kill dentry_update_name_case()
[sfrench/cifs-2.6.git] / kernel / rcu / tree_plugin.h
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *         Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/sched/debug.h>
31 #include <linux/smpboot.h>
32 #include <linux/sched/isolation.h>
33 #include <uapi/linux/sched/types.h>
34 #include "../time/tick-internal.h"
35
36 #ifdef CONFIG_RCU_BOOST
37
38 #include "../locking/rtmutex_common.h"
39
40 /*
41  * Control variables for per-CPU and per-rcu_node kthreads.  These
42  * handle all flavors of RCU.
43  */
44 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
46 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
47 DEFINE_PER_CPU(char, rcu_cpu_has_work);
48
49 #else /* #ifdef CONFIG_RCU_BOOST */
50
51 /*
52  * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
53  * all uses are in dead code.  Provide a definition to keep the compiler
54  * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
55  * This probably needs to be excluded from -rt builds.
56  */
57 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
58 #define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1)
59
60 #endif /* #else #ifdef CONFIG_RCU_BOOST */
61
62 #ifdef CONFIG_RCU_NOCB_CPU
63 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
64 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
65 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
66
67 /*
68  * Check the RCU kernel configuration parameters and print informative
69  * messages about anything out of the ordinary.
70  */
71 static void __init rcu_bootup_announce_oddness(void)
72 {
73         if (IS_ENABLED(CONFIG_RCU_TRACE))
74                 pr_info("\tRCU event tracing is enabled.\n");
75         if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
76             (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
77                 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
78                        RCU_FANOUT);
79         if (rcu_fanout_exact)
80                 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
81         if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
82                 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
83         if (IS_ENABLED(CONFIG_PROVE_RCU))
84                 pr_info("\tRCU lockdep checking is enabled.\n");
85         if (RCU_NUM_LVLS >= 4)
86                 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
87         if (RCU_FANOUT_LEAF != 16)
88                 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
89                         RCU_FANOUT_LEAF);
90         if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
91                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
92         if (nr_cpu_ids != NR_CPUS)
93                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
94 #ifdef CONFIG_RCU_BOOST
95         pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio, CONFIG_RCU_BOOST_DELAY);
96 #endif
97         if (blimit != DEFAULT_RCU_BLIMIT)
98                 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
99         if (qhimark != DEFAULT_RCU_QHIMARK)
100                 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
101         if (qlowmark != DEFAULT_RCU_QLOMARK)
102                 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
103         if (jiffies_till_first_fqs != ULONG_MAX)
104                 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
105         if (jiffies_till_next_fqs != ULONG_MAX)
106                 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
107         if (rcu_kick_kthreads)
108                 pr_info("\tKick kthreads if too-long grace period.\n");
109         if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
110                 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
111         if (gp_preinit_delay)
112                 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
113         if (gp_init_delay)
114                 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
115         if (gp_cleanup_delay)
116                 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
117         if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
118                 pr_info("\tRCU debug extended QS entry/exit.\n");
119         rcupdate_announce_bootup_oddness();
120 }
121
122 #ifdef CONFIG_PREEMPT_RCU
123
124 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
125 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
126 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
127
128 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
129                                bool wake);
130
131 /*
132  * Tell them what RCU they are running.
133  */
134 static void __init rcu_bootup_announce(void)
135 {
136         pr_info("Preemptible hierarchical RCU implementation.\n");
137         rcu_bootup_announce_oddness();
138 }
139
140 /* Flags for rcu_preempt_ctxt_queue() decision table. */
141 #define RCU_GP_TASKS    0x8
142 #define RCU_EXP_TASKS   0x4
143 #define RCU_GP_BLKD     0x2
144 #define RCU_EXP_BLKD    0x1
145
146 /*
147  * Queues a task preempted within an RCU-preempt read-side critical
148  * section into the appropriate location within the ->blkd_tasks list,
149  * depending on the states of any ongoing normal and expedited grace
150  * periods.  The ->gp_tasks pointer indicates which element the normal
151  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
152  * indicates which element the expedited grace period is waiting on (again,
153  * NULL if none).  If a grace period is waiting on a given element in the
154  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
155  * adding a task to the tail of the list blocks any grace period that is
156  * already waiting on one of the elements.  In contrast, adding a task
157  * to the head of the list won't block any grace period that is already
158  * waiting on one of the elements.
159  *
160  * This queuing is imprecise, and can sometimes make an ongoing grace
161  * period wait for a task that is not strictly speaking blocking it.
162  * Given the choice, we needlessly block a normal grace period rather than
163  * blocking an expedited grace period.
164  *
165  * Note that an endless sequence of expedited grace periods still cannot
166  * indefinitely postpone a normal grace period.  Eventually, all of the
167  * fixed number of preempted tasks blocking the normal grace period that are
168  * not also blocking the expedited grace period will resume and complete
169  * their RCU read-side critical sections.  At that point, the ->gp_tasks
170  * pointer will equal the ->exp_tasks pointer, at which point the end of
171  * the corresponding expedited grace period will also be the end of the
172  * normal grace period.
173  */
174 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
175         __releases(rnp->lock) /* But leaves rrupts disabled. */
176 {
177         int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
178                          (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
179                          (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
180                          (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
181         struct task_struct *t = current;
182
183         raw_lockdep_assert_held_rcu_node(rnp);
184         WARN_ON_ONCE(rdp->mynode != rnp);
185         WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
186
187         /*
188          * Decide where to queue the newly blocked task.  In theory,
189          * this could be an if-statement.  In practice, when I tried
190          * that, it was quite messy.
191          */
192         switch (blkd_state) {
193         case 0:
194         case                RCU_EXP_TASKS:
195         case                RCU_EXP_TASKS + RCU_GP_BLKD:
196         case RCU_GP_TASKS:
197         case RCU_GP_TASKS + RCU_EXP_TASKS:
198
199                 /*
200                  * Blocking neither GP, or first task blocking the normal
201                  * GP but not blocking the already-waiting expedited GP.
202                  * Queue at the head of the list to avoid unnecessarily
203                  * blocking the already-waiting GPs.
204                  */
205                 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
206                 break;
207
208         case                                              RCU_EXP_BLKD:
209         case                                RCU_GP_BLKD:
210         case                                RCU_GP_BLKD + RCU_EXP_BLKD:
211         case RCU_GP_TASKS +                               RCU_EXP_BLKD:
212         case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
213         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
214
215                 /*
216                  * First task arriving that blocks either GP, or first task
217                  * arriving that blocks the expedited GP (with the normal
218                  * GP already waiting), or a task arriving that blocks
219                  * both GPs with both GPs already waiting.  Queue at the
220                  * tail of the list to avoid any GP waiting on any of the
221                  * already queued tasks that are not blocking it.
222                  */
223                 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
224                 break;
225
226         case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
227         case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
228         case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
229
230                 /*
231                  * Second or subsequent task blocking the expedited GP.
232                  * The task either does not block the normal GP, or is the
233                  * first task blocking the normal GP.  Queue just after
234                  * the first task blocking the expedited GP.
235                  */
236                 list_add(&t->rcu_node_entry, rnp->exp_tasks);
237                 break;
238
239         case RCU_GP_TASKS +                 RCU_GP_BLKD:
240         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
241
242                 /*
243                  * Second or subsequent task blocking the normal GP.
244                  * The task does not block the expedited GP. Queue just
245                  * after the first task blocking the normal GP.
246                  */
247                 list_add(&t->rcu_node_entry, rnp->gp_tasks);
248                 break;
249
250         default:
251
252                 /* Yet another exercise in excessive paranoia. */
253                 WARN_ON_ONCE(1);
254                 break;
255         }
256
257         /*
258          * We have now queued the task.  If it was the first one to
259          * block either grace period, update the ->gp_tasks and/or
260          * ->exp_tasks pointers, respectively, to reference the newly
261          * blocked tasks.
262          */
263         if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
264                 rnp->gp_tasks = &t->rcu_node_entry;
265         if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
266                 rnp->exp_tasks = &t->rcu_node_entry;
267         WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
268                      !(rnp->qsmask & rdp->grpmask));
269         WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
270                      !(rnp->expmask & rdp->grpmask));
271         raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
272
273         /*
274          * Report the quiescent state for the expedited GP.  This expedited
275          * GP should not be able to end until we report, so there should be
276          * no need to check for a subsequent expedited GP.  (Though we are
277          * still in a quiescent state in any case.)
278          */
279         if (blkd_state & RCU_EXP_BLKD &&
280             t->rcu_read_unlock_special.b.exp_need_qs) {
281                 t->rcu_read_unlock_special.b.exp_need_qs = false;
282                 rcu_report_exp_rdp(rdp->rsp, rdp, true);
283         } else {
284                 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
285         }
286 }
287
288 /*
289  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
290  * that this just means that the task currently running on the CPU is
291  * not in a quiescent state.  There might be any number of tasks blocked
292  * while in an RCU read-side critical section.
293  *
294  * As with the other rcu_*_qs() functions, callers to this function
295  * must disable preemption.
296  */
297 static void rcu_preempt_qs(void)
298 {
299         RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n");
300         if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
301                 trace_rcu_grace_period(TPS("rcu_preempt"),
302                                        __this_cpu_read(rcu_data_p->gpnum),
303                                        TPS("cpuqs"));
304                 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
305                 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
306                 current->rcu_read_unlock_special.b.need_qs = false;
307         }
308 }
309
310 /*
311  * We have entered the scheduler, and the current task might soon be
312  * context-switched away from.  If this task is in an RCU read-side
313  * critical section, we will no longer be able to rely on the CPU to
314  * record that fact, so we enqueue the task on the blkd_tasks list.
315  * The task will dequeue itself when it exits the outermost enclosing
316  * RCU read-side critical section.  Therefore, the current grace period
317  * cannot be permitted to complete until the blkd_tasks list entries
318  * predating the current grace period drain, in other words, until
319  * rnp->gp_tasks becomes NULL.
320  *
321  * Caller must disable interrupts.
322  */
323 static void rcu_preempt_note_context_switch(bool preempt)
324 {
325         struct task_struct *t = current;
326         struct rcu_data *rdp;
327         struct rcu_node *rnp;
328
329         lockdep_assert_irqs_disabled();
330         WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
331         if (t->rcu_read_lock_nesting > 0 &&
332             !t->rcu_read_unlock_special.b.blocked) {
333
334                 /* Possibly blocking in an RCU read-side critical section. */
335                 rdp = this_cpu_ptr(rcu_state_p->rda);
336                 rnp = rdp->mynode;
337                 raw_spin_lock_rcu_node(rnp);
338                 t->rcu_read_unlock_special.b.blocked = true;
339                 t->rcu_blocked_node = rnp;
340
341                 /*
342                  * Verify the CPU's sanity, trace the preemption, and
343                  * then queue the task as required based on the states
344                  * of any ongoing and expedited grace periods.
345                  */
346                 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
347                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
348                 trace_rcu_preempt_task(rdp->rsp->name,
349                                        t->pid,
350                                        (rnp->qsmask & rdp->grpmask)
351                                        ? rnp->gpnum
352                                        : rnp->gpnum + 1);
353                 rcu_preempt_ctxt_queue(rnp, rdp);
354         } else if (t->rcu_read_lock_nesting < 0 &&
355                    t->rcu_read_unlock_special.s) {
356
357                 /*
358                  * Complete exit from RCU read-side critical section on
359                  * behalf of preempted instance of __rcu_read_unlock().
360                  */
361                 rcu_read_unlock_special(t);
362         }
363
364         /*
365          * Either we were not in an RCU read-side critical section to
366          * begin with, or we have now recorded that critical section
367          * globally.  Either way, we can now note a quiescent state
368          * for this CPU.  Again, if we were in an RCU read-side critical
369          * section, and if that critical section was blocking the current
370          * grace period, then the fact that the task has been enqueued
371          * means that we continue to block the current grace period.
372          */
373         rcu_preempt_qs();
374 }
375
376 /*
377  * Check for preempted RCU readers blocking the current grace period
378  * for the specified rcu_node structure.  If the caller needs a reliable
379  * answer, it must hold the rcu_node's ->lock.
380  */
381 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
382 {
383         return rnp->gp_tasks != NULL;
384 }
385
386 /*
387  * Preemptible RCU implementation for rcu_read_lock().
388  * Just increment ->rcu_read_lock_nesting, shared state will be updated
389  * if we block.
390  */
391 void __rcu_read_lock(void)
392 {
393         current->rcu_read_lock_nesting++;
394         barrier();  /* critical section after entry code. */
395 }
396 EXPORT_SYMBOL_GPL(__rcu_read_lock);
397
398 /*
399  * Preemptible RCU implementation for rcu_read_unlock().
400  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
401  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
402  * invoke rcu_read_unlock_special() to clean up after a context switch
403  * in an RCU read-side critical section and other special cases.
404  */
405 void __rcu_read_unlock(void)
406 {
407         struct task_struct *t = current;
408
409         if (t->rcu_read_lock_nesting != 1) {
410                 --t->rcu_read_lock_nesting;
411         } else {
412                 barrier();  /* critical section before exit code. */
413                 t->rcu_read_lock_nesting = INT_MIN;
414                 barrier();  /* assign before ->rcu_read_unlock_special load */
415                 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
416                         rcu_read_unlock_special(t);
417                 barrier();  /* ->rcu_read_unlock_special load before assign */
418                 t->rcu_read_lock_nesting = 0;
419         }
420 #ifdef CONFIG_PROVE_LOCKING
421         {
422                 int rrln = READ_ONCE(t->rcu_read_lock_nesting);
423
424                 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
425         }
426 #endif /* #ifdef CONFIG_PROVE_LOCKING */
427 }
428 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
429
430 /*
431  * Advance a ->blkd_tasks-list pointer to the next entry, instead
432  * returning NULL if at the end of the list.
433  */
434 static struct list_head *rcu_next_node_entry(struct task_struct *t,
435                                              struct rcu_node *rnp)
436 {
437         struct list_head *np;
438
439         np = t->rcu_node_entry.next;
440         if (np == &rnp->blkd_tasks)
441                 np = NULL;
442         return np;
443 }
444
445 /*
446  * Return true if the specified rcu_node structure has tasks that were
447  * preempted within an RCU read-side critical section.
448  */
449 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
450 {
451         return !list_empty(&rnp->blkd_tasks);
452 }
453
454 /*
455  * Handle special cases during rcu_read_unlock(), such as needing to
456  * notify RCU core processing or task having blocked during the RCU
457  * read-side critical section.
458  */
459 void rcu_read_unlock_special(struct task_struct *t)
460 {
461         bool empty_exp;
462         bool empty_norm;
463         bool empty_exp_now;
464         unsigned long flags;
465         struct list_head *np;
466         bool drop_boost_mutex = false;
467         struct rcu_data *rdp;
468         struct rcu_node *rnp;
469         union rcu_special special;
470
471         /* NMI handlers cannot block and cannot safely manipulate state. */
472         if (in_nmi())
473                 return;
474
475         local_irq_save(flags);
476
477         /*
478          * If RCU core is waiting for this CPU to exit its critical section,
479          * report the fact that it has exited.  Because irqs are disabled,
480          * t->rcu_read_unlock_special cannot change.
481          */
482         special = t->rcu_read_unlock_special;
483         if (special.b.need_qs) {
484                 rcu_preempt_qs();
485                 t->rcu_read_unlock_special.b.need_qs = false;
486                 if (!t->rcu_read_unlock_special.s) {
487                         local_irq_restore(flags);
488                         return;
489                 }
490         }
491
492         /*
493          * Respond to a request for an expedited grace period, but only if
494          * we were not preempted, meaning that we were running on the same
495          * CPU throughout.  If we were preempted, the exp_need_qs flag
496          * would have been cleared at the time of the first preemption,
497          * and the quiescent state would be reported when we were dequeued.
498          */
499         if (special.b.exp_need_qs) {
500                 WARN_ON_ONCE(special.b.blocked);
501                 t->rcu_read_unlock_special.b.exp_need_qs = false;
502                 rdp = this_cpu_ptr(rcu_state_p->rda);
503                 rcu_report_exp_rdp(rcu_state_p, rdp, true);
504                 if (!t->rcu_read_unlock_special.s) {
505                         local_irq_restore(flags);
506                         return;
507                 }
508         }
509
510         /* Hardware IRQ handlers cannot block, complain if they get here. */
511         if (in_irq() || in_serving_softirq()) {
512                 lockdep_rcu_suspicious(__FILE__, __LINE__,
513                                        "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
514                 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
515                          t->rcu_read_unlock_special.s,
516                          t->rcu_read_unlock_special.b.blocked,
517                          t->rcu_read_unlock_special.b.exp_need_qs,
518                          t->rcu_read_unlock_special.b.need_qs);
519                 local_irq_restore(flags);
520                 return;
521         }
522
523         /* Clean up if blocked during RCU read-side critical section. */
524         if (special.b.blocked) {
525                 t->rcu_read_unlock_special.b.blocked = false;
526
527                 /*
528                  * Remove this task from the list it blocked on.  The task
529                  * now remains queued on the rcu_node corresponding to the
530                  * CPU it first blocked on, so there is no longer any need
531                  * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
532                  */
533                 rnp = t->rcu_blocked_node;
534                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
535                 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
536                 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
537                 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
538                 empty_exp = sync_rcu_preempt_exp_done(rnp);
539                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
540                 np = rcu_next_node_entry(t, rnp);
541                 list_del_init(&t->rcu_node_entry);
542                 t->rcu_blocked_node = NULL;
543                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
544                                                 rnp->gpnum, t->pid);
545                 if (&t->rcu_node_entry == rnp->gp_tasks)
546                         rnp->gp_tasks = np;
547                 if (&t->rcu_node_entry == rnp->exp_tasks)
548                         rnp->exp_tasks = np;
549                 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
550                         /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
551                         drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
552                         if (&t->rcu_node_entry == rnp->boost_tasks)
553                                 rnp->boost_tasks = np;
554                 }
555
556                 /*
557                  * If this was the last task on the current list, and if
558                  * we aren't waiting on any CPUs, report the quiescent state.
559                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
560                  * so we must take a snapshot of the expedited state.
561                  */
562                 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
563                 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
564                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
565                                                          rnp->gpnum,
566                                                          0, rnp->qsmask,
567                                                          rnp->level,
568                                                          rnp->grplo,
569                                                          rnp->grphi,
570                                                          !!rnp->gp_tasks);
571                         rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
572                 } else {
573                         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
574                 }
575
576                 /* Unboost if we were boosted. */
577                 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
578                         rt_mutex_futex_unlock(&rnp->boost_mtx);
579
580                 /*
581                  * If this was the last task on the expedited lists,
582                  * then we need to report up the rcu_node hierarchy.
583                  */
584                 if (!empty_exp && empty_exp_now)
585                         rcu_report_exp_rnp(rcu_state_p, rnp, true);
586         } else {
587                 local_irq_restore(flags);
588         }
589 }
590
591 /*
592  * Dump detailed information for all tasks blocking the current RCU
593  * grace period on the specified rcu_node structure.
594  */
595 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
596 {
597         unsigned long flags;
598         struct task_struct *t;
599
600         raw_spin_lock_irqsave_rcu_node(rnp, flags);
601         if (!rcu_preempt_blocked_readers_cgp(rnp)) {
602                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
603                 return;
604         }
605         t = list_entry(rnp->gp_tasks->prev,
606                        struct task_struct, rcu_node_entry);
607         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
608                 /*
609                  * We could be printing a lot while holding a spinlock.
610                  * Avoid triggering hard lockup.
611                  */
612                 touch_nmi_watchdog();
613                 sched_show_task(t);
614         }
615         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
616 }
617
618 /*
619  * Dump detailed information for all tasks blocking the current RCU
620  * grace period.
621  */
622 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
623 {
624         struct rcu_node *rnp = rcu_get_root(rsp);
625
626         rcu_print_detail_task_stall_rnp(rnp);
627         rcu_for_each_leaf_node(rsp, rnp)
628                 rcu_print_detail_task_stall_rnp(rnp);
629 }
630
631 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
632 {
633         pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
634                rnp->level, rnp->grplo, rnp->grphi);
635 }
636
637 static void rcu_print_task_stall_end(void)
638 {
639         pr_cont("\n");
640 }
641
642 /*
643  * Scan the current list of tasks blocked within RCU read-side critical
644  * sections, printing out the tid of each.
645  */
646 static int rcu_print_task_stall(struct rcu_node *rnp)
647 {
648         struct task_struct *t;
649         int ndetected = 0;
650
651         if (!rcu_preempt_blocked_readers_cgp(rnp))
652                 return 0;
653         rcu_print_task_stall_begin(rnp);
654         t = list_entry(rnp->gp_tasks->prev,
655                        struct task_struct, rcu_node_entry);
656         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
657                 pr_cont(" P%d", t->pid);
658                 ndetected++;
659         }
660         rcu_print_task_stall_end();
661         return ndetected;
662 }
663
664 /*
665  * Scan the current list of tasks blocked within RCU read-side critical
666  * sections, printing out the tid of each that is blocking the current
667  * expedited grace period.
668  */
669 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
670 {
671         struct task_struct *t;
672         int ndetected = 0;
673
674         if (!rnp->exp_tasks)
675                 return 0;
676         t = list_entry(rnp->exp_tasks->prev,
677                        struct task_struct, rcu_node_entry);
678         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
679                 pr_cont(" P%d", t->pid);
680                 ndetected++;
681         }
682         return ndetected;
683 }
684
685 /*
686  * Check that the list of blocked tasks for the newly completed grace
687  * period is in fact empty.  It is a serious bug to complete a grace
688  * period that still has RCU readers blocked!  This function must be
689  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
690  * must be held by the caller.
691  *
692  * Also, if there are blocked tasks on the list, they automatically
693  * block the newly created grace period, so set up ->gp_tasks accordingly.
694  */
695 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
696 {
697         struct task_struct *t;
698
699         RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
700         WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
701         if (rcu_preempt_has_tasks(rnp)) {
702                 rnp->gp_tasks = rnp->blkd_tasks.next;
703                 t = container_of(rnp->gp_tasks, struct task_struct,
704                                  rcu_node_entry);
705                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
706                                                 rnp->gpnum, t->pid);
707         }
708         WARN_ON_ONCE(rnp->qsmask);
709 }
710
711 /*
712  * Check for a quiescent state from the current CPU.  When a task blocks,
713  * the task is recorded in the corresponding CPU's rcu_node structure,
714  * which is checked elsewhere.
715  *
716  * Caller must disable hard irqs.
717  */
718 static void rcu_preempt_check_callbacks(void)
719 {
720         struct task_struct *t = current;
721
722         if (t->rcu_read_lock_nesting == 0) {
723                 rcu_preempt_qs();
724                 return;
725         }
726         if (t->rcu_read_lock_nesting > 0 &&
727             __this_cpu_read(rcu_data_p->core_needs_qs) &&
728             __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
729                 t->rcu_read_unlock_special.b.need_qs = true;
730 }
731
732 /**
733  * call_rcu() - Queue an RCU callback for invocation after a grace period.
734  * @head: structure to be used for queueing the RCU updates.
735  * @func: actual callback function to be invoked after the grace period
736  *
737  * The callback function will be invoked some time after a full grace
738  * period elapses, in other words after all pre-existing RCU read-side
739  * critical sections have completed.  However, the callback function
740  * might well execute concurrently with RCU read-side critical sections
741  * that started after call_rcu() was invoked.  RCU read-side critical
742  * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
743  * and may be nested.
744  *
745  * Note that all CPUs must agree that the grace period extended beyond
746  * all pre-existing RCU read-side critical section.  On systems with more
747  * than one CPU, this means that when "func()" is invoked, each CPU is
748  * guaranteed to have executed a full memory barrier since the end of its
749  * last RCU read-side critical section whose beginning preceded the call
750  * to call_rcu().  It also means that each CPU executing an RCU read-side
751  * critical section that continues beyond the start of "func()" must have
752  * executed a memory barrier after the call_rcu() but before the beginning
753  * of that RCU read-side critical section.  Note that these guarantees
754  * include CPUs that are offline, idle, or executing in user mode, as
755  * well as CPUs that are executing in the kernel.
756  *
757  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
758  * resulting RCU callback function "func()", then both CPU A and CPU B are
759  * guaranteed to execute a full memory barrier during the time interval
760  * between the call to call_rcu() and the invocation of "func()" -- even
761  * if CPU A and CPU B are the same CPU (but again only if the system has
762  * more than one CPU).
763  */
764 void call_rcu(struct rcu_head *head, rcu_callback_t func)
765 {
766         __call_rcu(head, func, rcu_state_p, -1, 0);
767 }
768 EXPORT_SYMBOL_GPL(call_rcu);
769
770 /**
771  * synchronize_rcu - wait until a grace period has elapsed.
772  *
773  * Control will return to the caller some time after a full grace
774  * period has elapsed, in other words after all currently executing RCU
775  * read-side critical sections have completed.  Note, however, that
776  * upon return from synchronize_rcu(), the caller might well be executing
777  * concurrently with new RCU read-side critical sections that began while
778  * synchronize_rcu() was waiting.  RCU read-side critical sections are
779  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
780  *
781  * See the description of synchronize_sched() for more detailed
782  * information on memory-ordering guarantees.  However, please note
783  * that -only- the memory-ordering guarantees apply.  For example,
784  * synchronize_rcu() is -not- guaranteed to wait on things like code
785  * protected by preempt_disable(), instead, synchronize_rcu() is -only-
786  * guaranteed to wait on RCU read-side critical sections, that is, sections
787  * of code protected by rcu_read_lock().
788  */
789 void synchronize_rcu(void)
790 {
791         RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
792                          lock_is_held(&rcu_lock_map) ||
793                          lock_is_held(&rcu_sched_lock_map),
794                          "Illegal synchronize_rcu() in RCU read-side critical section");
795         if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
796                 return;
797         if (rcu_gp_is_expedited())
798                 synchronize_rcu_expedited();
799         else
800                 wait_rcu_gp(call_rcu);
801 }
802 EXPORT_SYMBOL_GPL(synchronize_rcu);
803
804 /**
805  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
806  *
807  * Note that this primitive does not necessarily wait for an RCU grace period
808  * to complete.  For example, if there are no RCU callbacks queued anywhere
809  * in the system, then rcu_barrier() is within its rights to return
810  * immediately, without waiting for anything, much less an RCU grace period.
811  */
812 void rcu_barrier(void)
813 {
814         _rcu_barrier(rcu_state_p);
815 }
816 EXPORT_SYMBOL_GPL(rcu_barrier);
817
818 /*
819  * Initialize preemptible RCU's state structures.
820  */
821 static void __init __rcu_init_preempt(void)
822 {
823         rcu_init_one(rcu_state_p);
824 }
825
826 /*
827  * Check for a task exiting while in a preemptible-RCU read-side
828  * critical section, clean up if so.  No need to issue warnings,
829  * as debug_check_no_locks_held() already does this if lockdep
830  * is enabled.
831  */
832 void exit_rcu(void)
833 {
834         struct task_struct *t = current;
835
836         if (likely(list_empty(&current->rcu_node_entry)))
837                 return;
838         t->rcu_read_lock_nesting = 1;
839         barrier();
840         t->rcu_read_unlock_special.b.blocked = true;
841         __rcu_read_unlock();
842 }
843
844 #else /* #ifdef CONFIG_PREEMPT_RCU */
845
846 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
847
848 /*
849  * Tell them what RCU they are running.
850  */
851 static void __init rcu_bootup_announce(void)
852 {
853         pr_info("Hierarchical RCU implementation.\n");
854         rcu_bootup_announce_oddness();
855 }
856
857 /*
858  * Because preemptible RCU does not exist, we never have to check for
859  * CPUs being in quiescent states.
860  */
861 static void rcu_preempt_note_context_switch(bool preempt)
862 {
863 }
864
865 /*
866  * Because preemptible RCU does not exist, there are never any preempted
867  * RCU readers.
868  */
869 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
870 {
871         return 0;
872 }
873
874 /*
875  * Because there is no preemptible RCU, there can be no readers blocked.
876  */
877 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
878 {
879         return false;
880 }
881
882 /*
883  * Because preemptible RCU does not exist, we never have to check for
884  * tasks blocked within RCU read-side critical sections.
885  */
886 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
887 {
888 }
889
890 /*
891  * Because preemptible RCU does not exist, we never have to check for
892  * tasks blocked within RCU read-side critical sections.
893  */
894 static int rcu_print_task_stall(struct rcu_node *rnp)
895 {
896         return 0;
897 }
898
899 /*
900  * Because preemptible RCU does not exist, we never have to check for
901  * tasks blocked within RCU read-side critical sections that are
902  * blocking the current expedited grace period.
903  */
904 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
905 {
906         return 0;
907 }
908
909 /*
910  * Because there is no preemptible RCU, there can be no readers blocked,
911  * so there is no need to check for blocked tasks.  So check only for
912  * bogus qsmask values.
913  */
914 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
915 {
916         WARN_ON_ONCE(rnp->qsmask);
917 }
918
919 /*
920  * Because preemptible RCU does not exist, it never has any callbacks
921  * to check.
922  */
923 static void rcu_preempt_check_callbacks(void)
924 {
925 }
926
927 /*
928  * Because preemptible RCU does not exist, rcu_barrier() is just
929  * another name for rcu_barrier_sched().
930  */
931 void rcu_barrier(void)
932 {
933         rcu_barrier_sched();
934 }
935 EXPORT_SYMBOL_GPL(rcu_barrier);
936
937 /*
938  * Because preemptible RCU does not exist, it need not be initialized.
939  */
940 static void __init __rcu_init_preempt(void)
941 {
942 }
943
944 /*
945  * Because preemptible RCU does not exist, tasks cannot possibly exit
946  * while in preemptible RCU read-side critical sections.
947  */
948 void exit_rcu(void)
949 {
950 }
951
952 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
953
954 #ifdef CONFIG_RCU_BOOST
955
956 static void rcu_wake_cond(struct task_struct *t, int status)
957 {
958         /*
959          * If the thread is yielding, only wake it when this
960          * is invoked from idle
961          */
962         if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
963                 wake_up_process(t);
964 }
965
966 /*
967  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
968  * or ->boost_tasks, advancing the pointer to the next task in the
969  * ->blkd_tasks list.
970  *
971  * Note that irqs must be enabled: boosting the task can block.
972  * Returns 1 if there are more tasks needing to be boosted.
973  */
974 static int rcu_boost(struct rcu_node *rnp)
975 {
976         unsigned long flags;
977         struct task_struct *t;
978         struct list_head *tb;
979
980         if (READ_ONCE(rnp->exp_tasks) == NULL &&
981             READ_ONCE(rnp->boost_tasks) == NULL)
982                 return 0;  /* Nothing left to boost. */
983
984         raw_spin_lock_irqsave_rcu_node(rnp, flags);
985
986         /*
987          * Recheck under the lock: all tasks in need of boosting
988          * might exit their RCU read-side critical sections on their own.
989          */
990         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
991                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
992                 return 0;
993         }
994
995         /*
996          * Preferentially boost tasks blocking expedited grace periods.
997          * This cannot starve the normal grace periods because a second
998          * expedited grace period must boost all blocked tasks, including
999          * those blocking the pre-existing normal grace period.
1000          */
1001         if (rnp->exp_tasks != NULL)
1002                 tb = rnp->exp_tasks;
1003         else
1004                 tb = rnp->boost_tasks;
1005
1006         /*
1007          * We boost task t by manufacturing an rt_mutex that appears to
1008          * be held by task t.  We leave a pointer to that rt_mutex where
1009          * task t can find it, and task t will release the mutex when it
1010          * exits its outermost RCU read-side critical section.  Then
1011          * simply acquiring this artificial rt_mutex will boost task
1012          * t's priority.  (Thanks to tglx for suggesting this approach!)
1013          *
1014          * Note that task t must acquire rnp->lock to remove itself from
1015          * the ->blkd_tasks list, which it will do from exit() if from
1016          * nowhere else.  We therefore are guaranteed that task t will
1017          * stay around at least until we drop rnp->lock.  Note that
1018          * rnp->lock also resolves races between our priority boosting
1019          * and task t's exiting its outermost RCU read-side critical
1020          * section.
1021          */
1022         t = container_of(tb, struct task_struct, rcu_node_entry);
1023         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1024         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1025         /* Lock only for side effect: boosts task t's priority. */
1026         rt_mutex_lock(&rnp->boost_mtx);
1027         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1028
1029         return READ_ONCE(rnp->exp_tasks) != NULL ||
1030                READ_ONCE(rnp->boost_tasks) != NULL;
1031 }
1032
1033 /*
1034  * Priority-boosting kthread, one per leaf rcu_node.
1035  */
1036 static int rcu_boost_kthread(void *arg)
1037 {
1038         struct rcu_node *rnp = (struct rcu_node *)arg;
1039         int spincnt = 0;
1040         int more2boost;
1041
1042         trace_rcu_utilization(TPS("Start boost kthread@init"));
1043         for (;;) {
1044                 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1045                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1046                 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1047                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1048                 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1049                 more2boost = rcu_boost(rnp);
1050                 if (more2boost)
1051                         spincnt++;
1052                 else
1053                         spincnt = 0;
1054                 if (spincnt > 10) {
1055                         rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1056                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1057                         schedule_timeout_interruptible(2);
1058                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1059                         spincnt = 0;
1060                 }
1061         }
1062         /* NOTREACHED */
1063         trace_rcu_utilization(TPS("End boost kthread@notreached"));
1064         return 0;
1065 }
1066
1067 /*
1068  * Check to see if it is time to start boosting RCU readers that are
1069  * blocking the current grace period, and, if so, tell the per-rcu_node
1070  * kthread to start boosting them.  If there is an expedited grace
1071  * period in progress, it is always time to boost.
1072  *
1073  * The caller must hold rnp->lock, which this function releases.
1074  * The ->boost_kthread_task is immortal, so we don't need to worry
1075  * about it going away.
1076  */
1077 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1078         __releases(rnp->lock)
1079 {
1080         struct task_struct *t;
1081
1082         raw_lockdep_assert_held_rcu_node(rnp);
1083         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1084                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1085                 return;
1086         }
1087         if (rnp->exp_tasks != NULL ||
1088             (rnp->gp_tasks != NULL &&
1089              rnp->boost_tasks == NULL &&
1090              rnp->qsmask == 0 &&
1091              ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1092                 if (rnp->exp_tasks == NULL)
1093                         rnp->boost_tasks = rnp->gp_tasks;
1094                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1095                 t = rnp->boost_kthread_task;
1096                 if (t)
1097                         rcu_wake_cond(t, rnp->boost_kthread_status);
1098         } else {
1099                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1100         }
1101 }
1102
1103 /*
1104  * Wake up the per-CPU kthread to invoke RCU callbacks.
1105  */
1106 static void invoke_rcu_callbacks_kthread(void)
1107 {
1108         unsigned long flags;
1109
1110         local_irq_save(flags);
1111         __this_cpu_write(rcu_cpu_has_work, 1);
1112         if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1113             current != __this_cpu_read(rcu_cpu_kthread_task)) {
1114                 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1115                               __this_cpu_read(rcu_cpu_kthread_status));
1116         }
1117         local_irq_restore(flags);
1118 }
1119
1120 /*
1121  * Is the current CPU running the RCU-callbacks kthread?
1122  * Caller must have preemption disabled.
1123  */
1124 static bool rcu_is_callbacks_kthread(void)
1125 {
1126         return __this_cpu_read(rcu_cpu_kthread_task) == current;
1127 }
1128
1129 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1130
1131 /*
1132  * Do priority-boost accounting for the start of a new grace period.
1133  */
1134 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1135 {
1136         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1137 }
1138
1139 /*
1140  * Create an RCU-boost kthread for the specified node if one does not
1141  * already exist.  We only create this kthread for preemptible RCU.
1142  * Returns zero if all is well, a negated errno otherwise.
1143  */
1144 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1145                                        struct rcu_node *rnp)
1146 {
1147         int rnp_index = rnp - &rsp->node[0];
1148         unsigned long flags;
1149         struct sched_param sp;
1150         struct task_struct *t;
1151
1152         if (rcu_state_p != rsp)
1153                 return 0;
1154
1155         if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1156                 return 0;
1157
1158         rsp->boost = 1;
1159         if (rnp->boost_kthread_task != NULL)
1160                 return 0;
1161         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1162                            "rcub/%d", rnp_index);
1163         if (IS_ERR(t))
1164                 return PTR_ERR(t);
1165         raw_spin_lock_irqsave_rcu_node(rnp, flags);
1166         rnp->boost_kthread_task = t;
1167         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1168         sp.sched_priority = kthread_prio;
1169         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1170         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1171         return 0;
1172 }
1173
1174 static void rcu_kthread_do_work(void)
1175 {
1176         rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1177         rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1178         rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
1179 }
1180
1181 static void rcu_cpu_kthread_setup(unsigned int cpu)
1182 {
1183         struct sched_param sp;
1184
1185         sp.sched_priority = kthread_prio;
1186         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1187 }
1188
1189 static void rcu_cpu_kthread_park(unsigned int cpu)
1190 {
1191         per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1192 }
1193
1194 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1195 {
1196         return __this_cpu_read(rcu_cpu_has_work);
1197 }
1198
1199 /*
1200  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1201  * RCU softirq used in flavors and configurations of RCU that do not
1202  * support RCU priority boosting.
1203  */
1204 static void rcu_cpu_kthread(unsigned int cpu)
1205 {
1206         unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1207         char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1208         int spincnt;
1209
1210         for (spincnt = 0; spincnt < 10; spincnt++) {
1211                 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1212                 local_bh_disable();
1213                 *statusp = RCU_KTHREAD_RUNNING;
1214                 this_cpu_inc(rcu_cpu_kthread_loops);
1215                 local_irq_disable();
1216                 work = *workp;
1217                 *workp = 0;
1218                 local_irq_enable();
1219                 if (work)
1220                         rcu_kthread_do_work();
1221                 local_bh_enable();
1222                 if (*workp == 0) {
1223                         trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1224                         *statusp = RCU_KTHREAD_WAITING;
1225                         return;
1226                 }
1227         }
1228         *statusp = RCU_KTHREAD_YIELDING;
1229         trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1230         schedule_timeout_interruptible(2);
1231         trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1232         *statusp = RCU_KTHREAD_WAITING;
1233 }
1234
1235 /*
1236  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1237  * served by the rcu_node in question.  The CPU hotplug lock is still
1238  * held, so the value of rnp->qsmaskinit will be stable.
1239  *
1240  * We don't include outgoingcpu in the affinity set, use -1 if there is
1241  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1242  * this function allows the kthread to execute on any CPU.
1243  */
1244 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1245 {
1246         struct task_struct *t = rnp->boost_kthread_task;
1247         unsigned long mask = rcu_rnp_online_cpus(rnp);
1248         cpumask_var_t cm;
1249         int cpu;
1250
1251         if (!t)
1252                 return;
1253         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1254                 return;
1255         for_each_leaf_node_possible_cpu(rnp, cpu)
1256                 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1257                     cpu != outgoingcpu)
1258                         cpumask_set_cpu(cpu, cm);
1259         if (cpumask_weight(cm) == 0)
1260                 cpumask_setall(cm);
1261         set_cpus_allowed_ptr(t, cm);
1262         free_cpumask_var(cm);
1263 }
1264
1265 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1266         .store                  = &rcu_cpu_kthread_task,
1267         .thread_should_run      = rcu_cpu_kthread_should_run,
1268         .thread_fn              = rcu_cpu_kthread,
1269         .thread_comm            = "rcuc/%u",
1270         .setup                  = rcu_cpu_kthread_setup,
1271         .park                   = rcu_cpu_kthread_park,
1272 };
1273
1274 /*
1275  * Spawn boost kthreads -- called as soon as the scheduler is running.
1276  */
1277 static void __init rcu_spawn_boost_kthreads(void)
1278 {
1279         struct rcu_node *rnp;
1280         int cpu;
1281
1282         for_each_possible_cpu(cpu)
1283                 per_cpu(rcu_cpu_has_work, cpu) = 0;
1284         BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1285         rcu_for_each_leaf_node(rcu_state_p, rnp)
1286                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1287 }
1288
1289 static void rcu_prepare_kthreads(int cpu)
1290 {
1291         struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1292         struct rcu_node *rnp = rdp->mynode;
1293
1294         /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1295         if (rcu_scheduler_fully_active)
1296                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1297 }
1298
1299 #else /* #ifdef CONFIG_RCU_BOOST */
1300
1301 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1302         __releases(rnp->lock)
1303 {
1304         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1305 }
1306
1307 static void invoke_rcu_callbacks_kthread(void)
1308 {
1309         WARN_ON_ONCE(1);
1310 }
1311
1312 static bool rcu_is_callbacks_kthread(void)
1313 {
1314         return false;
1315 }
1316
1317 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1318 {
1319 }
1320
1321 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1322 {
1323 }
1324
1325 static void __init rcu_spawn_boost_kthreads(void)
1326 {
1327 }
1328
1329 static void rcu_prepare_kthreads(int cpu)
1330 {
1331 }
1332
1333 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1334
1335 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1336
1337 /*
1338  * Check to see if any future RCU-related work will need to be done
1339  * by the current CPU, even if none need be done immediately, returning
1340  * 1 if so.  This function is part of the RCU implementation; it is -not-
1341  * an exported member of the RCU API.
1342  *
1343  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1344  * any flavor of RCU.
1345  */
1346 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1347 {
1348         *nextevt = KTIME_MAX;
1349         return rcu_cpu_has_callbacks(NULL);
1350 }
1351
1352 /*
1353  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1354  * after it.
1355  */
1356 static void rcu_cleanup_after_idle(void)
1357 {
1358 }
1359
1360 /*
1361  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1362  * is nothing.
1363  */
1364 static void rcu_prepare_for_idle(void)
1365 {
1366 }
1367
1368 /*
1369  * Don't bother keeping a running count of the number of RCU callbacks
1370  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1371  */
1372 static void rcu_idle_count_callbacks_posted(void)
1373 {
1374 }
1375
1376 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1377
1378 /*
1379  * This code is invoked when a CPU goes idle, at which point we want
1380  * to have the CPU do everything required for RCU so that it can enter
1381  * the energy-efficient dyntick-idle mode.  This is handled by a
1382  * state machine implemented by rcu_prepare_for_idle() below.
1383  *
1384  * The following three proprocessor symbols control this state machine:
1385  *
1386  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1387  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1388  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1389  *      benchmarkers who might otherwise be tempted to set this to a large
1390  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1391  *      system.  And if you are -that- concerned about energy efficiency,
1392  *      just power the system down and be done with it!
1393  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1394  *      permitted to sleep in dyntick-idle mode with only lazy RCU
1395  *      callbacks pending.  Setting this too high can OOM your system.
1396  *
1397  * The values below work well in practice.  If future workloads require
1398  * adjustment, they can be converted into kernel config parameters, though
1399  * making the state machine smarter might be a better option.
1400  */
1401 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1402 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1403
1404 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1405 module_param(rcu_idle_gp_delay, int, 0644);
1406 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1407 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1408
1409 /*
1410  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1411  * only if it has been awhile since the last time we did so.  Afterwards,
1412  * if there are any callbacks ready for immediate invocation, return true.
1413  */
1414 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1415 {
1416         bool cbs_ready = false;
1417         struct rcu_data *rdp;
1418         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1419         struct rcu_node *rnp;
1420         struct rcu_state *rsp;
1421
1422         /* Exit early if we advanced recently. */
1423         if (jiffies == rdtp->last_advance_all)
1424                 return false;
1425         rdtp->last_advance_all = jiffies;
1426
1427         for_each_rcu_flavor(rsp) {
1428                 rdp = this_cpu_ptr(rsp->rda);
1429                 rnp = rdp->mynode;
1430
1431                 /*
1432                  * Don't bother checking unless a grace period has
1433                  * completed since we last checked and there are
1434                  * callbacks not yet ready to invoke.
1435                  */
1436                 if ((rdp->completed != rnp->completed ||
1437                      unlikely(READ_ONCE(rdp->gpwrap))) &&
1438                     rcu_segcblist_pend_cbs(&rdp->cblist))
1439                         note_gp_changes(rsp, rdp);
1440
1441                 if (rcu_segcblist_ready_cbs(&rdp->cblist))
1442                         cbs_ready = true;
1443         }
1444         return cbs_ready;
1445 }
1446
1447 /*
1448  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1449  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1450  * caller to set the timeout based on whether or not there are non-lazy
1451  * callbacks.
1452  *
1453  * The caller must have disabled interrupts.
1454  */
1455 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1456 {
1457         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1458         unsigned long dj;
1459
1460         lockdep_assert_irqs_disabled();
1461
1462         /* Snapshot to detect later posting of non-lazy callback. */
1463         rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1464
1465         /* If no callbacks, RCU doesn't need the CPU. */
1466         if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1467                 *nextevt = KTIME_MAX;
1468                 return 0;
1469         }
1470
1471         /* Attempt to advance callbacks. */
1472         if (rcu_try_advance_all_cbs()) {
1473                 /* Some ready to invoke, so initiate later invocation. */
1474                 invoke_rcu_core();
1475                 return 1;
1476         }
1477         rdtp->last_accelerate = jiffies;
1478
1479         /* Request timer delay depending on laziness, and round. */
1480         if (!rdtp->all_lazy) {
1481                 dj = round_up(rcu_idle_gp_delay + jiffies,
1482                                rcu_idle_gp_delay) - jiffies;
1483         } else {
1484                 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1485         }
1486         *nextevt = basemono + dj * TICK_NSEC;
1487         return 0;
1488 }
1489
1490 /*
1491  * Prepare a CPU for idle from an RCU perspective.  The first major task
1492  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1493  * The second major task is to check to see if a non-lazy callback has
1494  * arrived at a CPU that previously had only lazy callbacks.  The third
1495  * major task is to accelerate (that is, assign grace-period numbers to)
1496  * any recently arrived callbacks.
1497  *
1498  * The caller must have disabled interrupts.
1499  */
1500 static void rcu_prepare_for_idle(void)
1501 {
1502         bool needwake;
1503         struct rcu_data *rdp;
1504         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1505         struct rcu_node *rnp;
1506         struct rcu_state *rsp;
1507         int tne;
1508
1509         lockdep_assert_irqs_disabled();
1510         if (rcu_is_nocb_cpu(smp_processor_id()))
1511                 return;
1512
1513         /* Handle nohz enablement switches conservatively. */
1514         tne = READ_ONCE(tick_nohz_active);
1515         if (tne != rdtp->tick_nohz_enabled_snap) {
1516                 if (rcu_cpu_has_callbacks(NULL))
1517                         invoke_rcu_core(); /* force nohz to see update. */
1518                 rdtp->tick_nohz_enabled_snap = tne;
1519                 return;
1520         }
1521         if (!tne)
1522                 return;
1523
1524         /*
1525          * If a non-lazy callback arrived at a CPU having only lazy
1526          * callbacks, invoke RCU core for the side-effect of recalculating
1527          * idle duration on re-entry to idle.
1528          */
1529         if (rdtp->all_lazy &&
1530             rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1531                 rdtp->all_lazy = false;
1532                 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1533                 invoke_rcu_core();
1534                 return;
1535         }
1536
1537         /*
1538          * If we have not yet accelerated this jiffy, accelerate all
1539          * callbacks on this CPU.
1540          */
1541         if (rdtp->last_accelerate == jiffies)
1542                 return;
1543         rdtp->last_accelerate = jiffies;
1544         for_each_rcu_flavor(rsp) {
1545                 rdp = this_cpu_ptr(rsp->rda);
1546                 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1547                         continue;
1548                 rnp = rdp->mynode;
1549                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1550                 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1551                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1552                 if (needwake)
1553                         rcu_gp_kthread_wake(rsp);
1554         }
1555 }
1556
1557 /*
1558  * Clean up for exit from idle.  Attempt to advance callbacks based on
1559  * any grace periods that elapsed while the CPU was idle, and if any
1560  * callbacks are now ready to invoke, initiate invocation.
1561  */
1562 static void rcu_cleanup_after_idle(void)
1563 {
1564         lockdep_assert_irqs_disabled();
1565         if (rcu_is_nocb_cpu(smp_processor_id()))
1566                 return;
1567         if (rcu_try_advance_all_cbs())
1568                 invoke_rcu_core();
1569 }
1570
1571 /*
1572  * Keep a running count of the number of non-lazy callbacks posted
1573  * on this CPU.  This running counter (which is never decremented) allows
1574  * rcu_prepare_for_idle() to detect when something out of the idle loop
1575  * posts a callback, even if an equal number of callbacks are invoked.
1576  * Of course, callbacks should only be posted from within a trace event
1577  * designed to be called from idle or from within RCU_NONIDLE().
1578  */
1579 static void rcu_idle_count_callbacks_posted(void)
1580 {
1581         __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1582 }
1583
1584 /*
1585  * Data for flushing lazy RCU callbacks at OOM time.
1586  */
1587 static atomic_t oom_callback_count;
1588 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1589
1590 /*
1591  * RCU OOM callback -- decrement the outstanding count and deliver the
1592  * wake-up if we are the last one.
1593  */
1594 static void rcu_oom_callback(struct rcu_head *rhp)
1595 {
1596         if (atomic_dec_and_test(&oom_callback_count))
1597                 wake_up(&oom_callback_wq);
1598 }
1599
1600 /*
1601  * Post an rcu_oom_notify callback on the current CPU if it has at
1602  * least one lazy callback.  This will unnecessarily post callbacks
1603  * to CPUs that already have a non-lazy callback at the end of their
1604  * callback list, but this is an infrequent operation, so accept some
1605  * extra overhead to keep things simple.
1606  */
1607 static void rcu_oom_notify_cpu(void *unused)
1608 {
1609         struct rcu_state *rsp;
1610         struct rcu_data *rdp;
1611
1612         for_each_rcu_flavor(rsp) {
1613                 rdp = raw_cpu_ptr(rsp->rda);
1614                 if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) {
1615                         atomic_inc(&oom_callback_count);
1616                         rsp->call(&rdp->oom_head, rcu_oom_callback);
1617                 }
1618         }
1619 }
1620
1621 /*
1622  * If low on memory, ensure that each CPU has a non-lazy callback.
1623  * This will wake up CPUs that have only lazy callbacks, in turn
1624  * ensuring that they free up the corresponding memory in a timely manner.
1625  * Because an uncertain amount of memory will be freed in some uncertain
1626  * timeframe, we do not claim to have freed anything.
1627  */
1628 static int rcu_oom_notify(struct notifier_block *self,
1629                           unsigned long notused, void *nfreed)
1630 {
1631         int cpu;
1632
1633         /* Wait for callbacks from earlier instance to complete. */
1634         wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1635         smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1636
1637         /*
1638          * Prevent premature wakeup: ensure that all increments happen
1639          * before there is a chance of the counter reaching zero.
1640          */
1641         atomic_set(&oom_callback_count, 1);
1642
1643         for_each_online_cpu(cpu) {
1644                 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1645                 cond_resched_tasks_rcu_qs();
1646         }
1647
1648         /* Unconditionally decrement: no need to wake ourselves up. */
1649         atomic_dec(&oom_callback_count);
1650
1651         return NOTIFY_OK;
1652 }
1653
1654 static struct notifier_block rcu_oom_nb = {
1655         .notifier_call = rcu_oom_notify
1656 };
1657
1658 static int __init rcu_register_oom_notifier(void)
1659 {
1660         register_oom_notifier(&rcu_oom_nb);
1661         return 0;
1662 }
1663 early_initcall(rcu_register_oom_notifier);
1664
1665 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1666
1667 #ifdef CONFIG_RCU_FAST_NO_HZ
1668
1669 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1670 {
1671         struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1672         unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1673
1674         sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1675                 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1676                 ulong2long(nlpd),
1677                 rdtp->all_lazy ? 'L' : '.',
1678                 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1679 }
1680
1681 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1682
1683 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1684 {
1685         *cp = '\0';
1686 }
1687
1688 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1689
1690 /* Initiate the stall-info list. */
1691 static void print_cpu_stall_info_begin(void)
1692 {
1693         pr_cont("\n");
1694 }
1695
1696 /*
1697  * Print out diagnostic information for the specified stalled CPU.
1698  *
1699  * If the specified CPU is aware of the current RCU grace period
1700  * (flavor specified by rsp), then print the number of scheduling
1701  * clock interrupts the CPU has taken during the time that it has
1702  * been aware.  Otherwise, print the number of RCU grace periods
1703  * that this CPU is ignorant of, for example, "1" if the CPU was
1704  * aware of the previous grace period.
1705  *
1706  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1707  */
1708 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1709 {
1710         unsigned long delta;
1711         char fast_no_hz[72];
1712         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1713         struct rcu_dynticks *rdtp = rdp->dynticks;
1714         char *ticks_title;
1715         unsigned long ticks_value;
1716
1717         /*
1718          * We could be printing a lot while holding a spinlock.  Avoid
1719          * triggering hard lockup.
1720          */
1721         touch_nmi_watchdog();
1722
1723         if (rsp->gpnum == rdp->gpnum) {
1724                 ticks_title = "ticks this GP";
1725                 ticks_value = rdp->ticks_this_gp;
1726         } else {
1727                 ticks_title = "GPs behind";
1728                 ticks_value = rsp->gpnum - rdp->gpnum;
1729         }
1730         print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1731         delta = rdp->mynode->gpnum - rdp->rcu_iw_gpnum;
1732         pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%ld softirq=%u/%u fqs=%ld %s\n",
1733                cpu,
1734                "O."[!!cpu_online(cpu)],
1735                "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1736                "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1737                !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' :
1738                         rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' :
1739                                 "!."[!delta],
1740                ticks_value, ticks_title,
1741                rcu_dynticks_snap(rdtp) & 0xfff,
1742                rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1743                rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1744                READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1745                fast_no_hz);
1746 }
1747
1748 /* Terminate the stall-info list. */
1749 static void print_cpu_stall_info_end(void)
1750 {
1751         pr_err("\t");
1752 }
1753
1754 /* Zero ->ticks_this_gp for all flavors of RCU. */
1755 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1756 {
1757         rdp->ticks_this_gp = 0;
1758         rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1759 }
1760
1761 /* Increment ->ticks_this_gp for all flavors of RCU. */
1762 static void increment_cpu_stall_ticks(void)
1763 {
1764         struct rcu_state *rsp;
1765
1766         for_each_rcu_flavor(rsp)
1767                 raw_cpu_inc(rsp->rda->ticks_this_gp);
1768 }
1769
1770 #ifdef CONFIG_RCU_NOCB_CPU
1771
1772 /*
1773  * Offload callback processing from the boot-time-specified set of CPUs
1774  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1775  * kthread created that pulls the callbacks from the corresponding CPU,
1776  * waits for a grace period to elapse, and invokes the callbacks.
1777  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1778  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1779  * has been specified, in which case each kthread actively polls its
1780  * CPU.  (Which isn't so great for energy efficiency, but which does
1781  * reduce RCU's overhead on that CPU.)
1782  *
1783  * This is intended to be used in conjunction with Frederic Weisbecker's
1784  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1785  * running CPU-bound user-mode computations.
1786  *
1787  * Offloading of callback processing could also in theory be used as
1788  * an energy-efficiency measure because CPUs with no RCU callbacks
1789  * queued are more aggressive about entering dyntick-idle mode.
1790  */
1791
1792
1793 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1794 static int __init rcu_nocb_setup(char *str)
1795 {
1796         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1797         cpulist_parse(str, rcu_nocb_mask);
1798         return 1;
1799 }
1800 __setup("rcu_nocbs=", rcu_nocb_setup);
1801
1802 static int __init parse_rcu_nocb_poll(char *arg)
1803 {
1804         rcu_nocb_poll = true;
1805         return 0;
1806 }
1807 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1808
1809 /*
1810  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1811  * grace period.
1812  */
1813 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1814 {
1815         swake_up_all(sq);
1816 }
1817
1818 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1819 {
1820         return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1821 }
1822
1823 static void rcu_init_one_nocb(struct rcu_node *rnp)
1824 {
1825         init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1826         init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1827 }
1828
1829 /* Is the specified CPU a no-CBs CPU? */
1830 bool rcu_is_nocb_cpu(int cpu)
1831 {
1832         if (cpumask_available(rcu_nocb_mask))
1833                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1834         return false;
1835 }
1836
1837 /*
1838  * Kick the leader kthread for this NOCB group.  Caller holds ->nocb_lock
1839  * and this function releases it.
1840  */
1841 static void __wake_nocb_leader(struct rcu_data *rdp, bool force,
1842                                unsigned long flags)
1843         __releases(rdp->nocb_lock)
1844 {
1845         struct rcu_data *rdp_leader = rdp->nocb_leader;
1846
1847         lockdep_assert_held(&rdp->nocb_lock);
1848         if (!READ_ONCE(rdp_leader->nocb_kthread)) {
1849                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1850                 return;
1851         }
1852         if (rdp_leader->nocb_leader_sleep || force) {
1853                 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1854                 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1855                 del_timer(&rdp->nocb_timer);
1856                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1857                 smp_mb(); /* ->nocb_leader_sleep before swake_up(). */
1858                 swake_up(&rdp_leader->nocb_wq);
1859         } else {
1860                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1861         }
1862 }
1863
1864 /*
1865  * Kick the leader kthread for this NOCB group, but caller has not
1866  * acquired locks.
1867  */
1868 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1869 {
1870         unsigned long flags;
1871
1872         raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1873         __wake_nocb_leader(rdp, force, flags);
1874 }
1875
1876 /*
1877  * Arrange to wake the leader kthread for this NOCB group at some
1878  * future time when it is safe to do so.
1879  */
1880 static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype,
1881                                    const char *reason)
1882 {
1883         unsigned long flags;
1884
1885         raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1886         if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1887                 mod_timer(&rdp->nocb_timer, jiffies + 1);
1888         WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1889         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, reason);
1890         raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1891 }
1892
1893 /*
1894  * Does the specified CPU need an RCU callback for the specified flavor
1895  * of rcu_barrier()?
1896  */
1897 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1898 {
1899         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1900         unsigned long ret;
1901 #ifdef CONFIG_PROVE_RCU
1902         struct rcu_head *rhp;
1903 #endif /* #ifdef CONFIG_PROVE_RCU */
1904
1905         /*
1906          * Check count of all no-CBs callbacks awaiting invocation.
1907          * There needs to be a barrier before this function is called,
1908          * but associated with a prior determination that no more
1909          * callbacks would be posted.  In the worst case, the first
1910          * barrier in _rcu_barrier() suffices (but the caller cannot
1911          * necessarily rely on this, not a substitute for the caller
1912          * getting the concurrency design right!).  There must also be
1913          * a barrier between the following load an posting of a callback
1914          * (if a callback is in fact needed).  This is associated with an
1915          * atomic_inc() in the caller.
1916          */
1917         ret = atomic_long_read(&rdp->nocb_q_count);
1918
1919 #ifdef CONFIG_PROVE_RCU
1920         rhp = READ_ONCE(rdp->nocb_head);
1921         if (!rhp)
1922                 rhp = READ_ONCE(rdp->nocb_gp_head);
1923         if (!rhp)
1924                 rhp = READ_ONCE(rdp->nocb_follower_head);
1925
1926         /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1927         if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1928             rcu_scheduler_fully_active) {
1929                 /* RCU callback enqueued before CPU first came online??? */
1930                 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1931                        cpu, rhp->func);
1932                 WARN_ON_ONCE(1);
1933         }
1934 #endif /* #ifdef CONFIG_PROVE_RCU */
1935
1936         return !!ret;
1937 }
1938
1939 /*
1940  * Enqueue the specified string of rcu_head structures onto the specified
1941  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1942  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1943  * counts are supplied by rhcount and rhcount_lazy.
1944  *
1945  * If warranted, also wake up the kthread servicing this CPUs queues.
1946  */
1947 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1948                                     struct rcu_head *rhp,
1949                                     struct rcu_head **rhtp,
1950                                     int rhcount, int rhcount_lazy,
1951                                     unsigned long flags)
1952 {
1953         int len;
1954         struct rcu_head **old_rhpp;
1955         struct task_struct *t;
1956
1957         /* Enqueue the callback on the nocb list and update counts. */
1958         atomic_long_add(rhcount, &rdp->nocb_q_count);
1959         /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1960         old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1961         WRITE_ONCE(*old_rhpp, rhp);
1962         atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1963         smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1964
1965         /* If we are not being polled and there is a kthread, awaken it ... */
1966         t = READ_ONCE(rdp->nocb_kthread);
1967         if (rcu_nocb_poll || !t) {
1968                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1969                                     TPS("WakeNotPoll"));
1970                 return;
1971         }
1972         len = atomic_long_read(&rdp->nocb_q_count);
1973         if (old_rhpp == &rdp->nocb_head) {
1974                 if (!irqs_disabled_flags(flags)) {
1975                         /* ... if queue was empty ... */
1976                         wake_nocb_leader(rdp, false);
1977                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1978                                             TPS("WakeEmpty"));
1979                 } else {
1980                         wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
1981                                                TPS("WakeEmptyIsDeferred"));
1982                 }
1983                 rdp->qlen_last_fqs_check = 0;
1984         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1985                 /* ... or if many callbacks queued. */
1986                 if (!irqs_disabled_flags(flags)) {
1987                         wake_nocb_leader(rdp, true);
1988                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1989                                             TPS("WakeOvf"));
1990                 } else {
1991                         wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE_FORCE,
1992                                                TPS("WakeOvfIsDeferred"));
1993                 }
1994                 rdp->qlen_last_fqs_check = LONG_MAX / 2;
1995         } else {
1996                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1997         }
1998         return;
1999 }
2000
2001 /*
2002  * This is a helper for __call_rcu(), which invokes this when the normal
2003  * callback queue is inoperable.  If this is not a no-CBs CPU, this
2004  * function returns failure back to __call_rcu(), which can complain
2005  * appropriately.
2006  *
2007  * Otherwise, this function queues the callback where the corresponding
2008  * "rcuo" kthread can find it.
2009  */
2010 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2011                             bool lazy, unsigned long flags)
2012 {
2013
2014         if (!rcu_is_nocb_cpu(rdp->cpu))
2015                 return false;
2016         __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2017         if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2018                 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2019                                          (unsigned long)rhp->func,
2020                                          -atomic_long_read(&rdp->nocb_q_count_lazy),
2021                                          -atomic_long_read(&rdp->nocb_q_count));
2022         else
2023                 trace_rcu_callback(rdp->rsp->name, rhp,
2024                                    -atomic_long_read(&rdp->nocb_q_count_lazy),
2025                                    -atomic_long_read(&rdp->nocb_q_count));
2026
2027         /*
2028          * If called from an extended quiescent state with interrupts
2029          * disabled, invoke the RCU core in order to allow the idle-entry
2030          * deferred-wakeup check to function.
2031          */
2032         if (irqs_disabled_flags(flags) &&
2033             !rcu_is_watching() &&
2034             cpu_online(smp_processor_id()))
2035                 invoke_rcu_core();
2036
2037         return true;
2038 }
2039
2040 /*
2041  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2042  * not a no-CBs CPU.
2043  */
2044 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2045                                                      struct rcu_data *rdp,
2046                                                      unsigned long flags)
2047 {
2048         lockdep_assert_irqs_disabled();
2049         if (!rcu_is_nocb_cpu(smp_processor_id()))
2050                 return false; /* Not NOCBs CPU, caller must migrate CBs. */
2051         __call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist),
2052                                 rcu_segcblist_tail(&rdp->cblist),
2053                                 rcu_segcblist_n_cbs(&rdp->cblist),
2054                                 rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags);
2055         rcu_segcblist_init(&rdp->cblist);
2056         rcu_segcblist_disable(&rdp->cblist);
2057         return true;
2058 }
2059
2060 /*
2061  * If necessary, kick off a new grace period, and either way wait
2062  * for a subsequent grace period to complete.
2063  */
2064 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2065 {
2066         unsigned long c;
2067         bool d;
2068         unsigned long flags;
2069         bool needwake;
2070         struct rcu_node *rnp = rdp->mynode;
2071
2072         raw_spin_lock_irqsave_rcu_node(rnp, flags);
2073         c = rcu_cbs_completed(rdp->rsp, rnp);
2074         needwake = rcu_start_this_gp(rnp, rdp, c);
2075         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2076         if (needwake)
2077                 rcu_gp_kthread_wake(rdp->rsp);
2078
2079         /*
2080          * Wait for the grace period.  Do so interruptibly to avoid messing
2081          * up the load average.
2082          */
2083         trace_rcu_this_gp(rnp, rdp, c, TPS("StartWait"));
2084         for (;;) {
2085                 swait_event_interruptible(
2086                         rnp->nocb_gp_wq[c & 0x1],
2087                         (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2088                 if (likely(d))
2089                         break;
2090                 WARN_ON(signal_pending(current));
2091                 trace_rcu_this_gp(rnp, rdp, c, TPS("ResumeWait"));
2092         }
2093         trace_rcu_this_gp(rnp, rdp, c, TPS("EndWait"));
2094         smp_mb(); /* Ensure that CB invocation happens after GP end. */
2095 }
2096
2097 /*
2098  * Leaders come here to wait for additional callbacks to show up.
2099  * This function does not return until callbacks appear.
2100  */
2101 static void nocb_leader_wait(struct rcu_data *my_rdp)
2102 {
2103         bool firsttime = true;
2104         unsigned long flags;
2105         bool gotcbs;
2106         struct rcu_data *rdp;
2107         struct rcu_head **tail;
2108
2109 wait_again:
2110
2111         /* Wait for callbacks to appear. */
2112         if (!rcu_nocb_poll) {
2113                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Sleep"));
2114                 swait_event_interruptible(my_rdp->nocb_wq,
2115                                 !READ_ONCE(my_rdp->nocb_leader_sleep));
2116                 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2117                 my_rdp->nocb_leader_sleep = true;
2118                 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2119                 del_timer(&my_rdp->nocb_timer);
2120                 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2121         } else if (firsttime) {
2122                 firsttime = false; /* Don't drown trace log with "Poll"! */
2123                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Poll"));
2124         }
2125
2126         /*
2127          * Each pass through the following loop checks a follower for CBs.
2128          * We are our own first follower.  Any CBs found are moved to
2129          * nocb_gp_head, where they await a grace period.
2130          */
2131         gotcbs = false;
2132         smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
2133         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2134                 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2135                 if (!rdp->nocb_gp_head)
2136                         continue;  /* No CBs here, try next follower. */
2137
2138                 /* Move callbacks to wait-for-GP list, which is empty. */
2139                 WRITE_ONCE(rdp->nocb_head, NULL);
2140                 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2141                 gotcbs = true;
2142         }
2143
2144         /* No callbacks?  Sleep a bit if polling, and go retry.  */
2145         if (unlikely(!gotcbs)) {
2146                 WARN_ON(signal_pending(current));
2147                 if (rcu_nocb_poll) {
2148                         schedule_timeout_interruptible(1);
2149                 } else {
2150                         trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2151                                             TPS("WokeEmpty"));
2152                 }
2153                 goto wait_again;
2154         }
2155
2156         /* Wait for one grace period. */
2157         rcu_nocb_wait_gp(my_rdp);
2158
2159         /* Each pass through the following loop wakes a follower, if needed. */
2160         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2161                 if (!rcu_nocb_poll &&
2162                     READ_ONCE(rdp->nocb_head) &&
2163                     READ_ONCE(my_rdp->nocb_leader_sleep)) {
2164                         raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2165                         my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2166                         raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2167                 }
2168                 if (!rdp->nocb_gp_head)
2169                         continue; /* No CBs, so no need to wake follower. */
2170
2171                 /* Append callbacks to follower's "done" list. */
2172                 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2173                 tail = rdp->nocb_follower_tail;
2174                 rdp->nocb_follower_tail = rdp->nocb_gp_tail;
2175                 *tail = rdp->nocb_gp_head;
2176                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2177                 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2178                         /* List was empty, so wake up the follower.  */
2179                         swake_up(&rdp->nocb_wq);
2180                 }
2181         }
2182
2183         /* If we (the leader) don't have CBs, go wait some more. */
2184         if (!my_rdp->nocb_follower_head)
2185                 goto wait_again;
2186 }
2187
2188 /*
2189  * Followers come here to wait for additional callbacks to show up.
2190  * This function does not return until callbacks appear.
2191  */
2192 static void nocb_follower_wait(struct rcu_data *rdp)
2193 {
2194         for (;;) {
2195                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("FollowerSleep"));
2196                 swait_event_interruptible(rdp->nocb_wq,
2197                                          READ_ONCE(rdp->nocb_follower_head));
2198                 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2199                         /* ^^^ Ensure CB invocation follows _head test. */
2200                         return;
2201                 }
2202                 WARN_ON(signal_pending(current));
2203                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeEmpty"));
2204         }
2205 }
2206
2207 /*
2208  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2209  * callbacks queued by the corresponding no-CBs CPU, however, there is
2210  * an optional leader-follower relationship so that the grace-period
2211  * kthreads don't have to do quite so many wakeups.
2212  */
2213 static int rcu_nocb_kthread(void *arg)
2214 {
2215         int c, cl;
2216         unsigned long flags;
2217         struct rcu_head *list;
2218         struct rcu_head *next;
2219         struct rcu_head **tail;
2220         struct rcu_data *rdp = arg;
2221
2222         /* Each pass through this loop invokes one batch of callbacks */
2223         for (;;) {
2224                 /* Wait for callbacks. */
2225                 if (rdp->nocb_leader == rdp)
2226                         nocb_leader_wait(rdp);
2227                 else
2228                         nocb_follower_wait(rdp);
2229
2230                 /* Pull the ready-to-invoke callbacks onto local list. */
2231                 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2232                 list = rdp->nocb_follower_head;
2233                 rdp->nocb_follower_head = NULL;
2234                 tail = rdp->nocb_follower_tail;
2235                 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2236                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2237                 BUG_ON(!list);
2238                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeNonEmpty"));
2239
2240                 /* Each pass through the following loop invokes a callback. */
2241                 trace_rcu_batch_start(rdp->rsp->name,
2242                                       atomic_long_read(&rdp->nocb_q_count_lazy),
2243                                       atomic_long_read(&rdp->nocb_q_count), -1);
2244                 c = cl = 0;
2245                 while (list) {
2246                         next = list->next;
2247                         /* Wait for enqueuing to complete, if needed. */
2248                         while (next == NULL && &list->next != tail) {
2249                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2250                                                     TPS("WaitQueue"));
2251                                 schedule_timeout_interruptible(1);
2252                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2253                                                     TPS("WokeQueue"));
2254                                 next = list->next;
2255                         }
2256                         debug_rcu_head_unqueue(list);
2257                         local_bh_disable();
2258                         if (__rcu_reclaim(rdp->rsp->name, list))
2259                                 cl++;
2260                         c++;
2261                         local_bh_enable();
2262                         cond_resched_tasks_rcu_qs();
2263                         list = next;
2264                 }
2265                 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2266                 smp_mb__before_atomic();  /* _add after CB invocation. */
2267                 atomic_long_add(-c, &rdp->nocb_q_count);
2268                 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2269         }
2270         return 0;
2271 }
2272
2273 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2274 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2275 {
2276         return READ_ONCE(rdp->nocb_defer_wakeup);
2277 }
2278
2279 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2280 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2281 {
2282         unsigned long flags;
2283         int ndw;
2284
2285         raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2286         if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2287                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2288                 return;
2289         }
2290         ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2291         WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2292         __wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2293         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2294 }
2295
2296 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2297 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2298 {
2299         struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2300
2301         do_nocb_deferred_wakeup_common(rdp);
2302 }
2303
2304 /*
2305  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2306  * This means we do an inexact common-case check.  Note that if
2307  * we miss, ->nocb_timer will eventually clean things up.
2308  */
2309 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2310 {
2311         if (rcu_nocb_need_deferred_wakeup(rdp))
2312                 do_nocb_deferred_wakeup_common(rdp);
2313 }
2314
2315 void __init rcu_init_nohz(void)
2316 {
2317         int cpu;
2318         bool need_rcu_nocb_mask = false;
2319         struct rcu_state *rsp;
2320
2321 #if defined(CONFIG_NO_HZ_FULL)
2322         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2323                 need_rcu_nocb_mask = true;
2324 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2325
2326         if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2327                 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2328                         pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2329                         return;
2330                 }
2331         }
2332         if (!cpumask_available(rcu_nocb_mask))
2333                 return;
2334
2335 #if defined(CONFIG_NO_HZ_FULL)
2336         if (tick_nohz_full_running)
2337                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2338 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2339
2340         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2341                 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2342                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2343                             rcu_nocb_mask);
2344         }
2345         if (cpumask_empty(rcu_nocb_mask))
2346                 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2347         else
2348                 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2349                         cpumask_pr_args(rcu_nocb_mask));
2350         if (rcu_nocb_poll)
2351                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2352
2353         for_each_rcu_flavor(rsp) {
2354                 for_each_cpu(cpu, rcu_nocb_mask)
2355                         init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2356                 rcu_organize_nocb_kthreads(rsp);
2357         }
2358 }
2359
2360 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2361 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2362 {
2363         rdp->nocb_tail = &rdp->nocb_head;
2364         init_swait_queue_head(&rdp->nocb_wq);
2365         rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2366         raw_spin_lock_init(&rdp->nocb_lock);
2367         timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2368 }
2369
2370 /*
2371  * If the specified CPU is a no-CBs CPU that does not already have its
2372  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2373  * brought online out of order, this can require re-organizing the
2374  * leader-follower relationships.
2375  */
2376 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2377 {
2378         struct rcu_data *rdp;
2379         struct rcu_data *rdp_last;
2380         struct rcu_data *rdp_old_leader;
2381         struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2382         struct task_struct *t;
2383
2384         /*
2385          * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2386          * then nothing to do.
2387          */
2388         if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2389                 return;
2390
2391         /* If we didn't spawn the leader first, reorganize! */
2392         rdp_old_leader = rdp_spawn->nocb_leader;
2393         if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2394                 rdp_last = NULL;
2395                 rdp = rdp_old_leader;
2396                 do {
2397                         rdp->nocb_leader = rdp_spawn;
2398                         if (rdp_last && rdp != rdp_spawn)
2399                                 rdp_last->nocb_next_follower = rdp;
2400                         if (rdp == rdp_spawn) {
2401                                 rdp = rdp->nocb_next_follower;
2402                         } else {
2403                                 rdp_last = rdp;
2404                                 rdp = rdp->nocb_next_follower;
2405                                 rdp_last->nocb_next_follower = NULL;
2406                         }
2407                 } while (rdp);
2408                 rdp_spawn->nocb_next_follower = rdp_old_leader;
2409         }
2410
2411         /* Spawn the kthread for this CPU and RCU flavor. */
2412         t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2413                         "rcuo%c/%d", rsp->abbr, cpu);
2414         BUG_ON(IS_ERR(t));
2415         WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2416 }
2417
2418 /*
2419  * If the specified CPU is a no-CBs CPU that does not already have its
2420  * rcuo kthreads, spawn them.
2421  */
2422 static void rcu_spawn_all_nocb_kthreads(int cpu)
2423 {
2424         struct rcu_state *rsp;
2425
2426         if (rcu_scheduler_fully_active)
2427                 for_each_rcu_flavor(rsp)
2428                         rcu_spawn_one_nocb_kthread(rsp, cpu);
2429 }
2430
2431 /*
2432  * Once the scheduler is running, spawn rcuo kthreads for all online
2433  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2434  * non-boot CPUs come online -- if this changes, we will need to add
2435  * some mutual exclusion.
2436  */
2437 static void __init rcu_spawn_nocb_kthreads(void)
2438 {
2439         int cpu;
2440
2441         for_each_online_cpu(cpu)
2442                 rcu_spawn_all_nocb_kthreads(cpu);
2443 }
2444
2445 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2446 static int rcu_nocb_leader_stride = -1;
2447 module_param(rcu_nocb_leader_stride, int, 0444);
2448
2449 /*
2450  * Initialize leader-follower relationships for all no-CBs CPU.
2451  */
2452 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2453 {
2454         int cpu;
2455         int ls = rcu_nocb_leader_stride;
2456         int nl = 0;  /* Next leader. */
2457         struct rcu_data *rdp;
2458         struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2459         struct rcu_data *rdp_prev = NULL;
2460
2461         if (!cpumask_available(rcu_nocb_mask))
2462                 return;
2463         if (ls == -1) {
2464                 ls = int_sqrt(nr_cpu_ids);
2465                 rcu_nocb_leader_stride = ls;
2466         }
2467
2468         /*
2469          * Each pass through this loop sets up one rcu_data structure.
2470          * Should the corresponding CPU come online in the future, then
2471          * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2472          */
2473         for_each_cpu(cpu, rcu_nocb_mask) {
2474                 rdp = per_cpu_ptr(rsp->rda, cpu);
2475                 if (rdp->cpu >= nl) {
2476                         /* New leader, set up for followers & next leader. */
2477                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2478                         rdp->nocb_leader = rdp;
2479                         rdp_leader = rdp;
2480                 } else {
2481                         /* Another follower, link to previous leader. */
2482                         rdp->nocb_leader = rdp_leader;
2483                         rdp_prev->nocb_next_follower = rdp;
2484                 }
2485                 rdp_prev = rdp;
2486         }
2487 }
2488
2489 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2490 static bool init_nocb_callback_list(struct rcu_data *rdp)
2491 {
2492         if (!rcu_is_nocb_cpu(rdp->cpu))
2493                 return false;
2494
2495         /* If there are early-boot callbacks, move them to nocb lists. */
2496         if (!rcu_segcblist_empty(&rdp->cblist)) {
2497                 rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2498                 rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2499                 atomic_long_set(&rdp->nocb_q_count,
2500                                 rcu_segcblist_n_cbs(&rdp->cblist));
2501                 atomic_long_set(&rdp->nocb_q_count_lazy,
2502                                 rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2503                 rcu_segcblist_init(&rdp->cblist);
2504         }
2505         rcu_segcblist_disable(&rdp->cblist);
2506         return true;
2507 }
2508
2509 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2510
2511 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2512 {
2513         WARN_ON_ONCE(1); /* Should be dead code. */
2514         return false;
2515 }
2516
2517 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2518 {
2519 }
2520
2521 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2522 {
2523         return NULL;
2524 }
2525
2526 static void rcu_init_one_nocb(struct rcu_node *rnp)
2527 {
2528 }
2529
2530 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2531                             bool lazy, unsigned long flags)
2532 {
2533         return false;
2534 }
2535
2536 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2537                                                      struct rcu_data *rdp,
2538                                                      unsigned long flags)
2539 {
2540         return false;
2541 }
2542
2543 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2544 {
2545 }
2546
2547 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2548 {
2549         return false;
2550 }
2551
2552 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2553 {
2554 }
2555
2556 static void rcu_spawn_all_nocb_kthreads(int cpu)
2557 {
2558 }
2559
2560 static void __init rcu_spawn_nocb_kthreads(void)
2561 {
2562 }
2563
2564 static bool init_nocb_callback_list(struct rcu_data *rdp)
2565 {
2566         return false;
2567 }
2568
2569 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2570
2571 /*
2572  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2573  * arbitrarily long period of time with the scheduling-clock tick turned
2574  * off.  RCU will be paying attention to this CPU because it is in the
2575  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2576  * machine because the scheduling-clock tick has been disabled.  Therefore,
2577  * if an adaptive-ticks CPU is failing to respond to the current grace
2578  * period and has not be idle from an RCU perspective, kick it.
2579  */
2580 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2581 {
2582 #ifdef CONFIG_NO_HZ_FULL
2583         if (tick_nohz_full_cpu(cpu))
2584                 smp_send_reschedule(cpu);
2585 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2586 }
2587
2588 /*
2589  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2590  * grace-period kthread will do force_quiescent_state() processing?
2591  * The idea is to avoid waking up RCU core processing on such a
2592  * CPU unless the grace period has extended for too long.
2593  *
2594  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2595  * CONFIG_RCU_NOCB_CPU CPUs.
2596  */
2597 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2598 {
2599 #ifdef CONFIG_NO_HZ_FULL
2600         if (tick_nohz_full_cpu(smp_processor_id()) &&
2601             (!rcu_gp_in_progress(rsp) ||
2602              ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2603                 return true;
2604 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2605         return false;
2606 }
2607
2608 /*
2609  * Bind the RCU grace-period kthreads to the housekeeping CPU.
2610  */
2611 static void rcu_bind_gp_kthread(void)
2612 {
2613         int __maybe_unused cpu;
2614
2615         if (!tick_nohz_full_enabled())
2616                 return;
2617         housekeeping_affine(current, HK_FLAG_RCU);
2618 }
2619
2620 /* Record the current task on dyntick-idle entry. */
2621 static void rcu_dynticks_task_enter(void)
2622 {
2623 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2624         WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2625 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2626 }
2627
2628 /* Record no current task on dyntick-idle exit. */
2629 static void rcu_dynticks_task_exit(void)
2630 {
2631 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2632         WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2633 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2634 }