sched: rt: account the cpu time during the tick
[sfrench/cifs-2.6.git] / kernel / sched_rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 /*
7  * Update the current task's runtime statistics. Skip current tasks that
8  * are not in our scheduling class.
9  */
10 static void update_curr_rt(struct rq *rq)
11 {
12         struct task_struct *curr = rq->curr;
13         u64 delta_exec;
14
15         if (!task_has_rt_policy(curr))
16                 return;
17
18         delta_exec = rq->clock - curr->se.exec_start;
19         if (unlikely((s64)delta_exec < 0))
20                 delta_exec = 0;
21
22         schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
23
24         curr->se.sum_exec_runtime += delta_exec;
25         curr->se.exec_start = rq->clock;
26         cpuacct_charge(curr, delta_exec);
27 }
28
29 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
30 {
31         struct rt_prio_array *array = &rq->rt.active;
32
33         list_add_tail(&p->run_list, array->queue + p->prio);
34         __set_bit(p->prio, array->bitmap);
35 }
36
37 /*
38  * Adding/removing a task to/from a priority array:
39  */
40 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
41 {
42         struct rt_prio_array *array = &rq->rt.active;
43
44         update_curr_rt(rq);
45
46         list_del(&p->run_list);
47         if (list_empty(array->queue + p->prio))
48                 __clear_bit(p->prio, array->bitmap);
49 }
50
51 /*
52  * Put task to the end of the run list without the overhead of dequeue
53  * followed by enqueue.
54  */
55 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
56 {
57         struct rt_prio_array *array = &rq->rt.active;
58
59         list_move_tail(&p->run_list, array->queue + p->prio);
60 }
61
62 static void
63 yield_task_rt(struct rq *rq)
64 {
65         requeue_task_rt(rq, rq->curr);
66 }
67
68 /*
69  * Preempt the current task with a newly woken task if needed:
70  */
71 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
72 {
73         if (p->prio < rq->curr->prio)
74                 resched_task(rq->curr);
75 }
76
77 static struct task_struct *pick_next_task_rt(struct rq *rq)
78 {
79         struct rt_prio_array *array = &rq->rt.active;
80         struct task_struct *next;
81         struct list_head *queue;
82         int idx;
83
84         idx = sched_find_first_bit(array->bitmap);
85         if (idx >= MAX_RT_PRIO)
86                 return NULL;
87
88         queue = array->queue + idx;
89         next = list_entry(queue->next, struct task_struct, run_list);
90
91         next->se.exec_start = rq->clock;
92
93         return next;
94 }
95
96 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
97 {
98         update_curr_rt(rq);
99         p->se.exec_start = 0;
100 }
101
102 #ifdef CONFIG_SMP
103 /*
104  * Load-balancing iterator. Note: while the runqueue stays locked
105  * during the whole iteration, the current task might be
106  * dequeued so the iterator has to be dequeue-safe. Here we
107  * achieve that by always pre-iterating before returning
108  * the current task:
109  */
110 static struct task_struct *load_balance_start_rt(void *arg)
111 {
112         struct rq *rq = arg;
113         struct rt_prio_array *array = &rq->rt.active;
114         struct list_head *head, *curr;
115         struct task_struct *p;
116         int idx;
117
118         idx = sched_find_first_bit(array->bitmap);
119         if (idx >= MAX_RT_PRIO)
120                 return NULL;
121
122         head = array->queue + idx;
123         curr = head->prev;
124
125         p = list_entry(curr, struct task_struct, run_list);
126
127         curr = curr->prev;
128
129         rq->rt.rt_load_balance_idx = idx;
130         rq->rt.rt_load_balance_head = head;
131         rq->rt.rt_load_balance_curr = curr;
132
133         return p;
134 }
135
136 static struct task_struct *load_balance_next_rt(void *arg)
137 {
138         struct rq *rq = arg;
139         struct rt_prio_array *array = &rq->rt.active;
140         struct list_head *head, *curr;
141         struct task_struct *p;
142         int idx;
143
144         idx = rq->rt.rt_load_balance_idx;
145         head = rq->rt.rt_load_balance_head;
146         curr = rq->rt.rt_load_balance_curr;
147
148         /*
149          * If we arrived back to the head again then
150          * iterate to the next queue (if any):
151          */
152         if (unlikely(head == curr)) {
153                 int next_idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
154
155                 if (next_idx >= MAX_RT_PRIO)
156                         return NULL;
157
158                 idx = next_idx;
159                 head = array->queue + idx;
160                 curr = head->prev;
161
162                 rq->rt.rt_load_balance_idx = idx;
163                 rq->rt.rt_load_balance_head = head;
164         }
165
166         p = list_entry(curr, struct task_struct, run_list);
167
168         curr = curr->prev;
169
170         rq->rt.rt_load_balance_curr = curr;
171
172         return p;
173 }
174
175 static unsigned long
176 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
177                 unsigned long max_load_move,
178                 struct sched_domain *sd, enum cpu_idle_type idle,
179                 int *all_pinned, int *this_best_prio)
180 {
181         struct rq_iterator rt_rq_iterator;
182
183         rt_rq_iterator.start = load_balance_start_rt;
184         rt_rq_iterator.next = load_balance_next_rt;
185         /* pass 'busiest' rq argument into
186          * load_balance_[start|next]_rt iterators
187          */
188         rt_rq_iterator.arg = busiest;
189
190         return balance_tasks(this_rq, this_cpu, busiest, max_load_move, sd,
191                              idle, all_pinned, this_best_prio, &rt_rq_iterator);
192 }
193
194 static int
195 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
196                  struct sched_domain *sd, enum cpu_idle_type idle)
197 {
198         struct rq_iterator rt_rq_iterator;
199
200         rt_rq_iterator.start = load_balance_start_rt;
201         rt_rq_iterator.next = load_balance_next_rt;
202         rt_rq_iterator.arg = busiest;
203
204         return iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
205                                   &rt_rq_iterator);
206 }
207 #endif
208
209 static void task_tick_rt(struct rq *rq, struct task_struct *p)
210 {
211         update_curr_rt(rq);
212
213         /*
214          * RR tasks need a special form of timeslice management.
215          * FIFO tasks have no timeslices.
216          */
217         if (p->policy != SCHED_RR)
218                 return;
219
220         if (--p->time_slice)
221                 return;
222
223         p->time_slice = DEF_TIMESLICE;
224
225         /*
226          * Requeue to the end of queue if we are not the only element
227          * on the queue:
228          */
229         if (p->run_list.prev != p->run_list.next) {
230                 requeue_task_rt(rq, p);
231                 set_tsk_need_resched(p);
232         }
233 }
234
235 static void set_curr_task_rt(struct rq *rq)
236 {
237         struct task_struct *p = rq->curr;
238
239         p->se.exec_start = rq->clock;
240 }
241
242 const struct sched_class rt_sched_class = {
243         .next                   = &fair_sched_class,
244         .enqueue_task           = enqueue_task_rt,
245         .dequeue_task           = dequeue_task_rt,
246         .yield_task             = yield_task_rt,
247
248         .check_preempt_curr     = check_preempt_curr_rt,
249
250         .pick_next_task         = pick_next_task_rt,
251         .put_prev_task          = put_prev_task_rt,
252
253 #ifdef CONFIG_SMP
254         .load_balance           = load_balance_rt,
255         .move_one_task          = move_one_task_rt,
256 #endif
257
258         .set_curr_task          = set_curr_task_rt,
259         .task_tick              = task_tick_rt,
260 };