kill dentry_update_name_case()
[sfrench/cifs-2.6.git] / kernel / time / alarmtimer.c
1 /*
2  * Alarmtimer interface
3  *
4  * This interface provides a timer which is similarto hrtimers,
5  * but triggers a RTC alarm if the box is suspend.
6  *
7  * This interface is influenced by the Android RTC Alarm timer
8  * interface.
9  *
10  * Copyright (C) 2010 IBM Corperation
11  *
12  * Author: John Stultz <john.stultz@linaro.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/alarmtimer.h>
25 #include <linux/mutex.h>
26 #include <linux/platform_device.h>
27 #include <linux/posix-timers.h>
28 #include <linux/workqueue.h>
29 #include <linux/freezer.h>
30 #include <linux/compat.h>
31 #include <linux/module.h>
32
33 #include "posix-timers.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/alarmtimer.h>
37
38 /**
39  * struct alarm_base - Alarm timer bases
40  * @lock:               Lock for syncrhonized access to the base
41  * @timerqueue:         Timerqueue head managing the list of events
42  * @gettime:            Function to read the time correlating to the base
43  * @base_clockid:       clockid for the base
44  */
45 static struct alarm_base {
46         spinlock_t              lock;
47         struct timerqueue_head  timerqueue;
48         ktime_t                 (*gettime)(void);
49         clockid_t               base_clockid;
50 } alarm_bases[ALARM_NUMTYPE];
51
52 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
53 /* freezer information to handle clock_nanosleep triggered wakeups */
54 static enum alarmtimer_type freezer_alarmtype;
55 static ktime_t freezer_expires;
56 static ktime_t freezer_delta;
57 static DEFINE_SPINLOCK(freezer_delta_lock);
58 #endif
59
60 #ifdef CONFIG_RTC_CLASS
61 static struct wakeup_source *ws;
62
63 /* rtc timer and device for setting alarm wakeups at suspend */
64 static struct rtc_timer         rtctimer;
65 static struct rtc_device        *rtcdev;
66 static DEFINE_SPINLOCK(rtcdev_lock);
67
68 /**
69  * alarmtimer_get_rtcdev - Return selected rtcdevice
70  *
71  * This function returns the rtc device to use for wakealarms.
72  * If one has not already been chosen, it checks to see if a
73  * functional rtc device is available.
74  */
75 struct rtc_device *alarmtimer_get_rtcdev(void)
76 {
77         unsigned long flags;
78         struct rtc_device *ret;
79
80         spin_lock_irqsave(&rtcdev_lock, flags);
81         ret = rtcdev;
82         spin_unlock_irqrestore(&rtcdev_lock, flags);
83
84         return ret;
85 }
86 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
87
88 static int alarmtimer_rtc_add_device(struct device *dev,
89                                 struct class_interface *class_intf)
90 {
91         unsigned long flags;
92         struct rtc_device *rtc = to_rtc_device(dev);
93         struct wakeup_source *__ws;
94
95         if (rtcdev)
96                 return -EBUSY;
97
98         if (!rtc->ops->set_alarm)
99                 return -1;
100         if (!device_may_wakeup(rtc->dev.parent))
101                 return -1;
102
103         __ws = wakeup_source_register("alarmtimer");
104
105         spin_lock_irqsave(&rtcdev_lock, flags);
106         if (!rtcdev) {
107                 if (!try_module_get(rtc->owner)) {
108                         spin_unlock_irqrestore(&rtcdev_lock, flags);
109                         return -1;
110                 }
111
112                 rtcdev = rtc;
113                 /* hold a reference so it doesn't go away */
114                 get_device(dev);
115                 ws = __ws;
116                 __ws = NULL;
117         }
118         spin_unlock_irqrestore(&rtcdev_lock, flags);
119
120         wakeup_source_unregister(__ws);
121
122         return 0;
123 }
124
125 static inline void alarmtimer_rtc_timer_init(void)
126 {
127         rtc_timer_init(&rtctimer, NULL, NULL);
128 }
129
130 static struct class_interface alarmtimer_rtc_interface = {
131         .add_dev = &alarmtimer_rtc_add_device,
132 };
133
134 static int alarmtimer_rtc_interface_setup(void)
135 {
136         alarmtimer_rtc_interface.class = rtc_class;
137         return class_interface_register(&alarmtimer_rtc_interface);
138 }
139 static void alarmtimer_rtc_interface_remove(void)
140 {
141         class_interface_unregister(&alarmtimer_rtc_interface);
142 }
143 #else
144 struct rtc_device *alarmtimer_get_rtcdev(void)
145 {
146         return NULL;
147 }
148 #define rtcdev (NULL)
149 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
150 static inline void alarmtimer_rtc_interface_remove(void) { }
151 static inline void alarmtimer_rtc_timer_init(void) { }
152 #endif
153
154 /**
155  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
156  * @base: pointer to the base where the timer is being run
157  * @alarm: pointer to alarm being enqueued.
158  *
159  * Adds alarm to a alarm_base timerqueue
160  *
161  * Must hold base->lock when calling.
162  */
163 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
164 {
165         if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
166                 timerqueue_del(&base->timerqueue, &alarm->node);
167
168         timerqueue_add(&base->timerqueue, &alarm->node);
169         alarm->state |= ALARMTIMER_STATE_ENQUEUED;
170 }
171
172 /**
173  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
174  * @base: pointer to the base where the timer is running
175  * @alarm: pointer to alarm being removed
176  *
177  * Removes alarm to a alarm_base timerqueue
178  *
179  * Must hold base->lock when calling.
180  */
181 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
182 {
183         if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
184                 return;
185
186         timerqueue_del(&base->timerqueue, &alarm->node);
187         alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
188 }
189
190
191 /**
192  * alarmtimer_fired - Handles alarm hrtimer being fired.
193  * @timer: pointer to hrtimer being run
194  *
195  * When a alarm timer fires, this runs through the timerqueue to
196  * see which alarms expired, and runs those. If there are more alarm
197  * timers queued for the future, we set the hrtimer to fire when
198  * when the next future alarm timer expires.
199  */
200 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
201 {
202         struct alarm *alarm = container_of(timer, struct alarm, timer);
203         struct alarm_base *base = &alarm_bases[alarm->type];
204         unsigned long flags;
205         int ret = HRTIMER_NORESTART;
206         int restart = ALARMTIMER_NORESTART;
207
208         spin_lock_irqsave(&base->lock, flags);
209         alarmtimer_dequeue(base, alarm);
210         spin_unlock_irqrestore(&base->lock, flags);
211
212         if (alarm->function)
213                 restart = alarm->function(alarm, base->gettime());
214
215         spin_lock_irqsave(&base->lock, flags);
216         if (restart != ALARMTIMER_NORESTART) {
217                 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
218                 alarmtimer_enqueue(base, alarm);
219                 ret = HRTIMER_RESTART;
220         }
221         spin_unlock_irqrestore(&base->lock, flags);
222
223         trace_alarmtimer_fired(alarm, base->gettime());
224         return ret;
225
226 }
227
228 ktime_t alarm_expires_remaining(const struct alarm *alarm)
229 {
230         struct alarm_base *base = &alarm_bases[alarm->type];
231         return ktime_sub(alarm->node.expires, base->gettime());
232 }
233 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
234
235 #ifdef CONFIG_RTC_CLASS
236 /**
237  * alarmtimer_suspend - Suspend time callback
238  * @dev: unused
239  * @state: unused
240  *
241  * When we are going into suspend, we look through the bases
242  * to see which is the soonest timer to expire. We then
243  * set an rtc timer to fire that far into the future, which
244  * will wake us from suspend.
245  */
246 static int alarmtimer_suspend(struct device *dev)
247 {
248         ktime_t min, now, expires;
249         int i, ret, type;
250         struct rtc_device *rtc;
251         unsigned long flags;
252         struct rtc_time tm;
253
254         spin_lock_irqsave(&freezer_delta_lock, flags);
255         min = freezer_delta;
256         expires = freezer_expires;
257         type = freezer_alarmtype;
258         freezer_delta = 0;
259         spin_unlock_irqrestore(&freezer_delta_lock, flags);
260
261         rtc = alarmtimer_get_rtcdev();
262         /* If we have no rtcdev, just return */
263         if (!rtc)
264                 return 0;
265
266         /* Find the soonest timer to expire*/
267         for (i = 0; i < ALARM_NUMTYPE; i++) {
268                 struct alarm_base *base = &alarm_bases[i];
269                 struct timerqueue_node *next;
270                 ktime_t delta;
271
272                 spin_lock_irqsave(&base->lock, flags);
273                 next = timerqueue_getnext(&base->timerqueue);
274                 spin_unlock_irqrestore(&base->lock, flags);
275                 if (!next)
276                         continue;
277                 delta = ktime_sub(next->expires, base->gettime());
278                 if (!min || (delta < min)) {
279                         expires = next->expires;
280                         min = delta;
281                         type = i;
282                 }
283         }
284         if (min == 0)
285                 return 0;
286
287         if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
288                 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
289                 return -EBUSY;
290         }
291
292         trace_alarmtimer_suspend(expires, type);
293
294         /* Setup an rtc timer to fire that far in the future */
295         rtc_timer_cancel(rtc, &rtctimer);
296         rtc_read_time(rtc, &tm);
297         now = rtc_tm_to_ktime(tm);
298         now = ktime_add(now, min);
299
300         /* Set alarm, if in the past reject suspend briefly to handle */
301         ret = rtc_timer_start(rtc, &rtctimer, now, 0);
302         if (ret < 0)
303                 __pm_wakeup_event(ws, MSEC_PER_SEC);
304         return ret;
305 }
306
307 static int alarmtimer_resume(struct device *dev)
308 {
309         struct rtc_device *rtc;
310
311         rtc = alarmtimer_get_rtcdev();
312         if (rtc)
313                 rtc_timer_cancel(rtc, &rtctimer);
314         return 0;
315 }
316
317 #else
318 static int alarmtimer_suspend(struct device *dev)
319 {
320         return 0;
321 }
322
323 static int alarmtimer_resume(struct device *dev)
324 {
325         return 0;
326 }
327 #endif
328
329 static void
330 __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
331              enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
332 {
333         timerqueue_init(&alarm->node);
334         alarm->timer.function = alarmtimer_fired;
335         alarm->function = function;
336         alarm->type = type;
337         alarm->state = ALARMTIMER_STATE_INACTIVE;
338 }
339
340 /**
341  * alarm_init - Initialize an alarm structure
342  * @alarm: ptr to alarm to be initialized
343  * @type: the type of the alarm
344  * @function: callback that is run when the alarm fires
345  */
346 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
347                 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
348 {
349         hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
350                      HRTIMER_MODE_ABS);
351         __alarm_init(alarm, type, function);
352 }
353 EXPORT_SYMBOL_GPL(alarm_init);
354
355 /**
356  * alarm_start - Sets an absolute alarm to fire
357  * @alarm: ptr to alarm to set
358  * @start: time to run the alarm
359  */
360 void alarm_start(struct alarm *alarm, ktime_t start)
361 {
362         struct alarm_base *base = &alarm_bases[alarm->type];
363         unsigned long flags;
364
365         spin_lock_irqsave(&base->lock, flags);
366         alarm->node.expires = start;
367         alarmtimer_enqueue(base, alarm);
368         hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
369         spin_unlock_irqrestore(&base->lock, flags);
370
371         trace_alarmtimer_start(alarm, base->gettime());
372 }
373 EXPORT_SYMBOL_GPL(alarm_start);
374
375 /**
376  * alarm_start_relative - Sets a relative alarm to fire
377  * @alarm: ptr to alarm to set
378  * @start: time relative to now to run the alarm
379  */
380 void alarm_start_relative(struct alarm *alarm, ktime_t start)
381 {
382         struct alarm_base *base = &alarm_bases[alarm->type];
383
384         start = ktime_add_safe(start, base->gettime());
385         alarm_start(alarm, start);
386 }
387 EXPORT_SYMBOL_GPL(alarm_start_relative);
388
389 void alarm_restart(struct alarm *alarm)
390 {
391         struct alarm_base *base = &alarm_bases[alarm->type];
392         unsigned long flags;
393
394         spin_lock_irqsave(&base->lock, flags);
395         hrtimer_set_expires(&alarm->timer, alarm->node.expires);
396         hrtimer_restart(&alarm->timer);
397         alarmtimer_enqueue(base, alarm);
398         spin_unlock_irqrestore(&base->lock, flags);
399 }
400 EXPORT_SYMBOL_GPL(alarm_restart);
401
402 /**
403  * alarm_try_to_cancel - Tries to cancel an alarm timer
404  * @alarm: ptr to alarm to be canceled
405  *
406  * Returns 1 if the timer was canceled, 0 if it was not running,
407  * and -1 if the callback was running
408  */
409 int alarm_try_to_cancel(struct alarm *alarm)
410 {
411         struct alarm_base *base = &alarm_bases[alarm->type];
412         unsigned long flags;
413         int ret;
414
415         spin_lock_irqsave(&base->lock, flags);
416         ret = hrtimer_try_to_cancel(&alarm->timer);
417         if (ret >= 0)
418                 alarmtimer_dequeue(base, alarm);
419         spin_unlock_irqrestore(&base->lock, flags);
420
421         trace_alarmtimer_cancel(alarm, base->gettime());
422         return ret;
423 }
424 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
425
426
427 /**
428  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
429  * @alarm: ptr to alarm to be canceled
430  *
431  * Returns 1 if the timer was canceled, 0 if it was not active.
432  */
433 int alarm_cancel(struct alarm *alarm)
434 {
435         for (;;) {
436                 int ret = alarm_try_to_cancel(alarm);
437                 if (ret >= 0)
438                         return ret;
439                 cpu_relax();
440         }
441 }
442 EXPORT_SYMBOL_GPL(alarm_cancel);
443
444
445 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
446 {
447         u64 overrun = 1;
448         ktime_t delta;
449
450         delta = ktime_sub(now, alarm->node.expires);
451
452         if (delta < 0)
453                 return 0;
454
455         if (unlikely(delta >= interval)) {
456                 s64 incr = ktime_to_ns(interval);
457
458                 overrun = ktime_divns(delta, incr);
459
460                 alarm->node.expires = ktime_add_ns(alarm->node.expires,
461                                                         incr*overrun);
462
463                 if (alarm->node.expires > now)
464                         return overrun;
465                 /*
466                  * This (and the ktime_add() below) is the
467                  * correction for exact:
468                  */
469                 overrun++;
470         }
471
472         alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
473         return overrun;
474 }
475 EXPORT_SYMBOL_GPL(alarm_forward);
476
477 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
478 {
479         struct alarm_base *base = &alarm_bases[alarm->type];
480
481         return alarm_forward(alarm, base->gettime(), interval);
482 }
483 EXPORT_SYMBOL_GPL(alarm_forward_now);
484
485 #ifdef CONFIG_POSIX_TIMERS
486
487 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
488 {
489         struct alarm_base *base;
490         unsigned long flags;
491         ktime_t delta;
492
493         switch(type) {
494         case ALARM_REALTIME:
495                 base = &alarm_bases[ALARM_REALTIME];
496                 type = ALARM_REALTIME_FREEZER;
497                 break;
498         case ALARM_BOOTTIME:
499                 base = &alarm_bases[ALARM_BOOTTIME];
500                 type = ALARM_BOOTTIME_FREEZER;
501                 break;
502         default:
503                 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
504                 return;
505         }
506
507         delta = ktime_sub(absexp, base->gettime());
508
509         spin_lock_irqsave(&freezer_delta_lock, flags);
510         if (!freezer_delta || (delta < freezer_delta)) {
511                 freezer_delta = delta;
512                 freezer_expires = absexp;
513                 freezer_alarmtype = type;
514         }
515         spin_unlock_irqrestore(&freezer_delta_lock, flags);
516 }
517
518 /**
519  * clock2alarm - helper that converts from clockid to alarmtypes
520  * @clockid: clockid.
521  */
522 static enum alarmtimer_type clock2alarm(clockid_t clockid)
523 {
524         if (clockid == CLOCK_REALTIME_ALARM)
525                 return ALARM_REALTIME;
526         if (clockid == CLOCK_BOOTTIME_ALARM)
527                 return ALARM_BOOTTIME;
528         return -1;
529 }
530
531 /**
532  * alarm_handle_timer - Callback for posix timers
533  * @alarm: alarm that fired
534  *
535  * Posix timer callback for expired alarm timers.
536  */
537 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
538                                                         ktime_t now)
539 {
540         struct k_itimer *ptr = container_of(alarm, struct k_itimer,
541                                             it.alarm.alarmtimer);
542         enum alarmtimer_restart result = ALARMTIMER_NORESTART;
543         unsigned long flags;
544         int si_private = 0;
545
546         spin_lock_irqsave(&ptr->it_lock, flags);
547
548         ptr->it_active = 0;
549         if (ptr->it_interval)
550                 si_private = ++ptr->it_requeue_pending;
551
552         if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
553                 /*
554                  * Handle ignored signals and rearm the timer. This will go
555                  * away once we handle ignored signals proper.
556                  */
557                 ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
558                 ++ptr->it_requeue_pending;
559                 ptr->it_active = 1;
560                 result = ALARMTIMER_RESTART;
561         }
562         spin_unlock_irqrestore(&ptr->it_lock, flags);
563
564         return result;
565 }
566
567 /**
568  * alarm_timer_rearm - Posix timer callback for rearming timer
569  * @timr:       Pointer to the posixtimer data struct
570  */
571 static void alarm_timer_rearm(struct k_itimer *timr)
572 {
573         struct alarm *alarm = &timr->it.alarm.alarmtimer;
574
575         timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
576         alarm_start(alarm, alarm->node.expires);
577 }
578
579 /**
580  * alarm_timer_forward - Posix timer callback for forwarding timer
581  * @timr:       Pointer to the posixtimer data struct
582  * @now:        Current time to forward the timer against
583  */
584 static int alarm_timer_forward(struct k_itimer *timr, ktime_t now)
585 {
586         struct alarm *alarm = &timr->it.alarm.alarmtimer;
587
588         return (int) alarm_forward(alarm, timr->it_interval, now);
589 }
590
591 /**
592  * alarm_timer_remaining - Posix timer callback to retrieve remaining time
593  * @timr:       Pointer to the posixtimer data struct
594  * @now:        Current time to calculate against
595  */
596 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
597 {
598         struct alarm *alarm = &timr->it.alarm.alarmtimer;
599
600         return ktime_sub(now, alarm->node.expires);
601 }
602
603 /**
604  * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
605  * @timr:       Pointer to the posixtimer data struct
606  */
607 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
608 {
609         return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
610 }
611
612 /**
613  * alarm_timer_arm - Posix timer callback to arm a timer
614  * @timr:       Pointer to the posixtimer data struct
615  * @expires:    The new expiry time
616  * @absolute:   Expiry value is absolute time
617  * @sigev_none: Posix timer does not deliver signals
618  */
619 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
620                             bool absolute, bool sigev_none)
621 {
622         struct alarm *alarm = &timr->it.alarm.alarmtimer;
623         struct alarm_base *base = &alarm_bases[alarm->type];
624
625         if (!absolute)
626                 expires = ktime_add_safe(expires, base->gettime());
627         if (sigev_none)
628                 alarm->node.expires = expires;
629         else
630                 alarm_start(&timr->it.alarm.alarmtimer, expires);
631 }
632
633 /**
634  * alarm_clock_getres - posix getres interface
635  * @which_clock: clockid
636  * @tp: timespec to fill
637  *
638  * Returns the granularity of underlying alarm base clock
639  */
640 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
641 {
642         if (!alarmtimer_get_rtcdev())
643                 return -EINVAL;
644
645         tp->tv_sec = 0;
646         tp->tv_nsec = hrtimer_resolution;
647         return 0;
648 }
649
650 /**
651  * alarm_clock_get - posix clock_get interface
652  * @which_clock: clockid
653  * @tp: timespec to fill.
654  *
655  * Provides the underlying alarm base time.
656  */
657 static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp)
658 {
659         struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
660
661         if (!alarmtimer_get_rtcdev())
662                 return -EINVAL;
663
664         *tp = ktime_to_timespec64(base->gettime());
665         return 0;
666 }
667
668 /**
669  * alarm_timer_create - posix timer_create interface
670  * @new_timer: k_itimer pointer to manage
671  *
672  * Initializes the k_itimer structure.
673  */
674 static int alarm_timer_create(struct k_itimer *new_timer)
675 {
676         enum  alarmtimer_type type;
677
678         if (!alarmtimer_get_rtcdev())
679                 return -ENOTSUPP;
680
681         if (!capable(CAP_WAKE_ALARM))
682                 return -EPERM;
683
684         type = clock2alarm(new_timer->it_clock);
685         alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
686         return 0;
687 }
688
689 /**
690  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
691  * @alarm: ptr to alarm that fired
692  *
693  * Wakes up the task that set the alarmtimer
694  */
695 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
696                                                                 ktime_t now)
697 {
698         struct task_struct *task = (struct task_struct *)alarm->data;
699
700         alarm->data = NULL;
701         if (task)
702                 wake_up_process(task);
703         return ALARMTIMER_NORESTART;
704 }
705
706 /**
707  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
708  * @alarm: ptr to alarmtimer
709  * @absexp: absolute expiration time
710  *
711  * Sets the alarm timer and sleeps until it is fired or interrupted.
712  */
713 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
714                                 enum alarmtimer_type type)
715 {
716         struct restart_block *restart;
717         alarm->data = (void *)current;
718         do {
719                 set_current_state(TASK_INTERRUPTIBLE);
720                 alarm_start(alarm, absexp);
721                 if (likely(alarm->data))
722                         schedule();
723
724                 alarm_cancel(alarm);
725         } while (alarm->data && !signal_pending(current));
726
727         __set_current_state(TASK_RUNNING);
728
729         destroy_hrtimer_on_stack(&alarm->timer);
730
731         if (!alarm->data)
732                 return 0;
733
734         if (freezing(current))
735                 alarmtimer_freezerset(absexp, type);
736         restart = &current->restart_block;
737         if (restart->nanosleep.type != TT_NONE) {
738                 struct timespec64 rmt;
739                 ktime_t rem;
740
741                 rem = ktime_sub(absexp, alarm_bases[type].gettime());
742
743                 if (rem <= 0)
744                         return 0;
745                 rmt = ktime_to_timespec64(rem);
746
747                 return nanosleep_copyout(restart, &rmt);
748         }
749         return -ERESTART_RESTARTBLOCK;
750 }
751
752 static void
753 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
754                     enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
755 {
756         hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
757                               HRTIMER_MODE_ABS);
758         __alarm_init(alarm, type, function);
759 }
760
761 /**
762  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
763  * @restart: ptr to restart block
764  *
765  * Handles restarted clock_nanosleep calls
766  */
767 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
768 {
769         enum  alarmtimer_type type = restart->nanosleep.clockid;
770         ktime_t exp = restart->nanosleep.expires;
771         struct alarm alarm;
772
773         alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
774
775         return alarmtimer_do_nsleep(&alarm, exp, type);
776 }
777
778 /**
779  * alarm_timer_nsleep - alarmtimer nanosleep
780  * @which_clock: clockid
781  * @flags: determins abstime or relative
782  * @tsreq: requested sleep time (abs or rel)
783  * @rmtp: remaining sleep time saved
784  *
785  * Handles clock_nanosleep calls against _ALARM clockids
786  */
787 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
788                               const struct timespec64 *tsreq)
789 {
790         enum  alarmtimer_type type = clock2alarm(which_clock);
791         struct restart_block *restart = &current->restart_block;
792         struct alarm alarm;
793         ktime_t exp;
794         int ret = 0;
795
796         if (!alarmtimer_get_rtcdev())
797                 return -ENOTSUPP;
798
799         if (flags & ~TIMER_ABSTIME)
800                 return -EINVAL;
801
802         if (!capable(CAP_WAKE_ALARM))
803                 return -EPERM;
804
805         alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
806
807         exp = timespec64_to_ktime(*tsreq);
808         /* Convert (if necessary) to absolute time */
809         if (flags != TIMER_ABSTIME) {
810                 ktime_t now = alarm_bases[type].gettime();
811                 exp = ktime_add(now, exp);
812         }
813
814         ret = alarmtimer_do_nsleep(&alarm, exp, type);
815         if (ret != -ERESTART_RESTARTBLOCK)
816                 return ret;
817
818         /* abs timers don't set remaining time or restart */
819         if (flags == TIMER_ABSTIME)
820                 return -ERESTARTNOHAND;
821
822         restart->fn = alarm_timer_nsleep_restart;
823         restart->nanosleep.clockid = type;
824         restart->nanosleep.expires = exp;
825         return ret;
826 }
827
828 const struct k_clock alarm_clock = {
829         .clock_getres           = alarm_clock_getres,
830         .clock_get              = alarm_clock_get,
831         .timer_create           = alarm_timer_create,
832         .timer_set              = common_timer_set,
833         .timer_del              = common_timer_del,
834         .timer_get              = common_timer_get,
835         .timer_arm              = alarm_timer_arm,
836         .timer_rearm            = alarm_timer_rearm,
837         .timer_forward          = alarm_timer_forward,
838         .timer_remaining        = alarm_timer_remaining,
839         .timer_try_to_cancel    = alarm_timer_try_to_cancel,
840         .nsleep                 = alarm_timer_nsleep,
841 };
842 #endif /* CONFIG_POSIX_TIMERS */
843
844
845 /* Suspend hook structures */
846 static const struct dev_pm_ops alarmtimer_pm_ops = {
847         .suspend = alarmtimer_suspend,
848         .resume = alarmtimer_resume,
849 };
850
851 static struct platform_driver alarmtimer_driver = {
852         .driver = {
853                 .name = "alarmtimer",
854                 .pm = &alarmtimer_pm_ops,
855         }
856 };
857
858 /**
859  * alarmtimer_init - Initialize alarm timer code
860  *
861  * This function initializes the alarm bases and registers
862  * the posix clock ids.
863  */
864 static int __init alarmtimer_init(void)
865 {
866         struct platform_device *pdev;
867         int error = 0;
868         int i;
869
870         alarmtimer_rtc_timer_init();
871
872         /* Initialize alarm bases */
873         alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
874         alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
875         alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
876         alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
877         for (i = 0; i < ALARM_NUMTYPE; i++) {
878                 timerqueue_init_head(&alarm_bases[i].timerqueue);
879                 spin_lock_init(&alarm_bases[i].lock);
880         }
881
882         error = alarmtimer_rtc_interface_setup();
883         if (error)
884                 return error;
885
886         error = platform_driver_register(&alarmtimer_driver);
887         if (error)
888                 goto out_if;
889
890         pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
891         if (IS_ERR(pdev)) {
892                 error = PTR_ERR(pdev);
893                 goto out_drv;
894         }
895         return 0;
896
897 out_drv:
898         platform_driver_unregister(&alarmtimer_driver);
899 out_if:
900         alarmtimer_rtc_interface_remove();
901         return error;
902 }
903 device_initcall(alarmtimer_init);