Merge tag 'nfs-for-5.1-3' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[sfrench/cifs-2.6.git] / kernel / sched / cpufreq_schedutil.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include "sched.h"
12
13 #include <linux/sched/cpufreq.h>
14 #include <trace/events/power.h>
15
16 struct sugov_tunables {
17         struct gov_attr_set     attr_set;
18         unsigned int            rate_limit_us;
19 };
20
21 struct sugov_policy {
22         struct cpufreq_policy   *policy;
23
24         struct sugov_tunables   *tunables;
25         struct list_head        tunables_hook;
26
27         raw_spinlock_t          update_lock;    /* For shared policies */
28         u64                     last_freq_update_time;
29         s64                     freq_update_delay_ns;
30         unsigned int            next_freq;
31         unsigned int            cached_raw_freq;
32
33         /* The next fields are only needed if fast switch cannot be used: */
34         struct                  irq_work irq_work;
35         struct                  kthread_work work;
36         struct                  mutex work_lock;
37         struct                  kthread_worker worker;
38         struct task_struct      *thread;
39         bool                    work_in_progress;
40
41         bool                    need_freq_update;
42 };
43
44 struct sugov_cpu {
45         struct update_util_data update_util;
46         struct sugov_policy     *sg_policy;
47         unsigned int            cpu;
48
49         bool                    iowait_boost_pending;
50         unsigned int            iowait_boost;
51         u64                     last_update;
52
53         unsigned long           bw_dl;
54         unsigned long           min;
55         unsigned long           max;
56
57         /* The field below is for single-CPU policies only: */
58 #ifdef CONFIG_NO_HZ_COMMON
59         unsigned long           saved_idle_calls;
60 #endif
61 };
62
63 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
64
65 /************************ Governor internals ***********************/
66
67 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
68 {
69         s64 delta_ns;
70
71         /*
72          * Since cpufreq_update_util() is called with rq->lock held for
73          * the @target_cpu, our per-CPU data is fully serialized.
74          *
75          * However, drivers cannot in general deal with cross-CPU
76          * requests, so while get_next_freq() will work, our
77          * sugov_update_commit() call may not for the fast switching platforms.
78          *
79          * Hence stop here for remote requests if they aren't supported
80          * by the hardware, as calculating the frequency is pointless if
81          * we cannot in fact act on it.
82          *
83          * For the slow switching platforms, the kthread is always scheduled on
84          * the right set of CPUs and any CPU can find the next frequency and
85          * schedule the kthread.
86          */
87         if (sg_policy->policy->fast_switch_enabled &&
88             !cpufreq_this_cpu_can_update(sg_policy->policy))
89                 return false;
90
91         if (unlikely(sg_policy->need_freq_update))
92                 return true;
93
94         delta_ns = time - sg_policy->last_freq_update_time;
95
96         return delta_ns >= sg_policy->freq_update_delay_ns;
97 }
98
99 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
100                                    unsigned int next_freq)
101 {
102         if (sg_policy->next_freq == next_freq)
103                 return false;
104
105         sg_policy->next_freq = next_freq;
106         sg_policy->last_freq_update_time = time;
107
108         return true;
109 }
110
111 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
112                               unsigned int next_freq)
113 {
114         struct cpufreq_policy *policy = sg_policy->policy;
115
116         if (!sugov_update_next_freq(sg_policy, time, next_freq))
117                 return;
118
119         next_freq = cpufreq_driver_fast_switch(policy, next_freq);
120         if (!next_freq)
121                 return;
122
123         policy->cur = next_freq;
124         trace_cpu_frequency(next_freq, smp_processor_id());
125 }
126
127 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
128                                   unsigned int next_freq)
129 {
130         if (!sugov_update_next_freq(sg_policy, time, next_freq))
131                 return;
132
133         if (!sg_policy->work_in_progress) {
134                 sg_policy->work_in_progress = true;
135                 irq_work_queue(&sg_policy->irq_work);
136         }
137 }
138
139 /**
140  * get_next_freq - Compute a new frequency for a given cpufreq policy.
141  * @sg_policy: schedutil policy object to compute the new frequency for.
142  * @util: Current CPU utilization.
143  * @max: CPU capacity.
144  *
145  * If the utilization is frequency-invariant, choose the new frequency to be
146  * proportional to it, that is
147  *
148  * next_freq = C * max_freq * util / max
149  *
150  * Otherwise, approximate the would-be frequency-invariant utilization by
151  * util_raw * (curr_freq / max_freq) which leads to
152  *
153  * next_freq = C * curr_freq * util_raw / max
154  *
155  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
156  *
157  * The lowest driver-supported frequency which is equal or greater than the raw
158  * next_freq (as calculated above) is returned, subject to policy min/max and
159  * cpufreq driver limitations.
160  */
161 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
162                                   unsigned long util, unsigned long max)
163 {
164         struct cpufreq_policy *policy = sg_policy->policy;
165         unsigned int freq = arch_scale_freq_invariant() ?
166                                 policy->cpuinfo.max_freq : policy->cur;
167
168         freq = map_util_freq(util, freq, max);
169
170         if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
171                 return sg_policy->next_freq;
172
173         sg_policy->need_freq_update = false;
174         sg_policy->cached_raw_freq = freq;
175         return cpufreq_driver_resolve_freq(policy, freq);
176 }
177
178 /*
179  * This function computes an effective utilization for the given CPU, to be
180  * used for frequency selection given the linear relation: f = u * f_max.
181  *
182  * The scheduler tracks the following metrics:
183  *
184  *   cpu_util_{cfs,rt,dl,irq}()
185  *   cpu_bw_dl()
186  *
187  * Where the cfs,rt and dl util numbers are tracked with the same metric and
188  * synchronized windows and are thus directly comparable.
189  *
190  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
191  * which excludes things like IRQ and steal-time. These latter are then accrued
192  * in the irq utilization.
193  *
194  * The DL bandwidth number otoh is not a measured metric but a value computed
195  * based on the task model parameters and gives the minimal utilization
196  * required to meet deadlines.
197  */
198 unsigned long schedutil_freq_util(int cpu, unsigned long util_cfs,
199                                   unsigned long max, enum schedutil_type type)
200 {
201         unsigned long dl_util, util, irq;
202         struct rq *rq = cpu_rq(cpu);
203
204         if (type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt))
205                 return max;
206
207         /*
208          * Early check to see if IRQ/steal time saturates the CPU, can be
209          * because of inaccuracies in how we track these -- see
210          * update_irq_load_avg().
211          */
212         irq = cpu_util_irq(rq);
213         if (unlikely(irq >= max))
214                 return max;
215
216         /*
217          * Because the time spend on RT/DL tasks is visible as 'lost' time to
218          * CFS tasks and we use the same metric to track the effective
219          * utilization (PELT windows are synchronized) we can directly add them
220          * to obtain the CPU's actual utilization.
221          */
222         util = util_cfs;
223         util += cpu_util_rt(rq);
224
225         dl_util = cpu_util_dl(rq);
226
227         /*
228          * For frequency selection we do not make cpu_util_dl() a permanent part
229          * of this sum because we want to use cpu_bw_dl() later on, but we need
230          * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
231          * that we select f_max when there is no idle time.
232          *
233          * NOTE: numerical errors or stop class might cause us to not quite hit
234          * saturation when we should -- something for later.
235          */
236         if (util + dl_util >= max)
237                 return max;
238
239         /*
240          * OTOH, for energy computation we need the estimated running time, so
241          * include util_dl and ignore dl_bw.
242          */
243         if (type == ENERGY_UTIL)
244                 util += dl_util;
245
246         /*
247          * There is still idle time; further improve the number by using the
248          * irq metric. Because IRQ/steal time is hidden from the task clock we
249          * need to scale the task numbers:
250          *
251          *              1 - irq
252          *   U' = irq + ------- * U
253          *                max
254          */
255         util = scale_irq_capacity(util, irq, max);
256         util += irq;
257
258         /*
259          * Bandwidth required by DEADLINE must always be granted while, for
260          * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
261          * to gracefully reduce the frequency when no tasks show up for longer
262          * periods of time.
263          *
264          * Ideally we would like to set bw_dl as min/guaranteed freq and util +
265          * bw_dl as requested freq. However, cpufreq is not yet ready for such
266          * an interface. So, we only do the latter for now.
267          */
268         if (type == FREQUENCY_UTIL)
269                 util += cpu_bw_dl(rq);
270
271         return min(max, util);
272 }
273
274 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
275 {
276         struct rq *rq = cpu_rq(sg_cpu->cpu);
277         unsigned long util = cpu_util_cfs(rq);
278         unsigned long max = arch_scale_cpu_capacity(NULL, sg_cpu->cpu);
279
280         sg_cpu->max = max;
281         sg_cpu->bw_dl = cpu_bw_dl(rq);
282
283         return schedutil_freq_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL);
284 }
285
286 /**
287  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
288  * @sg_cpu: the sugov data for the CPU to boost
289  * @time: the update time from the caller
290  * @set_iowait_boost: true if an IO boost has been requested
291  *
292  * The IO wait boost of a task is disabled after a tick since the last update
293  * of a CPU. If a new IO wait boost is requested after more then a tick, then
294  * we enable the boost starting from the minimum frequency, which improves
295  * energy efficiency by ignoring sporadic wakeups from IO.
296  */
297 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
298                                bool set_iowait_boost)
299 {
300         s64 delta_ns = time - sg_cpu->last_update;
301
302         /* Reset boost only if a tick has elapsed since last request */
303         if (delta_ns <= TICK_NSEC)
304                 return false;
305
306         sg_cpu->iowait_boost = set_iowait_boost ? sg_cpu->min : 0;
307         sg_cpu->iowait_boost_pending = set_iowait_boost;
308
309         return true;
310 }
311
312 /**
313  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
314  * @sg_cpu: the sugov data for the CPU to boost
315  * @time: the update time from the caller
316  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
317  *
318  * Each time a task wakes up after an IO operation, the CPU utilization can be
319  * boosted to a certain utilization which doubles at each "frequent and
320  * successive" wakeup from IO, ranging from the utilization of the minimum
321  * OPP to the utilization of the maximum OPP.
322  * To keep doubling, an IO boost has to be requested at least once per tick,
323  * otherwise we restart from the utilization of the minimum OPP.
324  */
325 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
326                                unsigned int flags)
327 {
328         bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
329
330         /* Reset boost if the CPU appears to have been idle enough */
331         if (sg_cpu->iowait_boost &&
332             sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
333                 return;
334
335         /* Boost only tasks waking up after IO */
336         if (!set_iowait_boost)
337                 return;
338
339         /* Ensure boost doubles only one time at each request */
340         if (sg_cpu->iowait_boost_pending)
341                 return;
342         sg_cpu->iowait_boost_pending = true;
343
344         /* Double the boost at each request */
345         if (sg_cpu->iowait_boost) {
346                 sg_cpu->iowait_boost =
347                         min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
348                 return;
349         }
350
351         /* First wakeup after IO: start with minimum boost */
352         sg_cpu->iowait_boost = sg_cpu->min;
353 }
354
355 /**
356  * sugov_iowait_apply() - Apply the IO boost to a CPU.
357  * @sg_cpu: the sugov data for the cpu to boost
358  * @time: the update time from the caller
359  * @util: the utilization to (eventually) boost
360  * @max: the maximum value the utilization can be boosted to
361  *
362  * A CPU running a task which woken up after an IO operation can have its
363  * utilization boosted to speed up the completion of those IO operations.
364  * The IO boost value is increased each time a task wakes up from IO, in
365  * sugov_iowait_apply(), and it's instead decreased by this function,
366  * each time an increase has not been requested (!iowait_boost_pending).
367  *
368  * A CPU which also appears to have been idle for at least one tick has also
369  * its IO boost utilization reset.
370  *
371  * This mechanism is designed to boost high frequently IO waiting tasks, while
372  * being more conservative on tasks which does sporadic IO operations.
373  */
374 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
375                                         unsigned long util, unsigned long max)
376 {
377         unsigned long boost;
378
379         /* No boost currently required */
380         if (!sg_cpu->iowait_boost)
381                 return util;
382
383         /* Reset boost if the CPU appears to have been idle enough */
384         if (sugov_iowait_reset(sg_cpu, time, false))
385                 return util;
386
387         if (!sg_cpu->iowait_boost_pending) {
388                 /*
389                  * No boost pending; reduce the boost value.
390                  */
391                 sg_cpu->iowait_boost >>= 1;
392                 if (sg_cpu->iowait_boost < sg_cpu->min) {
393                         sg_cpu->iowait_boost = 0;
394                         return util;
395                 }
396         }
397
398         sg_cpu->iowait_boost_pending = false;
399
400         /*
401          * @util is already in capacity scale; convert iowait_boost
402          * into the same scale so we can compare.
403          */
404         boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT;
405         return max(boost, util);
406 }
407
408 #ifdef CONFIG_NO_HZ_COMMON
409 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
410 {
411         unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
412         bool ret = idle_calls == sg_cpu->saved_idle_calls;
413
414         sg_cpu->saved_idle_calls = idle_calls;
415         return ret;
416 }
417 #else
418 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
419 #endif /* CONFIG_NO_HZ_COMMON */
420
421 /*
422  * Make sugov_should_update_freq() ignore the rate limit when DL
423  * has increased the utilization.
424  */
425 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
426 {
427         if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
428                 sg_policy->need_freq_update = true;
429 }
430
431 static void sugov_update_single(struct update_util_data *hook, u64 time,
432                                 unsigned int flags)
433 {
434         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
435         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
436         unsigned long util, max;
437         unsigned int next_f;
438         bool busy;
439
440         sugov_iowait_boost(sg_cpu, time, flags);
441         sg_cpu->last_update = time;
442
443         ignore_dl_rate_limit(sg_cpu, sg_policy);
444
445         if (!sugov_should_update_freq(sg_policy, time))
446                 return;
447
448         busy = sugov_cpu_is_busy(sg_cpu);
449
450         util = sugov_get_util(sg_cpu);
451         max = sg_cpu->max;
452         util = sugov_iowait_apply(sg_cpu, time, util, max);
453         next_f = get_next_freq(sg_policy, util, max);
454         /*
455          * Do not reduce the frequency if the CPU has not been idle
456          * recently, as the reduction is likely to be premature then.
457          */
458         if (busy && next_f < sg_policy->next_freq) {
459                 next_f = sg_policy->next_freq;
460
461                 /* Reset cached freq as next_freq has changed */
462                 sg_policy->cached_raw_freq = 0;
463         }
464
465         /*
466          * This code runs under rq->lock for the target CPU, so it won't run
467          * concurrently on two different CPUs for the same target and it is not
468          * necessary to acquire the lock in the fast switch case.
469          */
470         if (sg_policy->policy->fast_switch_enabled) {
471                 sugov_fast_switch(sg_policy, time, next_f);
472         } else {
473                 raw_spin_lock(&sg_policy->update_lock);
474                 sugov_deferred_update(sg_policy, time, next_f);
475                 raw_spin_unlock(&sg_policy->update_lock);
476         }
477 }
478
479 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
480 {
481         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
482         struct cpufreq_policy *policy = sg_policy->policy;
483         unsigned long util = 0, max = 1;
484         unsigned int j;
485
486         for_each_cpu(j, policy->cpus) {
487                 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
488                 unsigned long j_util, j_max;
489
490                 j_util = sugov_get_util(j_sg_cpu);
491                 j_max = j_sg_cpu->max;
492                 j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max);
493
494                 if (j_util * max > j_max * util) {
495                         util = j_util;
496                         max = j_max;
497                 }
498         }
499
500         return get_next_freq(sg_policy, util, max);
501 }
502
503 static void
504 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
505 {
506         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
507         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
508         unsigned int next_f;
509
510         raw_spin_lock(&sg_policy->update_lock);
511
512         sugov_iowait_boost(sg_cpu, time, flags);
513         sg_cpu->last_update = time;
514
515         ignore_dl_rate_limit(sg_cpu, sg_policy);
516
517         if (sugov_should_update_freq(sg_policy, time)) {
518                 next_f = sugov_next_freq_shared(sg_cpu, time);
519
520                 if (sg_policy->policy->fast_switch_enabled)
521                         sugov_fast_switch(sg_policy, time, next_f);
522                 else
523                         sugov_deferred_update(sg_policy, time, next_f);
524         }
525
526         raw_spin_unlock(&sg_policy->update_lock);
527 }
528
529 static void sugov_work(struct kthread_work *work)
530 {
531         struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
532         unsigned int freq;
533         unsigned long flags;
534
535         /*
536          * Hold sg_policy->update_lock shortly to handle the case where:
537          * incase sg_policy->next_freq is read here, and then updated by
538          * sugov_deferred_update() just before work_in_progress is set to false
539          * here, we may miss queueing the new update.
540          *
541          * Note: If a work was queued after the update_lock is released,
542          * sugov_work() will just be called again by kthread_work code; and the
543          * request will be proceed before the sugov thread sleeps.
544          */
545         raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
546         freq = sg_policy->next_freq;
547         sg_policy->work_in_progress = false;
548         raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
549
550         mutex_lock(&sg_policy->work_lock);
551         __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
552         mutex_unlock(&sg_policy->work_lock);
553 }
554
555 static void sugov_irq_work(struct irq_work *irq_work)
556 {
557         struct sugov_policy *sg_policy;
558
559         sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
560
561         kthread_queue_work(&sg_policy->worker, &sg_policy->work);
562 }
563
564 /************************** sysfs interface ************************/
565
566 static struct sugov_tunables *global_tunables;
567 static DEFINE_MUTEX(global_tunables_lock);
568
569 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
570 {
571         return container_of(attr_set, struct sugov_tunables, attr_set);
572 }
573
574 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
575 {
576         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
577
578         return sprintf(buf, "%u\n", tunables->rate_limit_us);
579 }
580
581 static ssize_t
582 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
583 {
584         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
585         struct sugov_policy *sg_policy;
586         unsigned int rate_limit_us;
587
588         if (kstrtouint(buf, 10, &rate_limit_us))
589                 return -EINVAL;
590
591         tunables->rate_limit_us = rate_limit_us;
592
593         list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
594                 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
595
596         return count;
597 }
598
599 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
600
601 static struct attribute *sugov_attributes[] = {
602         &rate_limit_us.attr,
603         NULL
604 };
605
606 static struct kobj_type sugov_tunables_ktype = {
607         .default_attrs = sugov_attributes,
608         .sysfs_ops = &governor_sysfs_ops,
609 };
610
611 /********************** cpufreq governor interface *********************/
612
613 struct cpufreq_governor schedutil_gov;
614
615 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
616 {
617         struct sugov_policy *sg_policy;
618
619         sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
620         if (!sg_policy)
621                 return NULL;
622
623         sg_policy->policy = policy;
624         raw_spin_lock_init(&sg_policy->update_lock);
625         return sg_policy;
626 }
627
628 static void sugov_policy_free(struct sugov_policy *sg_policy)
629 {
630         kfree(sg_policy);
631 }
632
633 static int sugov_kthread_create(struct sugov_policy *sg_policy)
634 {
635         struct task_struct *thread;
636         struct sched_attr attr = {
637                 .size           = sizeof(struct sched_attr),
638                 .sched_policy   = SCHED_DEADLINE,
639                 .sched_flags    = SCHED_FLAG_SUGOV,
640                 .sched_nice     = 0,
641                 .sched_priority = 0,
642                 /*
643                  * Fake (unused) bandwidth; workaround to "fix"
644                  * priority inheritance.
645                  */
646                 .sched_runtime  =  1000000,
647                 .sched_deadline = 10000000,
648                 .sched_period   = 10000000,
649         };
650         struct cpufreq_policy *policy = sg_policy->policy;
651         int ret;
652
653         /* kthread only required for slow path */
654         if (policy->fast_switch_enabled)
655                 return 0;
656
657         kthread_init_work(&sg_policy->work, sugov_work);
658         kthread_init_worker(&sg_policy->worker);
659         thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
660                                 "sugov:%d",
661                                 cpumask_first(policy->related_cpus));
662         if (IS_ERR(thread)) {
663                 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
664                 return PTR_ERR(thread);
665         }
666
667         ret = sched_setattr_nocheck(thread, &attr);
668         if (ret) {
669                 kthread_stop(thread);
670                 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
671                 return ret;
672         }
673
674         sg_policy->thread = thread;
675         kthread_bind_mask(thread, policy->related_cpus);
676         init_irq_work(&sg_policy->irq_work, sugov_irq_work);
677         mutex_init(&sg_policy->work_lock);
678
679         wake_up_process(thread);
680
681         return 0;
682 }
683
684 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
685 {
686         /* kthread only required for slow path */
687         if (sg_policy->policy->fast_switch_enabled)
688                 return;
689
690         kthread_flush_worker(&sg_policy->worker);
691         kthread_stop(sg_policy->thread);
692         mutex_destroy(&sg_policy->work_lock);
693 }
694
695 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
696 {
697         struct sugov_tunables *tunables;
698
699         tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
700         if (tunables) {
701                 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
702                 if (!have_governor_per_policy())
703                         global_tunables = tunables;
704         }
705         return tunables;
706 }
707
708 static void sugov_tunables_free(struct sugov_tunables *tunables)
709 {
710         if (!have_governor_per_policy())
711                 global_tunables = NULL;
712
713         kfree(tunables);
714 }
715
716 static int sugov_init(struct cpufreq_policy *policy)
717 {
718         struct sugov_policy *sg_policy;
719         struct sugov_tunables *tunables;
720         int ret = 0;
721
722         /* State should be equivalent to EXIT */
723         if (policy->governor_data)
724                 return -EBUSY;
725
726         cpufreq_enable_fast_switch(policy);
727
728         sg_policy = sugov_policy_alloc(policy);
729         if (!sg_policy) {
730                 ret = -ENOMEM;
731                 goto disable_fast_switch;
732         }
733
734         ret = sugov_kthread_create(sg_policy);
735         if (ret)
736                 goto free_sg_policy;
737
738         mutex_lock(&global_tunables_lock);
739
740         if (global_tunables) {
741                 if (WARN_ON(have_governor_per_policy())) {
742                         ret = -EINVAL;
743                         goto stop_kthread;
744                 }
745                 policy->governor_data = sg_policy;
746                 sg_policy->tunables = global_tunables;
747
748                 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
749                 goto out;
750         }
751
752         tunables = sugov_tunables_alloc(sg_policy);
753         if (!tunables) {
754                 ret = -ENOMEM;
755                 goto stop_kthread;
756         }
757
758         tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
759
760         policy->governor_data = sg_policy;
761         sg_policy->tunables = tunables;
762
763         ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
764                                    get_governor_parent_kobj(policy), "%s",
765                                    schedutil_gov.name);
766         if (ret)
767                 goto fail;
768
769 out:
770         mutex_unlock(&global_tunables_lock);
771         return 0;
772
773 fail:
774         policy->governor_data = NULL;
775         sugov_tunables_free(tunables);
776
777 stop_kthread:
778         sugov_kthread_stop(sg_policy);
779         mutex_unlock(&global_tunables_lock);
780
781 free_sg_policy:
782         sugov_policy_free(sg_policy);
783
784 disable_fast_switch:
785         cpufreq_disable_fast_switch(policy);
786
787         pr_err("initialization failed (error %d)\n", ret);
788         return ret;
789 }
790
791 static void sugov_exit(struct cpufreq_policy *policy)
792 {
793         struct sugov_policy *sg_policy = policy->governor_data;
794         struct sugov_tunables *tunables = sg_policy->tunables;
795         unsigned int count;
796
797         mutex_lock(&global_tunables_lock);
798
799         count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
800         policy->governor_data = NULL;
801         if (!count)
802                 sugov_tunables_free(tunables);
803
804         mutex_unlock(&global_tunables_lock);
805
806         sugov_kthread_stop(sg_policy);
807         sugov_policy_free(sg_policy);
808         cpufreq_disable_fast_switch(policy);
809 }
810
811 static int sugov_start(struct cpufreq_policy *policy)
812 {
813         struct sugov_policy *sg_policy = policy->governor_data;
814         unsigned int cpu;
815
816         sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
817         sg_policy->last_freq_update_time        = 0;
818         sg_policy->next_freq                    = 0;
819         sg_policy->work_in_progress             = false;
820         sg_policy->need_freq_update             = false;
821         sg_policy->cached_raw_freq              = 0;
822
823         for_each_cpu(cpu, policy->cpus) {
824                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
825
826                 memset(sg_cpu, 0, sizeof(*sg_cpu));
827                 sg_cpu->cpu                     = cpu;
828                 sg_cpu->sg_policy               = sg_policy;
829                 sg_cpu->min                     =
830                         (SCHED_CAPACITY_SCALE * policy->cpuinfo.min_freq) /
831                         policy->cpuinfo.max_freq;
832         }
833
834         for_each_cpu(cpu, policy->cpus) {
835                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
836
837                 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
838                                              policy_is_shared(policy) ?
839                                                         sugov_update_shared :
840                                                         sugov_update_single);
841         }
842         return 0;
843 }
844
845 static void sugov_stop(struct cpufreq_policy *policy)
846 {
847         struct sugov_policy *sg_policy = policy->governor_data;
848         unsigned int cpu;
849
850         for_each_cpu(cpu, policy->cpus)
851                 cpufreq_remove_update_util_hook(cpu);
852
853         synchronize_rcu();
854
855         if (!policy->fast_switch_enabled) {
856                 irq_work_sync(&sg_policy->irq_work);
857                 kthread_cancel_work_sync(&sg_policy->work);
858         }
859 }
860
861 static void sugov_limits(struct cpufreq_policy *policy)
862 {
863         struct sugov_policy *sg_policy = policy->governor_data;
864
865         if (!policy->fast_switch_enabled) {
866                 mutex_lock(&sg_policy->work_lock);
867                 cpufreq_policy_apply_limits(policy);
868                 mutex_unlock(&sg_policy->work_lock);
869         }
870
871         sg_policy->need_freq_update = true;
872 }
873
874 struct cpufreq_governor schedutil_gov = {
875         .name                   = "schedutil",
876         .owner                  = THIS_MODULE,
877         .dynamic_switching      = true,
878         .init                   = sugov_init,
879         .exit                   = sugov_exit,
880         .start                  = sugov_start,
881         .stop                   = sugov_stop,
882         .limits                 = sugov_limits,
883 };
884
885 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
886 struct cpufreq_governor *cpufreq_default_governor(void)
887 {
888         return &schedutil_gov;
889 }
890 #endif
891
892 static int __init sugov_register(void)
893 {
894         return cpufreq_register_governor(&schedutil_gov);
895 }
896 fs_initcall(sugov_register);
897
898 #ifdef CONFIG_ENERGY_MODEL
899 extern bool sched_energy_update;
900 extern struct mutex sched_energy_mutex;
901
902 static void rebuild_sd_workfn(struct work_struct *work)
903 {
904         mutex_lock(&sched_energy_mutex);
905         sched_energy_update = true;
906         rebuild_sched_domains();
907         sched_energy_update = false;
908         mutex_unlock(&sched_energy_mutex);
909 }
910 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
911
912 /*
913  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
914  * on governor changes to make sure the scheduler knows about it.
915  */
916 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
917                                   struct cpufreq_governor *old_gov)
918 {
919         if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
920                 /*
921                  * When called from the cpufreq_register_driver() path, the
922                  * cpu_hotplug_lock is already held, so use a work item to
923                  * avoid nested locking in rebuild_sched_domains().
924                  */
925                 schedule_work(&rebuild_sd_work);
926         }
927
928 }
929 #endif