Merge tag 's390-5.1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[sfrench/cifs-2.6.git] / kernel / irq / manage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/sched/rt.h>
19 #include <linux/sched/task.h>
20 #include <uapi/linux/sched/types.h>
21 #include <linux/task_work.h>
22
23 #include "internals.h"
24
25 #ifdef CONFIG_IRQ_FORCED_THREADING
26 __read_mostly bool force_irqthreads;
27 EXPORT_SYMBOL_GPL(force_irqthreads);
28
29 static int __init setup_forced_irqthreads(char *arg)
30 {
31         force_irqthreads = true;
32         return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36
37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39         bool inprogress;
40
41         do {
42                 unsigned long flags;
43
44                 /*
45                  * Wait until we're out of the critical section.  This might
46                  * give the wrong answer due to the lack of memory barriers.
47                  */
48                 while (irqd_irq_inprogress(&desc->irq_data))
49                         cpu_relax();
50
51                 /* Ok, that indicated we're done: double-check carefully. */
52                 raw_spin_lock_irqsave(&desc->lock, flags);
53                 inprogress = irqd_irq_inprogress(&desc->irq_data);
54                 raw_spin_unlock_irqrestore(&desc->lock, flags);
55
56                 /* Oops, that failed? */
57         } while (inprogress);
58 }
59
60 /**
61  *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62  *      @irq: interrupt number to wait for
63  *
64  *      This function waits for any pending hard IRQ handlers for this
65  *      interrupt to complete before returning. If you use this
66  *      function while holding a resource the IRQ handler may need you
67  *      will deadlock. It does not take associated threaded handlers
68  *      into account.
69  *
70  *      Do not use this for shutdown scenarios where you must be sure
71  *      that all parts (hardirq and threaded handler) have completed.
72  *
73  *      Returns: false if a threaded handler is active.
74  *
75  *      This function may be called - with care - from IRQ context.
76  */
77 bool synchronize_hardirq(unsigned int irq)
78 {
79         struct irq_desc *desc = irq_to_desc(irq);
80
81         if (desc) {
82                 __synchronize_hardirq(desc);
83                 return !atomic_read(&desc->threads_active);
84         }
85
86         return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89
90 /**
91  *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92  *      @irq: interrupt number to wait for
93  *
94  *      This function waits for any pending IRQ handlers for this interrupt
95  *      to complete before returning. If you use this function while
96  *      holding a resource the IRQ handler may need you will deadlock.
97  *
98  *      This function may be called - with care - from IRQ context.
99  */
100 void synchronize_irq(unsigned int irq)
101 {
102         struct irq_desc *desc = irq_to_desc(irq);
103
104         if (desc) {
105                 __synchronize_hardirq(desc);
106                 /*
107                  * We made sure that no hardirq handler is
108                  * running. Now verify that no threaded handlers are
109                  * active.
110                  */
111                 wait_event(desc->wait_for_threads,
112                            !atomic_read(&desc->threads_active));
113         }
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122         if (!desc || !irqd_can_balance(&desc->irq_data) ||
123             !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124                 return false;
125         return true;
126 }
127
128 /**
129  *      irq_can_set_affinity - Check if the affinity of a given irq can be set
130  *      @irq:           Interrupt to check
131  *
132  */
133 int irq_can_set_affinity(unsigned int irq)
134 {
135         return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137
138 /**
139  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140  * @irq:        Interrupt to check
141  *
142  * Like irq_can_set_affinity() above, but additionally checks for the
143  * AFFINITY_MANAGED flag.
144  */
145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147         struct irq_desc *desc = irq_to_desc(irq);
148
149         return __irq_can_set_affinity(desc) &&
150                 !irqd_affinity_is_managed(&desc->irq_data);
151 }
152
153 /**
154  *      irq_set_thread_affinity - Notify irq threads to adjust affinity
155  *      @desc:          irq descriptor which has affitnity changed
156  *
157  *      We just set IRQTF_AFFINITY and delegate the affinity setting
158  *      to the interrupt thread itself. We can not call
159  *      set_cpus_allowed_ptr() here as we hold desc->lock and this
160  *      code can be called from hard interrupt context.
161  */
162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164         struct irqaction *action;
165
166         for_each_action_of_desc(desc, action)
167                 if (action->thread)
168                         set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170
171 static void irq_validate_effective_affinity(struct irq_data *data)
172 {
173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
174         const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
175         struct irq_chip *chip = irq_data_get_irq_chip(data);
176
177         if (!cpumask_empty(m))
178                 return;
179         pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
180                      chip->name, data->irq);
181 #endif
182 }
183
184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
185                         bool force)
186 {
187         struct irq_desc *desc = irq_data_to_desc(data);
188         struct irq_chip *chip = irq_data_get_irq_chip(data);
189         int ret;
190
191         if (!chip || !chip->irq_set_affinity)
192                 return -EINVAL;
193
194         ret = chip->irq_set_affinity(data, mask, force);
195         switch (ret) {
196         case IRQ_SET_MASK_OK:
197         case IRQ_SET_MASK_OK_DONE:
198                 cpumask_copy(desc->irq_common_data.affinity, mask);
199                 /* fall through */
200         case IRQ_SET_MASK_OK_NOCOPY:
201                 irq_validate_effective_affinity(data);
202                 irq_set_thread_affinity(desc);
203                 ret = 0;
204         }
205
206         return ret;
207 }
208
209 #ifdef CONFIG_GENERIC_PENDING_IRQ
210 static inline int irq_set_affinity_pending(struct irq_data *data,
211                                            const struct cpumask *dest)
212 {
213         struct irq_desc *desc = irq_data_to_desc(data);
214
215         irqd_set_move_pending(data);
216         irq_copy_pending(desc, dest);
217         return 0;
218 }
219 #else
220 static inline int irq_set_affinity_pending(struct irq_data *data,
221                                            const struct cpumask *dest)
222 {
223         return -EBUSY;
224 }
225 #endif
226
227 static int irq_try_set_affinity(struct irq_data *data,
228                                 const struct cpumask *dest, bool force)
229 {
230         int ret = irq_do_set_affinity(data, dest, force);
231
232         /*
233          * In case that the underlying vector management is busy and the
234          * architecture supports the generic pending mechanism then utilize
235          * this to avoid returning an error to user space.
236          */
237         if (ret == -EBUSY && !force)
238                 ret = irq_set_affinity_pending(data, dest);
239         return ret;
240 }
241
242 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
243                             bool force)
244 {
245         struct irq_chip *chip = irq_data_get_irq_chip(data);
246         struct irq_desc *desc = irq_data_to_desc(data);
247         int ret = 0;
248
249         if (!chip || !chip->irq_set_affinity)
250                 return -EINVAL;
251
252         if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
253                 ret = irq_try_set_affinity(data, mask, force);
254         } else {
255                 irqd_set_move_pending(data);
256                 irq_copy_pending(desc, mask);
257         }
258
259         if (desc->affinity_notify) {
260                 kref_get(&desc->affinity_notify->kref);
261                 schedule_work(&desc->affinity_notify->work);
262         }
263         irqd_set(data, IRQD_AFFINITY_SET);
264
265         return ret;
266 }
267
268 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
269 {
270         struct irq_desc *desc = irq_to_desc(irq);
271         unsigned long flags;
272         int ret;
273
274         if (!desc)
275                 return -EINVAL;
276
277         raw_spin_lock_irqsave(&desc->lock, flags);
278         ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
279         raw_spin_unlock_irqrestore(&desc->lock, flags);
280         return ret;
281 }
282
283 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
284 {
285         unsigned long flags;
286         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
287
288         if (!desc)
289                 return -EINVAL;
290         desc->affinity_hint = m;
291         irq_put_desc_unlock(desc, flags);
292         /* set the initial affinity to prevent every interrupt being on CPU0 */
293         if (m)
294                 __irq_set_affinity(irq, m, false);
295         return 0;
296 }
297 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
298
299 static void irq_affinity_notify(struct work_struct *work)
300 {
301         struct irq_affinity_notify *notify =
302                 container_of(work, struct irq_affinity_notify, work);
303         struct irq_desc *desc = irq_to_desc(notify->irq);
304         cpumask_var_t cpumask;
305         unsigned long flags;
306
307         if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
308                 goto out;
309
310         raw_spin_lock_irqsave(&desc->lock, flags);
311         if (irq_move_pending(&desc->irq_data))
312                 irq_get_pending(cpumask, desc);
313         else
314                 cpumask_copy(cpumask, desc->irq_common_data.affinity);
315         raw_spin_unlock_irqrestore(&desc->lock, flags);
316
317         notify->notify(notify, cpumask);
318
319         free_cpumask_var(cpumask);
320 out:
321         kref_put(&notify->kref, notify->release);
322 }
323
324 /**
325  *      irq_set_affinity_notifier - control notification of IRQ affinity changes
326  *      @irq:           Interrupt for which to enable/disable notification
327  *      @notify:        Context for notification, or %NULL to disable
328  *                      notification.  Function pointers must be initialised;
329  *                      the other fields will be initialised by this function.
330  *
331  *      Must be called in process context.  Notification may only be enabled
332  *      after the IRQ is allocated and must be disabled before the IRQ is
333  *      freed using free_irq().
334  */
335 int
336 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
337 {
338         struct irq_desc *desc = irq_to_desc(irq);
339         struct irq_affinity_notify *old_notify;
340         unsigned long flags;
341
342         /* The release function is promised process context */
343         might_sleep();
344
345         if (!desc || desc->istate & IRQS_NMI)
346                 return -EINVAL;
347
348         /* Complete initialisation of *notify */
349         if (notify) {
350                 notify->irq = irq;
351                 kref_init(&notify->kref);
352                 INIT_WORK(&notify->work, irq_affinity_notify);
353         }
354
355         raw_spin_lock_irqsave(&desc->lock, flags);
356         old_notify = desc->affinity_notify;
357         desc->affinity_notify = notify;
358         raw_spin_unlock_irqrestore(&desc->lock, flags);
359
360         if (old_notify)
361                 kref_put(&old_notify->kref, old_notify->release);
362
363         return 0;
364 }
365 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
366
367 #ifndef CONFIG_AUTO_IRQ_AFFINITY
368 /*
369  * Generic version of the affinity autoselector.
370  */
371 int irq_setup_affinity(struct irq_desc *desc)
372 {
373         struct cpumask *set = irq_default_affinity;
374         int ret, node = irq_desc_get_node(desc);
375         static DEFINE_RAW_SPINLOCK(mask_lock);
376         static struct cpumask mask;
377
378         /* Excludes PER_CPU and NO_BALANCE interrupts */
379         if (!__irq_can_set_affinity(desc))
380                 return 0;
381
382         raw_spin_lock(&mask_lock);
383         /*
384          * Preserve the managed affinity setting and a userspace affinity
385          * setup, but make sure that one of the targets is online.
386          */
387         if (irqd_affinity_is_managed(&desc->irq_data) ||
388             irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
389                 if (cpumask_intersects(desc->irq_common_data.affinity,
390                                        cpu_online_mask))
391                         set = desc->irq_common_data.affinity;
392                 else
393                         irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
394         }
395
396         cpumask_and(&mask, cpu_online_mask, set);
397         if (cpumask_empty(&mask))
398                 cpumask_copy(&mask, cpu_online_mask);
399
400         if (node != NUMA_NO_NODE) {
401                 const struct cpumask *nodemask = cpumask_of_node(node);
402
403                 /* make sure at least one of the cpus in nodemask is online */
404                 if (cpumask_intersects(&mask, nodemask))
405                         cpumask_and(&mask, &mask, nodemask);
406         }
407         ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
408         raw_spin_unlock(&mask_lock);
409         return ret;
410 }
411 #else
412 /* Wrapper for ALPHA specific affinity selector magic */
413 int irq_setup_affinity(struct irq_desc *desc)
414 {
415         return irq_select_affinity(irq_desc_get_irq(desc));
416 }
417 #endif
418
419 /*
420  * Called when a bogus affinity is set via /proc/irq
421  */
422 int irq_select_affinity_usr(unsigned int irq)
423 {
424         struct irq_desc *desc = irq_to_desc(irq);
425         unsigned long flags;
426         int ret;
427
428         raw_spin_lock_irqsave(&desc->lock, flags);
429         ret = irq_setup_affinity(desc);
430         raw_spin_unlock_irqrestore(&desc->lock, flags);
431         return ret;
432 }
433 #endif
434
435 /**
436  *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
437  *      @irq: interrupt number to set affinity
438  *      @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
439  *                  specific data for percpu_devid interrupts
440  *
441  *      This function uses the vCPU specific data to set the vCPU
442  *      affinity for an irq. The vCPU specific data is passed from
443  *      outside, such as KVM. One example code path is as below:
444  *      KVM -> IOMMU -> irq_set_vcpu_affinity().
445  */
446 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
447 {
448         unsigned long flags;
449         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
450         struct irq_data *data;
451         struct irq_chip *chip;
452         int ret = -ENOSYS;
453
454         if (!desc)
455                 return -EINVAL;
456
457         data = irq_desc_get_irq_data(desc);
458         do {
459                 chip = irq_data_get_irq_chip(data);
460                 if (chip && chip->irq_set_vcpu_affinity)
461                         break;
462 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
463                 data = data->parent_data;
464 #else
465                 data = NULL;
466 #endif
467         } while (data);
468
469         if (data)
470                 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
471         irq_put_desc_unlock(desc, flags);
472
473         return ret;
474 }
475 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
476
477 void __disable_irq(struct irq_desc *desc)
478 {
479         if (!desc->depth++)
480                 irq_disable(desc);
481 }
482
483 static int __disable_irq_nosync(unsigned int irq)
484 {
485         unsigned long flags;
486         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
487
488         if (!desc)
489                 return -EINVAL;
490         __disable_irq(desc);
491         irq_put_desc_busunlock(desc, flags);
492         return 0;
493 }
494
495 /**
496  *      disable_irq_nosync - disable an irq without waiting
497  *      @irq: Interrupt to disable
498  *
499  *      Disable the selected interrupt line.  Disables and Enables are
500  *      nested.
501  *      Unlike disable_irq(), this function does not ensure existing
502  *      instances of the IRQ handler have completed before returning.
503  *
504  *      This function may be called from IRQ context.
505  */
506 void disable_irq_nosync(unsigned int irq)
507 {
508         __disable_irq_nosync(irq);
509 }
510 EXPORT_SYMBOL(disable_irq_nosync);
511
512 /**
513  *      disable_irq - disable an irq and wait for completion
514  *      @irq: Interrupt to disable
515  *
516  *      Disable the selected interrupt line.  Enables and Disables are
517  *      nested.
518  *      This function waits for any pending IRQ handlers for this interrupt
519  *      to complete before returning. If you use this function while
520  *      holding a resource the IRQ handler may need you will deadlock.
521  *
522  *      This function may be called - with care - from IRQ context.
523  */
524 void disable_irq(unsigned int irq)
525 {
526         if (!__disable_irq_nosync(irq))
527                 synchronize_irq(irq);
528 }
529 EXPORT_SYMBOL(disable_irq);
530
531 /**
532  *      disable_hardirq - disables an irq and waits for hardirq completion
533  *      @irq: Interrupt to disable
534  *
535  *      Disable the selected interrupt line.  Enables and Disables are
536  *      nested.
537  *      This function waits for any pending hard IRQ handlers for this
538  *      interrupt to complete before returning. If you use this function while
539  *      holding a resource the hard IRQ handler may need you will deadlock.
540  *
541  *      When used to optimistically disable an interrupt from atomic context
542  *      the return value must be checked.
543  *
544  *      Returns: false if a threaded handler is active.
545  *
546  *      This function may be called - with care - from IRQ context.
547  */
548 bool disable_hardirq(unsigned int irq)
549 {
550         if (!__disable_irq_nosync(irq))
551                 return synchronize_hardirq(irq);
552
553         return false;
554 }
555 EXPORT_SYMBOL_GPL(disable_hardirq);
556
557 /**
558  *      disable_nmi_nosync - disable an nmi without waiting
559  *      @irq: Interrupt to disable
560  *
561  *      Disable the selected interrupt line. Disables and enables are
562  *      nested.
563  *      The interrupt to disable must have been requested through request_nmi.
564  *      Unlike disable_nmi(), this function does not ensure existing
565  *      instances of the IRQ handler have completed before returning.
566  */
567 void disable_nmi_nosync(unsigned int irq)
568 {
569         disable_irq_nosync(irq);
570 }
571
572 void __enable_irq(struct irq_desc *desc)
573 {
574         switch (desc->depth) {
575         case 0:
576  err_out:
577                 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
578                      irq_desc_get_irq(desc));
579                 break;
580         case 1: {
581                 if (desc->istate & IRQS_SUSPENDED)
582                         goto err_out;
583                 /* Prevent probing on this irq: */
584                 irq_settings_set_noprobe(desc);
585                 /*
586                  * Call irq_startup() not irq_enable() here because the
587                  * interrupt might be marked NOAUTOEN. So irq_startup()
588                  * needs to be invoked when it gets enabled the first
589                  * time. If it was already started up, then irq_startup()
590                  * will invoke irq_enable() under the hood.
591                  */
592                 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
593                 break;
594         }
595         default:
596                 desc->depth--;
597         }
598 }
599
600 /**
601  *      enable_irq - enable handling of an irq
602  *      @irq: Interrupt to enable
603  *
604  *      Undoes the effect of one call to disable_irq().  If this
605  *      matches the last disable, processing of interrupts on this
606  *      IRQ line is re-enabled.
607  *
608  *      This function may be called from IRQ context only when
609  *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
610  */
611 void enable_irq(unsigned int irq)
612 {
613         unsigned long flags;
614         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
615
616         if (!desc)
617                 return;
618         if (WARN(!desc->irq_data.chip,
619                  KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
620                 goto out;
621
622         __enable_irq(desc);
623 out:
624         irq_put_desc_busunlock(desc, flags);
625 }
626 EXPORT_SYMBOL(enable_irq);
627
628 /**
629  *      enable_nmi - enable handling of an nmi
630  *      @irq: Interrupt to enable
631  *
632  *      The interrupt to enable must have been requested through request_nmi.
633  *      Undoes the effect of one call to disable_nmi(). If this
634  *      matches the last disable, processing of interrupts on this
635  *      IRQ line is re-enabled.
636  */
637 void enable_nmi(unsigned int irq)
638 {
639         enable_irq(irq);
640 }
641
642 static int set_irq_wake_real(unsigned int irq, unsigned int on)
643 {
644         struct irq_desc *desc = irq_to_desc(irq);
645         int ret = -ENXIO;
646
647         if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
648                 return 0;
649
650         if (desc->irq_data.chip->irq_set_wake)
651                 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
652
653         return ret;
654 }
655
656 /**
657  *      irq_set_irq_wake - control irq power management wakeup
658  *      @irq:   interrupt to control
659  *      @on:    enable/disable power management wakeup
660  *
661  *      Enable/disable power management wakeup mode, which is
662  *      disabled by default.  Enables and disables must match,
663  *      just as they match for non-wakeup mode support.
664  *
665  *      Wakeup mode lets this IRQ wake the system from sleep
666  *      states like "suspend to RAM".
667  */
668 int irq_set_irq_wake(unsigned int irq, unsigned int on)
669 {
670         unsigned long flags;
671         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
672         int ret = 0;
673
674         if (!desc)
675                 return -EINVAL;
676
677         /* Don't use NMIs as wake up interrupts please */
678         if (desc->istate & IRQS_NMI) {
679                 ret = -EINVAL;
680                 goto out_unlock;
681         }
682
683         /* wakeup-capable irqs can be shared between drivers that
684          * don't need to have the same sleep mode behaviors.
685          */
686         if (on) {
687                 if (desc->wake_depth++ == 0) {
688                         ret = set_irq_wake_real(irq, on);
689                         if (ret)
690                                 desc->wake_depth = 0;
691                         else
692                                 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
693                 }
694         } else {
695                 if (desc->wake_depth == 0) {
696                         WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
697                 } else if (--desc->wake_depth == 0) {
698                         ret = set_irq_wake_real(irq, on);
699                         if (ret)
700                                 desc->wake_depth = 1;
701                         else
702                                 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
703                 }
704         }
705
706 out_unlock:
707         irq_put_desc_busunlock(desc, flags);
708         return ret;
709 }
710 EXPORT_SYMBOL(irq_set_irq_wake);
711
712 /*
713  * Internal function that tells the architecture code whether a
714  * particular irq has been exclusively allocated or is available
715  * for driver use.
716  */
717 int can_request_irq(unsigned int irq, unsigned long irqflags)
718 {
719         unsigned long flags;
720         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
721         int canrequest = 0;
722
723         if (!desc)
724                 return 0;
725
726         if (irq_settings_can_request(desc)) {
727                 if (!desc->action ||
728                     irqflags & desc->action->flags & IRQF_SHARED)
729                         canrequest = 1;
730         }
731         irq_put_desc_unlock(desc, flags);
732         return canrequest;
733 }
734
735 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
736 {
737         struct irq_chip *chip = desc->irq_data.chip;
738         int ret, unmask = 0;
739
740         if (!chip || !chip->irq_set_type) {
741                 /*
742                  * IRQF_TRIGGER_* but the PIC does not support multiple
743                  * flow-types?
744                  */
745                 pr_debug("No set_type function for IRQ %d (%s)\n",
746                          irq_desc_get_irq(desc),
747                          chip ? (chip->name ? : "unknown") : "unknown");
748                 return 0;
749         }
750
751         if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
752                 if (!irqd_irq_masked(&desc->irq_data))
753                         mask_irq(desc);
754                 if (!irqd_irq_disabled(&desc->irq_data))
755                         unmask = 1;
756         }
757
758         /* Mask all flags except trigger mode */
759         flags &= IRQ_TYPE_SENSE_MASK;
760         ret = chip->irq_set_type(&desc->irq_data, flags);
761
762         switch (ret) {
763         case IRQ_SET_MASK_OK:
764         case IRQ_SET_MASK_OK_DONE:
765                 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
766                 irqd_set(&desc->irq_data, flags);
767                 /* fall through */
768
769         case IRQ_SET_MASK_OK_NOCOPY:
770                 flags = irqd_get_trigger_type(&desc->irq_data);
771                 irq_settings_set_trigger_mask(desc, flags);
772                 irqd_clear(&desc->irq_data, IRQD_LEVEL);
773                 irq_settings_clr_level(desc);
774                 if (flags & IRQ_TYPE_LEVEL_MASK) {
775                         irq_settings_set_level(desc);
776                         irqd_set(&desc->irq_data, IRQD_LEVEL);
777                 }
778
779                 ret = 0;
780                 break;
781         default:
782                 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
783                        flags, irq_desc_get_irq(desc), chip->irq_set_type);
784         }
785         if (unmask)
786                 unmask_irq(desc);
787         return ret;
788 }
789
790 #ifdef CONFIG_HARDIRQS_SW_RESEND
791 int irq_set_parent(int irq, int parent_irq)
792 {
793         unsigned long flags;
794         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
795
796         if (!desc)
797                 return -EINVAL;
798
799         desc->parent_irq = parent_irq;
800
801         irq_put_desc_unlock(desc, flags);
802         return 0;
803 }
804 EXPORT_SYMBOL_GPL(irq_set_parent);
805 #endif
806
807 /*
808  * Default primary interrupt handler for threaded interrupts. Is
809  * assigned as primary handler when request_threaded_irq is called
810  * with handler == NULL. Useful for oneshot interrupts.
811  */
812 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
813 {
814         return IRQ_WAKE_THREAD;
815 }
816
817 /*
818  * Primary handler for nested threaded interrupts. Should never be
819  * called.
820  */
821 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
822 {
823         WARN(1, "Primary handler called for nested irq %d\n", irq);
824         return IRQ_NONE;
825 }
826
827 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
828 {
829         WARN(1, "Secondary action handler called for irq %d\n", irq);
830         return IRQ_NONE;
831 }
832
833 static int irq_wait_for_interrupt(struct irqaction *action)
834 {
835         for (;;) {
836                 set_current_state(TASK_INTERRUPTIBLE);
837
838                 if (kthread_should_stop()) {
839                         /* may need to run one last time */
840                         if (test_and_clear_bit(IRQTF_RUNTHREAD,
841                                                &action->thread_flags)) {
842                                 __set_current_state(TASK_RUNNING);
843                                 return 0;
844                         }
845                         __set_current_state(TASK_RUNNING);
846                         return -1;
847                 }
848
849                 if (test_and_clear_bit(IRQTF_RUNTHREAD,
850                                        &action->thread_flags)) {
851                         __set_current_state(TASK_RUNNING);
852                         return 0;
853                 }
854                 schedule();
855         }
856 }
857
858 /*
859  * Oneshot interrupts keep the irq line masked until the threaded
860  * handler finished. unmask if the interrupt has not been disabled and
861  * is marked MASKED.
862  */
863 static void irq_finalize_oneshot(struct irq_desc *desc,
864                                  struct irqaction *action)
865 {
866         if (!(desc->istate & IRQS_ONESHOT) ||
867             action->handler == irq_forced_secondary_handler)
868                 return;
869 again:
870         chip_bus_lock(desc);
871         raw_spin_lock_irq(&desc->lock);
872
873         /*
874          * Implausible though it may be we need to protect us against
875          * the following scenario:
876          *
877          * The thread is faster done than the hard interrupt handler
878          * on the other CPU. If we unmask the irq line then the
879          * interrupt can come in again and masks the line, leaves due
880          * to IRQS_INPROGRESS and the irq line is masked forever.
881          *
882          * This also serializes the state of shared oneshot handlers
883          * versus "desc->threads_onehsot |= action->thread_mask;" in
884          * irq_wake_thread(). See the comment there which explains the
885          * serialization.
886          */
887         if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
888                 raw_spin_unlock_irq(&desc->lock);
889                 chip_bus_sync_unlock(desc);
890                 cpu_relax();
891                 goto again;
892         }
893
894         /*
895          * Now check again, whether the thread should run. Otherwise
896          * we would clear the threads_oneshot bit of this thread which
897          * was just set.
898          */
899         if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
900                 goto out_unlock;
901
902         desc->threads_oneshot &= ~action->thread_mask;
903
904         if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
905             irqd_irq_masked(&desc->irq_data))
906                 unmask_threaded_irq(desc);
907
908 out_unlock:
909         raw_spin_unlock_irq(&desc->lock);
910         chip_bus_sync_unlock(desc);
911 }
912
913 #ifdef CONFIG_SMP
914 /*
915  * Check whether we need to change the affinity of the interrupt thread.
916  */
917 static void
918 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
919 {
920         cpumask_var_t mask;
921         bool valid = true;
922
923         if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
924                 return;
925
926         /*
927          * In case we are out of memory we set IRQTF_AFFINITY again and
928          * try again next time
929          */
930         if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
931                 set_bit(IRQTF_AFFINITY, &action->thread_flags);
932                 return;
933         }
934
935         raw_spin_lock_irq(&desc->lock);
936         /*
937          * This code is triggered unconditionally. Check the affinity
938          * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
939          */
940         if (cpumask_available(desc->irq_common_data.affinity)) {
941                 const struct cpumask *m;
942
943                 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
944                 cpumask_copy(mask, m);
945         } else {
946                 valid = false;
947         }
948         raw_spin_unlock_irq(&desc->lock);
949
950         if (valid)
951                 set_cpus_allowed_ptr(current, mask);
952         free_cpumask_var(mask);
953 }
954 #else
955 static inline void
956 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
957 #endif
958
959 /*
960  * Interrupts which are not explicitly requested as threaded
961  * interrupts rely on the implicit bh/preempt disable of the hard irq
962  * context. So we need to disable bh here to avoid deadlocks and other
963  * side effects.
964  */
965 static irqreturn_t
966 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
967 {
968         irqreturn_t ret;
969
970         local_bh_disable();
971         ret = action->thread_fn(action->irq, action->dev_id);
972         if (ret == IRQ_HANDLED)
973                 atomic_inc(&desc->threads_handled);
974
975         irq_finalize_oneshot(desc, action);
976         local_bh_enable();
977         return ret;
978 }
979
980 /*
981  * Interrupts explicitly requested as threaded interrupts want to be
982  * preemtible - many of them need to sleep and wait for slow busses to
983  * complete.
984  */
985 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
986                 struct irqaction *action)
987 {
988         irqreturn_t ret;
989
990         ret = action->thread_fn(action->irq, action->dev_id);
991         if (ret == IRQ_HANDLED)
992                 atomic_inc(&desc->threads_handled);
993
994         irq_finalize_oneshot(desc, action);
995         return ret;
996 }
997
998 static void wake_threads_waitq(struct irq_desc *desc)
999 {
1000         if (atomic_dec_and_test(&desc->threads_active))
1001                 wake_up(&desc->wait_for_threads);
1002 }
1003
1004 static void irq_thread_dtor(struct callback_head *unused)
1005 {
1006         struct task_struct *tsk = current;
1007         struct irq_desc *desc;
1008         struct irqaction *action;
1009
1010         if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1011                 return;
1012
1013         action = kthread_data(tsk);
1014
1015         pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1016                tsk->comm, tsk->pid, action->irq);
1017
1018
1019         desc = irq_to_desc(action->irq);
1020         /*
1021          * If IRQTF_RUNTHREAD is set, we need to decrement
1022          * desc->threads_active and wake possible waiters.
1023          */
1024         if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1025                 wake_threads_waitq(desc);
1026
1027         /* Prevent a stale desc->threads_oneshot */
1028         irq_finalize_oneshot(desc, action);
1029 }
1030
1031 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1032 {
1033         struct irqaction *secondary = action->secondary;
1034
1035         if (WARN_ON_ONCE(!secondary))
1036                 return;
1037
1038         raw_spin_lock_irq(&desc->lock);
1039         __irq_wake_thread(desc, secondary);
1040         raw_spin_unlock_irq(&desc->lock);
1041 }
1042
1043 /*
1044  * Interrupt handler thread
1045  */
1046 static int irq_thread(void *data)
1047 {
1048         struct callback_head on_exit_work;
1049         struct irqaction *action = data;
1050         struct irq_desc *desc = irq_to_desc(action->irq);
1051         irqreturn_t (*handler_fn)(struct irq_desc *desc,
1052                         struct irqaction *action);
1053
1054         if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1055                                         &action->thread_flags))
1056                 handler_fn = irq_forced_thread_fn;
1057         else
1058                 handler_fn = irq_thread_fn;
1059
1060         init_task_work(&on_exit_work, irq_thread_dtor);
1061         task_work_add(current, &on_exit_work, false);
1062
1063         irq_thread_check_affinity(desc, action);
1064
1065         while (!irq_wait_for_interrupt(action)) {
1066                 irqreturn_t action_ret;
1067
1068                 irq_thread_check_affinity(desc, action);
1069
1070                 action_ret = handler_fn(desc, action);
1071                 if (action_ret == IRQ_WAKE_THREAD)
1072                         irq_wake_secondary(desc, action);
1073
1074                 wake_threads_waitq(desc);
1075         }
1076
1077         /*
1078          * This is the regular exit path. __free_irq() is stopping the
1079          * thread via kthread_stop() after calling
1080          * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1081          * oneshot mask bit can be set.
1082          */
1083         task_work_cancel(current, irq_thread_dtor);
1084         return 0;
1085 }
1086
1087 /**
1088  *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1089  *      @irq:           Interrupt line
1090  *      @dev_id:        Device identity for which the thread should be woken
1091  *
1092  */
1093 void irq_wake_thread(unsigned int irq, void *dev_id)
1094 {
1095         struct irq_desc *desc = irq_to_desc(irq);
1096         struct irqaction *action;
1097         unsigned long flags;
1098
1099         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1100                 return;
1101
1102         raw_spin_lock_irqsave(&desc->lock, flags);
1103         for_each_action_of_desc(desc, action) {
1104                 if (action->dev_id == dev_id) {
1105                         if (action->thread)
1106                                 __irq_wake_thread(desc, action);
1107                         break;
1108                 }
1109         }
1110         raw_spin_unlock_irqrestore(&desc->lock, flags);
1111 }
1112 EXPORT_SYMBOL_GPL(irq_wake_thread);
1113
1114 static int irq_setup_forced_threading(struct irqaction *new)
1115 {
1116         if (!force_irqthreads)
1117                 return 0;
1118         if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1119                 return 0;
1120
1121         /*
1122          * No further action required for interrupts which are requested as
1123          * threaded interrupts already
1124          */
1125         if (new->handler == irq_default_primary_handler)
1126                 return 0;
1127
1128         new->flags |= IRQF_ONESHOT;
1129
1130         /*
1131          * Handle the case where we have a real primary handler and a
1132          * thread handler. We force thread them as well by creating a
1133          * secondary action.
1134          */
1135         if (new->handler && new->thread_fn) {
1136                 /* Allocate the secondary action */
1137                 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1138                 if (!new->secondary)
1139                         return -ENOMEM;
1140                 new->secondary->handler = irq_forced_secondary_handler;
1141                 new->secondary->thread_fn = new->thread_fn;
1142                 new->secondary->dev_id = new->dev_id;
1143                 new->secondary->irq = new->irq;
1144                 new->secondary->name = new->name;
1145         }
1146         /* Deal with the primary handler */
1147         set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1148         new->thread_fn = new->handler;
1149         new->handler = irq_default_primary_handler;
1150         return 0;
1151 }
1152
1153 static int irq_request_resources(struct irq_desc *desc)
1154 {
1155         struct irq_data *d = &desc->irq_data;
1156         struct irq_chip *c = d->chip;
1157
1158         return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1159 }
1160
1161 static void irq_release_resources(struct irq_desc *desc)
1162 {
1163         struct irq_data *d = &desc->irq_data;
1164         struct irq_chip *c = d->chip;
1165
1166         if (c->irq_release_resources)
1167                 c->irq_release_resources(d);
1168 }
1169
1170 static bool irq_supports_nmi(struct irq_desc *desc)
1171 {
1172         struct irq_data *d = irq_desc_get_irq_data(desc);
1173
1174 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1175         /* Only IRQs directly managed by the root irqchip can be set as NMI */
1176         if (d->parent_data)
1177                 return false;
1178 #endif
1179         /* Don't support NMIs for chips behind a slow bus */
1180         if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1181                 return false;
1182
1183         return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1184 }
1185
1186 static int irq_nmi_setup(struct irq_desc *desc)
1187 {
1188         struct irq_data *d = irq_desc_get_irq_data(desc);
1189         struct irq_chip *c = d->chip;
1190
1191         return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1192 }
1193
1194 static void irq_nmi_teardown(struct irq_desc *desc)
1195 {
1196         struct irq_data *d = irq_desc_get_irq_data(desc);
1197         struct irq_chip *c = d->chip;
1198
1199         if (c->irq_nmi_teardown)
1200                 c->irq_nmi_teardown(d);
1201 }
1202
1203 static int
1204 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1205 {
1206         struct task_struct *t;
1207         struct sched_param param = {
1208                 .sched_priority = MAX_USER_RT_PRIO/2,
1209         };
1210
1211         if (!secondary) {
1212                 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1213                                    new->name);
1214         } else {
1215                 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1216                                    new->name);
1217                 param.sched_priority -= 1;
1218         }
1219
1220         if (IS_ERR(t))
1221                 return PTR_ERR(t);
1222
1223         sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1224
1225         /*
1226          * We keep the reference to the task struct even if
1227          * the thread dies to avoid that the interrupt code
1228          * references an already freed task_struct.
1229          */
1230         get_task_struct(t);
1231         new->thread = t;
1232         /*
1233          * Tell the thread to set its affinity. This is
1234          * important for shared interrupt handlers as we do
1235          * not invoke setup_affinity() for the secondary
1236          * handlers as everything is already set up. Even for
1237          * interrupts marked with IRQF_NO_BALANCE this is
1238          * correct as we want the thread to move to the cpu(s)
1239          * on which the requesting code placed the interrupt.
1240          */
1241         set_bit(IRQTF_AFFINITY, &new->thread_flags);
1242         return 0;
1243 }
1244
1245 /*
1246  * Internal function to register an irqaction - typically used to
1247  * allocate special interrupts that are part of the architecture.
1248  *
1249  * Locking rules:
1250  *
1251  * desc->request_mutex  Provides serialization against a concurrent free_irq()
1252  *   chip_bus_lock      Provides serialization for slow bus operations
1253  *     desc->lock       Provides serialization against hard interrupts
1254  *
1255  * chip_bus_lock and desc->lock are sufficient for all other management and
1256  * interrupt related functions. desc->request_mutex solely serializes
1257  * request/free_irq().
1258  */
1259 static int
1260 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1261 {
1262         struct irqaction *old, **old_ptr;
1263         unsigned long flags, thread_mask = 0;
1264         int ret, nested, shared = 0;
1265
1266         if (!desc)
1267                 return -EINVAL;
1268
1269         if (desc->irq_data.chip == &no_irq_chip)
1270                 return -ENOSYS;
1271         if (!try_module_get(desc->owner))
1272                 return -ENODEV;
1273
1274         new->irq = irq;
1275
1276         /*
1277          * If the trigger type is not specified by the caller,
1278          * then use the default for this interrupt.
1279          */
1280         if (!(new->flags & IRQF_TRIGGER_MASK))
1281                 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1282
1283         /*
1284          * Check whether the interrupt nests into another interrupt
1285          * thread.
1286          */
1287         nested = irq_settings_is_nested_thread(desc);
1288         if (nested) {
1289                 if (!new->thread_fn) {
1290                         ret = -EINVAL;
1291                         goto out_mput;
1292                 }
1293                 /*
1294                  * Replace the primary handler which was provided from
1295                  * the driver for non nested interrupt handling by the
1296                  * dummy function which warns when called.
1297                  */
1298                 new->handler = irq_nested_primary_handler;
1299         } else {
1300                 if (irq_settings_can_thread(desc)) {
1301                         ret = irq_setup_forced_threading(new);
1302                         if (ret)
1303                                 goto out_mput;
1304                 }
1305         }
1306
1307         /*
1308          * Create a handler thread when a thread function is supplied
1309          * and the interrupt does not nest into another interrupt
1310          * thread.
1311          */
1312         if (new->thread_fn && !nested) {
1313                 ret = setup_irq_thread(new, irq, false);
1314                 if (ret)
1315                         goto out_mput;
1316                 if (new->secondary) {
1317                         ret = setup_irq_thread(new->secondary, irq, true);
1318                         if (ret)
1319                                 goto out_thread;
1320                 }
1321         }
1322
1323         /*
1324          * Drivers are often written to work w/o knowledge about the
1325          * underlying irq chip implementation, so a request for a
1326          * threaded irq without a primary hard irq context handler
1327          * requires the ONESHOT flag to be set. Some irq chips like
1328          * MSI based interrupts are per se one shot safe. Check the
1329          * chip flags, so we can avoid the unmask dance at the end of
1330          * the threaded handler for those.
1331          */
1332         if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1333                 new->flags &= ~IRQF_ONESHOT;
1334
1335         /*
1336          * Protects against a concurrent __free_irq() call which might wait
1337          * for synchronize_hardirq() to complete without holding the optional
1338          * chip bus lock and desc->lock. Also protects against handing out
1339          * a recycled oneshot thread_mask bit while it's still in use by
1340          * its previous owner.
1341          */
1342         mutex_lock(&desc->request_mutex);
1343
1344         /*
1345          * Acquire bus lock as the irq_request_resources() callback below
1346          * might rely on the serialization or the magic power management
1347          * functions which are abusing the irq_bus_lock() callback,
1348          */
1349         chip_bus_lock(desc);
1350
1351         /* First installed action requests resources. */
1352         if (!desc->action) {
1353                 ret = irq_request_resources(desc);
1354                 if (ret) {
1355                         pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1356                                new->name, irq, desc->irq_data.chip->name);
1357                         goto out_bus_unlock;
1358                 }
1359         }
1360
1361         /*
1362          * The following block of code has to be executed atomically
1363          * protected against a concurrent interrupt and any of the other
1364          * management calls which are not serialized via
1365          * desc->request_mutex or the optional bus lock.
1366          */
1367         raw_spin_lock_irqsave(&desc->lock, flags);
1368         old_ptr = &desc->action;
1369         old = *old_ptr;
1370         if (old) {
1371                 /*
1372                  * Can't share interrupts unless both agree to and are
1373                  * the same type (level, edge, polarity). So both flag
1374                  * fields must have IRQF_SHARED set and the bits which
1375                  * set the trigger type must match. Also all must
1376                  * agree on ONESHOT.
1377                  * Interrupt lines used for NMIs cannot be shared.
1378                  */
1379                 unsigned int oldtype;
1380
1381                 if (desc->istate & IRQS_NMI) {
1382                         pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1383                                 new->name, irq, desc->irq_data.chip->name);
1384                         ret = -EINVAL;
1385                         goto out_unlock;
1386                 }
1387
1388                 /*
1389                  * If nobody did set the configuration before, inherit
1390                  * the one provided by the requester.
1391                  */
1392                 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1393                         oldtype = irqd_get_trigger_type(&desc->irq_data);
1394                 } else {
1395                         oldtype = new->flags & IRQF_TRIGGER_MASK;
1396                         irqd_set_trigger_type(&desc->irq_data, oldtype);
1397                 }
1398
1399                 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1400                     (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1401                     ((old->flags ^ new->flags) & IRQF_ONESHOT))
1402                         goto mismatch;
1403
1404                 /* All handlers must agree on per-cpuness */
1405                 if ((old->flags & IRQF_PERCPU) !=
1406                     (new->flags & IRQF_PERCPU))
1407                         goto mismatch;
1408
1409                 /* add new interrupt at end of irq queue */
1410                 do {
1411                         /*
1412                          * Or all existing action->thread_mask bits,
1413                          * so we can find the next zero bit for this
1414                          * new action.
1415                          */
1416                         thread_mask |= old->thread_mask;
1417                         old_ptr = &old->next;
1418                         old = *old_ptr;
1419                 } while (old);
1420                 shared = 1;
1421         }
1422
1423         /*
1424          * Setup the thread mask for this irqaction for ONESHOT. For
1425          * !ONESHOT irqs the thread mask is 0 so we can avoid a
1426          * conditional in irq_wake_thread().
1427          */
1428         if (new->flags & IRQF_ONESHOT) {
1429                 /*
1430                  * Unlikely to have 32 resp 64 irqs sharing one line,
1431                  * but who knows.
1432                  */
1433                 if (thread_mask == ~0UL) {
1434                         ret = -EBUSY;
1435                         goto out_unlock;
1436                 }
1437                 /*
1438                  * The thread_mask for the action is or'ed to
1439                  * desc->thread_active to indicate that the
1440                  * IRQF_ONESHOT thread handler has been woken, but not
1441                  * yet finished. The bit is cleared when a thread
1442                  * completes. When all threads of a shared interrupt
1443                  * line have completed desc->threads_active becomes
1444                  * zero and the interrupt line is unmasked. See
1445                  * handle.c:irq_wake_thread() for further information.
1446                  *
1447                  * If no thread is woken by primary (hard irq context)
1448                  * interrupt handlers, then desc->threads_active is
1449                  * also checked for zero to unmask the irq line in the
1450                  * affected hard irq flow handlers
1451                  * (handle_[fasteoi|level]_irq).
1452                  *
1453                  * The new action gets the first zero bit of
1454                  * thread_mask assigned. See the loop above which or's
1455                  * all existing action->thread_mask bits.
1456                  */
1457                 new->thread_mask = 1UL << ffz(thread_mask);
1458
1459         } else if (new->handler == irq_default_primary_handler &&
1460                    !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1461                 /*
1462                  * The interrupt was requested with handler = NULL, so
1463                  * we use the default primary handler for it. But it
1464                  * does not have the oneshot flag set. In combination
1465                  * with level interrupts this is deadly, because the
1466                  * default primary handler just wakes the thread, then
1467                  * the irq lines is reenabled, but the device still
1468                  * has the level irq asserted. Rinse and repeat....
1469                  *
1470                  * While this works for edge type interrupts, we play
1471                  * it safe and reject unconditionally because we can't
1472                  * say for sure which type this interrupt really
1473                  * has. The type flags are unreliable as the
1474                  * underlying chip implementation can override them.
1475                  */
1476                 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1477                        irq);
1478                 ret = -EINVAL;
1479                 goto out_unlock;
1480         }
1481
1482         if (!shared) {
1483                 init_waitqueue_head(&desc->wait_for_threads);
1484
1485                 /* Setup the type (level, edge polarity) if configured: */
1486                 if (new->flags & IRQF_TRIGGER_MASK) {
1487                         ret = __irq_set_trigger(desc,
1488                                                 new->flags & IRQF_TRIGGER_MASK);
1489
1490                         if (ret)
1491                                 goto out_unlock;
1492                 }
1493
1494                 /*
1495                  * Activate the interrupt. That activation must happen
1496                  * independently of IRQ_NOAUTOEN. request_irq() can fail
1497                  * and the callers are supposed to handle
1498                  * that. enable_irq() of an interrupt requested with
1499                  * IRQ_NOAUTOEN is not supposed to fail. The activation
1500                  * keeps it in shutdown mode, it merily associates
1501                  * resources if necessary and if that's not possible it
1502                  * fails. Interrupts which are in managed shutdown mode
1503                  * will simply ignore that activation request.
1504                  */
1505                 ret = irq_activate(desc);
1506                 if (ret)
1507                         goto out_unlock;
1508
1509                 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1510                                   IRQS_ONESHOT | IRQS_WAITING);
1511                 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1512
1513                 if (new->flags & IRQF_PERCPU) {
1514                         irqd_set(&desc->irq_data, IRQD_PER_CPU);
1515                         irq_settings_set_per_cpu(desc);
1516                 }
1517
1518                 if (new->flags & IRQF_ONESHOT)
1519                         desc->istate |= IRQS_ONESHOT;
1520
1521                 /* Exclude IRQ from balancing if requested */
1522                 if (new->flags & IRQF_NOBALANCING) {
1523                         irq_settings_set_no_balancing(desc);
1524                         irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1525                 }
1526
1527                 if (irq_settings_can_autoenable(desc)) {
1528                         irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1529                 } else {
1530                         /*
1531                          * Shared interrupts do not go well with disabling
1532                          * auto enable. The sharing interrupt might request
1533                          * it while it's still disabled and then wait for
1534                          * interrupts forever.
1535                          */
1536                         WARN_ON_ONCE(new->flags & IRQF_SHARED);
1537                         /* Undo nested disables: */
1538                         desc->depth = 1;
1539                 }
1540
1541         } else if (new->flags & IRQF_TRIGGER_MASK) {
1542                 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1543                 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1544
1545                 if (nmsk != omsk)
1546                         /* hope the handler works with current  trigger mode */
1547                         pr_warn("irq %d uses trigger mode %u; requested %u\n",
1548                                 irq, omsk, nmsk);
1549         }
1550
1551         *old_ptr = new;
1552
1553         irq_pm_install_action(desc, new);
1554
1555         /* Reset broken irq detection when installing new handler */
1556         desc->irq_count = 0;
1557         desc->irqs_unhandled = 0;
1558
1559         /*
1560          * Check whether we disabled the irq via the spurious handler
1561          * before. Reenable it and give it another chance.
1562          */
1563         if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1564                 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1565                 __enable_irq(desc);
1566         }
1567
1568         raw_spin_unlock_irqrestore(&desc->lock, flags);
1569         chip_bus_sync_unlock(desc);
1570         mutex_unlock(&desc->request_mutex);
1571
1572         irq_setup_timings(desc, new);
1573
1574         /*
1575          * Strictly no need to wake it up, but hung_task complains
1576          * when no hard interrupt wakes the thread up.
1577          */
1578         if (new->thread)
1579                 wake_up_process(new->thread);
1580         if (new->secondary)
1581                 wake_up_process(new->secondary->thread);
1582
1583         register_irq_proc(irq, desc);
1584         new->dir = NULL;
1585         register_handler_proc(irq, new);
1586         return 0;
1587
1588 mismatch:
1589         if (!(new->flags & IRQF_PROBE_SHARED)) {
1590                 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1591                        irq, new->flags, new->name, old->flags, old->name);
1592 #ifdef CONFIG_DEBUG_SHIRQ
1593                 dump_stack();
1594 #endif
1595         }
1596         ret = -EBUSY;
1597
1598 out_unlock:
1599         raw_spin_unlock_irqrestore(&desc->lock, flags);
1600
1601         if (!desc->action)
1602                 irq_release_resources(desc);
1603 out_bus_unlock:
1604         chip_bus_sync_unlock(desc);
1605         mutex_unlock(&desc->request_mutex);
1606
1607 out_thread:
1608         if (new->thread) {
1609                 struct task_struct *t = new->thread;
1610
1611                 new->thread = NULL;
1612                 kthread_stop(t);
1613                 put_task_struct(t);
1614         }
1615         if (new->secondary && new->secondary->thread) {
1616                 struct task_struct *t = new->secondary->thread;
1617
1618                 new->secondary->thread = NULL;
1619                 kthread_stop(t);
1620                 put_task_struct(t);
1621         }
1622 out_mput:
1623         module_put(desc->owner);
1624         return ret;
1625 }
1626
1627 /**
1628  *      setup_irq - setup an interrupt
1629  *      @irq: Interrupt line to setup
1630  *      @act: irqaction for the interrupt
1631  *
1632  * Used to statically setup interrupts in the early boot process.
1633  */
1634 int setup_irq(unsigned int irq, struct irqaction *act)
1635 {
1636         int retval;
1637         struct irq_desc *desc = irq_to_desc(irq);
1638
1639         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1640                 return -EINVAL;
1641
1642         retval = irq_chip_pm_get(&desc->irq_data);
1643         if (retval < 0)
1644                 return retval;
1645
1646         retval = __setup_irq(irq, desc, act);
1647
1648         if (retval)
1649                 irq_chip_pm_put(&desc->irq_data);
1650
1651         return retval;
1652 }
1653 EXPORT_SYMBOL_GPL(setup_irq);
1654
1655 /*
1656  * Internal function to unregister an irqaction - used to free
1657  * regular and special interrupts that are part of the architecture.
1658  */
1659 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1660 {
1661         unsigned irq = desc->irq_data.irq;
1662         struct irqaction *action, **action_ptr;
1663         unsigned long flags;
1664
1665         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1666
1667         mutex_lock(&desc->request_mutex);
1668         chip_bus_lock(desc);
1669         raw_spin_lock_irqsave(&desc->lock, flags);
1670
1671         /*
1672          * There can be multiple actions per IRQ descriptor, find the right
1673          * one based on the dev_id:
1674          */
1675         action_ptr = &desc->action;
1676         for (;;) {
1677                 action = *action_ptr;
1678
1679                 if (!action) {
1680                         WARN(1, "Trying to free already-free IRQ %d\n", irq);
1681                         raw_spin_unlock_irqrestore(&desc->lock, flags);
1682                         chip_bus_sync_unlock(desc);
1683                         mutex_unlock(&desc->request_mutex);
1684                         return NULL;
1685                 }
1686
1687                 if (action->dev_id == dev_id)
1688                         break;
1689                 action_ptr = &action->next;
1690         }
1691
1692         /* Found it - now remove it from the list of entries: */
1693         *action_ptr = action->next;
1694
1695         irq_pm_remove_action(desc, action);
1696
1697         /* If this was the last handler, shut down the IRQ line: */
1698         if (!desc->action) {
1699                 irq_settings_clr_disable_unlazy(desc);
1700                 irq_shutdown(desc);
1701         }
1702
1703 #ifdef CONFIG_SMP
1704         /* make sure affinity_hint is cleaned up */
1705         if (WARN_ON_ONCE(desc->affinity_hint))
1706                 desc->affinity_hint = NULL;
1707 #endif
1708
1709         raw_spin_unlock_irqrestore(&desc->lock, flags);
1710         /*
1711          * Drop bus_lock here so the changes which were done in the chip
1712          * callbacks above are synced out to the irq chips which hang
1713          * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1714          *
1715          * Aside of that the bus_lock can also be taken from the threaded
1716          * handler in irq_finalize_oneshot() which results in a deadlock
1717          * because kthread_stop() would wait forever for the thread to
1718          * complete, which is blocked on the bus lock.
1719          *
1720          * The still held desc->request_mutex() protects against a
1721          * concurrent request_irq() of this irq so the release of resources
1722          * and timing data is properly serialized.
1723          */
1724         chip_bus_sync_unlock(desc);
1725
1726         unregister_handler_proc(irq, action);
1727
1728         /* Make sure it's not being used on another CPU: */
1729         synchronize_hardirq(irq);
1730
1731 #ifdef CONFIG_DEBUG_SHIRQ
1732         /*
1733          * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1734          * event to happen even now it's being freed, so let's make sure that
1735          * is so by doing an extra call to the handler ....
1736          *
1737          * ( We do this after actually deregistering it, to make sure that a
1738          *   'real' IRQ doesn't run in parallel with our fake. )
1739          */
1740         if (action->flags & IRQF_SHARED) {
1741                 local_irq_save(flags);
1742                 action->handler(irq, dev_id);
1743                 local_irq_restore(flags);
1744         }
1745 #endif
1746
1747         /*
1748          * The action has already been removed above, but the thread writes
1749          * its oneshot mask bit when it completes. Though request_mutex is
1750          * held across this which prevents __setup_irq() from handing out
1751          * the same bit to a newly requested action.
1752          */
1753         if (action->thread) {
1754                 kthread_stop(action->thread);
1755                 put_task_struct(action->thread);
1756                 if (action->secondary && action->secondary->thread) {
1757                         kthread_stop(action->secondary->thread);
1758                         put_task_struct(action->secondary->thread);
1759                 }
1760         }
1761
1762         /* Last action releases resources */
1763         if (!desc->action) {
1764                 /*
1765                  * Reaquire bus lock as irq_release_resources() might
1766                  * require it to deallocate resources over the slow bus.
1767                  */
1768                 chip_bus_lock(desc);
1769                 irq_release_resources(desc);
1770                 chip_bus_sync_unlock(desc);
1771                 irq_remove_timings(desc);
1772         }
1773
1774         mutex_unlock(&desc->request_mutex);
1775
1776         irq_chip_pm_put(&desc->irq_data);
1777         module_put(desc->owner);
1778         kfree(action->secondary);
1779         return action;
1780 }
1781
1782 /**
1783  *      remove_irq - free an interrupt
1784  *      @irq: Interrupt line to free
1785  *      @act: irqaction for the interrupt
1786  *
1787  * Used to remove interrupts statically setup by the early boot process.
1788  */
1789 void remove_irq(unsigned int irq, struct irqaction *act)
1790 {
1791         struct irq_desc *desc = irq_to_desc(irq);
1792
1793         if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1794                 __free_irq(desc, act->dev_id);
1795 }
1796 EXPORT_SYMBOL_GPL(remove_irq);
1797
1798 /**
1799  *      free_irq - free an interrupt allocated with request_irq
1800  *      @irq: Interrupt line to free
1801  *      @dev_id: Device identity to free
1802  *
1803  *      Remove an interrupt handler. The handler is removed and if the
1804  *      interrupt line is no longer in use by any driver it is disabled.
1805  *      On a shared IRQ the caller must ensure the interrupt is disabled
1806  *      on the card it drives before calling this function. The function
1807  *      does not return until any executing interrupts for this IRQ
1808  *      have completed.
1809  *
1810  *      This function must not be called from interrupt context.
1811  *
1812  *      Returns the devname argument passed to request_irq.
1813  */
1814 const void *free_irq(unsigned int irq, void *dev_id)
1815 {
1816         struct irq_desc *desc = irq_to_desc(irq);
1817         struct irqaction *action;
1818         const char *devname;
1819
1820         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1821                 return NULL;
1822
1823 #ifdef CONFIG_SMP
1824         if (WARN_ON(desc->affinity_notify))
1825                 desc->affinity_notify = NULL;
1826 #endif
1827
1828         action = __free_irq(desc, dev_id);
1829
1830         if (!action)
1831                 return NULL;
1832
1833         devname = action->name;
1834         kfree(action);
1835         return devname;
1836 }
1837 EXPORT_SYMBOL(free_irq);
1838
1839 /* This function must be called with desc->lock held */
1840 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1841 {
1842         const char *devname = NULL;
1843
1844         desc->istate &= ~IRQS_NMI;
1845
1846         if (!WARN_ON(desc->action == NULL)) {
1847                 irq_pm_remove_action(desc, desc->action);
1848                 devname = desc->action->name;
1849                 unregister_handler_proc(irq, desc->action);
1850
1851                 kfree(desc->action);
1852                 desc->action = NULL;
1853         }
1854
1855         irq_settings_clr_disable_unlazy(desc);
1856         irq_shutdown(desc);
1857
1858         irq_release_resources(desc);
1859
1860         irq_chip_pm_put(&desc->irq_data);
1861         module_put(desc->owner);
1862
1863         return devname;
1864 }
1865
1866 const void *free_nmi(unsigned int irq, void *dev_id)
1867 {
1868         struct irq_desc *desc = irq_to_desc(irq);
1869         unsigned long flags;
1870         const void *devname;
1871
1872         if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1873                 return NULL;
1874
1875         if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1876                 return NULL;
1877
1878         /* NMI still enabled */
1879         if (WARN_ON(desc->depth == 0))
1880                 disable_nmi_nosync(irq);
1881
1882         raw_spin_lock_irqsave(&desc->lock, flags);
1883
1884         irq_nmi_teardown(desc);
1885         devname = __cleanup_nmi(irq, desc);
1886
1887         raw_spin_unlock_irqrestore(&desc->lock, flags);
1888
1889         return devname;
1890 }
1891
1892 /**
1893  *      request_threaded_irq - allocate an interrupt line
1894  *      @irq: Interrupt line to allocate
1895  *      @handler: Function to be called when the IRQ occurs.
1896  *                Primary handler for threaded interrupts
1897  *                If NULL and thread_fn != NULL the default
1898  *                primary handler is installed
1899  *      @thread_fn: Function called from the irq handler thread
1900  *                  If NULL, no irq thread is created
1901  *      @irqflags: Interrupt type flags
1902  *      @devname: An ascii name for the claiming device
1903  *      @dev_id: A cookie passed back to the handler function
1904  *
1905  *      This call allocates interrupt resources and enables the
1906  *      interrupt line and IRQ handling. From the point this
1907  *      call is made your handler function may be invoked. Since
1908  *      your handler function must clear any interrupt the board
1909  *      raises, you must take care both to initialise your hardware
1910  *      and to set up the interrupt handler in the right order.
1911  *
1912  *      If you want to set up a threaded irq handler for your device
1913  *      then you need to supply @handler and @thread_fn. @handler is
1914  *      still called in hard interrupt context and has to check
1915  *      whether the interrupt originates from the device. If yes it
1916  *      needs to disable the interrupt on the device and return
1917  *      IRQ_WAKE_THREAD which will wake up the handler thread and run
1918  *      @thread_fn. This split handler design is necessary to support
1919  *      shared interrupts.
1920  *
1921  *      Dev_id must be globally unique. Normally the address of the
1922  *      device data structure is used as the cookie. Since the handler
1923  *      receives this value it makes sense to use it.
1924  *
1925  *      If your interrupt is shared you must pass a non NULL dev_id
1926  *      as this is required when freeing the interrupt.
1927  *
1928  *      Flags:
1929  *
1930  *      IRQF_SHARED             Interrupt is shared
1931  *      IRQF_TRIGGER_*          Specify active edge(s) or level
1932  *
1933  */
1934 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1935                          irq_handler_t thread_fn, unsigned long irqflags,
1936                          const char *devname, void *dev_id)
1937 {
1938         struct irqaction *action;
1939         struct irq_desc *desc;
1940         int retval;
1941
1942         if (irq == IRQ_NOTCONNECTED)
1943                 return -ENOTCONN;
1944
1945         /*
1946          * Sanity-check: shared interrupts must pass in a real dev-ID,
1947          * otherwise we'll have trouble later trying to figure out
1948          * which interrupt is which (messes up the interrupt freeing
1949          * logic etc).
1950          *
1951          * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1952          * it cannot be set along with IRQF_NO_SUSPEND.
1953          */
1954         if (((irqflags & IRQF_SHARED) && !dev_id) ||
1955             (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1956             ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1957                 return -EINVAL;
1958
1959         desc = irq_to_desc(irq);
1960         if (!desc)
1961                 return -EINVAL;
1962
1963         if (!irq_settings_can_request(desc) ||
1964             WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1965                 return -EINVAL;
1966
1967         if (!handler) {
1968                 if (!thread_fn)
1969                         return -EINVAL;
1970                 handler = irq_default_primary_handler;
1971         }
1972
1973         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1974         if (!action)
1975                 return -ENOMEM;
1976
1977         action->handler = handler;
1978         action->thread_fn = thread_fn;
1979         action->flags = irqflags;
1980         action->name = devname;
1981         action->dev_id = dev_id;
1982
1983         retval = irq_chip_pm_get(&desc->irq_data);
1984         if (retval < 0) {
1985                 kfree(action);
1986                 return retval;
1987         }
1988
1989         retval = __setup_irq(irq, desc, action);
1990
1991         if (retval) {
1992                 irq_chip_pm_put(&desc->irq_data);
1993                 kfree(action->secondary);
1994                 kfree(action);
1995         }
1996
1997 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1998         if (!retval && (irqflags & IRQF_SHARED)) {
1999                 /*
2000                  * It's a shared IRQ -- the driver ought to be prepared for it
2001                  * to happen immediately, so let's make sure....
2002                  * We disable the irq to make sure that a 'real' IRQ doesn't
2003                  * run in parallel with our fake.
2004                  */
2005                 unsigned long flags;
2006
2007                 disable_irq(irq);
2008                 local_irq_save(flags);
2009
2010                 handler(irq, dev_id);
2011
2012                 local_irq_restore(flags);
2013                 enable_irq(irq);
2014         }
2015 #endif
2016         return retval;
2017 }
2018 EXPORT_SYMBOL(request_threaded_irq);
2019
2020 /**
2021  *      request_any_context_irq - allocate an interrupt line
2022  *      @irq: Interrupt line to allocate
2023  *      @handler: Function to be called when the IRQ occurs.
2024  *                Threaded handler for threaded interrupts.
2025  *      @flags: Interrupt type flags
2026  *      @name: An ascii name for the claiming device
2027  *      @dev_id: A cookie passed back to the handler function
2028  *
2029  *      This call allocates interrupt resources and enables the
2030  *      interrupt line and IRQ handling. It selects either a
2031  *      hardirq or threaded handling method depending on the
2032  *      context.
2033  *
2034  *      On failure, it returns a negative value. On success,
2035  *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2036  */
2037 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2038                             unsigned long flags, const char *name, void *dev_id)
2039 {
2040         struct irq_desc *desc;
2041         int ret;
2042
2043         if (irq == IRQ_NOTCONNECTED)
2044                 return -ENOTCONN;
2045
2046         desc = irq_to_desc(irq);
2047         if (!desc)
2048                 return -EINVAL;
2049
2050         if (irq_settings_is_nested_thread(desc)) {
2051                 ret = request_threaded_irq(irq, NULL, handler,
2052                                            flags, name, dev_id);
2053                 return !ret ? IRQC_IS_NESTED : ret;
2054         }
2055
2056         ret = request_irq(irq, handler, flags, name, dev_id);
2057         return !ret ? IRQC_IS_HARDIRQ : ret;
2058 }
2059 EXPORT_SYMBOL_GPL(request_any_context_irq);
2060
2061 /**
2062  *      request_nmi - allocate an interrupt line for NMI delivery
2063  *      @irq: Interrupt line to allocate
2064  *      @handler: Function to be called when the IRQ occurs.
2065  *                Threaded handler for threaded interrupts.
2066  *      @irqflags: Interrupt type flags
2067  *      @name: An ascii name for the claiming device
2068  *      @dev_id: A cookie passed back to the handler function
2069  *
2070  *      This call allocates interrupt resources and enables the
2071  *      interrupt line and IRQ handling. It sets up the IRQ line
2072  *      to be handled as an NMI.
2073  *
2074  *      An interrupt line delivering NMIs cannot be shared and IRQ handling
2075  *      cannot be threaded.
2076  *
2077  *      Interrupt lines requested for NMI delivering must produce per cpu
2078  *      interrupts and have auto enabling setting disabled.
2079  *
2080  *      Dev_id must be globally unique. Normally the address of the
2081  *      device data structure is used as the cookie. Since the handler
2082  *      receives this value it makes sense to use it.
2083  *
2084  *      If the interrupt line cannot be used to deliver NMIs, function
2085  *      will fail and return a negative value.
2086  */
2087 int request_nmi(unsigned int irq, irq_handler_t handler,
2088                 unsigned long irqflags, const char *name, void *dev_id)
2089 {
2090         struct irqaction *action;
2091         struct irq_desc *desc;
2092         unsigned long flags;
2093         int retval;
2094
2095         if (irq == IRQ_NOTCONNECTED)
2096                 return -ENOTCONN;
2097
2098         /* NMI cannot be shared, used for Polling */
2099         if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2100                 return -EINVAL;
2101
2102         if (!(irqflags & IRQF_PERCPU))
2103                 return -EINVAL;
2104
2105         if (!handler)
2106                 return -EINVAL;
2107
2108         desc = irq_to_desc(irq);
2109
2110         if (!desc || irq_settings_can_autoenable(desc) ||
2111             !irq_settings_can_request(desc) ||
2112             WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2113             !irq_supports_nmi(desc))
2114                 return -EINVAL;
2115
2116         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2117         if (!action)
2118                 return -ENOMEM;
2119
2120         action->handler = handler;
2121         action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2122         action->name = name;
2123         action->dev_id = dev_id;
2124
2125         retval = irq_chip_pm_get(&desc->irq_data);
2126         if (retval < 0)
2127                 goto err_out;
2128
2129         retval = __setup_irq(irq, desc, action);
2130         if (retval)
2131                 goto err_irq_setup;
2132
2133         raw_spin_lock_irqsave(&desc->lock, flags);
2134
2135         /* Setup NMI state */
2136         desc->istate |= IRQS_NMI;
2137         retval = irq_nmi_setup(desc);
2138         if (retval) {
2139                 __cleanup_nmi(irq, desc);
2140                 raw_spin_unlock_irqrestore(&desc->lock, flags);
2141                 return -EINVAL;
2142         }
2143
2144         raw_spin_unlock_irqrestore(&desc->lock, flags);
2145
2146         return 0;
2147
2148 err_irq_setup:
2149         irq_chip_pm_put(&desc->irq_data);
2150 err_out:
2151         kfree(action);
2152
2153         return retval;
2154 }
2155
2156 void enable_percpu_irq(unsigned int irq, unsigned int type)
2157 {
2158         unsigned int cpu = smp_processor_id();
2159         unsigned long flags;
2160         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2161
2162         if (!desc)
2163                 return;
2164
2165         /*
2166          * If the trigger type is not specified by the caller, then
2167          * use the default for this interrupt.
2168          */
2169         type &= IRQ_TYPE_SENSE_MASK;
2170         if (type == IRQ_TYPE_NONE)
2171                 type = irqd_get_trigger_type(&desc->irq_data);
2172
2173         if (type != IRQ_TYPE_NONE) {
2174                 int ret;
2175
2176                 ret = __irq_set_trigger(desc, type);
2177
2178                 if (ret) {
2179                         WARN(1, "failed to set type for IRQ%d\n", irq);
2180                         goto out;
2181                 }
2182         }
2183
2184         irq_percpu_enable(desc, cpu);
2185 out:
2186         irq_put_desc_unlock(desc, flags);
2187 }
2188 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2189
2190 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2191 {
2192         enable_percpu_irq(irq, type);
2193 }
2194
2195 /**
2196  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2197  * @irq:        Linux irq number to check for
2198  *
2199  * Must be called from a non migratable context. Returns the enable
2200  * state of a per cpu interrupt on the current cpu.
2201  */
2202 bool irq_percpu_is_enabled(unsigned int irq)
2203 {
2204         unsigned int cpu = smp_processor_id();
2205         struct irq_desc *desc;
2206         unsigned long flags;
2207         bool is_enabled;
2208
2209         desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2210         if (!desc)
2211                 return false;
2212
2213         is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2214         irq_put_desc_unlock(desc, flags);
2215
2216         return is_enabled;
2217 }
2218 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2219
2220 void disable_percpu_irq(unsigned int irq)
2221 {
2222         unsigned int cpu = smp_processor_id();
2223         unsigned long flags;
2224         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2225
2226         if (!desc)
2227                 return;
2228
2229         irq_percpu_disable(desc, cpu);
2230         irq_put_desc_unlock(desc, flags);
2231 }
2232 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2233
2234 void disable_percpu_nmi(unsigned int irq)
2235 {
2236         disable_percpu_irq(irq);
2237 }
2238
2239 /*
2240  * Internal function to unregister a percpu irqaction.
2241  */
2242 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2243 {
2244         struct irq_desc *desc = irq_to_desc(irq);
2245         struct irqaction *action;
2246         unsigned long flags;
2247
2248         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2249
2250         if (!desc)
2251                 return NULL;
2252
2253         raw_spin_lock_irqsave(&desc->lock, flags);
2254
2255         action = desc->action;
2256         if (!action || action->percpu_dev_id != dev_id) {
2257                 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2258                 goto bad;
2259         }
2260
2261         if (!cpumask_empty(desc->percpu_enabled)) {
2262                 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2263                      irq, cpumask_first(desc->percpu_enabled));
2264                 goto bad;
2265         }
2266
2267         /* Found it - now remove it from the list of entries: */
2268         desc->action = NULL;
2269
2270         desc->istate &= ~IRQS_NMI;
2271
2272         raw_spin_unlock_irqrestore(&desc->lock, flags);
2273
2274         unregister_handler_proc(irq, action);
2275
2276         irq_chip_pm_put(&desc->irq_data);
2277         module_put(desc->owner);
2278         return action;
2279
2280 bad:
2281         raw_spin_unlock_irqrestore(&desc->lock, flags);
2282         return NULL;
2283 }
2284
2285 /**
2286  *      remove_percpu_irq - free a per-cpu interrupt
2287  *      @irq: Interrupt line to free
2288  *      @act: irqaction for the interrupt
2289  *
2290  * Used to remove interrupts statically setup by the early boot process.
2291  */
2292 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2293 {
2294         struct irq_desc *desc = irq_to_desc(irq);
2295
2296         if (desc && irq_settings_is_per_cpu_devid(desc))
2297             __free_percpu_irq(irq, act->percpu_dev_id);
2298 }
2299
2300 /**
2301  *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
2302  *      @irq: Interrupt line to free
2303  *      @dev_id: Device identity to free
2304  *
2305  *      Remove a percpu interrupt handler. The handler is removed, but
2306  *      the interrupt line is not disabled. This must be done on each
2307  *      CPU before calling this function. The function does not return
2308  *      until any executing interrupts for this IRQ have completed.
2309  *
2310  *      This function must not be called from interrupt context.
2311  */
2312 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2313 {
2314         struct irq_desc *desc = irq_to_desc(irq);
2315
2316         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2317                 return;
2318
2319         chip_bus_lock(desc);
2320         kfree(__free_percpu_irq(irq, dev_id));
2321         chip_bus_sync_unlock(desc);
2322 }
2323 EXPORT_SYMBOL_GPL(free_percpu_irq);
2324
2325 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2326 {
2327         struct irq_desc *desc = irq_to_desc(irq);
2328
2329         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2330                 return;
2331
2332         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2333                 return;
2334
2335         kfree(__free_percpu_irq(irq, dev_id));
2336 }
2337
2338 /**
2339  *      setup_percpu_irq - setup a per-cpu interrupt
2340  *      @irq: Interrupt line to setup
2341  *      @act: irqaction for the interrupt
2342  *
2343  * Used to statically setup per-cpu interrupts in the early boot process.
2344  */
2345 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2346 {
2347         struct irq_desc *desc = irq_to_desc(irq);
2348         int retval;
2349
2350         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2351                 return -EINVAL;
2352
2353         retval = irq_chip_pm_get(&desc->irq_data);
2354         if (retval < 0)
2355                 return retval;
2356
2357         retval = __setup_irq(irq, desc, act);
2358
2359         if (retval)
2360                 irq_chip_pm_put(&desc->irq_data);
2361
2362         return retval;
2363 }
2364
2365 /**
2366  *      __request_percpu_irq - allocate a percpu interrupt line
2367  *      @irq: Interrupt line to allocate
2368  *      @handler: Function to be called when the IRQ occurs.
2369  *      @flags: Interrupt type flags (IRQF_TIMER only)
2370  *      @devname: An ascii name for the claiming device
2371  *      @dev_id: A percpu cookie passed back to the handler function
2372  *
2373  *      This call allocates interrupt resources and enables the
2374  *      interrupt on the local CPU. If the interrupt is supposed to be
2375  *      enabled on other CPUs, it has to be done on each CPU using
2376  *      enable_percpu_irq().
2377  *
2378  *      Dev_id must be globally unique. It is a per-cpu variable, and
2379  *      the handler gets called with the interrupted CPU's instance of
2380  *      that variable.
2381  */
2382 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2383                          unsigned long flags, const char *devname,
2384                          void __percpu *dev_id)
2385 {
2386         struct irqaction *action;
2387         struct irq_desc *desc;
2388         int retval;
2389
2390         if (!dev_id)
2391                 return -EINVAL;
2392
2393         desc = irq_to_desc(irq);
2394         if (!desc || !irq_settings_can_request(desc) ||
2395             !irq_settings_is_per_cpu_devid(desc))
2396                 return -EINVAL;
2397
2398         if (flags && flags != IRQF_TIMER)
2399                 return -EINVAL;
2400
2401         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2402         if (!action)
2403                 return -ENOMEM;
2404
2405         action->handler = handler;
2406         action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2407         action->name = devname;
2408         action->percpu_dev_id = dev_id;
2409
2410         retval = irq_chip_pm_get(&desc->irq_data);
2411         if (retval < 0) {
2412                 kfree(action);
2413                 return retval;
2414         }
2415
2416         retval = __setup_irq(irq, desc, action);
2417
2418         if (retval) {
2419                 irq_chip_pm_put(&desc->irq_data);
2420                 kfree(action);
2421         }
2422
2423         return retval;
2424 }
2425 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2426
2427 /**
2428  *      request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2429  *      @irq: Interrupt line to allocate
2430  *      @handler: Function to be called when the IRQ occurs.
2431  *      @name: An ascii name for the claiming device
2432  *      @dev_id: A percpu cookie passed back to the handler function
2433  *
2434  *      This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2435  *      have to be setup on each CPU by calling prepare_percpu_nmi() before
2436  *      being enabled on the same CPU by using enable_percpu_nmi().
2437  *
2438  *      Dev_id must be globally unique. It is a per-cpu variable, and
2439  *      the handler gets called with the interrupted CPU's instance of
2440  *      that variable.
2441  *
2442  *      Interrupt lines requested for NMI delivering should have auto enabling
2443  *      setting disabled.
2444  *
2445  *      If the interrupt line cannot be used to deliver NMIs, function
2446  *      will fail returning a negative value.
2447  */
2448 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2449                        const char *name, void __percpu *dev_id)
2450 {
2451         struct irqaction *action;
2452         struct irq_desc *desc;
2453         unsigned long flags;
2454         int retval;
2455
2456         if (!handler)
2457                 return -EINVAL;
2458
2459         desc = irq_to_desc(irq);
2460
2461         if (!desc || !irq_settings_can_request(desc) ||
2462             !irq_settings_is_per_cpu_devid(desc) ||
2463             irq_settings_can_autoenable(desc) ||
2464             !irq_supports_nmi(desc))
2465                 return -EINVAL;
2466
2467         /* The line cannot already be NMI */
2468         if (desc->istate & IRQS_NMI)
2469                 return -EINVAL;
2470
2471         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2472         if (!action)
2473                 return -ENOMEM;
2474
2475         action->handler = handler;
2476         action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2477                 | IRQF_NOBALANCING;
2478         action->name = name;
2479         action->percpu_dev_id = dev_id;
2480
2481         retval = irq_chip_pm_get(&desc->irq_data);
2482         if (retval < 0)
2483                 goto err_out;
2484
2485         retval = __setup_irq(irq, desc, action);
2486         if (retval)
2487                 goto err_irq_setup;
2488
2489         raw_spin_lock_irqsave(&desc->lock, flags);
2490         desc->istate |= IRQS_NMI;
2491         raw_spin_unlock_irqrestore(&desc->lock, flags);
2492
2493         return 0;
2494
2495 err_irq_setup:
2496         irq_chip_pm_put(&desc->irq_data);
2497 err_out:
2498         kfree(action);
2499
2500         return retval;
2501 }
2502
2503 /**
2504  *      prepare_percpu_nmi - performs CPU local setup for NMI delivery
2505  *      @irq: Interrupt line to prepare for NMI delivery
2506  *
2507  *      This call prepares an interrupt line to deliver NMI on the current CPU,
2508  *      before that interrupt line gets enabled with enable_percpu_nmi().
2509  *
2510  *      As a CPU local operation, this should be called from non-preemptible
2511  *      context.
2512  *
2513  *      If the interrupt line cannot be used to deliver NMIs, function
2514  *      will fail returning a negative value.
2515  */
2516 int prepare_percpu_nmi(unsigned int irq)
2517 {
2518         unsigned long flags;
2519         struct irq_desc *desc;
2520         int ret = 0;
2521
2522         WARN_ON(preemptible());
2523
2524         desc = irq_get_desc_lock(irq, &flags,
2525                                  IRQ_GET_DESC_CHECK_PERCPU);
2526         if (!desc)
2527                 return -EINVAL;
2528
2529         if (WARN(!(desc->istate & IRQS_NMI),
2530                  KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2531                  irq)) {
2532                 ret = -EINVAL;
2533                 goto out;
2534         }
2535
2536         ret = irq_nmi_setup(desc);
2537         if (ret) {
2538                 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2539                 goto out;
2540         }
2541
2542 out:
2543         irq_put_desc_unlock(desc, flags);
2544         return ret;
2545 }
2546
2547 /**
2548  *      teardown_percpu_nmi - undoes NMI setup of IRQ line
2549  *      @irq: Interrupt line from which CPU local NMI configuration should be
2550  *            removed
2551  *
2552  *      This call undoes the setup done by prepare_percpu_nmi().
2553  *
2554  *      IRQ line should not be enabled for the current CPU.
2555  *
2556  *      As a CPU local operation, this should be called from non-preemptible
2557  *      context.
2558  */
2559 void teardown_percpu_nmi(unsigned int irq)
2560 {
2561         unsigned long flags;
2562         struct irq_desc *desc;
2563
2564         WARN_ON(preemptible());
2565
2566         desc = irq_get_desc_lock(irq, &flags,
2567                                  IRQ_GET_DESC_CHECK_PERCPU);
2568         if (!desc)
2569                 return;
2570
2571         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2572                 goto out;
2573
2574         irq_nmi_teardown(desc);
2575 out:
2576         irq_put_desc_unlock(desc, flags);
2577 }
2578
2579 /**
2580  *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2581  *      @irq: Interrupt line that is forwarded to a VM
2582  *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2583  *      @state: a pointer to a boolean where the state is to be storeed
2584  *
2585  *      This call snapshots the internal irqchip state of an
2586  *      interrupt, returning into @state the bit corresponding to
2587  *      stage @which
2588  *
2589  *      This function should be called with preemption disabled if the
2590  *      interrupt controller has per-cpu registers.
2591  */
2592 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2593                           bool *state)
2594 {
2595         struct irq_desc *desc;
2596         struct irq_data *data;
2597         struct irq_chip *chip;
2598         unsigned long flags;
2599         int err = -EINVAL;
2600
2601         desc = irq_get_desc_buslock(irq, &flags, 0);
2602         if (!desc)
2603                 return err;
2604
2605         data = irq_desc_get_irq_data(desc);
2606
2607         do {
2608                 chip = irq_data_get_irq_chip(data);
2609                 if (chip->irq_get_irqchip_state)
2610                         break;
2611 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2612                 data = data->parent_data;
2613 #else
2614                 data = NULL;
2615 #endif
2616         } while (data);
2617
2618         if (data)
2619                 err = chip->irq_get_irqchip_state(data, which, state);
2620
2621         irq_put_desc_busunlock(desc, flags);
2622         return err;
2623 }
2624 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2625
2626 /**
2627  *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2628  *      @irq: Interrupt line that is forwarded to a VM
2629  *      @which: State to be restored (one of IRQCHIP_STATE_*)
2630  *      @val: Value corresponding to @which
2631  *
2632  *      This call sets the internal irqchip state of an interrupt,
2633  *      depending on the value of @which.
2634  *
2635  *      This function should be called with preemption disabled if the
2636  *      interrupt controller has per-cpu registers.
2637  */
2638 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2639                           bool val)
2640 {
2641         struct irq_desc *desc;
2642         struct irq_data *data;
2643         struct irq_chip *chip;
2644         unsigned long flags;
2645         int err = -EINVAL;
2646
2647         desc = irq_get_desc_buslock(irq, &flags, 0);
2648         if (!desc)
2649                 return err;
2650
2651         data = irq_desc_get_irq_data(desc);
2652
2653         do {
2654                 chip = irq_data_get_irq_chip(data);
2655                 if (chip->irq_set_irqchip_state)
2656                         break;
2657 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2658                 data = data->parent_data;
2659 #else
2660                 data = NULL;
2661 #endif
2662         } while (data);
2663
2664         if (data)
2665                 err = chip->irq_set_irqchip_state(data, which, val);
2666
2667         irq_put_desc_busunlock(desc, flags);
2668         return err;
2669 }
2670 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);