Merge tag 'nfsd-5.1' of git://linux-nfs.org/~bfields/linux
[sfrench/cifs-2.6.git] / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation (includes suggestions from
23  *              Rusty Russell).
24  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *              hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *              interface to access function arguments.
28  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *              exceptions notifier to be first on the priority list.
30  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *              <prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72         raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76                                         unsigned int __unused)
77 {
78         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83         return &(kretprobe_table_locks[hash].lock);
84 }
85
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91  * kprobe->ainsn.insn points to the copy of the instruction to be
92  * single-stepped. x86_64, POWER4 and above have no-exec support and
93  * stepping on the instruction on a vmalloced/kmalloced/data page
94  * is a recipe for disaster
95  */
96 struct kprobe_insn_page {
97         struct list_head list;
98         kprobe_opcode_t *insns;         /* Page of instruction slots */
99         struct kprobe_insn_cache *cache;
100         int nused;
101         int ngarbage;
102         char slot_used[];
103 };
104
105 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
106         (offsetof(struct kprobe_insn_page, slot_used) + \
107          (sizeof(char) * (slots)))
108
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113
114 enum kprobe_slot_state {
115         SLOT_CLEAN = 0,
116         SLOT_DIRTY = 1,
117         SLOT_USED = 2,
118 };
119
120 void __weak *alloc_insn_page(void)
121 {
122         return module_alloc(PAGE_SIZE);
123 }
124
125 void __weak free_insn_page(void *page)
126 {
127         module_memfree(page);
128 }
129
130 struct kprobe_insn_cache kprobe_insn_slots = {
131         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132         .alloc = alloc_insn_page,
133         .free = free_insn_page,
134         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135         .insn_size = MAX_INSN_SIZE,
136         .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146         struct kprobe_insn_page *kip;
147         kprobe_opcode_t *slot = NULL;
148
149         /* Since the slot array is not protected by rcu, we need a mutex */
150         mutex_lock(&c->mutex);
151  retry:
152         rcu_read_lock();
153         list_for_each_entry_rcu(kip, &c->pages, list) {
154                 if (kip->nused < slots_per_page(c)) {
155                         int i;
156                         for (i = 0; i < slots_per_page(c); i++) {
157                                 if (kip->slot_used[i] == SLOT_CLEAN) {
158                                         kip->slot_used[i] = SLOT_USED;
159                                         kip->nused++;
160                                         slot = kip->insns + (i * c->insn_size);
161                                         rcu_read_unlock();
162                                         goto out;
163                                 }
164                         }
165                         /* kip->nused is broken. Fix it. */
166                         kip->nused = slots_per_page(c);
167                         WARN_ON(1);
168                 }
169         }
170         rcu_read_unlock();
171
172         /* If there are any garbage slots, collect it and try again. */
173         if (c->nr_garbage && collect_garbage_slots(c) == 0)
174                 goto retry;
175
176         /* All out of space.  Need to allocate a new page. */
177         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178         if (!kip)
179                 goto out;
180
181         /*
182          * Use module_alloc so this page is within +/- 2GB of where the
183          * kernel image and loaded module images reside. This is required
184          * so x86_64 can correctly handle the %rip-relative fixups.
185          */
186         kip->insns = c->alloc();
187         if (!kip->insns) {
188                 kfree(kip);
189                 goto out;
190         }
191         INIT_LIST_HEAD(&kip->list);
192         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193         kip->slot_used[0] = SLOT_USED;
194         kip->nused = 1;
195         kip->ngarbage = 0;
196         kip->cache = c;
197         list_add_rcu(&kip->list, &c->pages);
198         slot = kip->insns;
199 out:
200         mutex_unlock(&c->mutex);
201         return slot;
202 }
203
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207         kip->slot_used[idx] = SLOT_CLEAN;
208         kip->nused--;
209         if (kip->nused == 0) {
210                 /*
211                  * Page is no longer in use.  Free it unless
212                  * it's the last one.  We keep the last one
213                  * so as not to have to set it up again the
214                  * next time somebody inserts a probe.
215                  */
216                 if (!list_is_singular(&kip->list)) {
217                         list_del_rcu(&kip->list);
218                         synchronize_rcu();
219                         kip->cache->free(kip->insns);
220                         kfree(kip);
221                 }
222                 return 1;
223         }
224         return 0;
225 }
226
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229         struct kprobe_insn_page *kip, *next;
230
231         /* Ensure no-one is interrupted on the garbages */
232         synchronize_rcu();
233
234         list_for_each_entry_safe(kip, next, &c->pages, list) {
235                 int i;
236                 if (kip->ngarbage == 0)
237                         continue;
238                 kip->ngarbage = 0;      /* we will collect all garbages */
239                 for (i = 0; i < slots_per_page(c); i++) {
240                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241                                 break;
242                 }
243         }
244         c->nr_garbage = 0;
245         return 0;
246 }
247
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249                       kprobe_opcode_t *slot, int dirty)
250 {
251         struct kprobe_insn_page *kip;
252         long idx;
253
254         mutex_lock(&c->mutex);
255         rcu_read_lock();
256         list_for_each_entry_rcu(kip, &c->pages, list) {
257                 idx = ((long)slot - (long)kip->insns) /
258                         (c->insn_size * sizeof(kprobe_opcode_t));
259                 if (idx >= 0 && idx < slots_per_page(c))
260                         goto out;
261         }
262         /* Could not find this slot. */
263         WARN_ON(1);
264         kip = NULL;
265 out:
266         rcu_read_unlock();
267         /* Mark and sweep: this may sleep */
268         if (kip) {
269                 /* Check double free */
270                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271                 if (dirty) {
272                         kip->slot_used[idx] = SLOT_DIRTY;
273                         kip->ngarbage++;
274                         if (++c->nr_garbage > slots_per_page(c))
275                                 collect_garbage_slots(c);
276                 } else {
277                         collect_one_slot(kip, idx);
278                 }
279         }
280         mutex_unlock(&c->mutex);
281 }
282
283 /*
284  * Check given address is on the page of kprobe instruction slots.
285  * This will be used for checking whether the address on a stack
286  * is on a text area or not.
287  */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290         struct kprobe_insn_page *kip;
291         bool ret = false;
292
293         rcu_read_lock();
294         list_for_each_entry_rcu(kip, &c->pages, list) {
295                 if (addr >= (unsigned long)kip->insns &&
296                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
297                         ret = true;
298                         break;
299                 }
300         }
301         rcu_read_unlock();
302
303         return ret;
304 }
305
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310         .alloc = alloc_insn_page,
311         .free = free_insn_page,
312         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313         /* .insn_size is initialized later */
314         .nr_garbage = 0,
315 };
316 #endif
317 #endif
318
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322         __this_cpu_write(kprobe_instance, kp);
323 }
324
325 static inline void reset_kprobe_instance(void)
326 {
327         __this_cpu_write(kprobe_instance, NULL);
328 }
329
330 /*
331  * This routine is called either:
332  *      - under the kprobe_mutex - during kprobe_[un]register()
333  *                              OR
334  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
335  */
336 struct kprobe *get_kprobe(void *addr)
337 {
338         struct hlist_head *head;
339         struct kprobe *p;
340
341         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342         hlist_for_each_entry_rcu(p, head, hlist) {
343                 if (p->addr == addr)
344                         return p;
345         }
346
347         return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356         return p->pre_handler == aggr_pre_handler;
357 }
358
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363                list_empty(&p->list);
364 }
365
366 /*
367  * Keep all fields in the kprobe consistent
368  */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378
379 /*
380  * Call all pre_handler on the list, but ignores its return value.
381  * This must be called from arch-dep optimized caller.
382  */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385         struct kprobe *kp;
386
387         list_for_each_entry_rcu(kp, &p->list, list) {
388                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389                         set_kprobe_instance(kp);
390                         kp->pre_handler(kp, regs);
391                 }
392                 reset_kprobe_instance();
393         }
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400         struct optimized_kprobe *op;
401
402         op = container_of(p, struct optimized_kprobe, kp);
403         arch_remove_optimized_kprobe(op);
404         arch_remove_kprobe(p);
405         kfree(op);
406 }
407
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411         struct optimized_kprobe *op;
412
413         if (kprobe_aggrprobe(p)) {
414                 op = container_of(p, struct optimized_kprobe, kp);
415                 return arch_prepared_optinsn(&op->optinsn);
416         }
417
418         return 0;
419 }
420
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424         struct optimized_kprobe *op;
425
426         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427         if (!kprobe_aggrprobe(p))
428                 return kprobe_disabled(p);
429
430         op = container_of(p, struct optimized_kprobe, kp);
431
432         return kprobe_disabled(p) && list_empty(&op->list);
433 }
434
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438         struct optimized_kprobe *op;
439
440         if (kprobe_aggrprobe(p)) {
441                 op = container_of(p, struct optimized_kprobe, kp);
442                 if (!list_empty(&op->list))
443                         return 1;
444         }
445         return 0;
446 }
447
448 /*
449  * Return an optimized kprobe whose optimizing code replaces
450  * instructions including addr (exclude breakpoint).
451  */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454         int i;
455         struct kprobe *p = NULL;
456         struct optimized_kprobe *op;
457
458         /* Don't check i == 0, since that is a breakpoint case. */
459         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460                 p = get_kprobe((void *)(addr - i));
461
462         if (p && kprobe_optready(p)) {
463                 op = container_of(p, struct optimized_kprobe, kp);
464                 if (arch_within_optimized_kprobe(op, addr))
465                         return p;
466         }
467
468         return NULL;
469 }
470
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479
480 /*
481  * Optimize (replace a breakpoint with a jump) kprobes listed on
482  * optimizing_list.
483  */
484 static void do_optimize_kprobes(void)
485 {
486         /*
487          * The optimization/unoptimization refers online_cpus via
488          * stop_machine() and cpu-hotplug modifies online_cpus.
489          * And same time, text_mutex will be held in cpu-hotplug and here.
490          * This combination can cause a deadlock (cpu-hotplug try to lock
491          * text_mutex but stop_machine can not be done because online_cpus
492          * has been changed)
493          * To avoid this deadlock, caller must have locked cpu hotplug
494          * for preventing cpu-hotplug outside of text_mutex locking.
495          */
496         lockdep_assert_cpus_held();
497
498         /* Optimization never be done when disarmed */
499         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
500             list_empty(&optimizing_list))
501                 return;
502
503         mutex_lock(&text_mutex);
504         arch_optimize_kprobes(&optimizing_list);
505         mutex_unlock(&text_mutex);
506 }
507
508 /*
509  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510  * if need) kprobes listed on unoptimizing_list.
511  */
512 static void do_unoptimize_kprobes(void)
513 {
514         struct optimized_kprobe *op, *tmp;
515
516         /* See comment in do_optimize_kprobes() */
517         lockdep_assert_cpus_held();
518
519         /* Unoptimization must be done anytime */
520         if (list_empty(&unoptimizing_list))
521                 return;
522
523         mutex_lock(&text_mutex);
524         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
525         /* Loop free_list for disarming */
526         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
527                 /* Disarm probes if marked disabled */
528                 if (kprobe_disabled(&op->kp))
529                         arch_disarm_kprobe(&op->kp);
530                 if (kprobe_unused(&op->kp)) {
531                         /*
532                          * Remove unused probes from hash list. After waiting
533                          * for synchronization, these probes are reclaimed.
534                          * (reclaiming is done by do_free_cleaned_kprobes.)
535                          */
536                         hlist_del_rcu(&op->kp.hlist);
537                 } else
538                         list_del_init(&op->list);
539         }
540         mutex_unlock(&text_mutex);
541 }
542
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
545 {
546         struct optimized_kprobe *op, *tmp;
547
548         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549                 list_del_init(&op->list);
550                 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
551                         /*
552                          * This must not happen, but if there is a kprobe
553                          * still in use, keep it on kprobes hash list.
554                          */
555                         continue;
556                 }
557                 free_aggr_kprobe(&op->kp);
558         }
559 }
560
561 /* Start optimizer after OPTIMIZE_DELAY passed */
562 static void kick_kprobe_optimizer(void)
563 {
564         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
565 }
566
567 /* Kprobe jump optimizer */
568 static void kprobe_optimizer(struct work_struct *work)
569 {
570         mutex_lock(&kprobe_mutex);
571         cpus_read_lock();
572         /* Lock modules while optimizing kprobes */
573         mutex_lock(&module_mutex);
574
575         /*
576          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
577          * kprobes before waiting for quiesence period.
578          */
579         do_unoptimize_kprobes();
580
581         /*
582          * Step 2: Wait for quiesence period to ensure all potentially
583          * preempted tasks to have normally scheduled. Because optprobe
584          * may modify multiple instructions, there is a chance that Nth
585          * instruction is preempted. In that case, such tasks can return
586          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
587          * Note that on non-preemptive kernel, this is transparently converted
588          * to synchronoze_sched() to wait for all interrupts to have completed.
589          */
590         synchronize_rcu_tasks();
591
592         /* Step 3: Optimize kprobes after quiesence period */
593         do_optimize_kprobes();
594
595         /* Step 4: Free cleaned kprobes after quiesence period */
596         do_free_cleaned_kprobes();
597
598         mutex_unlock(&module_mutex);
599         cpus_read_unlock();
600         mutex_unlock(&kprobe_mutex);
601
602         /* Step 5: Kick optimizer again if needed */
603         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
604                 kick_kprobe_optimizer();
605 }
606
607 /* Wait for completing optimization and unoptimization */
608 void wait_for_kprobe_optimizer(void)
609 {
610         mutex_lock(&kprobe_mutex);
611
612         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
613                 mutex_unlock(&kprobe_mutex);
614
615                 /* this will also make optimizing_work execute immmediately */
616                 flush_delayed_work(&optimizing_work);
617                 /* @optimizing_work might not have been queued yet, relax */
618                 cpu_relax();
619
620                 mutex_lock(&kprobe_mutex);
621         }
622
623         mutex_unlock(&kprobe_mutex);
624 }
625
626 /* Optimize kprobe if p is ready to be optimized */
627 static void optimize_kprobe(struct kprobe *p)
628 {
629         struct optimized_kprobe *op;
630
631         /* Check if the kprobe is disabled or not ready for optimization. */
632         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
633             (kprobe_disabled(p) || kprobes_all_disarmed))
634                 return;
635
636         /* kprobes with post_handler can not be optimized */
637         if (p->post_handler)
638                 return;
639
640         op = container_of(p, struct optimized_kprobe, kp);
641
642         /* Check there is no other kprobes at the optimized instructions */
643         if (arch_check_optimized_kprobe(op) < 0)
644                 return;
645
646         /* Check if it is already optimized. */
647         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
648                 return;
649         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
650
651         if (!list_empty(&op->list))
652                 /* This is under unoptimizing. Just dequeue the probe */
653                 list_del_init(&op->list);
654         else {
655                 list_add(&op->list, &optimizing_list);
656                 kick_kprobe_optimizer();
657         }
658 }
659
660 /* Short cut to direct unoptimizing */
661 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
662 {
663         lockdep_assert_cpus_held();
664         arch_unoptimize_kprobe(op);
665         if (kprobe_disabled(&op->kp))
666                 arch_disarm_kprobe(&op->kp);
667 }
668
669 /* Unoptimize a kprobe if p is optimized */
670 static void unoptimize_kprobe(struct kprobe *p, bool force)
671 {
672         struct optimized_kprobe *op;
673
674         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
675                 return; /* This is not an optprobe nor optimized */
676
677         op = container_of(p, struct optimized_kprobe, kp);
678         if (!kprobe_optimized(p)) {
679                 /* Unoptimized or unoptimizing case */
680                 if (force && !list_empty(&op->list)) {
681                         /*
682                          * Only if this is unoptimizing kprobe and forced,
683                          * forcibly unoptimize it. (No need to unoptimize
684                          * unoptimized kprobe again :)
685                          */
686                         list_del_init(&op->list);
687                         force_unoptimize_kprobe(op);
688                 }
689                 return;
690         }
691
692         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
693         if (!list_empty(&op->list)) {
694                 /* Dequeue from the optimization queue */
695                 list_del_init(&op->list);
696                 return;
697         }
698         /* Optimized kprobe case */
699         if (force)
700                 /* Forcibly update the code: this is a special case */
701                 force_unoptimize_kprobe(op);
702         else {
703                 list_add(&op->list, &unoptimizing_list);
704                 kick_kprobe_optimizer();
705         }
706 }
707
708 /* Cancel unoptimizing for reusing */
709 static int reuse_unused_kprobe(struct kprobe *ap)
710 {
711         struct optimized_kprobe *op;
712         int ret;
713
714         /*
715          * Unused kprobe MUST be on the way of delayed unoptimizing (means
716          * there is still a relative jump) and disabled.
717          */
718         op = container_of(ap, struct optimized_kprobe, kp);
719         WARN_ON_ONCE(list_empty(&op->list));
720         /* Enable the probe again */
721         ap->flags &= ~KPROBE_FLAG_DISABLED;
722         /* Optimize it again (remove from op->list) */
723         ret = kprobe_optready(ap);
724         if (ret)
725                 return ret;
726
727         optimize_kprobe(ap);
728         return 0;
729 }
730
731 /* Remove optimized instructions */
732 static void kill_optimized_kprobe(struct kprobe *p)
733 {
734         struct optimized_kprobe *op;
735
736         op = container_of(p, struct optimized_kprobe, kp);
737         if (!list_empty(&op->list))
738                 /* Dequeue from the (un)optimization queue */
739                 list_del_init(&op->list);
740         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
741
742         if (kprobe_unused(p)) {
743                 /* Enqueue if it is unused */
744                 list_add(&op->list, &freeing_list);
745                 /*
746                  * Remove unused probes from the hash list. After waiting
747                  * for synchronization, this probe is reclaimed.
748                  * (reclaiming is done by do_free_cleaned_kprobes().)
749                  */
750                 hlist_del_rcu(&op->kp.hlist);
751         }
752
753         /* Don't touch the code, because it is already freed. */
754         arch_remove_optimized_kprobe(op);
755 }
756
757 static inline
758 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
759 {
760         if (!kprobe_ftrace(p))
761                 arch_prepare_optimized_kprobe(op, p);
762 }
763
764 /* Try to prepare optimized instructions */
765 static void prepare_optimized_kprobe(struct kprobe *p)
766 {
767         struct optimized_kprobe *op;
768
769         op = container_of(p, struct optimized_kprobe, kp);
770         __prepare_optimized_kprobe(op, p);
771 }
772
773 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
774 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
775 {
776         struct optimized_kprobe *op;
777
778         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
779         if (!op)
780                 return NULL;
781
782         INIT_LIST_HEAD(&op->list);
783         op->kp.addr = p->addr;
784         __prepare_optimized_kprobe(op, p);
785
786         return &op->kp;
787 }
788
789 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
790
791 /*
792  * Prepare an optimized_kprobe and optimize it
793  * NOTE: p must be a normal registered kprobe
794  */
795 static void try_to_optimize_kprobe(struct kprobe *p)
796 {
797         struct kprobe *ap;
798         struct optimized_kprobe *op;
799
800         /* Impossible to optimize ftrace-based kprobe */
801         if (kprobe_ftrace(p))
802                 return;
803
804         /* For preparing optimization, jump_label_text_reserved() is called */
805         cpus_read_lock();
806         jump_label_lock();
807         mutex_lock(&text_mutex);
808
809         ap = alloc_aggr_kprobe(p);
810         if (!ap)
811                 goto out;
812
813         op = container_of(ap, struct optimized_kprobe, kp);
814         if (!arch_prepared_optinsn(&op->optinsn)) {
815                 /* If failed to setup optimizing, fallback to kprobe */
816                 arch_remove_optimized_kprobe(op);
817                 kfree(op);
818                 goto out;
819         }
820
821         init_aggr_kprobe(ap, p);
822         optimize_kprobe(ap);    /* This just kicks optimizer thread */
823
824 out:
825         mutex_unlock(&text_mutex);
826         jump_label_unlock();
827         cpus_read_unlock();
828 }
829
830 #ifdef CONFIG_SYSCTL
831 static void optimize_all_kprobes(void)
832 {
833         struct hlist_head *head;
834         struct kprobe *p;
835         unsigned int i;
836
837         mutex_lock(&kprobe_mutex);
838         /* If optimization is already allowed, just return */
839         if (kprobes_allow_optimization)
840                 goto out;
841
842         cpus_read_lock();
843         kprobes_allow_optimization = true;
844         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
845                 head = &kprobe_table[i];
846                 hlist_for_each_entry_rcu(p, head, hlist)
847                         if (!kprobe_disabled(p))
848                                 optimize_kprobe(p);
849         }
850         cpus_read_unlock();
851         printk(KERN_INFO "Kprobes globally optimized\n");
852 out:
853         mutex_unlock(&kprobe_mutex);
854 }
855
856 static void unoptimize_all_kprobes(void)
857 {
858         struct hlist_head *head;
859         struct kprobe *p;
860         unsigned int i;
861
862         mutex_lock(&kprobe_mutex);
863         /* If optimization is already prohibited, just return */
864         if (!kprobes_allow_optimization) {
865                 mutex_unlock(&kprobe_mutex);
866                 return;
867         }
868
869         cpus_read_lock();
870         kprobes_allow_optimization = false;
871         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
872                 head = &kprobe_table[i];
873                 hlist_for_each_entry_rcu(p, head, hlist) {
874                         if (!kprobe_disabled(p))
875                                 unoptimize_kprobe(p, false);
876                 }
877         }
878         cpus_read_unlock();
879         mutex_unlock(&kprobe_mutex);
880
881         /* Wait for unoptimizing completion */
882         wait_for_kprobe_optimizer();
883         printk(KERN_INFO "Kprobes globally unoptimized\n");
884 }
885
886 static DEFINE_MUTEX(kprobe_sysctl_mutex);
887 int sysctl_kprobes_optimization;
888 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
889                                       void __user *buffer, size_t *length,
890                                       loff_t *ppos)
891 {
892         int ret;
893
894         mutex_lock(&kprobe_sysctl_mutex);
895         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
896         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
897
898         if (sysctl_kprobes_optimization)
899                 optimize_all_kprobes();
900         else
901                 unoptimize_all_kprobes();
902         mutex_unlock(&kprobe_sysctl_mutex);
903
904         return ret;
905 }
906 #endif /* CONFIG_SYSCTL */
907
908 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
909 static void __arm_kprobe(struct kprobe *p)
910 {
911         struct kprobe *_p;
912
913         /* Check collision with other optimized kprobes */
914         _p = get_optimized_kprobe((unsigned long)p->addr);
915         if (unlikely(_p))
916                 /* Fallback to unoptimized kprobe */
917                 unoptimize_kprobe(_p, true);
918
919         arch_arm_kprobe(p);
920         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
921 }
922
923 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
924 static void __disarm_kprobe(struct kprobe *p, bool reopt)
925 {
926         struct kprobe *_p;
927
928         /* Try to unoptimize */
929         unoptimize_kprobe(p, kprobes_all_disarmed);
930
931         if (!kprobe_queued(p)) {
932                 arch_disarm_kprobe(p);
933                 /* If another kprobe was blocked, optimize it. */
934                 _p = get_optimized_kprobe((unsigned long)p->addr);
935                 if (unlikely(_p) && reopt)
936                         optimize_kprobe(_p);
937         }
938         /* TODO: reoptimize others after unoptimized this probe */
939 }
940
941 #else /* !CONFIG_OPTPROBES */
942
943 #define optimize_kprobe(p)                      do {} while (0)
944 #define unoptimize_kprobe(p, f)                 do {} while (0)
945 #define kill_optimized_kprobe(p)                do {} while (0)
946 #define prepare_optimized_kprobe(p)             do {} while (0)
947 #define try_to_optimize_kprobe(p)               do {} while (0)
948 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
949 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
950 #define kprobe_disarmed(p)                      kprobe_disabled(p)
951 #define wait_for_kprobe_optimizer()             do {} while (0)
952
953 static int reuse_unused_kprobe(struct kprobe *ap)
954 {
955         /*
956          * If the optimized kprobe is NOT supported, the aggr kprobe is
957          * released at the same time that the last aggregated kprobe is
958          * unregistered.
959          * Thus there should be no chance to reuse unused kprobe.
960          */
961         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
962         return -EINVAL;
963 }
964
965 static void free_aggr_kprobe(struct kprobe *p)
966 {
967         arch_remove_kprobe(p);
968         kfree(p);
969 }
970
971 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
972 {
973         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
974 }
975 #endif /* CONFIG_OPTPROBES */
976
977 #ifdef CONFIG_KPROBES_ON_FTRACE
978 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
979         .func = kprobe_ftrace_handler,
980         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
981 };
982 static int kprobe_ftrace_enabled;
983
984 /* Must ensure p->addr is really on ftrace */
985 static int prepare_kprobe(struct kprobe *p)
986 {
987         if (!kprobe_ftrace(p))
988                 return arch_prepare_kprobe(p);
989
990         return arch_prepare_kprobe_ftrace(p);
991 }
992
993 /* Caller must lock kprobe_mutex */
994 static int arm_kprobe_ftrace(struct kprobe *p)
995 {
996         int ret = 0;
997
998         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
999                                    (unsigned long)p->addr, 0, 0);
1000         if (ret) {
1001                 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1002                          p->addr, ret);
1003                 return ret;
1004         }
1005
1006         if (kprobe_ftrace_enabled == 0) {
1007                 ret = register_ftrace_function(&kprobe_ftrace_ops);
1008                 if (ret) {
1009                         pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1010                         goto err_ftrace;
1011                 }
1012         }
1013
1014         kprobe_ftrace_enabled++;
1015         return ret;
1016
1017 err_ftrace:
1018         /*
1019          * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1020          * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1021          * empty filter_hash which would undesirably trace all functions.
1022          */
1023         ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1024         return ret;
1025 }
1026
1027 /* Caller must lock kprobe_mutex */
1028 static int disarm_kprobe_ftrace(struct kprobe *p)
1029 {
1030         int ret = 0;
1031
1032         if (kprobe_ftrace_enabled == 1) {
1033                 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1034                 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1035                         return ret;
1036         }
1037
1038         kprobe_ftrace_enabled--;
1039
1040         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1041                            (unsigned long)p->addr, 1, 0);
1042         WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1043                   p->addr, ret);
1044         return ret;
1045 }
1046 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1047 #define prepare_kprobe(p)       arch_prepare_kprobe(p)
1048 #define arm_kprobe_ftrace(p)    (-ENODEV)
1049 #define disarm_kprobe_ftrace(p) (-ENODEV)
1050 #endif
1051
1052 /* Arm a kprobe with text_mutex */
1053 static int arm_kprobe(struct kprobe *kp)
1054 {
1055         if (unlikely(kprobe_ftrace(kp)))
1056                 return arm_kprobe_ftrace(kp);
1057
1058         cpus_read_lock();
1059         mutex_lock(&text_mutex);
1060         __arm_kprobe(kp);
1061         mutex_unlock(&text_mutex);
1062         cpus_read_unlock();
1063
1064         return 0;
1065 }
1066
1067 /* Disarm a kprobe with text_mutex */
1068 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1069 {
1070         if (unlikely(kprobe_ftrace(kp)))
1071                 return disarm_kprobe_ftrace(kp);
1072
1073         cpus_read_lock();
1074         mutex_lock(&text_mutex);
1075         __disarm_kprobe(kp, reopt);
1076         mutex_unlock(&text_mutex);
1077         cpus_read_unlock();
1078
1079         return 0;
1080 }
1081
1082 /*
1083  * Aggregate handlers for multiple kprobes support - these handlers
1084  * take care of invoking the individual kprobe handlers on p->list
1085  */
1086 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1087 {
1088         struct kprobe *kp;
1089
1090         list_for_each_entry_rcu(kp, &p->list, list) {
1091                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1092                         set_kprobe_instance(kp);
1093                         if (kp->pre_handler(kp, regs))
1094                                 return 1;
1095                 }
1096                 reset_kprobe_instance();
1097         }
1098         return 0;
1099 }
1100 NOKPROBE_SYMBOL(aggr_pre_handler);
1101
1102 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1103                               unsigned long flags)
1104 {
1105         struct kprobe *kp;
1106
1107         list_for_each_entry_rcu(kp, &p->list, list) {
1108                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1109                         set_kprobe_instance(kp);
1110                         kp->post_handler(kp, regs, flags);
1111                         reset_kprobe_instance();
1112                 }
1113         }
1114 }
1115 NOKPROBE_SYMBOL(aggr_post_handler);
1116
1117 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1118                               int trapnr)
1119 {
1120         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1121
1122         /*
1123          * if we faulted "during" the execution of a user specified
1124          * probe handler, invoke just that probe's fault handler
1125          */
1126         if (cur && cur->fault_handler) {
1127                 if (cur->fault_handler(cur, regs, trapnr))
1128                         return 1;
1129         }
1130         return 0;
1131 }
1132 NOKPROBE_SYMBOL(aggr_fault_handler);
1133
1134 /* Walks the list and increments nmissed count for multiprobe case */
1135 void kprobes_inc_nmissed_count(struct kprobe *p)
1136 {
1137         struct kprobe *kp;
1138         if (!kprobe_aggrprobe(p)) {
1139                 p->nmissed++;
1140         } else {
1141                 list_for_each_entry_rcu(kp, &p->list, list)
1142                         kp->nmissed++;
1143         }
1144         return;
1145 }
1146 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1147
1148 void recycle_rp_inst(struct kretprobe_instance *ri,
1149                      struct hlist_head *head)
1150 {
1151         struct kretprobe *rp = ri->rp;
1152
1153         /* remove rp inst off the rprobe_inst_table */
1154         hlist_del(&ri->hlist);
1155         INIT_HLIST_NODE(&ri->hlist);
1156         if (likely(rp)) {
1157                 raw_spin_lock(&rp->lock);
1158                 hlist_add_head(&ri->hlist, &rp->free_instances);
1159                 raw_spin_unlock(&rp->lock);
1160         } else
1161                 /* Unregistering */
1162                 hlist_add_head(&ri->hlist, head);
1163 }
1164 NOKPROBE_SYMBOL(recycle_rp_inst);
1165
1166 void kretprobe_hash_lock(struct task_struct *tsk,
1167                          struct hlist_head **head, unsigned long *flags)
1168 __acquires(hlist_lock)
1169 {
1170         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1171         raw_spinlock_t *hlist_lock;
1172
1173         *head = &kretprobe_inst_table[hash];
1174         hlist_lock = kretprobe_table_lock_ptr(hash);
1175         raw_spin_lock_irqsave(hlist_lock, *flags);
1176 }
1177 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1178
1179 static void kretprobe_table_lock(unsigned long hash,
1180                                  unsigned long *flags)
1181 __acquires(hlist_lock)
1182 {
1183         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1184         raw_spin_lock_irqsave(hlist_lock, *flags);
1185 }
1186 NOKPROBE_SYMBOL(kretprobe_table_lock);
1187
1188 void kretprobe_hash_unlock(struct task_struct *tsk,
1189                            unsigned long *flags)
1190 __releases(hlist_lock)
1191 {
1192         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1193         raw_spinlock_t *hlist_lock;
1194
1195         hlist_lock = kretprobe_table_lock_ptr(hash);
1196         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1197 }
1198 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1199
1200 static void kretprobe_table_unlock(unsigned long hash,
1201                                    unsigned long *flags)
1202 __releases(hlist_lock)
1203 {
1204         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1205         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1206 }
1207 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1208
1209 /*
1210  * This function is called from finish_task_switch when task tk becomes dead,
1211  * so that we can recycle any function-return probe instances associated
1212  * with this task. These left over instances represent probed functions
1213  * that have been called but will never return.
1214  */
1215 void kprobe_flush_task(struct task_struct *tk)
1216 {
1217         struct kretprobe_instance *ri;
1218         struct hlist_head *head, empty_rp;
1219         struct hlist_node *tmp;
1220         unsigned long hash, flags = 0;
1221
1222         if (unlikely(!kprobes_initialized))
1223                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1224                 return;
1225
1226         INIT_HLIST_HEAD(&empty_rp);
1227         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1228         head = &kretprobe_inst_table[hash];
1229         kretprobe_table_lock(hash, &flags);
1230         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1231                 if (ri->task == tk)
1232                         recycle_rp_inst(ri, &empty_rp);
1233         }
1234         kretprobe_table_unlock(hash, &flags);
1235         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1236                 hlist_del(&ri->hlist);
1237                 kfree(ri);
1238         }
1239 }
1240 NOKPROBE_SYMBOL(kprobe_flush_task);
1241
1242 static inline void free_rp_inst(struct kretprobe *rp)
1243 {
1244         struct kretprobe_instance *ri;
1245         struct hlist_node *next;
1246
1247         hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1248                 hlist_del(&ri->hlist);
1249                 kfree(ri);
1250         }
1251 }
1252
1253 static void cleanup_rp_inst(struct kretprobe *rp)
1254 {
1255         unsigned long flags, hash;
1256         struct kretprobe_instance *ri;
1257         struct hlist_node *next;
1258         struct hlist_head *head;
1259
1260         /* No race here */
1261         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1262                 kretprobe_table_lock(hash, &flags);
1263                 head = &kretprobe_inst_table[hash];
1264                 hlist_for_each_entry_safe(ri, next, head, hlist) {
1265                         if (ri->rp == rp)
1266                                 ri->rp = NULL;
1267                 }
1268                 kretprobe_table_unlock(hash, &flags);
1269         }
1270         free_rp_inst(rp);
1271 }
1272 NOKPROBE_SYMBOL(cleanup_rp_inst);
1273
1274 /* Add the new probe to ap->list */
1275 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1276 {
1277         if (p->post_handler)
1278                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1279
1280         list_add_rcu(&p->list, &ap->list);
1281         if (p->post_handler && !ap->post_handler)
1282                 ap->post_handler = aggr_post_handler;
1283
1284         return 0;
1285 }
1286
1287 /*
1288  * Fill in the required fields of the "manager kprobe". Replace the
1289  * earlier kprobe in the hlist with the manager kprobe
1290  */
1291 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1292 {
1293         /* Copy p's insn slot to ap */
1294         copy_kprobe(p, ap);
1295         flush_insn_slot(ap);
1296         ap->addr = p->addr;
1297         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1298         ap->pre_handler = aggr_pre_handler;
1299         ap->fault_handler = aggr_fault_handler;
1300         /* We don't care the kprobe which has gone. */
1301         if (p->post_handler && !kprobe_gone(p))
1302                 ap->post_handler = aggr_post_handler;
1303
1304         INIT_LIST_HEAD(&ap->list);
1305         INIT_HLIST_NODE(&ap->hlist);
1306
1307         list_add_rcu(&p->list, &ap->list);
1308         hlist_replace_rcu(&p->hlist, &ap->hlist);
1309 }
1310
1311 /*
1312  * This is the second or subsequent kprobe at the address - handle
1313  * the intricacies
1314  */
1315 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1316 {
1317         int ret = 0;
1318         struct kprobe *ap = orig_p;
1319
1320         cpus_read_lock();
1321
1322         /* For preparing optimization, jump_label_text_reserved() is called */
1323         jump_label_lock();
1324         mutex_lock(&text_mutex);
1325
1326         if (!kprobe_aggrprobe(orig_p)) {
1327                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1328                 ap = alloc_aggr_kprobe(orig_p);
1329                 if (!ap) {
1330                         ret = -ENOMEM;
1331                         goto out;
1332                 }
1333                 init_aggr_kprobe(ap, orig_p);
1334         } else if (kprobe_unused(ap)) {
1335                 /* This probe is going to die. Rescue it */
1336                 ret = reuse_unused_kprobe(ap);
1337                 if (ret)
1338                         goto out;
1339         }
1340
1341         if (kprobe_gone(ap)) {
1342                 /*
1343                  * Attempting to insert new probe at the same location that
1344                  * had a probe in the module vaddr area which already
1345                  * freed. So, the instruction slot has already been
1346                  * released. We need a new slot for the new probe.
1347                  */
1348                 ret = arch_prepare_kprobe(ap);
1349                 if (ret)
1350                         /*
1351                          * Even if fail to allocate new slot, don't need to
1352                          * free aggr_probe. It will be used next time, or
1353                          * freed by unregister_kprobe.
1354                          */
1355                         goto out;
1356
1357                 /* Prepare optimized instructions if possible. */
1358                 prepare_optimized_kprobe(ap);
1359
1360                 /*
1361                  * Clear gone flag to prevent allocating new slot again, and
1362                  * set disabled flag because it is not armed yet.
1363                  */
1364                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1365                             | KPROBE_FLAG_DISABLED;
1366         }
1367
1368         /* Copy ap's insn slot to p */
1369         copy_kprobe(ap, p);
1370         ret = add_new_kprobe(ap, p);
1371
1372 out:
1373         mutex_unlock(&text_mutex);
1374         jump_label_unlock();
1375         cpus_read_unlock();
1376
1377         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1378                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1379                 if (!kprobes_all_disarmed) {
1380                         /* Arm the breakpoint again. */
1381                         ret = arm_kprobe(ap);
1382                         if (ret) {
1383                                 ap->flags |= KPROBE_FLAG_DISABLED;
1384                                 list_del_rcu(&p->list);
1385                                 synchronize_rcu();
1386                         }
1387                 }
1388         }
1389         return ret;
1390 }
1391
1392 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1393 {
1394         /* The __kprobes marked functions and entry code must not be probed */
1395         return addr >= (unsigned long)__kprobes_text_start &&
1396                addr < (unsigned long)__kprobes_text_end;
1397 }
1398
1399 static bool __within_kprobe_blacklist(unsigned long addr)
1400 {
1401         struct kprobe_blacklist_entry *ent;
1402
1403         if (arch_within_kprobe_blacklist(addr))
1404                 return true;
1405         /*
1406          * If there exists a kprobe_blacklist, verify and
1407          * fail any probe registration in the prohibited area
1408          */
1409         list_for_each_entry(ent, &kprobe_blacklist, list) {
1410                 if (addr >= ent->start_addr && addr < ent->end_addr)
1411                         return true;
1412         }
1413         return false;
1414 }
1415
1416 bool within_kprobe_blacklist(unsigned long addr)
1417 {
1418         char symname[KSYM_NAME_LEN], *p;
1419
1420         if (__within_kprobe_blacklist(addr))
1421                 return true;
1422
1423         /* Check if the address is on a suffixed-symbol */
1424         if (!lookup_symbol_name(addr, symname)) {
1425                 p = strchr(symname, '.');
1426                 if (!p)
1427                         return false;
1428                 *p = '\0';
1429                 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1430                 if (addr)
1431                         return __within_kprobe_blacklist(addr);
1432         }
1433         return false;
1434 }
1435
1436 /*
1437  * If we have a symbol_name argument, look it up and add the offset field
1438  * to it. This way, we can specify a relative address to a symbol.
1439  * This returns encoded errors if it fails to look up symbol or invalid
1440  * combination of parameters.
1441  */
1442 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1443                         const char *symbol_name, unsigned int offset)
1444 {
1445         if ((symbol_name && addr) || (!symbol_name && !addr))
1446                 goto invalid;
1447
1448         if (symbol_name) {
1449                 addr = kprobe_lookup_name(symbol_name, offset);
1450                 if (!addr)
1451                         return ERR_PTR(-ENOENT);
1452         }
1453
1454         addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1455         if (addr)
1456                 return addr;
1457
1458 invalid:
1459         return ERR_PTR(-EINVAL);
1460 }
1461
1462 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1463 {
1464         return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1465 }
1466
1467 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1468 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1469 {
1470         struct kprobe *ap, *list_p;
1471
1472         ap = get_kprobe(p->addr);
1473         if (unlikely(!ap))
1474                 return NULL;
1475
1476         if (p != ap) {
1477                 list_for_each_entry_rcu(list_p, &ap->list, list)
1478                         if (list_p == p)
1479                         /* kprobe p is a valid probe */
1480                                 goto valid;
1481                 return NULL;
1482         }
1483 valid:
1484         return ap;
1485 }
1486
1487 /* Return error if the kprobe is being re-registered */
1488 static inline int check_kprobe_rereg(struct kprobe *p)
1489 {
1490         int ret = 0;
1491
1492         mutex_lock(&kprobe_mutex);
1493         if (__get_valid_kprobe(p))
1494                 ret = -EINVAL;
1495         mutex_unlock(&kprobe_mutex);
1496
1497         return ret;
1498 }
1499
1500 int __weak arch_check_ftrace_location(struct kprobe *p)
1501 {
1502         unsigned long ftrace_addr;
1503
1504         ftrace_addr = ftrace_location((unsigned long)p->addr);
1505         if (ftrace_addr) {
1506 #ifdef CONFIG_KPROBES_ON_FTRACE
1507                 /* Given address is not on the instruction boundary */
1508                 if ((unsigned long)p->addr != ftrace_addr)
1509                         return -EILSEQ;
1510                 p->flags |= KPROBE_FLAG_FTRACE;
1511 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1512                 return -EINVAL;
1513 #endif
1514         }
1515         return 0;
1516 }
1517
1518 static int check_kprobe_address_safe(struct kprobe *p,
1519                                      struct module **probed_mod)
1520 {
1521         int ret;
1522
1523         ret = arch_check_ftrace_location(p);
1524         if (ret)
1525                 return ret;
1526         jump_label_lock();
1527         preempt_disable();
1528
1529         /* Ensure it is not in reserved area nor out of text */
1530         if (!kernel_text_address((unsigned long) p->addr) ||
1531             within_kprobe_blacklist((unsigned long) p->addr) ||
1532             jump_label_text_reserved(p->addr, p->addr)) {
1533                 ret = -EINVAL;
1534                 goto out;
1535         }
1536
1537         /* Check if are we probing a module */
1538         *probed_mod = __module_text_address((unsigned long) p->addr);
1539         if (*probed_mod) {
1540                 /*
1541                  * We must hold a refcount of the probed module while updating
1542                  * its code to prohibit unexpected unloading.
1543                  */
1544                 if (unlikely(!try_module_get(*probed_mod))) {
1545                         ret = -ENOENT;
1546                         goto out;
1547                 }
1548
1549                 /*
1550                  * If the module freed .init.text, we couldn't insert
1551                  * kprobes in there.
1552                  */
1553                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1554                     (*probed_mod)->state != MODULE_STATE_COMING) {
1555                         module_put(*probed_mod);
1556                         *probed_mod = NULL;
1557                         ret = -ENOENT;
1558                 }
1559         }
1560 out:
1561         preempt_enable();
1562         jump_label_unlock();
1563
1564         return ret;
1565 }
1566
1567 int register_kprobe(struct kprobe *p)
1568 {
1569         int ret;
1570         struct kprobe *old_p;
1571         struct module *probed_mod;
1572         kprobe_opcode_t *addr;
1573
1574         /* Adjust probe address from symbol */
1575         addr = kprobe_addr(p);
1576         if (IS_ERR(addr))
1577                 return PTR_ERR(addr);
1578         p->addr = addr;
1579
1580         ret = check_kprobe_rereg(p);
1581         if (ret)
1582                 return ret;
1583
1584         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1585         p->flags &= KPROBE_FLAG_DISABLED;
1586         p->nmissed = 0;
1587         INIT_LIST_HEAD(&p->list);
1588
1589         ret = check_kprobe_address_safe(p, &probed_mod);
1590         if (ret)
1591                 return ret;
1592
1593         mutex_lock(&kprobe_mutex);
1594
1595         old_p = get_kprobe(p->addr);
1596         if (old_p) {
1597                 /* Since this may unoptimize old_p, locking text_mutex. */
1598                 ret = register_aggr_kprobe(old_p, p);
1599                 goto out;
1600         }
1601
1602         cpus_read_lock();
1603         /* Prevent text modification */
1604         mutex_lock(&text_mutex);
1605         ret = prepare_kprobe(p);
1606         mutex_unlock(&text_mutex);
1607         cpus_read_unlock();
1608         if (ret)
1609                 goto out;
1610
1611         INIT_HLIST_NODE(&p->hlist);
1612         hlist_add_head_rcu(&p->hlist,
1613                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1614
1615         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1616                 ret = arm_kprobe(p);
1617                 if (ret) {
1618                         hlist_del_rcu(&p->hlist);
1619                         synchronize_rcu();
1620                         goto out;
1621                 }
1622         }
1623
1624         /* Try to optimize kprobe */
1625         try_to_optimize_kprobe(p);
1626 out:
1627         mutex_unlock(&kprobe_mutex);
1628
1629         if (probed_mod)
1630                 module_put(probed_mod);
1631
1632         return ret;
1633 }
1634 EXPORT_SYMBOL_GPL(register_kprobe);
1635
1636 /* Check if all probes on the aggrprobe are disabled */
1637 static int aggr_kprobe_disabled(struct kprobe *ap)
1638 {
1639         struct kprobe *kp;
1640
1641         list_for_each_entry_rcu(kp, &ap->list, list)
1642                 if (!kprobe_disabled(kp))
1643                         /*
1644                          * There is an active probe on the list.
1645                          * We can't disable this ap.
1646                          */
1647                         return 0;
1648
1649         return 1;
1650 }
1651
1652 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1653 static struct kprobe *__disable_kprobe(struct kprobe *p)
1654 {
1655         struct kprobe *orig_p;
1656         int ret;
1657
1658         /* Get an original kprobe for return */
1659         orig_p = __get_valid_kprobe(p);
1660         if (unlikely(orig_p == NULL))
1661                 return ERR_PTR(-EINVAL);
1662
1663         if (!kprobe_disabled(p)) {
1664                 /* Disable probe if it is a child probe */
1665                 if (p != orig_p)
1666                         p->flags |= KPROBE_FLAG_DISABLED;
1667
1668                 /* Try to disarm and disable this/parent probe */
1669                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1670                         /*
1671                          * If kprobes_all_disarmed is set, orig_p
1672                          * should have already been disarmed, so
1673                          * skip unneed disarming process.
1674                          */
1675                         if (!kprobes_all_disarmed) {
1676                                 ret = disarm_kprobe(orig_p, true);
1677                                 if (ret) {
1678                                         p->flags &= ~KPROBE_FLAG_DISABLED;
1679                                         return ERR_PTR(ret);
1680                                 }
1681                         }
1682                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1683                 }
1684         }
1685
1686         return orig_p;
1687 }
1688
1689 /*
1690  * Unregister a kprobe without a scheduler synchronization.
1691  */
1692 static int __unregister_kprobe_top(struct kprobe *p)
1693 {
1694         struct kprobe *ap, *list_p;
1695
1696         /* Disable kprobe. This will disarm it if needed. */
1697         ap = __disable_kprobe(p);
1698         if (IS_ERR(ap))
1699                 return PTR_ERR(ap);
1700
1701         if (ap == p)
1702                 /*
1703                  * This probe is an independent(and non-optimized) kprobe
1704                  * (not an aggrprobe). Remove from the hash list.
1705                  */
1706                 goto disarmed;
1707
1708         /* Following process expects this probe is an aggrprobe */
1709         WARN_ON(!kprobe_aggrprobe(ap));
1710
1711         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1712                 /*
1713                  * !disarmed could be happen if the probe is under delayed
1714                  * unoptimizing.
1715                  */
1716                 goto disarmed;
1717         else {
1718                 /* If disabling probe has special handlers, update aggrprobe */
1719                 if (p->post_handler && !kprobe_gone(p)) {
1720                         list_for_each_entry_rcu(list_p, &ap->list, list) {
1721                                 if ((list_p != p) && (list_p->post_handler))
1722                                         goto noclean;
1723                         }
1724                         ap->post_handler = NULL;
1725                 }
1726 noclean:
1727                 /*
1728                  * Remove from the aggrprobe: this path will do nothing in
1729                  * __unregister_kprobe_bottom().
1730                  */
1731                 list_del_rcu(&p->list);
1732                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1733                         /*
1734                          * Try to optimize this probe again, because post
1735                          * handler may have been changed.
1736                          */
1737                         optimize_kprobe(ap);
1738         }
1739         return 0;
1740
1741 disarmed:
1742         hlist_del_rcu(&ap->hlist);
1743         return 0;
1744 }
1745
1746 static void __unregister_kprobe_bottom(struct kprobe *p)
1747 {
1748         struct kprobe *ap;
1749
1750         if (list_empty(&p->list))
1751                 /* This is an independent kprobe */
1752                 arch_remove_kprobe(p);
1753         else if (list_is_singular(&p->list)) {
1754                 /* This is the last child of an aggrprobe */
1755                 ap = list_entry(p->list.next, struct kprobe, list);
1756                 list_del(&p->list);
1757                 free_aggr_kprobe(ap);
1758         }
1759         /* Otherwise, do nothing. */
1760 }
1761
1762 int register_kprobes(struct kprobe **kps, int num)
1763 {
1764         int i, ret = 0;
1765
1766         if (num <= 0)
1767                 return -EINVAL;
1768         for (i = 0; i < num; i++) {
1769                 ret = register_kprobe(kps[i]);
1770                 if (ret < 0) {
1771                         if (i > 0)
1772                                 unregister_kprobes(kps, i);
1773                         break;
1774                 }
1775         }
1776         return ret;
1777 }
1778 EXPORT_SYMBOL_GPL(register_kprobes);
1779
1780 void unregister_kprobe(struct kprobe *p)
1781 {
1782         unregister_kprobes(&p, 1);
1783 }
1784 EXPORT_SYMBOL_GPL(unregister_kprobe);
1785
1786 void unregister_kprobes(struct kprobe **kps, int num)
1787 {
1788         int i;
1789
1790         if (num <= 0)
1791                 return;
1792         mutex_lock(&kprobe_mutex);
1793         for (i = 0; i < num; i++)
1794                 if (__unregister_kprobe_top(kps[i]) < 0)
1795                         kps[i]->addr = NULL;
1796         mutex_unlock(&kprobe_mutex);
1797
1798         synchronize_rcu();
1799         for (i = 0; i < num; i++)
1800                 if (kps[i]->addr)
1801                         __unregister_kprobe_bottom(kps[i]);
1802 }
1803 EXPORT_SYMBOL_GPL(unregister_kprobes);
1804
1805 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1806                                         unsigned long val, void *data)
1807 {
1808         return NOTIFY_DONE;
1809 }
1810 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1811
1812 static struct notifier_block kprobe_exceptions_nb = {
1813         .notifier_call = kprobe_exceptions_notify,
1814         .priority = 0x7fffffff /* we need to be notified first */
1815 };
1816
1817 unsigned long __weak arch_deref_entry_point(void *entry)
1818 {
1819         return (unsigned long)entry;
1820 }
1821
1822 #ifdef CONFIG_KRETPROBES
1823 /*
1824  * This kprobe pre_handler is registered with every kretprobe. When probe
1825  * hits it will set up the return probe.
1826  */
1827 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1828 {
1829         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1830         unsigned long hash, flags = 0;
1831         struct kretprobe_instance *ri;
1832
1833         /*
1834          * To avoid deadlocks, prohibit return probing in NMI contexts,
1835          * just skip the probe and increase the (inexact) 'nmissed'
1836          * statistical counter, so that the user is informed that
1837          * something happened:
1838          */
1839         if (unlikely(in_nmi())) {
1840                 rp->nmissed++;
1841                 return 0;
1842         }
1843
1844         /* TODO: consider to only swap the RA after the last pre_handler fired */
1845         hash = hash_ptr(current, KPROBE_HASH_BITS);
1846         raw_spin_lock_irqsave(&rp->lock, flags);
1847         if (!hlist_empty(&rp->free_instances)) {
1848                 ri = hlist_entry(rp->free_instances.first,
1849                                 struct kretprobe_instance, hlist);
1850                 hlist_del(&ri->hlist);
1851                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1852
1853                 ri->rp = rp;
1854                 ri->task = current;
1855
1856                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1857                         raw_spin_lock_irqsave(&rp->lock, flags);
1858                         hlist_add_head(&ri->hlist, &rp->free_instances);
1859                         raw_spin_unlock_irqrestore(&rp->lock, flags);
1860                         return 0;
1861                 }
1862
1863                 arch_prepare_kretprobe(ri, regs);
1864
1865                 /* XXX(hch): why is there no hlist_move_head? */
1866                 INIT_HLIST_NODE(&ri->hlist);
1867                 kretprobe_table_lock(hash, &flags);
1868                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1869                 kretprobe_table_unlock(hash, &flags);
1870         } else {
1871                 rp->nmissed++;
1872                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1873         }
1874         return 0;
1875 }
1876 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1877
1878 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1879 {
1880         return !offset;
1881 }
1882
1883 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1884 {
1885         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1886
1887         if (IS_ERR(kp_addr))
1888                 return false;
1889
1890         if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1891                                                 !arch_kprobe_on_func_entry(offset))
1892                 return false;
1893
1894         return true;
1895 }
1896
1897 int register_kretprobe(struct kretprobe *rp)
1898 {
1899         int ret = 0;
1900         struct kretprobe_instance *inst;
1901         int i;
1902         void *addr;
1903
1904         if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1905                 return -EINVAL;
1906
1907         if (kretprobe_blacklist_size) {
1908                 addr = kprobe_addr(&rp->kp);
1909                 if (IS_ERR(addr))
1910                         return PTR_ERR(addr);
1911
1912                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1913                         if (kretprobe_blacklist[i].addr == addr)
1914                                 return -EINVAL;
1915                 }
1916         }
1917
1918         rp->kp.pre_handler = pre_handler_kretprobe;
1919         rp->kp.post_handler = NULL;
1920         rp->kp.fault_handler = NULL;
1921
1922         /* Pre-allocate memory for max kretprobe instances */
1923         if (rp->maxactive <= 0) {
1924 #ifdef CONFIG_PREEMPT
1925                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1926 #else
1927                 rp->maxactive = num_possible_cpus();
1928 #endif
1929         }
1930         raw_spin_lock_init(&rp->lock);
1931         INIT_HLIST_HEAD(&rp->free_instances);
1932         for (i = 0; i < rp->maxactive; i++) {
1933                 inst = kmalloc(sizeof(struct kretprobe_instance) +
1934                                rp->data_size, GFP_KERNEL);
1935                 if (inst == NULL) {
1936                         free_rp_inst(rp);
1937                         return -ENOMEM;
1938                 }
1939                 INIT_HLIST_NODE(&inst->hlist);
1940                 hlist_add_head(&inst->hlist, &rp->free_instances);
1941         }
1942
1943         rp->nmissed = 0;
1944         /* Establish function entry probe point */
1945         ret = register_kprobe(&rp->kp);
1946         if (ret != 0)
1947                 free_rp_inst(rp);
1948         return ret;
1949 }
1950 EXPORT_SYMBOL_GPL(register_kretprobe);
1951
1952 int register_kretprobes(struct kretprobe **rps, int num)
1953 {
1954         int ret = 0, i;
1955
1956         if (num <= 0)
1957                 return -EINVAL;
1958         for (i = 0; i < num; i++) {
1959                 ret = register_kretprobe(rps[i]);
1960                 if (ret < 0) {
1961                         if (i > 0)
1962                                 unregister_kretprobes(rps, i);
1963                         break;
1964                 }
1965         }
1966         return ret;
1967 }
1968 EXPORT_SYMBOL_GPL(register_kretprobes);
1969
1970 void unregister_kretprobe(struct kretprobe *rp)
1971 {
1972         unregister_kretprobes(&rp, 1);
1973 }
1974 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1975
1976 void unregister_kretprobes(struct kretprobe **rps, int num)
1977 {
1978         int i;
1979
1980         if (num <= 0)
1981                 return;
1982         mutex_lock(&kprobe_mutex);
1983         for (i = 0; i < num; i++)
1984                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1985                         rps[i]->kp.addr = NULL;
1986         mutex_unlock(&kprobe_mutex);
1987
1988         synchronize_rcu();
1989         for (i = 0; i < num; i++) {
1990                 if (rps[i]->kp.addr) {
1991                         __unregister_kprobe_bottom(&rps[i]->kp);
1992                         cleanup_rp_inst(rps[i]);
1993                 }
1994         }
1995 }
1996 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1997
1998 #else /* CONFIG_KRETPROBES */
1999 int register_kretprobe(struct kretprobe *rp)
2000 {
2001         return -ENOSYS;
2002 }
2003 EXPORT_SYMBOL_GPL(register_kretprobe);
2004
2005 int register_kretprobes(struct kretprobe **rps, int num)
2006 {
2007         return -ENOSYS;
2008 }
2009 EXPORT_SYMBOL_GPL(register_kretprobes);
2010
2011 void unregister_kretprobe(struct kretprobe *rp)
2012 {
2013 }
2014 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2015
2016 void unregister_kretprobes(struct kretprobe **rps, int num)
2017 {
2018 }
2019 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2020
2021 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2022 {
2023         return 0;
2024 }
2025 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2026
2027 #endif /* CONFIG_KRETPROBES */
2028
2029 /* Set the kprobe gone and remove its instruction buffer. */
2030 static void kill_kprobe(struct kprobe *p)
2031 {
2032         struct kprobe *kp;
2033
2034         p->flags |= KPROBE_FLAG_GONE;
2035         if (kprobe_aggrprobe(p)) {
2036                 /*
2037                  * If this is an aggr_kprobe, we have to list all the
2038                  * chained probes and mark them GONE.
2039                  */
2040                 list_for_each_entry_rcu(kp, &p->list, list)
2041                         kp->flags |= KPROBE_FLAG_GONE;
2042                 p->post_handler = NULL;
2043                 kill_optimized_kprobe(p);
2044         }
2045         /*
2046          * Here, we can remove insn_slot safely, because no thread calls
2047          * the original probed function (which will be freed soon) any more.
2048          */
2049         arch_remove_kprobe(p);
2050 }
2051
2052 /* Disable one kprobe */
2053 int disable_kprobe(struct kprobe *kp)
2054 {
2055         int ret = 0;
2056         struct kprobe *p;
2057
2058         mutex_lock(&kprobe_mutex);
2059
2060         /* Disable this kprobe */
2061         p = __disable_kprobe(kp);
2062         if (IS_ERR(p))
2063                 ret = PTR_ERR(p);
2064
2065         mutex_unlock(&kprobe_mutex);
2066         return ret;
2067 }
2068 EXPORT_SYMBOL_GPL(disable_kprobe);
2069
2070 /* Enable one kprobe */
2071 int enable_kprobe(struct kprobe *kp)
2072 {
2073         int ret = 0;
2074         struct kprobe *p;
2075
2076         mutex_lock(&kprobe_mutex);
2077
2078         /* Check whether specified probe is valid. */
2079         p = __get_valid_kprobe(kp);
2080         if (unlikely(p == NULL)) {
2081                 ret = -EINVAL;
2082                 goto out;
2083         }
2084
2085         if (kprobe_gone(kp)) {
2086                 /* This kprobe has gone, we couldn't enable it. */
2087                 ret = -EINVAL;
2088                 goto out;
2089         }
2090
2091         if (p != kp)
2092                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2093
2094         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2095                 p->flags &= ~KPROBE_FLAG_DISABLED;
2096                 ret = arm_kprobe(p);
2097                 if (ret)
2098                         p->flags |= KPROBE_FLAG_DISABLED;
2099         }
2100 out:
2101         mutex_unlock(&kprobe_mutex);
2102         return ret;
2103 }
2104 EXPORT_SYMBOL_GPL(enable_kprobe);
2105
2106 /* Caller must NOT call this in usual path. This is only for critical case */
2107 void dump_kprobe(struct kprobe *kp)
2108 {
2109         pr_err("Dumping kprobe:\n");
2110         pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2111                kp->symbol_name, kp->offset, kp->addr);
2112 }
2113 NOKPROBE_SYMBOL(dump_kprobe);
2114
2115 int kprobe_add_ksym_blacklist(unsigned long entry)
2116 {
2117         struct kprobe_blacklist_entry *ent;
2118         unsigned long offset = 0, size = 0;
2119
2120         if (!kernel_text_address(entry) ||
2121             !kallsyms_lookup_size_offset(entry, &size, &offset))
2122                 return -EINVAL;
2123
2124         ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2125         if (!ent)
2126                 return -ENOMEM;
2127         ent->start_addr = entry;
2128         ent->end_addr = entry + size;
2129         INIT_LIST_HEAD(&ent->list);
2130         list_add_tail(&ent->list, &kprobe_blacklist);
2131
2132         return (int)size;
2133 }
2134
2135 /* Add all symbols in given area into kprobe blacklist */
2136 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2137 {
2138         unsigned long entry;
2139         int ret = 0;
2140
2141         for (entry = start; entry < end; entry += ret) {
2142                 ret = kprobe_add_ksym_blacklist(entry);
2143                 if (ret < 0)
2144                         return ret;
2145                 if (ret == 0)   /* In case of alias symbol */
2146                         ret = 1;
2147         }
2148         return 0;
2149 }
2150
2151 int __init __weak arch_populate_kprobe_blacklist(void)
2152 {
2153         return 0;
2154 }
2155
2156 /*
2157  * Lookup and populate the kprobe_blacklist.
2158  *
2159  * Unlike the kretprobe blacklist, we'll need to determine
2160  * the range of addresses that belong to the said functions,
2161  * since a kprobe need not necessarily be at the beginning
2162  * of a function.
2163  */
2164 static int __init populate_kprobe_blacklist(unsigned long *start,
2165                                              unsigned long *end)
2166 {
2167         unsigned long entry;
2168         unsigned long *iter;
2169         int ret;
2170
2171         for (iter = start; iter < end; iter++) {
2172                 entry = arch_deref_entry_point((void *)*iter);
2173                 ret = kprobe_add_ksym_blacklist(entry);
2174                 if (ret == -EINVAL)
2175                         continue;
2176                 if (ret < 0)
2177                         return ret;
2178         }
2179
2180         /* Symbols in __kprobes_text are blacklisted */
2181         ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2182                                         (unsigned long)__kprobes_text_end);
2183
2184         return ret ? : arch_populate_kprobe_blacklist();
2185 }
2186
2187 /* Module notifier call back, checking kprobes on the module */
2188 static int kprobes_module_callback(struct notifier_block *nb,
2189                                    unsigned long val, void *data)
2190 {
2191         struct module *mod = data;
2192         struct hlist_head *head;
2193         struct kprobe *p;
2194         unsigned int i;
2195         int checkcore = (val == MODULE_STATE_GOING);
2196
2197         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2198                 return NOTIFY_DONE;
2199
2200         /*
2201          * When MODULE_STATE_GOING was notified, both of module .text and
2202          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2203          * notified, only .init.text section would be freed. We need to
2204          * disable kprobes which have been inserted in the sections.
2205          */
2206         mutex_lock(&kprobe_mutex);
2207         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2208                 head = &kprobe_table[i];
2209                 hlist_for_each_entry_rcu(p, head, hlist)
2210                         if (within_module_init((unsigned long)p->addr, mod) ||
2211                             (checkcore &&
2212                              within_module_core((unsigned long)p->addr, mod))) {
2213                                 /*
2214                                  * The vaddr this probe is installed will soon
2215                                  * be vfreed buy not synced to disk. Hence,
2216                                  * disarming the breakpoint isn't needed.
2217                                  *
2218                                  * Note, this will also move any optimized probes
2219                                  * that are pending to be removed from their
2220                                  * corresponding lists to the freeing_list and
2221                                  * will not be touched by the delayed
2222                                  * kprobe_optimizer work handler.
2223                                  */
2224                                 kill_kprobe(p);
2225                         }
2226         }
2227         mutex_unlock(&kprobe_mutex);
2228         return NOTIFY_DONE;
2229 }
2230
2231 static struct notifier_block kprobe_module_nb = {
2232         .notifier_call = kprobes_module_callback,
2233         .priority = 0
2234 };
2235
2236 /* Markers of _kprobe_blacklist section */
2237 extern unsigned long __start_kprobe_blacklist[];
2238 extern unsigned long __stop_kprobe_blacklist[];
2239
2240 static int __init init_kprobes(void)
2241 {
2242         int i, err = 0;
2243
2244         /* FIXME allocate the probe table, currently defined statically */
2245         /* initialize all list heads */
2246         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2247                 INIT_HLIST_HEAD(&kprobe_table[i]);
2248                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2249                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2250         }
2251
2252         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2253                                         __stop_kprobe_blacklist);
2254         if (err) {
2255                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2256                 pr_err("Please take care of using kprobes.\n");
2257         }
2258
2259         if (kretprobe_blacklist_size) {
2260                 /* lookup the function address from its name */
2261                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2262                         kretprobe_blacklist[i].addr =
2263                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2264                         if (!kretprobe_blacklist[i].addr)
2265                                 printk("kretprobe: lookup failed: %s\n",
2266                                        kretprobe_blacklist[i].name);
2267                 }
2268         }
2269
2270 #if defined(CONFIG_OPTPROBES)
2271 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2272         /* Init kprobe_optinsn_slots */
2273         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2274 #endif
2275         /* By default, kprobes can be optimized */
2276         kprobes_allow_optimization = true;
2277 #endif
2278
2279         /* By default, kprobes are armed */
2280         kprobes_all_disarmed = false;
2281
2282         err = arch_init_kprobes();
2283         if (!err)
2284                 err = register_die_notifier(&kprobe_exceptions_nb);
2285         if (!err)
2286                 err = register_module_notifier(&kprobe_module_nb);
2287
2288         kprobes_initialized = (err == 0);
2289
2290         if (!err)
2291                 init_test_probes();
2292         return err;
2293 }
2294
2295 #ifdef CONFIG_DEBUG_FS
2296 static void report_probe(struct seq_file *pi, struct kprobe *p,
2297                 const char *sym, int offset, char *modname, struct kprobe *pp)
2298 {
2299         char *kprobe_type;
2300         void *addr = p->addr;
2301
2302         if (p->pre_handler == pre_handler_kretprobe)
2303                 kprobe_type = "r";
2304         else
2305                 kprobe_type = "k";
2306
2307         if (!kallsyms_show_value())
2308                 addr = NULL;
2309
2310         if (sym)
2311                 seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2312                         addr, kprobe_type, sym, offset,
2313                         (modname ? modname : " "));
2314         else    /* try to use %pS */
2315                 seq_printf(pi, "%px  %s  %pS ",
2316                         addr, kprobe_type, p->addr);
2317
2318         if (!pp)
2319                 pp = p;
2320         seq_printf(pi, "%s%s%s%s\n",
2321                 (kprobe_gone(p) ? "[GONE]" : ""),
2322                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2323                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2324                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2325 }
2326
2327 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2328 {
2329         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2330 }
2331
2332 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2333 {
2334         (*pos)++;
2335         if (*pos >= KPROBE_TABLE_SIZE)
2336                 return NULL;
2337         return pos;
2338 }
2339
2340 static void kprobe_seq_stop(struct seq_file *f, void *v)
2341 {
2342         /* Nothing to do */
2343 }
2344
2345 static int show_kprobe_addr(struct seq_file *pi, void *v)
2346 {
2347         struct hlist_head *head;
2348         struct kprobe *p, *kp;
2349         const char *sym = NULL;
2350         unsigned int i = *(loff_t *) v;
2351         unsigned long offset = 0;
2352         char *modname, namebuf[KSYM_NAME_LEN];
2353
2354         head = &kprobe_table[i];
2355         preempt_disable();
2356         hlist_for_each_entry_rcu(p, head, hlist) {
2357                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2358                                         &offset, &modname, namebuf);
2359                 if (kprobe_aggrprobe(p)) {
2360                         list_for_each_entry_rcu(kp, &p->list, list)
2361                                 report_probe(pi, kp, sym, offset, modname, p);
2362                 } else
2363                         report_probe(pi, p, sym, offset, modname, NULL);
2364         }
2365         preempt_enable();
2366         return 0;
2367 }
2368
2369 static const struct seq_operations kprobes_seq_ops = {
2370         .start = kprobe_seq_start,
2371         .next  = kprobe_seq_next,
2372         .stop  = kprobe_seq_stop,
2373         .show  = show_kprobe_addr
2374 };
2375
2376 static int kprobes_open(struct inode *inode, struct file *filp)
2377 {
2378         return seq_open(filp, &kprobes_seq_ops);
2379 }
2380
2381 static const struct file_operations debugfs_kprobes_operations = {
2382         .open           = kprobes_open,
2383         .read           = seq_read,
2384         .llseek         = seq_lseek,
2385         .release        = seq_release,
2386 };
2387
2388 /* kprobes/blacklist -- shows which functions can not be probed */
2389 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2390 {
2391         return seq_list_start(&kprobe_blacklist, *pos);
2392 }
2393
2394 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2395 {
2396         return seq_list_next(v, &kprobe_blacklist, pos);
2397 }
2398
2399 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2400 {
2401         struct kprobe_blacklist_entry *ent =
2402                 list_entry(v, struct kprobe_blacklist_entry, list);
2403
2404         /*
2405          * If /proc/kallsyms is not showing kernel address, we won't
2406          * show them here either.
2407          */
2408         if (!kallsyms_show_value())
2409                 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2410                            (void *)ent->start_addr);
2411         else
2412                 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2413                            (void *)ent->end_addr, (void *)ent->start_addr);
2414         return 0;
2415 }
2416
2417 static const struct seq_operations kprobe_blacklist_seq_ops = {
2418         .start = kprobe_blacklist_seq_start,
2419         .next  = kprobe_blacklist_seq_next,
2420         .stop  = kprobe_seq_stop,       /* Reuse void function */
2421         .show  = kprobe_blacklist_seq_show,
2422 };
2423
2424 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2425 {
2426         return seq_open(filp, &kprobe_blacklist_seq_ops);
2427 }
2428
2429 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2430         .open           = kprobe_blacklist_open,
2431         .read           = seq_read,
2432         .llseek         = seq_lseek,
2433         .release        = seq_release,
2434 };
2435
2436 static int arm_all_kprobes(void)
2437 {
2438         struct hlist_head *head;
2439         struct kprobe *p;
2440         unsigned int i, total = 0, errors = 0;
2441         int err, ret = 0;
2442
2443         mutex_lock(&kprobe_mutex);
2444
2445         /* If kprobes are armed, just return */
2446         if (!kprobes_all_disarmed)
2447                 goto already_enabled;
2448
2449         /*
2450          * optimize_kprobe() called by arm_kprobe() checks
2451          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2452          * arm_kprobe.
2453          */
2454         kprobes_all_disarmed = false;
2455         /* Arming kprobes doesn't optimize kprobe itself */
2456         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2457                 head = &kprobe_table[i];
2458                 /* Arm all kprobes on a best-effort basis */
2459                 hlist_for_each_entry_rcu(p, head, hlist) {
2460                         if (!kprobe_disabled(p)) {
2461                                 err = arm_kprobe(p);
2462                                 if (err)  {
2463                                         errors++;
2464                                         ret = err;
2465                                 }
2466                                 total++;
2467                         }
2468                 }
2469         }
2470
2471         if (errors)
2472                 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2473                         errors, total);
2474         else
2475                 pr_info("Kprobes globally enabled\n");
2476
2477 already_enabled:
2478         mutex_unlock(&kprobe_mutex);
2479         return ret;
2480 }
2481
2482 static int disarm_all_kprobes(void)
2483 {
2484         struct hlist_head *head;
2485         struct kprobe *p;
2486         unsigned int i, total = 0, errors = 0;
2487         int err, ret = 0;
2488
2489         mutex_lock(&kprobe_mutex);
2490
2491         /* If kprobes are already disarmed, just return */
2492         if (kprobes_all_disarmed) {
2493                 mutex_unlock(&kprobe_mutex);
2494                 return 0;
2495         }
2496
2497         kprobes_all_disarmed = true;
2498
2499         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2500                 head = &kprobe_table[i];
2501                 /* Disarm all kprobes on a best-effort basis */
2502                 hlist_for_each_entry_rcu(p, head, hlist) {
2503                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2504                                 err = disarm_kprobe(p, false);
2505                                 if (err) {
2506                                         errors++;
2507                                         ret = err;
2508                                 }
2509                                 total++;
2510                         }
2511                 }
2512         }
2513
2514         if (errors)
2515                 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2516                         errors, total);
2517         else
2518                 pr_info("Kprobes globally disabled\n");
2519
2520         mutex_unlock(&kprobe_mutex);
2521
2522         /* Wait for disarming all kprobes by optimizer */
2523         wait_for_kprobe_optimizer();
2524
2525         return ret;
2526 }
2527
2528 /*
2529  * XXX: The debugfs bool file interface doesn't allow for callbacks
2530  * when the bool state is switched. We can reuse that facility when
2531  * available
2532  */
2533 static ssize_t read_enabled_file_bool(struct file *file,
2534                char __user *user_buf, size_t count, loff_t *ppos)
2535 {
2536         char buf[3];
2537
2538         if (!kprobes_all_disarmed)
2539                 buf[0] = '1';
2540         else
2541                 buf[0] = '0';
2542         buf[1] = '\n';
2543         buf[2] = 0x00;
2544         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2545 }
2546
2547 static ssize_t write_enabled_file_bool(struct file *file,
2548                const char __user *user_buf, size_t count, loff_t *ppos)
2549 {
2550         char buf[32];
2551         size_t buf_size;
2552         int ret = 0;
2553
2554         buf_size = min(count, (sizeof(buf)-1));
2555         if (copy_from_user(buf, user_buf, buf_size))
2556                 return -EFAULT;
2557
2558         buf[buf_size] = '\0';
2559         switch (buf[0]) {
2560         case 'y':
2561         case 'Y':
2562         case '1':
2563                 ret = arm_all_kprobes();
2564                 break;
2565         case 'n':
2566         case 'N':
2567         case '0':
2568                 ret = disarm_all_kprobes();
2569                 break;
2570         default:
2571                 return -EINVAL;
2572         }
2573
2574         if (ret)
2575                 return ret;
2576
2577         return count;
2578 }
2579
2580 static const struct file_operations fops_kp = {
2581         .read =         read_enabled_file_bool,
2582         .write =        write_enabled_file_bool,
2583         .llseek =       default_llseek,
2584 };
2585
2586 static int __init debugfs_kprobe_init(void)
2587 {
2588         struct dentry *dir, *file;
2589         unsigned int value = 1;
2590
2591         dir = debugfs_create_dir("kprobes", NULL);
2592         if (!dir)
2593                 return -ENOMEM;
2594
2595         file = debugfs_create_file("list", 0400, dir, NULL,
2596                                 &debugfs_kprobes_operations);
2597         if (!file)
2598                 goto error;
2599
2600         file = debugfs_create_file("enabled", 0600, dir,
2601                                         &value, &fops_kp);
2602         if (!file)
2603                 goto error;
2604
2605         file = debugfs_create_file("blacklist", 0400, dir, NULL,
2606                                 &debugfs_kprobe_blacklist_ops);
2607         if (!file)
2608                 goto error;
2609
2610         return 0;
2611
2612 error:
2613         debugfs_remove(dir);
2614         return -ENOMEM;
2615 }
2616
2617 late_initcall(debugfs_kprobe_init);
2618 #endif /* CONFIG_DEBUG_FS */
2619
2620 module_init(init_kprobes);