4fa66de52bd6ad8d88ed2c95650a274206e3de1d
[sfrench/cifs-2.6.git] / kernel / sched / debug.c
1 /*
2  * kernel/sched/debug.c
3  *
4  * Print the CFS rbtree
5  *
6  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/proc_fs.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/seq_file.h>
17 #include <linux/kallsyms.h>
18 #include <linux/utsname.h>
19 #include <linux/mempolicy.h>
20 #include <linux/debugfs.h>
21
22 #include "sched.h"
23
24 static DEFINE_SPINLOCK(sched_debug_lock);
25
26 /*
27  * This allows printing both to /proc/sched_debug and
28  * to the console
29  */
30 #define SEQ_printf(m, x...)                     \
31  do {                                           \
32         if (m)                                  \
33                 seq_printf(m, x);               \
34         else                                    \
35                 printk(x);                      \
36  } while (0)
37
38 /*
39  * Ease the printing of nsec fields:
40  */
41 static long long nsec_high(unsigned long long nsec)
42 {
43         if ((long long)nsec < 0) {
44                 nsec = -nsec;
45                 do_div(nsec, 1000000);
46                 return -nsec;
47         }
48         do_div(nsec, 1000000);
49
50         return nsec;
51 }
52
53 static unsigned long nsec_low(unsigned long long nsec)
54 {
55         if ((long long)nsec < 0)
56                 nsec = -nsec;
57
58         return do_div(nsec, 1000000);
59 }
60
61 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
62
63 #define SCHED_FEAT(name, enabled)       \
64         #name ,
65
66 static const char * const sched_feat_names[] = {
67 #include "features.h"
68 };
69
70 #undef SCHED_FEAT
71
72 static int sched_feat_show(struct seq_file *m, void *v)
73 {
74         int i;
75
76         for (i = 0; i < __SCHED_FEAT_NR; i++) {
77                 if (!(sysctl_sched_features & (1UL << i)))
78                         seq_puts(m, "NO_");
79                 seq_printf(m, "%s ", sched_feat_names[i]);
80         }
81         seq_puts(m, "\n");
82
83         return 0;
84 }
85
86 #ifdef HAVE_JUMP_LABEL
87
88 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
89 #define jump_label_key__false STATIC_KEY_INIT_FALSE
90
91 #define SCHED_FEAT(name, enabled)       \
92         jump_label_key__##enabled ,
93
94 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
95 #include "features.h"
96 };
97
98 #undef SCHED_FEAT
99
100 static void sched_feat_disable(int i)
101 {
102         static_key_disable(&sched_feat_keys[i]);
103 }
104
105 static void sched_feat_enable(int i)
106 {
107         static_key_enable(&sched_feat_keys[i]);
108 }
109 #else
110 static void sched_feat_disable(int i) { };
111 static void sched_feat_enable(int i) { };
112 #endif /* HAVE_JUMP_LABEL */
113
114 static int sched_feat_set(char *cmp)
115 {
116         int i;
117         int neg = 0;
118
119         if (strncmp(cmp, "NO_", 3) == 0) {
120                 neg = 1;
121                 cmp += 3;
122         }
123
124         for (i = 0; i < __SCHED_FEAT_NR; i++) {
125                 if (strcmp(cmp, sched_feat_names[i]) == 0) {
126                         if (neg) {
127                                 sysctl_sched_features &= ~(1UL << i);
128                                 sched_feat_disable(i);
129                         } else {
130                                 sysctl_sched_features |= (1UL << i);
131                                 sched_feat_enable(i);
132                         }
133                         break;
134                 }
135         }
136
137         return i;
138 }
139
140 static ssize_t
141 sched_feat_write(struct file *filp, const char __user *ubuf,
142                 size_t cnt, loff_t *ppos)
143 {
144         char buf[64];
145         char *cmp;
146         int i;
147         struct inode *inode;
148
149         if (cnt > 63)
150                 cnt = 63;
151
152         if (copy_from_user(&buf, ubuf, cnt))
153                 return -EFAULT;
154
155         buf[cnt] = 0;
156         cmp = strstrip(buf);
157
158         /* Ensure the static_key remains in a consistent state */
159         inode = file_inode(filp);
160         inode_lock(inode);
161         i = sched_feat_set(cmp);
162         inode_unlock(inode);
163         if (i == __SCHED_FEAT_NR)
164                 return -EINVAL;
165
166         *ppos += cnt;
167
168         return cnt;
169 }
170
171 static int sched_feat_open(struct inode *inode, struct file *filp)
172 {
173         return single_open(filp, sched_feat_show, NULL);
174 }
175
176 static const struct file_operations sched_feat_fops = {
177         .open           = sched_feat_open,
178         .write          = sched_feat_write,
179         .read           = seq_read,
180         .llseek         = seq_lseek,
181         .release        = single_release,
182 };
183
184 static __init int sched_init_debug(void)
185 {
186         debugfs_create_file("sched_features", 0644, NULL, NULL,
187                         &sched_feat_fops);
188
189         return 0;
190 }
191 late_initcall(sched_init_debug);
192
193 #ifdef CONFIG_SMP
194
195 #ifdef CONFIG_SYSCTL
196
197 static struct ctl_table sd_ctl_dir[] = {
198         {
199                 .procname       = "sched_domain",
200                 .mode           = 0555,
201         },
202         {}
203 };
204
205 static struct ctl_table sd_ctl_root[] = {
206         {
207                 .procname       = "kernel",
208                 .mode           = 0555,
209                 .child          = sd_ctl_dir,
210         },
211         {}
212 };
213
214 static struct ctl_table *sd_alloc_ctl_entry(int n)
215 {
216         struct ctl_table *entry =
217                 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
218
219         return entry;
220 }
221
222 static void sd_free_ctl_entry(struct ctl_table **tablep)
223 {
224         struct ctl_table *entry;
225
226         /*
227          * In the intermediate directories, both the child directory and
228          * procname are dynamically allocated and could fail but the mode
229          * will always be set. In the lowest directory the names are
230          * static strings and all have proc handlers.
231          */
232         for (entry = *tablep; entry->mode; entry++) {
233                 if (entry->child)
234                         sd_free_ctl_entry(&entry->child);
235                 if (entry->proc_handler == NULL)
236                         kfree(entry->procname);
237         }
238
239         kfree(*tablep);
240         *tablep = NULL;
241 }
242
243 static int min_load_idx = 0;
244 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
245
246 static void
247 set_table_entry(struct ctl_table *entry,
248                 const char *procname, void *data, int maxlen,
249                 umode_t mode, proc_handler *proc_handler,
250                 bool load_idx)
251 {
252         entry->procname = procname;
253         entry->data = data;
254         entry->maxlen = maxlen;
255         entry->mode = mode;
256         entry->proc_handler = proc_handler;
257
258         if (load_idx) {
259                 entry->extra1 = &min_load_idx;
260                 entry->extra2 = &max_load_idx;
261         }
262 }
263
264 static struct ctl_table *
265 sd_alloc_ctl_domain_table(struct sched_domain *sd)
266 {
267         struct ctl_table *table = sd_alloc_ctl_entry(14);
268
269         if (table == NULL)
270                 return NULL;
271
272         set_table_entry(&table[0], "min_interval", &sd->min_interval,
273                 sizeof(long), 0644, proc_doulongvec_minmax, false);
274         set_table_entry(&table[1], "max_interval", &sd->max_interval,
275                 sizeof(long), 0644, proc_doulongvec_minmax, false);
276         set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
277                 sizeof(int), 0644, proc_dointvec_minmax, true);
278         set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
279                 sizeof(int), 0644, proc_dointvec_minmax, true);
280         set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
281                 sizeof(int), 0644, proc_dointvec_minmax, true);
282         set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
283                 sizeof(int), 0644, proc_dointvec_minmax, true);
284         set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
285                 sizeof(int), 0644, proc_dointvec_minmax, true);
286         set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
287                 sizeof(int), 0644, proc_dointvec_minmax, false);
288         set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
289                 sizeof(int), 0644, proc_dointvec_minmax, false);
290         set_table_entry(&table[9], "cache_nice_tries",
291                 &sd->cache_nice_tries,
292                 sizeof(int), 0644, proc_dointvec_minmax, false);
293         set_table_entry(&table[10], "flags", &sd->flags,
294                 sizeof(int), 0644, proc_dointvec_minmax, false);
295         set_table_entry(&table[11], "max_newidle_lb_cost",
296                 &sd->max_newidle_lb_cost,
297                 sizeof(long), 0644, proc_doulongvec_minmax, false);
298         set_table_entry(&table[12], "name", sd->name,
299                 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
300         /* &table[13] is terminator */
301
302         return table;
303 }
304
305 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
306 {
307         struct ctl_table *entry, *table;
308         struct sched_domain *sd;
309         int domain_num = 0, i;
310         char buf[32];
311
312         for_each_domain(cpu, sd)
313                 domain_num++;
314         entry = table = sd_alloc_ctl_entry(domain_num + 1);
315         if (table == NULL)
316                 return NULL;
317
318         i = 0;
319         for_each_domain(cpu, sd) {
320                 snprintf(buf, 32, "domain%d", i);
321                 entry->procname = kstrdup(buf, GFP_KERNEL);
322                 entry->mode = 0555;
323                 entry->child = sd_alloc_ctl_domain_table(sd);
324                 entry++;
325                 i++;
326         }
327         return table;
328 }
329
330 static struct ctl_table_header *sd_sysctl_header;
331 void register_sched_domain_sysctl(void)
332 {
333         int i, cpu_num = num_possible_cpus();
334         struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
335         char buf[32];
336
337         WARN_ON(sd_ctl_dir[0].child);
338         sd_ctl_dir[0].child = entry;
339
340         if (entry == NULL)
341                 return;
342
343         for_each_possible_cpu(i) {
344                 snprintf(buf, 32, "cpu%d", i);
345                 entry->procname = kstrdup(buf, GFP_KERNEL);
346                 entry->mode = 0555;
347                 entry->child = sd_alloc_ctl_cpu_table(i);
348                 entry++;
349         }
350
351         WARN_ON(sd_sysctl_header);
352         sd_sysctl_header = register_sysctl_table(sd_ctl_root);
353 }
354
355 /* may be called multiple times per register */
356 void unregister_sched_domain_sysctl(void)
357 {
358         unregister_sysctl_table(sd_sysctl_header);
359         sd_sysctl_header = NULL;
360         if (sd_ctl_dir[0].child)
361                 sd_free_ctl_entry(&sd_ctl_dir[0].child);
362 }
363 #endif /* CONFIG_SYSCTL */
364 #endif /* CONFIG_SMP */
365
366 #ifdef CONFIG_FAIR_GROUP_SCHED
367 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
368 {
369         struct sched_entity *se = tg->se[cpu];
370
371 #define P(F) \
372         SEQ_printf(m, "  .%-30s: %lld\n", #F, (long long)F)
373 #define P_SCHEDSTAT(F) \
374         SEQ_printf(m, "  .%-30s: %lld\n", #F, (long long)schedstat_val(F))
375 #define PN(F) \
376         SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
377 #define PN_SCHEDSTAT(F) \
378         SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
379
380         if (!se)
381                 return;
382
383         PN(se->exec_start);
384         PN(se->vruntime);
385         PN(se->sum_exec_runtime);
386         if (schedstat_enabled()) {
387                 PN_SCHEDSTAT(se->statistics.wait_start);
388                 PN_SCHEDSTAT(se->statistics.sleep_start);
389                 PN_SCHEDSTAT(se->statistics.block_start);
390                 PN_SCHEDSTAT(se->statistics.sleep_max);
391                 PN_SCHEDSTAT(se->statistics.block_max);
392                 PN_SCHEDSTAT(se->statistics.exec_max);
393                 PN_SCHEDSTAT(se->statistics.slice_max);
394                 PN_SCHEDSTAT(se->statistics.wait_max);
395                 PN_SCHEDSTAT(se->statistics.wait_sum);
396                 P_SCHEDSTAT(se->statistics.wait_count);
397         }
398         P(se->load.weight);
399 #ifdef CONFIG_SMP
400         P(se->avg.load_avg);
401         P(se->avg.util_avg);
402 #endif
403
404 #undef PN_SCHEDSTAT
405 #undef PN
406 #undef P_SCHEDSTAT
407 #undef P
408 }
409 #endif
410
411 #ifdef CONFIG_CGROUP_SCHED
412 static char group_path[PATH_MAX];
413
414 static char *task_group_path(struct task_group *tg)
415 {
416         if (autogroup_path(tg, group_path, PATH_MAX))
417                 return group_path;
418
419         cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
420         return group_path;
421 }
422 #endif
423
424 static void
425 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
426 {
427         if (rq->curr == p)
428                 SEQ_printf(m, "R");
429         else
430                 SEQ_printf(m, " ");
431
432         SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
433                 p->comm, task_pid_nr(p),
434                 SPLIT_NS(p->se.vruntime),
435                 (long long)(p->nvcsw + p->nivcsw),
436                 p->prio);
437
438         SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
439                 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
440                 SPLIT_NS(p->se.sum_exec_runtime),
441                 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
442
443 #ifdef CONFIG_NUMA_BALANCING
444         SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
445 #endif
446 #ifdef CONFIG_CGROUP_SCHED
447         SEQ_printf(m, " %s", task_group_path(task_group(p)));
448 #endif
449
450         SEQ_printf(m, "\n");
451 }
452
453 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
454 {
455         struct task_struct *g, *p;
456
457         SEQ_printf(m,
458         "\nrunnable tasks:\n"
459         "            task   PID         tree-key  switches  prio"
460         "     wait-time             sum-exec        sum-sleep\n"
461         "------------------------------------------------------"
462         "----------------------------------------------------\n");
463
464         rcu_read_lock();
465         for_each_process_thread(g, p) {
466                 if (task_cpu(p) != rq_cpu)
467                         continue;
468
469                 print_task(m, rq, p);
470         }
471         rcu_read_unlock();
472 }
473
474 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
475 {
476         s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
477                 spread, rq0_min_vruntime, spread0;
478         struct rq *rq = cpu_rq(cpu);
479         struct sched_entity *last;
480         unsigned long flags;
481
482 #ifdef CONFIG_FAIR_GROUP_SCHED
483         SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
484 #else
485         SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
486 #endif
487         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
488                         SPLIT_NS(cfs_rq->exec_clock));
489
490         raw_spin_lock_irqsave(&rq->lock, flags);
491         if (cfs_rq->rb_leftmost)
492                 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
493         last = __pick_last_entity(cfs_rq);
494         if (last)
495                 max_vruntime = last->vruntime;
496         min_vruntime = cfs_rq->min_vruntime;
497         rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
498         raw_spin_unlock_irqrestore(&rq->lock, flags);
499         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
500                         SPLIT_NS(MIN_vruntime));
501         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
502                         SPLIT_NS(min_vruntime));
503         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
504                         SPLIT_NS(max_vruntime));
505         spread = max_vruntime - MIN_vruntime;
506         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
507                         SPLIT_NS(spread));
508         spread0 = min_vruntime - rq0_min_vruntime;
509         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
510                         SPLIT_NS(spread0));
511         SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
512                         cfs_rq->nr_spread_over);
513         SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
514         SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
515 #ifdef CONFIG_SMP
516         SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
517                         cfs_rq->avg.load_avg);
518         SEQ_printf(m, "  .%-30s: %lu\n", "runnable_load_avg",
519                         cfs_rq->runnable_load_avg);
520         SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
521                         cfs_rq->avg.util_avg);
522         SEQ_printf(m, "  .%-30s: %ld\n", "removed_load_avg",
523                         atomic_long_read(&cfs_rq->removed_load_avg));
524         SEQ_printf(m, "  .%-30s: %ld\n", "removed_util_avg",
525                         atomic_long_read(&cfs_rq->removed_util_avg));
526 #ifdef CONFIG_FAIR_GROUP_SCHED
527         SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
528                         cfs_rq->tg_load_avg_contrib);
529         SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
530                         atomic_long_read(&cfs_rq->tg->load_avg));
531 #endif
532 #endif
533 #ifdef CONFIG_CFS_BANDWIDTH
534         SEQ_printf(m, "  .%-30s: %d\n", "throttled",
535                         cfs_rq->throttled);
536         SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
537                         cfs_rq->throttle_count);
538 #endif
539
540 #ifdef CONFIG_FAIR_GROUP_SCHED
541         print_cfs_group_stats(m, cpu, cfs_rq->tg);
542 #endif
543 }
544
545 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
546 {
547 #ifdef CONFIG_RT_GROUP_SCHED
548         SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
549 #else
550         SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
551 #endif
552
553 #define P(x) \
554         SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
555 #define PU(x) \
556         SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
557 #define PN(x) \
558         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
559
560         PU(rt_nr_running);
561 #ifdef CONFIG_SMP
562         PU(rt_nr_migratory);
563 #endif
564         P(rt_throttled);
565         PN(rt_time);
566         PN(rt_runtime);
567
568 #undef PN
569 #undef PU
570 #undef P
571 }
572
573 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
574 {
575         struct dl_bw *dl_bw;
576
577         SEQ_printf(m, "\ndl_rq[%d]:\n", cpu);
578
579 #define PU(x) \
580         SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
581
582         PU(dl_nr_running);
583 #ifdef CONFIG_SMP
584         PU(dl_nr_migratory);
585         dl_bw = &cpu_rq(cpu)->rd->dl_bw;
586 #else
587         dl_bw = &dl_rq->dl_bw;
588 #endif
589         SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
590         SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
591
592 #undef PU
593 }
594
595 extern __read_mostly int sched_clock_running;
596
597 static void print_cpu(struct seq_file *m, int cpu)
598 {
599         struct rq *rq = cpu_rq(cpu);
600         unsigned long flags;
601
602 #ifdef CONFIG_X86
603         {
604                 unsigned int freq = cpu_khz ? : 1;
605
606                 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
607                            cpu, freq / 1000, (freq % 1000));
608         }
609 #else
610         SEQ_printf(m, "cpu#%d\n", cpu);
611 #endif
612
613 #define P(x)                                                            \
614 do {                                                                    \
615         if (sizeof(rq->x) == 4)                                         \
616                 SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));    \
617         else                                                            \
618                 SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
619 } while (0)
620
621 #define PN(x) \
622         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
623
624         P(nr_running);
625         SEQ_printf(m, "  .%-30s: %lu\n", "load",
626                    rq->load.weight);
627         P(nr_switches);
628         P(nr_load_updates);
629         P(nr_uninterruptible);
630         PN(next_balance);
631         SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
632         PN(clock);
633         PN(clock_task);
634         P(cpu_load[0]);
635         P(cpu_load[1]);
636         P(cpu_load[2]);
637         P(cpu_load[3]);
638         P(cpu_load[4]);
639 #undef P
640 #undef PN
641
642 #ifdef CONFIG_SMP
643 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
644         P64(avg_idle);
645         P64(max_idle_balance_cost);
646 #undef P64
647 #endif
648
649 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
650         if (schedstat_enabled()) {
651                 P(yld_count);
652                 P(sched_count);
653                 P(sched_goidle);
654                 P(ttwu_count);
655                 P(ttwu_local);
656         }
657 #undef P
658
659         spin_lock_irqsave(&sched_debug_lock, flags);
660         print_cfs_stats(m, cpu);
661         print_rt_stats(m, cpu);
662         print_dl_stats(m, cpu);
663
664         print_rq(m, rq, cpu);
665         spin_unlock_irqrestore(&sched_debug_lock, flags);
666         SEQ_printf(m, "\n");
667 }
668
669 static const char *sched_tunable_scaling_names[] = {
670         "none",
671         "logaritmic",
672         "linear"
673 };
674
675 static void sched_debug_header(struct seq_file *m)
676 {
677         u64 ktime, sched_clk, cpu_clk;
678         unsigned long flags;
679
680         local_irq_save(flags);
681         ktime = ktime_to_ns(ktime_get());
682         sched_clk = sched_clock();
683         cpu_clk = local_clock();
684         local_irq_restore(flags);
685
686         SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
687                 init_utsname()->release,
688                 (int)strcspn(init_utsname()->version, " "),
689                 init_utsname()->version);
690
691 #define P(x) \
692         SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
693 #define PN(x) \
694         SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
695         PN(ktime);
696         PN(sched_clk);
697         PN(cpu_clk);
698         P(jiffies);
699 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
700         P(sched_clock_stable());
701 #endif
702 #undef PN
703 #undef P
704
705         SEQ_printf(m, "\n");
706         SEQ_printf(m, "sysctl_sched\n");
707
708 #define P(x) \
709         SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
710 #define PN(x) \
711         SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
712         PN(sysctl_sched_latency);
713         PN(sysctl_sched_min_granularity);
714         PN(sysctl_sched_wakeup_granularity);
715         P(sysctl_sched_child_runs_first);
716         P(sysctl_sched_features);
717 #undef PN
718 #undef P
719
720         SEQ_printf(m, "  .%-40s: %d (%s)\n",
721                 "sysctl_sched_tunable_scaling",
722                 sysctl_sched_tunable_scaling,
723                 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
724         SEQ_printf(m, "\n");
725 }
726
727 static int sched_debug_show(struct seq_file *m, void *v)
728 {
729         int cpu = (unsigned long)(v - 2);
730
731         if (cpu != -1)
732                 print_cpu(m, cpu);
733         else
734                 sched_debug_header(m);
735
736         return 0;
737 }
738
739 void sysrq_sched_debug_show(void)
740 {
741         int cpu;
742
743         sched_debug_header(NULL);
744         for_each_online_cpu(cpu)
745                 print_cpu(NULL, cpu);
746
747 }
748
749 /*
750  * This itererator needs some explanation.
751  * It returns 1 for the header position.
752  * This means 2 is cpu 0.
753  * In a hotplugged system some cpus, including cpu 0, may be missing so we have
754  * to use cpumask_* to iterate over the cpus.
755  */
756 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
757 {
758         unsigned long n = *offset;
759
760         if (n == 0)
761                 return (void *) 1;
762
763         n--;
764
765         if (n > 0)
766                 n = cpumask_next(n - 1, cpu_online_mask);
767         else
768                 n = cpumask_first(cpu_online_mask);
769
770         *offset = n + 1;
771
772         if (n < nr_cpu_ids)
773                 return (void *)(unsigned long)(n + 2);
774         return NULL;
775 }
776
777 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
778 {
779         (*offset)++;
780         return sched_debug_start(file, offset);
781 }
782
783 static void sched_debug_stop(struct seq_file *file, void *data)
784 {
785 }
786
787 static const struct seq_operations sched_debug_sops = {
788         .start = sched_debug_start,
789         .next = sched_debug_next,
790         .stop = sched_debug_stop,
791         .show = sched_debug_show,
792 };
793
794 static int sched_debug_release(struct inode *inode, struct file *file)
795 {
796         seq_release(inode, file);
797
798         return 0;
799 }
800
801 static int sched_debug_open(struct inode *inode, struct file *filp)
802 {
803         int ret = 0;
804
805         ret = seq_open(filp, &sched_debug_sops);
806
807         return ret;
808 }
809
810 static const struct file_operations sched_debug_fops = {
811         .open           = sched_debug_open,
812         .read           = seq_read,
813         .llseek         = seq_lseek,
814         .release        = sched_debug_release,
815 };
816
817 static int __init init_sched_debug_procfs(void)
818 {
819         struct proc_dir_entry *pe;
820
821         pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
822         if (!pe)
823                 return -ENOMEM;
824         return 0;
825 }
826
827 __initcall(init_sched_debug_procfs);
828
829 #define __P(F) \
830         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
831 #define P(F) \
832         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
833 #define __PN(F) \
834         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
835 #define PN(F) \
836         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
837
838
839 #ifdef CONFIG_NUMA_BALANCING
840 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
841                 unsigned long tpf, unsigned long gsf, unsigned long gpf)
842 {
843         SEQ_printf(m, "numa_faults node=%d ", node);
844         SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf);
845         SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf);
846 }
847 #endif
848
849
850 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
851 {
852 #ifdef CONFIG_NUMA_BALANCING
853         struct mempolicy *pol;
854
855         if (p->mm)
856                 P(mm->numa_scan_seq);
857
858         task_lock(p);
859         pol = p->mempolicy;
860         if (pol && !(pol->flags & MPOL_F_MORON))
861                 pol = NULL;
862         mpol_get(pol);
863         task_unlock(p);
864
865         P(numa_pages_migrated);
866         P(numa_preferred_nid);
867         P(total_numa_faults);
868         SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
869                         task_node(p), task_numa_group_id(p));
870         show_numa_stats(p, m);
871         mpol_put(pol);
872 #endif
873 }
874
875 void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
876 {
877         unsigned long nr_switches;
878
879         SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr(p),
880                                                 get_nr_threads(p));
881         SEQ_printf(m,
882                 "---------------------------------------------------------"
883                 "----------\n");
884 #define __P(F) \
885         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
886 #define P(F) \
887         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
888 #define P_SCHEDSTAT(F) \
889         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
890 #define __PN(F) \
891         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
892 #define PN(F) \
893         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
894 #define PN_SCHEDSTAT(F) \
895         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
896
897         PN(se.exec_start);
898         PN(se.vruntime);
899         PN(se.sum_exec_runtime);
900
901         nr_switches = p->nvcsw + p->nivcsw;
902
903         P(se.nr_migrations);
904
905         if (schedstat_enabled()) {
906                 u64 avg_atom, avg_per_cpu;
907
908                 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
909                 PN_SCHEDSTAT(se.statistics.wait_start);
910                 PN_SCHEDSTAT(se.statistics.sleep_start);
911                 PN_SCHEDSTAT(se.statistics.block_start);
912                 PN_SCHEDSTAT(se.statistics.sleep_max);
913                 PN_SCHEDSTAT(se.statistics.block_max);
914                 PN_SCHEDSTAT(se.statistics.exec_max);
915                 PN_SCHEDSTAT(se.statistics.slice_max);
916                 PN_SCHEDSTAT(se.statistics.wait_max);
917                 PN_SCHEDSTAT(se.statistics.wait_sum);
918                 P_SCHEDSTAT(se.statistics.wait_count);
919                 PN_SCHEDSTAT(se.statistics.iowait_sum);
920                 P_SCHEDSTAT(se.statistics.iowait_count);
921                 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
922                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
923                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
924                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
925                 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
926                 P_SCHEDSTAT(se.statistics.nr_wakeups);
927                 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
928                 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
929                 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
930                 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
931                 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
932                 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
933                 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
934                 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
935
936                 avg_atom = p->se.sum_exec_runtime;
937                 if (nr_switches)
938                         avg_atom = div64_ul(avg_atom, nr_switches);
939                 else
940                         avg_atom = -1LL;
941
942                 avg_per_cpu = p->se.sum_exec_runtime;
943                 if (p->se.nr_migrations) {
944                         avg_per_cpu = div64_u64(avg_per_cpu,
945                                                 p->se.nr_migrations);
946                 } else {
947                         avg_per_cpu = -1LL;
948                 }
949
950                 __PN(avg_atom);
951                 __PN(avg_per_cpu);
952         }
953
954         __P(nr_switches);
955         SEQ_printf(m, "%-45s:%21Ld\n",
956                    "nr_voluntary_switches", (long long)p->nvcsw);
957         SEQ_printf(m, "%-45s:%21Ld\n",
958                    "nr_involuntary_switches", (long long)p->nivcsw);
959
960         P(se.load.weight);
961 #ifdef CONFIG_SMP
962         P(se.avg.load_sum);
963         P(se.avg.util_sum);
964         P(se.avg.load_avg);
965         P(se.avg.util_avg);
966         P(se.avg.last_update_time);
967 #endif
968         P(policy);
969         P(prio);
970         if (p->policy == SCHED_DEADLINE) {
971                 P(dl.runtime);
972                 P(dl.deadline);
973         }
974 #undef PN_SCHEDSTAT
975 #undef PN
976 #undef __PN
977 #undef P_SCHEDSTAT
978 #undef P
979 #undef __P
980
981         {
982                 unsigned int this_cpu = raw_smp_processor_id();
983                 u64 t0, t1;
984
985                 t0 = cpu_clock(this_cpu);
986                 t1 = cpu_clock(this_cpu);
987                 SEQ_printf(m, "%-45s:%21Ld\n",
988                            "clock-delta", (long long)(t1-t0));
989         }
990
991         sched_show_numa(p, m);
992 }
993
994 void proc_sched_set_task(struct task_struct *p)
995 {
996 #ifdef CONFIG_SCHEDSTATS
997         memset(&p->se.statistics, 0, sizeof(p->se.statistics));
998 #endif
999 }