oneshot operating mode for the broadcast device
915  */
916 void tick_broadcast_switch_to_oneshot(void)
917 {
918         struct clock_event_device *bc;
919         unsigned long flags;
920
921         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
922
923         tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
924         bc = tick_broadcast_device.evtdev;
925         if (bc)
926                 tick_broadcast_setup_oneshot(bc);
927
928         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
929 }
930
931 #ifdef CONFIG_HOTPLUG_CPU
932 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
933 {
934         struct clock_event_device *bc;
935         unsigned long flags;
936
937         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
938         bc = tick_broadcast_device.evtdev;
939
940         if (bc && broadcast_needs_cpu(bc, deadcpu)) {
941                 /* This moves the broadcast assignment to this CPU: */
942                 clockevents_program_event(bc, bc->next_event, 1);
943         }
944         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
945 }
946
947 /*
948  * Remove a dead CPU from broadcasting
949  */
950 void tick_shutdown_broadcast_oneshot(unsigned int cpu)
951 {
952         unsigned long flags;
953
954         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
955
956         /*
957          * Clear the broadcast masks for the dead cpu, but do not stop
958          * the broadcast device!
959          */
960         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
961         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
962         cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
963
964         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
965 }
966 #endif
967
968 /*
969  * Check, whether the broadcast device is in one shot mode
970  */
971 int tick_broadcast_oneshot_active(void)
972 {
973         return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
974 }
975
976 /*
977  * Check whether the broadcast device supports oneshot.
978  */
979 bool tick_broadcast_oneshot_available(void)
980 {
981         struct clock_event_device *bc = tick_broadcast_device.evtdev;
982
983         return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
984 }
985
986 #else
987 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
988 {
989         struct clock_event_device *bc = tick_broadcast_device.evtdev;
990
991         if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
992                 return -EBUSY;
993
994         return 0;
995 }
996 #endif
997
998 void __init tick_broadcast_init(void)
999 {
1000         zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1001         zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1002         zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1003 #ifdef CONFIG_TICK_ONESHOT
1004         zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1005         zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1006         zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1007 #endif
1008 }