kill dentry_update_name_case()
[sfrench/cifs-2.6.git] / kernel / irq / manage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/sched/rt.h>
19 #include <linux/sched/task.h>
20 #include <uapi/linux/sched/types.h>
21 #include <linux/task_work.h>
22
23 #include "internals.h"
24
25 #ifdef CONFIG_IRQ_FORCED_THREADING
26 __read_mostly bool force_irqthreads;
27 EXPORT_SYMBOL_GPL(force_irqthreads);
28
29 static int __init setup_forced_irqthreads(char *arg)
30 {
31         force_irqthreads = true;
32         return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36
37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39         bool inprogress;
40
41         do {
42                 unsigned long flags;
43
44                 /*
45                  * Wait until we're out of the critical section.  This might
46                  * give the wrong answer due to the lack of memory barriers.
47                  */
48                 while (irqd_irq_inprogress(&desc->irq_data))
49                         cpu_relax();
50
51                 /* Ok, that indicated we're done: double-check carefully. */
52                 raw_spin_lock_irqsave(&desc->lock, flags);
53                 inprogress = irqd_irq_inprogress(&desc->irq_data);
54                 raw_spin_unlock_irqrestore(&desc->lock, flags);
55
56                 /* Oops, that failed? */
57         } while (inprogress);
58 }
59
60 /**
61  *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62  *      @irq: interrupt number to wait for
63  *
64  *      This function waits for any pending hard IRQ handlers for this
65  *      interrupt to complete before returning. If you use this
66  *      function while holding a resource the IRQ handler may need you
67  *      will deadlock. It does not take associated threaded handlers
68  *      into account.
69  *
70  *      Do not use this for shutdown scenarios where you must be sure
71  *      that all parts (hardirq and threaded handler) have completed.
72  *
73  *      Returns: false if a threaded handler is active.
74  *
75  *      This function may be called - with care - from IRQ context.
76  */
77 bool synchronize_hardirq(unsigned int irq)
78 {
79         struct irq_desc *desc = irq_to_desc(irq);
80
81         if (desc) {
82                 __synchronize_hardirq(desc);
83                 return !atomic_read(&desc->threads_active);
84         }
85
86         return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89
90 /**
91  *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92  *      @irq: interrupt number to wait for
93  *
94  *      This function waits for any pending IRQ handlers for this interrupt
95  *      to complete before returning. If you use this function while
96  *      holding a resource the IRQ handler may need you will deadlock.
97  *
98  *      This function may be called - with care - from IRQ context.
99  */
100 void synchronize_irq(unsigned int irq)
101 {
102         struct irq_desc *desc = irq_to_desc(irq);
103
104         if (desc) {
105                 __synchronize_hardirq(desc);
106                 /*
107                  * We made sure that no hardirq handler is
108                  * running. Now verify that no threaded handlers are
109                  * active.
110                  */
111                 wait_event(desc->wait_for_threads,
112                            !atomic_read(&desc->threads_active));
113         }
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122         if (!desc || !irqd_can_balance(&desc->irq_data) ||
123             !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124                 return false;
125         return true;
126 }
127
128 /**
129  *      irq_can_set_affinity - Check if the affinity of a given irq can be set
130  *      @irq:           Interrupt to check
131  *
132  */
133 int irq_can_set_affinity(unsigned int irq)
134 {
135         return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137
138 /**
139  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140  * @irq:        Interrupt to check
141  *
142  * Like irq_can_set_affinity() above, but additionally checks for the
143  * AFFINITY_MANAGED flag.
144  */
145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147         struct irq_desc *desc = irq_to_desc(irq);
148
149         return __irq_can_set_affinity(desc) &&
150                 !irqd_affinity_is_managed(&desc->irq_data);
151 }
152
153 /**
154  *      irq_set_thread_affinity - Notify irq threads to adjust affinity
155  *      @desc:          irq descriptor which has affitnity changed
156  *
157  *      We just set IRQTF_AFFINITY and delegate the affinity setting
158  *      to the interrupt thread itself. We can not call
159  *      set_cpus_allowed_ptr() here as we hold desc->lock and this
160  *      code can be called from hard interrupt context.
161  */
162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164         struct irqaction *action;
165
166         for_each_action_of_desc(desc, action)
167                 if (action->thread)
168                         set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170
171 static void irq_validate_effective_affinity(struct irq_data *data)
172 {
173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
174         const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
175         struct irq_chip *chip = irq_data_get_irq_chip(data);
176
177         if (!cpumask_empty(m))
178                 return;
179         pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
180                      chip->name, data->irq);
181 #endif
182 }
183
184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
185                         bool force)
186 {
187         struct irq_desc *desc = irq_data_to_desc(data);
188         struct irq_chip *chip = irq_data_get_irq_chip(data);
189         int ret;
190
191         if (!chip || !chip->irq_set_affinity)
192                 return -EINVAL;
193
194         ret = chip->irq_set_affinity(data, mask, force);
195         switch (ret) {
196         case IRQ_SET_MASK_OK:
197         case IRQ_SET_MASK_OK_DONE:
198                 cpumask_copy(desc->irq_common_data.affinity, mask);
199         case IRQ_SET_MASK_OK_NOCOPY:
200                 irq_validate_effective_affinity(data);
201                 irq_set_thread_affinity(desc);
202                 ret = 0;
203         }
204
205         return ret;
206 }
207
208 #ifdef CONFIG_GENERIC_PENDING_IRQ
209 static inline int irq_set_affinity_pending(struct irq_data *data,
210                                            const struct cpumask *dest)
211 {
212         struct irq_desc *desc = irq_data_to_desc(data);
213
214         irqd_set_move_pending(data);
215         irq_copy_pending(desc, dest);
216         return 0;
217 }
218 #else
219 static inline int irq_set_affinity_pending(struct irq_data *data,
220                                            const struct cpumask *dest)
221 {
222         return -EBUSY;
223 }
224 #endif
225
226 static int irq_try_set_affinity(struct irq_data *data,
227                                 const struct cpumask *dest, bool force)
228 {
229         int ret = irq_do_set_affinity(data, dest, force);
230
231         /*
232          * In case that the underlying vector management is busy and the
233          * architecture supports the generic pending mechanism then utilize
234          * this to avoid returning an error to user space.
235          */
236         if (ret == -EBUSY && !force)
237                 ret = irq_set_affinity_pending(data, dest);
238         return ret;
239 }
240
241 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
242                             bool force)
243 {
244         struct irq_chip *chip = irq_data_get_irq_chip(data);
245         struct irq_desc *desc = irq_data_to_desc(data);
246         int ret = 0;
247
248         if (!chip || !chip->irq_set_affinity)
249                 return -EINVAL;
250
251         if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
252                 ret = irq_try_set_affinity(data, mask, force);
253         } else {
254                 irqd_set_move_pending(data);
255                 irq_copy_pending(desc, mask);
256         }
257
258         if (desc->affinity_notify) {
259                 kref_get(&desc->affinity_notify->kref);
260                 schedule_work(&desc->affinity_notify->work);
261         }
262         irqd_set(data, IRQD_AFFINITY_SET);
263
264         return ret;
265 }
266
267 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
268 {
269         struct irq_desc *desc = irq_to_desc(irq);
270         unsigned long flags;
271         int ret;
272
273         if (!desc)
274                 return -EINVAL;
275
276         raw_spin_lock_irqsave(&desc->lock, flags);
277         ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
278         raw_spin_unlock_irqrestore(&desc->lock, flags);
279         return ret;
280 }
281
282 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
283 {
284         unsigned long flags;
285         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
286
287         if (!desc)
288                 return -EINVAL;
289         desc->affinity_hint = m;
290         irq_put_desc_unlock(desc, flags);
291         /* set the initial affinity to prevent every interrupt being on CPU0 */
292         if (m)
293                 __irq_set_affinity(irq, m, false);
294         return 0;
295 }
296 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
297
298 static void irq_affinity_notify(struct work_struct *work)
299 {
300         struct irq_affinity_notify *notify =
301                 container_of(work, struct irq_affinity_notify, work);
302         struct irq_desc *desc = irq_to_desc(notify->irq);
303         cpumask_var_t cpumask;
304         unsigned long flags;
305
306         if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
307                 goto out;
308
309         raw_spin_lock_irqsave(&desc->lock, flags);
310         if (irq_move_pending(&desc->irq_data))
311                 irq_get_pending(cpumask, desc);
312         else
313                 cpumask_copy(cpumask, desc->irq_common_data.affinity);
314         raw_spin_unlock_irqrestore(&desc->lock, flags);
315
316         notify->notify(notify, cpumask);
317
318         free_cpumask_var(cpumask);
319 out:
320         kref_put(&notify->kref, notify->release);
321 }
322
323 /**
324  *      irq_set_affinity_notifier - control notification of IRQ affinity changes
325  *      @irq:           Interrupt for which to enable/disable notification
326  *      @notify:        Context for notification, or %NULL to disable
327  *                      notification.  Function pointers must be initialised;
328  *                      the other fields will be initialised by this function.
329  *
330  *      Must be called in process context.  Notification may only be enabled
331  *      after the IRQ is allocated and must be disabled before the IRQ is
332  *      freed using free_irq().
333  */
334 int
335 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
336 {
337         struct irq_desc *desc = irq_to_desc(irq);
338         struct irq_affinity_notify *old_notify;
339         unsigned long flags;
340
341         /* The release function is promised process context */
342         might_sleep();
343
344         if (!desc)
345                 return -EINVAL;
346
347         /* Complete initialisation of *notify */
348         if (notify) {
349                 notify->irq = irq;
350                 kref_init(&notify->kref);
351                 INIT_WORK(&notify->work, irq_affinity_notify);
352         }
353
354         raw_spin_lock_irqsave(&desc->lock, flags);
355         old_notify = desc->affinity_notify;
356         desc->affinity_notify = notify;
357         raw_spin_unlock_irqrestore(&desc->lock, flags);
358
359         if (old_notify)
360                 kref_put(&old_notify->kref, old_notify->release);
361
362         return 0;
363 }
364 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
365
366 #ifndef CONFIG_AUTO_IRQ_AFFINITY
367 /*
368  * Generic version of the affinity autoselector.
369  */
370 int irq_setup_affinity(struct irq_desc *desc)
371 {
372         struct cpumask *set = irq_default_affinity;
373         int ret, node = irq_desc_get_node(desc);
374         static DEFINE_RAW_SPINLOCK(mask_lock);
375         static struct cpumask mask;
376
377         /* Excludes PER_CPU and NO_BALANCE interrupts */
378         if (!__irq_can_set_affinity(desc))
379                 return 0;
380
381         raw_spin_lock(&mask_lock);
382         /*
383          * Preserve the managed affinity setting and a userspace affinity
384          * setup, but make sure that one of the targets is online.
385          */
386         if (irqd_affinity_is_managed(&desc->irq_data) ||
387             irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
388                 if (cpumask_intersects(desc->irq_common_data.affinity,
389                                        cpu_online_mask))
390                         set = desc->irq_common_data.affinity;
391                 else
392                         irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
393         }
394
395         cpumask_and(&mask, cpu_online_mask, set);
396         if (node != NUMA_NO_NODE) {
397                 const struct cpumask *nodemask = cpumask_of_node(node);
398
399                 /* make sure at least one of the cpus in nodemask is online */
400                 if (cpumask_intersects(&mask, nodemask))
401                         cpumask_and(&mask, &mask, nodemask);
402         }
403         ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
404         raw_spin_unlock(&mask_lock);
405         return ret;
406 }
407 #else
408 /* Wrapper for ALPHA specific affinity selector magic */
409 int irq_setup_affinity(struct irq_desc *desc)
410 {
411         return irq_select_affinity(irq_desc_get_irq(desc));
412 }
413 #endif
414
415 /*
416  * Called when a bogus affinity is set via /proc/irq
417  */
418 int irq_select_affinity_usr(unsigned int irq)
419 {
420         struct irq_desc *desc = irq_to_desc(irq);
421         unsigned long flags;
422         int ret;
423
424         raw_spin_lock_irqsave(&desc->lock, flags);
425         ret = irq_setup_affinity(desc);
426         raw_spin_unlock_irqrestore(&desc->lock, flags);
427         return ret;
428 }
429 #endif
430
431 /**
432  *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
433  *      @irq: interrupt number to set affinity
434  *      @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
435  *                  specific data for percpu_devid interrupts
436  *
437  *      This function uses the vCPU specific data to set the vCPU
438  *      affinity for an irq. The vCPU specific data is passed from
439  *      outside, such as KVM. One example code path is as below:
440  *      KVM -> IOMMU -> irq_set_vcpu_affinity().
441  */
442 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
443 {
444         unsigned long flags;
445         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
446         struct irq_data *data;
447         struct irq_chip *chip;
448         int ret = -ENOSYS;
449
450         if (!desc)
451                 return -EINVAL;
452
453         data = irq_desc_get_irq_data(desc);
454         do {
455                 chip = irq_data_get_irq_chip(data);
456                 if (chip && chip->irq_set_vcpu_affinity)
457                         break;
458 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
459                 data = data->parent_data;
460 #else
461                 data = NULL;
462 #endif
463         } while (data);
464
465         if (data)
466                 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
467         irq_put_desc_unlock(desc, flags);
468
469         return ret;
470 }
471 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
472
473 void __disable_irq(struct irq_desc *desc)
474 {
475         if (!desc->depth++)
476                 irq_disable(desc);
477 }
478
479 static int __disable_irq_nosync(unsigned int irq)
480 {
481         unsigned long flags;
482         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
483
484         if (!desc)
485                 return -EINVAL;
486         __disable_irq(desc);
487         irq_put_desc_busunlock(desc, flags);
488         return 0;
489 }
490
491 /**
492  *      disable_irq_nosync - disable an irq without waiting
493  *      @irq: Interrupt to disable
494  *
495  *      Disable the selected interrupt line.  Disables and Enables are
496  *      nested.
497  *      Unlike disable_irq(), this function does not ensure existing
498  *      instances of the IRQ handler have completed before returning.
499  *
500  *      This function may be called from IRQ context.
501  */
502 void disable_irq_nosync(unsigned int irq)
503 {
504         __disable_irq_nosync(irq);
505 }
506 EXPORT_SYMBOL(disable_irq_nosync);
507
508 /**
509  *      disable_irq - disable an irq and wait for completion
510  *      @irq: Interrupt to disable
511  *
512  *      Disable the selected interrupt line.  Enables and Disables are
513  *      nested.
514  *      This function waits for any pending IRQ handlers for this interrupt
515  *      to complete before returning. If you use this function while
516  *      holding a resource the IRQ handler may need you will deadlock.
517  *
518  *      This function may be called - with care - from IRQ context.
519  */
520 void disable_irq(unsigned int irq)
521 {
522         if (!__disable_irq_nosync(irq))
523                 synchronize_irq(irq);
524 }
525 EXPORT_SYMBOL(disable_irq);
526
527 /**
528  *      disable_hardirq - disables an irq and waits for hardirq completion
529  *      @irq: Interrupt to disable
530  *
531  *      Disable the selected interrupt line.  Enables and Disables are
532  *      nested.
533  *      This function waits for any pending hard IRQ handlers for this
534  *      interrupt to complete before returning. If you use this function while
535  *      holding a resource the hard IRQ handler may need you will deadlock.
536  *
537  *      When used to optimistically disable an interrupt from atomic context
538  *      the return value must be checked.
539  *
540  *      Returns: false if a threaded handler is active.
541  *
542  *      This function may be called - with care - from IRQ context.
543  */
544 bool disable_hardirq(unsigned int irq)
545 {
546         if (!__disable_irq_nosync(irq))
547                 return synchronize_hardirq(irq);
548
549         return false;
550 }
551 EXPORT_SYMBOL_GPL(disable_hardirq);
552
553 void __enable_irq(struct irq_desc *desc)
554 {
555         switch (desc->depth) {
556         case 0:
557  err_out:
558                 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
559                      irq_desc_get_irq(desc));
560                 break;
561         case 1: {
562                 if (desc->istate & IRQS_SUSPENDED)
563                         goto err_out;
564                 /* Prevent probing on this irq: */
565                 irq_settings_set_noprobe(desc);
566                 /*
567                  * Call irq_startup() not irq_enable() here because the
568                  * interrupt might be marked NOAUTOEN. So irq_startup()
569                  * needs to be invoked when it gets enabled the first
570                  * time. If it was already started up, then irq_startup()
571                  * will invoke irq_enable() under the hood.
572                  */
573                 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
574                 break;
575         }
576         default:
577                 desc->depth--;
578         }
579 }
580
581 /**
582  *      enable_irq - enable handling of an irq
583  *      @irq: Interrupt to enable
584  *
585  *      Undoes the effect of one call to disable_irq().  If this
586  *      matches the last disable, processing of interrupts on this
587  *      IRQ line is re-enabled.
588  *
589  *      This function may be called from IRQ context only when
590  *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
591  */
592 void enable_irq(unsigned int irq)
593 {
594         unsigned long flags;
595         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
596
597         if (!desc)
598                 return;
599         if (WARN(!desc->irq_data.chip,
600                  KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
601                 goto out;
602
603         __enable_irq(desc);
604 out:
605         irq_put_desc_busunlock(desc, flags);
606 }
607 EXPORT_SYMBOL(enable_irq);
608
609 static int set_irq_wake_real(unsigned int irq, unsigned int on)
610 {
611         struct irq_desc *desc = irq_to_desc(irq);
612         int ret = -ENXIO;
613
614         if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
615                 return 0;
616
617         if (desc->irq_data.chip->irq_set_wake)
618                 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
619
620         return ret;
621 }
622
623 /**
624  *      irq_set_irq_wake - control irq power management wakeup
625  *      @irq:   interrupt to control
626  *      @on:    enable/disable power management wakeup
627  *
628  *      Enable/disable power management wakeup mode, which is
629  *      disabled by default.  Enables and disables must match,
630  *      just as they match for non-wakeup mode support.
631  *
632  *      Wakeup mode lets this IRQ wake the system from sleep
633  *      states like "suspend to RAM".
634  */
635 int irq_set_irq_wake(unsigned int irq, unsigned int on)
636 {
637         unsigned long flags;
638         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
639         int ret = 0;
640
641         if (!desc)
642                 return -EINVAL;
643
644         /* wakeup-capable irqs can be shared between drivers that
645          * don't need to have the same sleep mode behaviors.
646          */
647         if (on) {
648                 if (desc->wake_depth++ == 0) {
649                         ret = set_irq_wake_real(irq, on);
650                         if (ret)
651                                 desc->wake_depth = 0;
652                         else
653                                 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
654                 }
655         } else {
656                 if (desc->wake_depth == 0) {
657                         WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
658                 } else if (--desc->wake_depth == 0) {
659                         ret = set_irq_wake_real(irq, on);
660                         if (ret)
661                                 desc->wake_depth = 1;
662                         else
663                                 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
664                 }
665         }
666         irq_put_desc_busunlock(desc, flags);
667         return ret;
668 }
669 EXPORT_SYMBOL(irq_set_irq_wake);
670
671 /*
672  * Internal function that tells the architecture code whether a
673  * particular irq has been exclusively allocated or is available
674  * for driver use.
675  */
676 int can_request_irq(unsigned int irq, unsigned long irqflags)
677 {
678         unsigned long flags;
679         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
680         int canrequest = 0;
681
682         if (!desc)
683                 return 0;
684
685         if (irq_settings_can_request(desc)) {
686                 if (!desc->action ||
687                     irqflags & desc->action->flags & IRQF_SHARED)
688                         canrequest = 1;
689         }
690         irq_put_desc_unlock(desc, flags);
691         return canrequest;
692 }
693
694 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
695 {
696         struct irq_chip *chip = desc->irq_data.chip;
697         int ret, unmask = 0;
698
699         if (!chip || !chip->irq_set_type) {
700                 /*
701                  * IRQF_TRIGGER_* but the PIC does not support multiple
702                  * flow-types?
703                  */
704                 pr_debug("No set_type function for IRQ %d (%s)\n",
705                          irq_desc_get_irq(desc),
706                          chip ? (chip->name ? : "unknown") : "unknown");
707                 return 0;
708         }
709
710         if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
711                 if (!irqd_irq_masked(&desc->irq_data))
712                         mask_irq(desc);
713                 if (!irqd_irq_disabled(&desc->irq_data))
714                         unmask = 1;
715         }
716
717         /* Mask all flags except trigger mode */
718         flags &= IRQ_TYPE_SENSE_MASK;
719         ret = chip->irq_set_type(&desc->irq_data, flags);
720
721         switch (ret) {
722         case IRQ_SET_MASK_OK:
723         case IRQ_SET_MASK_OK_DONE:
724                 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
725                 irqd_set(&desc->irq_data, flags);
726
727         case IRQ_SET_MASK_OK_NOCOPY:
728                 flags = irqd_get_trigger_type(&desc->irq_data);
729                 irq_settings_set_trigger_mask(desc, flags);
730                 irqd_clear(&desc->irq_data, IRQD_LEVEL);
731                 irq_settings_clr_level(desc);
732                 if (flags & IRQ_TYPE_LEVEL_MASK) {
733                         irq_settings_set_level(desc);
734                         irqd_set(&desc->irq_data, IRQD_LEVEL);
735                 }
736
737                 ret = 0;
738                 break;
739         default:
740                 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
741                        flags, irq_desc_get_irq(desc), chip->irq_set_type);
742         }
743         if (unmask)
744                 unmask_irq(desc);
745         return ret;
746 }
747
748 #ifdef CONFIG_HARDIRQS_SW_RESEND
749 int irq_set_parent(int irq, int parent_irq)
750 {
751         unsigned long flags;
752         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
753
754         if (!desc)
755                 return -EINVAL;
756
757         desc->parent_irq = parent_irq;
758
759         irq_put_desc_unlock(desc, flags);
760         return 0;
761 }
762 EXPORT_SYMBOL_GPL(irq_set_parent);
763 #endif
764
765 /*
766  * Default primary interrupt handler for threaded interrupts. Is
767  * assigned as primary handler when request_threaded_irq is called
768  * with handler == NULL. Useful for oneshot interrupts.
769  */
770 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
771 {
772         return IRQ_WAKE_THREAD;
773 }
774
775 /*
776  * Primary handler for nested threaded interrupts. Should never be
777  * called.
778  */
779 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
780 {
781         WARN(1, "Primary handler called for nested irq %d\n", irq);
782         return IRQ_NONE;
783 }
784
785 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
786 {
787         WARN(1, "Secondary action handler called for irq %d\n", irq);
788         return IRQ_NONE;
789 }
790
791 static int irq_wait_for_interrupt(struct irqaction *action)
792 {
793         set_current_state(TASK_INTERRUPTIBLE);
794
795         while (!kthread_should_stop()) {
796
797                 if (test_and_clear_bit(IRQTF_RUNTHREAD,
798                                        &action->thread_flags)) {
799                         __set_current_state(TASK_RUNNING);
800                         return 0;
801                 }
802                 schedule();
803                 set_current_state(TASK_INTERRUPTIBLE);
804         }
805         __set_current_state(TASK_RUNNING);
806         return -1;
807 }
808
809 /*
810  * Oneshot interrupts keep the irq line masked until the threaded
811  * handler finished. unmask if the interrupt has not been disabled and
812  * is marked MASKED.
813  */
814 static void irq_finalize_oneshot(struct irq_desc *desc,
815                                  struct irqaction *action)
816 {
817         if (!(desc->istate & IRQS_ONESHOT) ||
818             action->handler == irq_forced_secondary_handler)
819                 return;
820 again:
821         chip_bus_lock(desc);
822         raw_spin_lock_irq(&desc->lock);
823
824         /*
825          * Implausible though it may be we need to protect us against
826          * the following scenario:
827          *
828          * The thread is faster done than the hard interrupt handler
829          * on the other CPU. If we unmask the irq line then the
830          * interrupt can come in again and masks the line, leaves due
831          * to IRQS_INPROGRESS and the irq line is masked forever.
832          *
833          * This also serializes the state of shared oneshot handlers
834          * versus "desc->threads_onehsot |= action->thread_mask;" in
835          * irq_wake_thread(). See the comment there which explains the
836          * serialization.
837          */
838         if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
839                 raw_spin_unlock_irq(&desc->lock);
840                 chip_bus_sync_unlock(desc);
841                 cpu_relax();
842                 goto again;
843         }
844
845         /*
846          * Now check again, whether the thread should run. Otherwise
847          * we would clear the threads_oneshot bit of this thread which
848          * was just set.
849          */
850         if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
851                 goto out_unlock;
852
853         desc->threads_oneshot &= ~action->thread_mask;
854
855         if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
856             irqd_irq_masked(&desc->irq_data))
857                 unmask_threaded_irq(desc);
858
859 out_unlock:
860         raw_spin_unlock_irq(&desc->lock);
861         chip_bus_sync_unlock(desc);
862 }
863
864 #ifdef CONFIG_SMP
865 /*
866  * Check whether we need to change the affinity of the interrupt thread.
867  */
868 static void
869 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
870 {
871         cpumask_var_t mask;
872         bool valid = true;
873
874         if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
875                 return;
876
877         /*
878          * In case we are out of memory we set IRQTF_AFFINITY again and
879          * try again next time
880          */
881         if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
882                 set_bit(IRQTF_AFFINITY, &action->thread_flags);
883                 return;
884         }
885
886         raw_spin_lock_irq(&desc->lock);
887         /*
888          * This code is triggered unconditionally. Check the affinity
889          * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
890          */
891         if (cpumask_available(desc->irq_common_data.affinity)) {
892                 const struct cpumask *m;
893
894                 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
895                 cpumask_copy(mask, m);
896         } else {
897                 valid = false;
898         }
899         raw_spin_unlock_irq(&desc->lock);
900
901         if (valid)
902                 set_cpus_allowed_ptr(current, mask);
903         free_cpumask_var(mask);
904 }
905 #else
906 static inline void
907 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
908 #endif
909
910 /*
911  * Interrupts which are not explicitely requested as threaded
912  * interrupts rely on the implicit bh/preempt disable of the hard irq
913  * context. So we need to disable bh here to avoid deadlocks and other
914  * side effects.
915  */
916 static irqreturn_t
917 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
918 {
919         irqreturn_t ret;
920
921         local_bh_disable();
922         ret = action->thread_fn(action->irq, action->dev_id);
923         irq_finalize_oneshot(desc, action);
924         local_bh_enable();
925         return ret;
926 }
927
928 /*
929  * Interrupts explicitly requested as threaded interrupts want to be
930  * preemtible - many of them need to sleep and wait for slow busses to
931  * complete.
932  */
933 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
934                 struct irqaction *action)
935 {
936         irqreturn_t ret;
937
938         ret = action->thread_fn(action->irq, action->dev_id);
939         irq_finalize_oneshot(desc, action);
940         return ret;
941 }
942
943 static void wake_threads_waitq(struct irq_desc *desc)
944 {
945         if (atomic_dec_and_test(&desc->threads_active))
946                 wake_up(&desc->wait_for_threads);
947 }
948
949 static void irq_thread_dtor(struct callback_head *unused)
950 {
951         struct task_struct *tsk = current;
952         struct irq_desc *desc;
953         struct irqaction *action;
954
955         if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
956                 return;
957
958         action = kthread_data(tsk);
959
960         pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
961                tsk->comm, tsk->pid, action->irq);
962
963
964         desc = irq_to_desc(action->irq);
965         /*
966          * If IRQTF_RUNTHREAD is set, we need to decrement
967          * desc->threads_active and wake possible waiters.
968          */
969         if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
970                 wake_threads_waitq(desc);
971
972         /* Prevent a stale desc->threads_oneshot */
973         irq_finalize_oneshot(desc, action);
974 }
975
976 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
977 {
978         struct irqaction *secondary = action->secondary;
979
980         if (WARN_ON_ONCE(!secondary))
981                 return;
982
983         raw_spin_lock_irq(&desc->lock);
984         __irq_wake_thread(desc, secondary);
985         raw_spin_unlock_irq(&desc->lock);
986 }
987
988 /*
989  * Interrupt handler thread
990  */
991 static int irq_thread(void *data)
992 {
993         struct callback_head on_exit_work;
994         struct irqaction *action = data;
995         struct irq_desc *desc = irq_to_desc(action->irq);
996         irqreturn_t (*handler_fn)(struct irq_desc *desc,
997                         struct irqaction *action);
998
999         if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1000                                         &action->thread_flags))
1001                 handler_fn = irq_forced_thread_fn;
1002         else
1003                 handler_fn = irq_thread_fn;
1004
1005         init_task_work(&on_exit_work, irq_thread_dtor);
1006         task_work_add(current, &on_exit_work, false);
1007
1008         irq_thread_check_affinity(desc, action);
1009
1010         while (!irq_wait_for_interrupt(action)) {
1011                 irqreturn_t action_ret;
1012
1013                 irq_thread_check_affinity(desc, action);
1014
1015                 action_ret = handler_fn(desc, action);
1016                 if (action_ret == IRQ_HANDLED)
1017                         atomic_inc(&desc->threads_handled);
1018                 if (action_ret == IRQ_WAKE_THREAD)
1019                         irq_wake_secondary(desc, action);
1020
1021                 wake_threads_waitq(desc);
1022         }
1023
1024         /*
1025          * This is the regular exit path. __free_irq() is stopping the
1026          * thread via kthread_stop() after calling
1027          * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
1028          * oneshot mask bit can be set. We cannot verify that as we
1029          * cannot touch the oneshot mask at this point anymore as
1030          * __setup_irq() might have given out currents thread_mask
1031          * again.
1032          */
1033         task_work_cancel(current, irq_thread_dtor);
1034         return 0;
1035 }
1036
1037 /**
1038  *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1039  *      @irq:           Interrupt line
1040  *      @dev_id:        Device identity for which the thread should be woken
1041  *
1042  */
1043 void irq_wake_thread(unsigned int irq, void *dev_id)
1044 {
1045         struct irq_desc *desc = irq_to_desc(irq);
1046         struct irqaction *action;
1047         unsigned long flags;
1048
1049         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1050                 return;
1051
1052         raw_spin_lock_irqsave(&desc->lock, flags);
1053         for_each_action_of_desc(desc, action) {
1054                 if (action->dev_id == dev_id) {
1055                         if (action->thread)
1056                                 __irq_wake_thread(desc, action);
1057                         break;
1058                 }
1059         }
1060         raw_spin_unlock_irqrestore(&desc->lock, flags);
1061 }
1062 EXPORT_SYMBOL_GPL(irq_wake_thread);
1063
1064 static int irq_setup_forced_threading(struct irqaction *new)
1065 {
1066         if (!force_irqthreads)
1067                 return 0;
1068         if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1069                 return 0;
1070
1071         new->flags |= IRQF_ONESHOT;
1072
1073         /*
1074          * Handle the case where we have a real primary handler and a
1075          * thread handler. We force thread them as well by creating a
1076          * secondary action.
1077          */
1078         if (new->handler != irq_default_primary_handler && new->thread_fn) {
1079                 /* Allocate the secondary action */
1080                 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1081                 if (!new->secondary)
1082                         return -ENOMEM;
1083                 new->secondary->handler = irq_forced_secondary_handler;
1084                 new->secondary->thread_fn = new->thread_fn;
1085                 new->secondary->dev_id = new->dev_id;
1086                 new->secondary->irq = new->irq;
1087                 new->secondary->name = new->name;
1088         }
1089         /* Deal with the primary handler */
1090         set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1091         new->thread_fn = new->handler;
1092         new->handler = irq_default_primary_handler;
1093         return 0;
1094 }
1095
1096 static int irq_request_resources(struct irq_desc *desc)
1097 {
1098         struct irq_data *d = &desc->irq_data;
1099         struct irq_chip *c = d->chip;
1100
1101         return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1102 }
1103
1104 static void irq_release_resources(struct irq_desc *desc)
1105 {
1106         struct irq_data *d = &desc->irq_data;
1107         struct irq_chip *c = d->chip;
1108
1109         if (c->irq_release_resources)
1110                 c->irq_release_resources(d);
1111 }
1112
1113 static int
1114 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1115 {
1116         struct task_struct *t;
1117         struct sched_param param = {
1118                 .sched_priority = MAX_USER_RT_PRIO/2,
1119         };
1120
1121         if (!secondary) {
1122                 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1123                                    new->name);
1124         } else {
1125                 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1126                                    new->name);
1127                 param.sched_priority -= 1;
1128         }
1129
1130         if (IS_ERR(t))
1131                 return PTR_ERR(t);
1132
1133         sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1134
1135         /*
1136          * We keep the reference to the task struct even if
1137          * the thread dies to avoid that the interrupt code
1138          * references an already freed task_struct.
1139          */
1140         get_task_struct(t);
1141         new->thread = t;
1142         /*
1143          * Tell the thread to set its affinity. This is
1144          * important for shared interrupt handlers as we do
1145          * not invoke setup_affinity() for the secondary
1146          * handlers as everything is already set up. Even for
1147          * interrupts marked with IRQF_NO_BALANCE this is
1148          * correct as we want the thread to move to the cpu(s)
1149          * on which the requesting code placed the interrupt.
1150          */
1151         set_bit(IRQTF_AFFINITY, &new->thread_flags);
1152         return 0;
1153 }
1154
1155 /*
1156  * Internal function to register an irqaction - typically used to
1157  * allocate special interrupts that are part of the architecture.
1158  *
1159  * Locking rules:
1160  *
1161  * desc->request_mutex  Provides serialization against a concurrent free_irq()
1162  *   chip_bus_lock      Provides serialization for slow bus operations
1163  *     desc->lock       Provides serialization against hard interrupts
1164  *
1165  * chip_bus_lock and desc->lock are sufficient for all other management and
1166  * interrupt related functions. desc->request_mutex solely serializes
1167  * request/free_irq().
1168  */
1169 static int
1170 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1171 {
1172         struct irqaction *old, **old_ptr;
1173         unsigned long flags, thread_mask = 0;
1174         int ret, nested, shared = 0;
1175
1176         if (!desc)
1177                 return -EINVAL;
1178
1179         if (desc->irq_data.chip == &no_irq_chip)
1180                 return -ENOSYS;
1181         if (!try_module_get(desc->owner))
1182                 return -ENODEV;
1183
1184         new->irq = irq;
1185
1186         /*
1187          * If the trigger type is not specified by the caller,
1188          * then use the default for this interrupt.
1189          */
1190         if (!(new->flags & IRQF_TRIGGER_MASK))
1191                 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1192
1193         /*
1194          * Check whether the interrupt nests into another interrupt
1195          * thread.
1196          */
1197         nested = irq_settings_is_nested_thread(desc);
1198         if (nested) {
1199                 if (!new->thread_fn) {
1200                         ret = -EINVAL;
1201                         goto out_mput;
1202                 }
1203                 /*
1204                  * Replace the primary handler which was provided from
1205                  * the driver for non nested interrupt handling by the
1206                  * dummy function which warns when called.
1207                  */
1208                 new->handler = irq_nested_primary_handler;
1209         } else {
1210                 if (irq_settings_can_thread(desc)) {
1211                         ret = irq_setup_forced_threading(new);
1212                         if (ret)
1213                                 goto out_mput;
1214                 }
1215         }
1216
1217         /*
1218          * Create a handler thread when a thread function is supplied
1219          * and the interrupt does not nest into another interrupt
1220          * thread.
1221          */
1222         if (new->thread_fn && !nested) {
1223                 ret = setup_irq_thread(new, irq, false);
1224                 if (ret)
1225                         goto out_mput;
1226                 if (new->secondary) {
1227                         ret = setup_irq_thread(new->secondary, irq, true);
1228                         if (ret)
1229                                 goto out_thread;
1230                 }
1231         }
1232
1233         /*
1234          * Drivers are often written to work w/o knowledge about the
1235          * underlying irq chip implementation, so a request for a
1236          * threaded irq without a primary hard irq context handler
1237          * requires the ONESHOT flag to be set. Some irq chips like
1238          * MSI based interrupts are per se one shot safe. Check the
1239          * chip flags, so we can avoid the unmask dance at the end of
1240          * the threaded handler for those.
1241          */
1242         if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1243                 new->flags &= ~IRQF_ONESHOT;
1244
1245         /*
1246          * Protects against a concurrent __free_irq() call which might wait
1247          * for synchronize_irq() to complete without holding the optional
1248          * chip bus lock and desc->lock.
1249          */
1250         mutex_lock(&desc->request_mutex);
1251
1252         /*
1253          * Acquire bus lock as the irq_request_resources() callback below
1254          * might rely on the serialization or the magic power management
1255          * functions which are abusing the irq_bus_lock() callback,
1256          */
1257         chip_bus_lock(desc);
1258
1259         /* First installed action requests resources. */
1260         if (!desc->action) {
1261                 ret = irq_request_resources(desc);
1262                 if (ret) {
1263                         pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1264                                new->name, irq, desc->irq_data.chip->name);
1265                         goto out_bus_unlock;
1266                 }
1267         }
1268
1269         /*
1270          * The following block of code has to be executed atomically
1271          * protected against a concurrent interrupt and any of the other
1272          * management calls which are not serialized via
1273          * desc->request_mutex or the optional bus lock.
1274          */
1275         raw_spin_lock_irqsave(&desc->lock, flags);
1276         old_ptr = &desc->action;
1277         old = *old_ptr;
1278         if (old) {
1279                 /*
1280                  * Can't share interrupts unless both agree to and are
1281                  * the same type (level, edge, polarity). So both flag
1282                  * fields must have IRQF_SHARED set and the bits which
1283                  * set the trigger type must match. Also all must
1284                  * agree on ONESHOT.
1285                  */
1286                 unsigned int oldtype;
1287
1288                 /*
1289                  * If nobody did set the configuration before, inherit
1290                  * the one provided by the requester.
1291                  */
1292                 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1293                         oldtype = irqd_get_trigger_type(&desc->irq_data);
1294                 } else {
1295                         oldtype = new->flags & IRQF_TRIGGER_MASK;
1296                         irqd_set_trigger_type(&desc->irq_data, oldtype);
1297                 }
1298
1299                 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1300                     (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1301                     ((old->flags ^ new->flags) & IRQF_ONESHOT))
1302                         goto mismatch;
1303
1304                 /* All handlers must agree on per-cpuness */
1305                 if ((old->flags & IRQF_PERCPU) !=
1306                     (new->flags & IRQF_PERCPU))
1307                         goto mismatch;
1308
1309                 /* add new interrupt at end of irq queue */
1310                 do {
1311                         /*
1312                          * Or all existing action->thread_mask bits,
1313                          * so we can find the next zero bit for this
1314                          * new action.
1315                          */
1316                         thread_mask |= old->thread_mask;
1317                         old_ptr = &old->next;
1318                         old = *old_ptr;
1319                 } while (old);
1320                 shared = 1;
1321         }
1322
1323         /*
1324          * Setup the thread mask for this irqaction for ONESHOT. For
1325          * !ONESHOT irqs the thread mask is 0 so we can avoid a
1326          * conditional in irq_wake_thread().
1327          */
1328         if (new->flags & IRQF_ONESHOT) {
1329                 /*
1330                  * Unlikely to have 32 resp 64 irqs sharing one line,
1331                  * but who knows.
1332                  */
1333                 if (thread_mask == ~0UL) {
1334                         ret = -EBUSY;
1335                         goto out_unlock;
1336                 }
1337                 /*
1338                  * The thread_mask for the action is or'ed to
1339                  * desc->thread_active to indicate that the
1340                  * IRQF_ONESHOT thread handler has been woken, but not
1341                  * yet finished. The bit is cleared when a thread
1342                  * completes. When all threads of a shared interrupt
1343                  * line have completed desc->threads_active becomes
1344                  * zero and the interrupt line is unmasked. See
1345                  * handle.c:irq_wake_thread() for further information.
1346                  *
1347                  * If no thread is woken by primary (hard irq context)
1348                  * interrupt handlers, then desc->threads_active is
1349                  * also checked for zero to unmask the irq line in the
1350                  * affected hard irq flow handlers
1351                  * (handle_[fasteoi|level]_irq).
1352                  *
1353                  * The new action gets the first zero bit of
1354                  * thread_mask assigned. See the loop above which or's
1355                  * all existing action->thread_mask bits.
1356                  */
1357                 new->thread_mask = 1UL << ffz(thread_mask);
1358
1359         } else if (new->handler == irq_default_primary_handler &&
1360                    !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1361                 /*
1362                  * The interrupt was requested with handler = NULL, so
1363                  * we use the default primary handler for it. But it
1364                  * does not have the oneshot flag set. In combination
1365                  * with level interrupts this is deadly, because the
1366                  * default primary handler just wakes the thread, then
1367                  * the irq lines is reenabled, but the device still
1368                  * has the level irq asserted. Rinse and repeat....
1369                  *
1370                  * While this works for edge type interrupts, we play
1371                  * it safe and reject unconditionally because we can't
1372                  * say for sure which type this interrupt really
1373                  * has. The type flags are unreliable as the
1374                  * underlying chip implementation can override them.
1375                  */
1376                 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1377                        irq);
1378                 ret = -EINVAL;
1379                 goto out_unlock;
1380         }
1381
1382         if (!shared) {
1383                 init_waitqueue_head(&desc->wait_for_threads);
1384
1385                 /* Setup the type (level, edge polarity) if configured: */
1386                 if (new->flags & IRQF_TRIGGER_MASK) {
1387                         ret = __irq_set_trigger(desc,
1388                                                 new->flags & IRQF_TRIGGER_MASK);
1389
1390                         if (ret)
1391                                 goto out_unlock;
1392                 }
1393
1394                 /*
1395                  * Activate the interrupt. That activation must happen
1396                  * independently of IRQ_NOAUTOEN. request_irq() can fail
1397                  * and the callers are supposed to handle
1398                  * that. enable_irq() of an interrupt requested with
1399                  * IRQ_NOAUTOEN is not supposed to fail. The activation
1400                  * keeps it in shutdown mode, it merily associates
1401                  * resources if necessary and if that's not possible it
1402                  * fails. Interrupts which are in managed shutdown mode
1403                  * will simply ignore that activation request.
1404                  */
1405                 ret = irq_activate(desc);
1406                 if (ret)
1407                         goto out_unlock;
1408
1409                 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1410                                   IRQS_ONESHOT | IRQS_WAITING);
1411                 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1412
1413                 if (new->flags & IRQF_PERCPU) {
1414                         irqd_set(&desc->irq_data, IRQD_PER_CPU);
1415                         irq_settings_set_per_cpu(desc);
1416                 }
1417
1418                 if (new->flags & IRQF_ONESHOT)
1419                         desc->istate |= IRQS_ONESHOT;
1420
1421                 /* Exclude IRQ from balancing if requested */
1422                 if (new->flags & IRQF_NOBALANCING) {
1423                         irq_settings_set_no_balancing(desc);
1424                         irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1425                 }
1426
1427                 if (irq_settings_can_autoenable(desc)) {
1428                         irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1429                 } else {
1430                         /*
1431                          * Shared interrupts do not go well with disabling
1432                          * auto enable. The sharing interrupt might request
1433                          * it while it's still disabled and then wait for
1434                          * interrupts forever.
1435                          */
1436                         WARN_ON_ONCE(new->flags & IRQF_SHARED);
1437                         /* Undo nested disables: */
1438                         desc->depth = 1;
1439                 }
1440
1441         } else if (new->flags & IRQF_TRIGGER_MASK) {
1442                 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1443                 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1444
1445                 if (nmsk != omsk)
1446                         /* hope the handler works with current  trigger mode */
1447                         pr_warn("irq %d uses trigger mode %u; requested %u\n",
1448                                 irq, omsk, nmsk);
1449         }
1450
1451         *old_ptr = new;
1452
1453         irq_pm_install_action(desc, new);
1454
1455         /* Reset broken irq detection when installing new handler */
1456         desc->irq_count = 0;
1457         desc->irqs_unhandled = 0;
1458
1459         /*
1460          * Check whether we disabled the irq via the spurious handler
1461          * before. Reenable it and give it another chance.
1462          */
1463         if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1464                 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1465                 __enable_irq(desc);
1466         }
1467
1468         raw_spin_unlock_irqrestore(&desc->lock, flags);
1469         chip_bus_sync_unlock(desc);
1470         mutex_unlock(&desc->request_mutex);
1471
1472         irq_setup_timings(desc, new);
1473
1474         /*
1475          * Strictly no need to wake it up, but hung_task complains
1476          * when no hard interrupt wakes the thread up.
1477          */
1478         if (new->thread)
1479                 wake_up_process(new->thread);
1480         if (new->secondary)
1481                 wake_up_process(new->secondary->thread);
1482
1483         register_irq_proc(irq, desc);
1484         new->dir = NULL;
1485         register_handler_proc(irq, new);
1486         return 0;
1487
1488 mismatch:
1489         if (!(new->flags & IRQF_PROBE_SHARED)) {
1490                 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1491                        irq, new->flags, new->name, old->flags, old->name);
1492 #ifdef CONFIG_DEBUG_SHIRQ
1493                 dump_stack();
1494 #endif
1495         }
1496         ret = -EBUSY;
1497
1498 out_unlock:
1499         raw_spin_unlock_irqrestore(&desc->lock, flags);
1500
1501         if (!desc->action)
1502                 irq_release_resources(desc);
1503 out_bus_unlock:
1504         chip_bus_sync_unlock(desc);
1505         mutex_unlock(&desc->request_mutex);
1506
1507 out_thread:
1508         if (new->thread) {
1509                 struct task_struct *t = new->thread;
1510
1511                 new->thread = NULL;
1512                 kthread_stop(t);
1513                 put_task_struct(t);
1514         }
1515         if (new->secondary && new->secondary->thread) {
1516                 struct task_struct *t = new->secondary->thread;
1517
1518                 new->secondary->thread = NULL;
1519                 kthread_stop(t);
1520                 put_task_struct(t);
1521         }
1522 out_mput:
1523         module_put(desc->owner);
1524         return ret;
1525 }
1526
1527 /**
1528  *      setup_irq - setup an interrupt
1529  *      @irq: Interrupt line to setup
1530  *      @act: irqaction for the interrupt
1531  *
1532  * Used to statically setup interrupts in the early boot process.
1533  */
1534 int setup_irq(unsigned int irq, struct irqaction *act)
1535 {
1536         int retval;
1537         struct irq_desc *desc = irq_to_desc(irq);
1538
1539         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1540                 return -EINVAL;
1541
1542         retval = irq_chip_pm_get(&desc->irq_data);
1543         if (retval < 0)
1544                 return retval;
1545
1546         retval = __setup_irq(irq, desc, act);
1547
1548         if (retval)
1549                 irq_chip_pm_put(&desc->irq_data);
1550
1551         return retval;
1552 }
1553 EXPORT_SYMBOL_GPL(setup_irq);
1554
1555 /*
1556  * Internal function to unregister an irqaction - used to free
1557  * regular and special interrupts that are part of the architecture.
1558  */
1559 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1560 {
1561         unsigned irq = desc->irq_data.irq;
1562         struct irqaction *action, **action_ptr;
1563         unsigned long flags;
1564
1565         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1566
1567         if (!desc)
1568                 return NULL;
1569
1570         mutex_lock(&desc->request_mutex);
1571         chip_bus_lock(desc);
1572         raw_spin_lock_irqsave(&desc->lock, flags);
1573
1574         /*
1575          * There can be multiple actions per IRQ descriptor, find the right
1576          * one based on the dev_id:
1577          */
1578         action_ptr = &desc->action;
1579         for (;;) {
1580                 action = *action_ptr;
1581
1582                 if (!action) {
1583                         WARN(1, "Trying to free already-free IRQ %d\n", irq);
1584                         raw_spin_unlock_irqrestore(&desc->lock, flags);
1585                         chip_bus_sync_unlock(desc);
1586                         mutex_unlock(&desc->request_mutex);
1587                         return NULL;
1588                 }
1589
1590                 if (action->dev_id == dev_id)
1591                         break;
1592                 action_ptr = &action->next;
1593         }
1594
1595         /* Found it - now remove it from the list of entries: */
1596         *action_ptr = action->next;
1597
1598         irq_pm_remove_action(desc, action);
1599
1600         /* If this was the last handler, shut down the IRQ line: */
1601         if (!desc->action) {
1602                 irq_settings_clr_disable_unlazy(desc);
1603                 irq_shutdown(desc);
1604         }
1605
1606 #ifdef CONFIG_SMP
1607         /* make sure affinity_hint is cleaned up */
1608         if (WARN_ON_ONCE(desc->affinity_hint))
1609                 desc->affinity_hint = NULL;
1610 #endif
1611
1612         raw_spin_unlock_irqrestore(&desc->lock, flags);
1613         /*
1614          * Drop bus_lock here so the changes which were done in the chip
1615          * callbacks above are synced out to the irq chips which hang
1616          * behind a slow bus (I2C, SPI) before calling synchronize_irq().
1617          *
1618          * Aside of that the bus_lock can also be taken from the threaded
1619          * handler in irq_finalize_oneshot() which results in a deadlock
1620          * because synchronize_irq() would wait forever for the thread to
1621          * complete, which is blocked on the bus lock.
1622          *
1623          * The still held desc->request_mutex() protects against a
1624          * concurrent request_irq() of this irq so the release of resources
1625          * and timing data is properly serialized.
1626          */
1627         chip_bus_sync_unlock(desc);
1628
1629         unregister_handler_proc(irq, action);
1630
1631         /* Make sure it's not being used on another CPU: */
1632         synchronize_irq(irq);
1633
1634 #ifdef CONFIG_DEBUG_SHIRQ
1635         /*
1636          * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1637          * event to happen even now it's being freed, so let's make sure that
1638          * is so by doing an extra call to the handler ....
1639          *
1640          * ( We do this after actually deregistering it, to make sure that a
1641          *   'real' IRQ doesn't run in * parallel with our fake. )
1642          */
1643         if (action->flags & IRQF_SHARED) {
1644                 local_irq_save(flags);
1645                 action->handler(irq, dev_id);
1646                 local_irq_restore(flags);
1647         }
1648 #endif
1649
1650         if (action->thread) {
1651                 kthread_stop(action->thread);
1652                 put_task_struct(action->thread);
1653                 if (action->secondary && action->secondary->thread) {
1654                         kthread_stop(action->secondary->thread);
1655                         put_task_struct(action->secondary->thread);
1656                 }
1657         }
1658
1659         /* Last action releases resources */
1660         if (!desc->action) {
1661                 /*
1662                  * Reaquire bus lock as irq_release_resources() might
1663                  * require it to deallocate resources over the slow bus.
1664                  */
1665                 chip_bus_lock(desc);
1666                 irq_release_resources(desc);
1667                 chip_bus_sync_unlock(desc);
1668                 irq_remove_timings(desc);
1669         }
1670
1671         mutex_unlock(&desc->request_mutex);
1672
1673         irq_chip_pm_put(&desc->irq_data);
1674         module_put(desc->owner);
1675         kfree(action->secondary);
1676         return action;
1677 }
1678
1679 /**
1680  *      remove_irq - free an interrupt
1681  *      @irq: Interrupt line to free
1682  *      @act: irqaction for the interrupt
1683  *
1684  * Used to remove interrupts statically setup by the early boot process.
1685  */
1686 void remove_irq(unsigned int irq, struct irqaction *act)
1687 {
1688         struct irq_desc *desc = irq_to_desc(irq);
1689
1690         if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1691                 __free_irq(desc, act->dev_id);
1692 }
1693 EXPORT_SYMBOL_GPL(remove_irq);
1694
1695 /**
1696  *      free_irq - free an interrupt allocated with request_irq
1697  *      @irq: Interrupt line to free
1698  *      @dev_id: Device identity to free
1699  *
1700  *      Remove an interrupt handler. The handler is removed and if the
1701  *      interrupt line is no longer in use by any driver it is disabled.
1702  *      On a shared IRQ the caller must ensure the interrupt is disabled
1703  *      on the card it drives before calling this function. The function
1704  *      does not return until any executing interrupts for this IRQ
1705  *      have completed.
1706  *
1707  *      This function must not be called from interrupt context.
1708  *
1709  *      Returns the devname argument passed to request_irq.
1710  */
1711 const void *free_irq(unsigned int irq, void *dev_id)
1712 {
1713         struct irq_desc *desc = irq_to_desc(irq);
1714         struct irqaction *action;
1715         const char *devname;
1716
1717         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1718                 return NULL;
1719
1720 #ifdef CONFIG_SMP
1721         if (WARN_ON(desc->affinity_notify))
1722                 desc->affinity_notify = NULL;
1723 #endif
1724
1725         action = __free_irq(desc, dev_id);
1726
1727         if (!action)
1728                 return NULL;
1729
1730         devname = action->name;
1731         kfree(action);
1732         return devname;
1733 }
1734 EXPORT_SYMBOL(free_irq);
1735
1736 /**
1737  *      request_threaded_irq - allocate an interrupt line
1738  *      @irq: Interrupt line to allocate
1739  *      @handler: Function to be called when the IRQ occurs.
1740  *                Primary handler for threaded interrupts
1741  *                If NULL and thread_fn != NULL the default
1742  *                primary handler is installed
1743  *      @thread_fn: Function called from the irq handler thread
1744  *                  If NULL, no irq thread is created
1745  *      @irqflags: Interrupt type flags
1746  *      @devname: An ascii name for the claiming device
1747  *      @dev_id: A cookie passed back to the handler function
1748  *
1749  *      This call allocates interrupt resources and enables the
1750  *      interrupt line and IRQ handling. From the point this
1751  *      call is made your handler function may be invoked. Since
1752  *      your handler function must clear any interrupt the board
1753  *      raises, you must take care both to initialise your hardware
1754  *      and to set up the interrupt handler in the right order.
1755  *
1756  *      If you want to set up a threaded irq handler for your device
1757  *      then you need to supply @handler and @thread_fn. @handler is
1758  *      still called in hard interrupt context and has to check
1759  *      whether the interrupt originates from the device. If yes it
1760  *      needs to disable the interrupt on the device and return
1761  *      IRQ_WAKE_THREAD which will wake up the handler thread and run
1762  *      @thread_fn. This split handler design is necessary to support
1763  *      shared interrupts.
1764  *
1765  *      Dev_id must be globally unique. Normally the address of the
1766  *      device data structure is used as the cookie. Since the handler
1767  *      receives this value it makes sense to use it.
1768  *
1769  *      If your interrupt is shared you must pass a non NULL dev_id
1770  *      as this is required when freeing the interrupt.
1771  *
1772  *      Flags:
1773  *
1774  *      IRQF_SHARED             Interrupt is shared
1775  *      IRQF_TRIGGER_*          Specify active edge(s) or level
1776  *
1777  */
1778 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1779                          irq_handler_t thread_fn, unsigned long irqflags,
1780                          const char *devname, void *dev_id)
1781 {
1782         struct irqaction *action;
1783         struct irq_desc *desc;
1784         int retval;
1785
1786         if (irq == IRQ_NOTCONNECTED)
1787                 return -ENOTCONN;
1788
1789         /*
1790          * Sanity-check: shared interrupts must pass in a real dev-ID,
1791          * otherwise we'll have trouble later trying to figure out
1792          * which interrupt is which (messes up the interrupt freeing
1793          * logic etc).
1794          *
1795          * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1796          * it cannot be set along with IRQF_NO_SUSPEND.
1797          */
1798         if (((irqflags & IRQF_SHARED) && !dev_id) ||
1799             (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1800             ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1801                 return -EINVAL;
1802
1803         desc = irq_to_desc(irq);
1804         if (!desc)
1805                 return -EINVAL;
1806
1807         if (!irq_settings_can_request(desc) ||
1808             WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1809                 return -EINVAL;
1810
1811         if (!handler) {
1812                 if (!thread_fn)
1813                         return -EINVAL;
1814                 handler = irq_default_primary_handler;
1815         }
1816
1817         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1818         if (!action)
1819                 return -ENOMEM;
1820
1821         action->handler = handler;
1822         action->thread_fn = thread_fn;
1823         action->flags = irqflags;
1824         action->name = devname;
1825         action->dev_id = dev_id;
1826
1827         retval = irq_chip_pm_get(&desc->irq_data);
1828         if (retval < 0) {
1829                 kfree(action);
1830                 return retval;
1831         }
1832
1833         retval = __setup_irq(irq, desc, action);
1834
1835         if (retval) {
1836                 irq_chip_pm_put(&desc->irq_data);
1837                 kfree(action->secondary);
1838                 kfree(action);
1839         }
1840
1841 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1842         if (!retval && (irqflags & IRQF_SHARED)) {
1843                 /*
1844                  * It's a shared IRQ -- the driver ought to be prepared for it
1845                  * to happen immediately, so let's make sure....
1846                  * We disable the irq to make sure that a 'real' IRQ doesn't
1847                  * run in parallel with our fake.
1848                  */
1849                 unsigned long flags;
1850
1851                 disable_irq(irq);
1852                 local_irq_save(flags);
1853
1854                 handler(irq, dev_id);
1855
1856                 local_irq_restore(flags);
1857                 enable_irq(irq);
1858         }
1859 #endif
1860         return retval;
1861 }
1862 EXPORT_SYMBOL(request_threaded_irq);
1863
1864 /**
1865  *      request_any_context_irq - allocate an interrupt line
1866  *      @irq: Interrupt line to allocate
1867  *      @handler: Function to be called when the IRQ occurs.
1868  *                Threaded handler for threaded interrupts.
1869  *      @flags: Interrupt type flags
1870  *      @name: An ascii name for the claiming device
1871  *      @dev_id: A cookie passed back to the handler function
1872  *
1873  *      This call allocates interrupt resources and enables the
1874  *      interrupt line and IRQ handling. It selects either a
1875  *      hardirq or threaded handling method depending on the
1876  *      context.
1877  *
1878  *      On failure, it returns a negative value. On success,
1879  *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1880  */
1881 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1882                             unsigned long flags, const char *name, void *dev_id)
1883 {
1884         struct irq_desc *desc;
1885         int ret;
1886
1887         if (irq == IRQ_NOTCONNECTED)
1888                 return -ENOTCONN;
1889
1890         desc = irq_to_desc(irq);
1891         if (!desc)
1892                 return -EINVAL;
1893
1894         if (irq_settings_is_nested_thread(desc)) {
1895                 ret = request_threaded_irq(irq, NULL, handler,
1896                                            flags, name, dev_id);
1897                 return !ret ? IRQC_IS_NESTED : ret;
1898         }
1899
1900         ret = request_irq(irq, handler, flags, name, dev_id);
1901         return !ret ? IRQC_IS_HARDIRQ : ret;
1902 }
1903 EXPORT_SYMBOL_GPL(request_any_context_irq);
1904
1905 void enable_percpu_irq(unsigned int irq, unsigned int type)
1906 {
1907         unsigned int cpu = smp_processor_id();
1908         unsigned long flags;
1909         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1910
1911         if (!desc)
1912                 return;
1913
1914         /*
1915          * If the trigger type is not specified by the caller, then
1916          * use the default for this interrupt.
1917          */
1918         type &= IRQ_TYPE_SENSE_MASK;
1919         if (type == IRQ_TYPE_NONE)
1920                 type = irqd_get_trigger_type(&desc->irq_data);
1921
1922         if (type != IRQ_TYPE_NONE) {
1923                 int ret;
1924
1925                 ret = __irq_set_trigger(desc, type);
1926
1927                 if (ret) {
1928                         WARN(1, "failed to set type for IRQ%d\n", irq);
1929                         goto out;
1930                 }
1931         }
1932
1933         irq_percpu_enable(desc, cpu);
1934 out:
1935         irq_put_desc_unlock(desc, flags);
1936 }
1937 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1938
1939 /**
1940  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1941  * @irq:        Linux irq number to check for
1942  *
1943  * Must be called from a non migratable context. Returns the enable
1944  * state of a per cpu interrupt on the current cpu.
1945  */
1946 bool irq_percpu_is_enabled(unsigned int irq)
1947 {
1948         unsigned int cpu = smp_processor_id();
1949         struct irq_desc *desc;
1950         unsigned long flags;
1951         bool is_enabled;
1952
1953         desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1954         if (!desc)
1955                 return false;
1956
1957         is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1958         irq_put_desc_unlock(desc, flags);
1959
1960         return is_enabled;
1961 }
1962 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1963
1964 void disable_percpu_irq(unsigned int irq)
1965 {
1966         unsigned int cpu = smp_processor_id();
1967         unsigned long flags;
1968         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1969
1970         if (!desc)
1971                 return;
1972
1973         irq_percpu_disable(desc, cpu);
1974         irq_put_desc_unlock(desc, flags);
1975 }
1976 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1977
1978 /*
1979  * Internal function to unregister a percpu irqaction.
1980  */
1981 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1982 {
1983         struct irq_desc *desc = irq_to_desc(irq);
1984         struct irqaction *action;
1985         unsigned long flags;
1986
1987         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1988
1989         if (!desc)
1990                 return NULL;
1991
1992         raw_spin_lock_irqsave(&desc->lock, flags);
1993
1994         action = desc->action;
1995         if (!action || action->percpu_dev_id != dev_id) {
1996                 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1997                 goto bad;
1998         }
1999
2000         if (!cpumask_empty(desc->percpu_enabled)) {
2001                 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2002                      irq, cpumask_first(desc->percpu_enabled));
2003                 goto bad;
2004         }
2005
2006         /* Found it - now remove it from the list of entries: */
2007         desc->action = NULL;
2008
2009         raw_spin_unlock_irqrestore(&desc->lock, flags);
2010
2011         unregister_handler_proc(irq, action);
2012
2013         irq_chip_pm_put(&desc->irq_data);
2014         module_put(desc->owner);
2015         return action;
2016
2017 bad:
2018         raw_spin_unlock_irqrestore(&desc->lock, flags);
2019         return NULL;
2020 }
2021
2022 /**
2023  *      remove_percpu_irq - free a per-cpu interrupt
2024  *      @irq: Interrupt line to free
2025  *      @act: irqaction for the interrupt
2026  *
2027  * Used to remove interrupts statically setup by the early boot process.
2028  */
2029 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2030 {
2031         struct irq_desc *desc = irq_to_desc(irq);
2032
2033         if (desc && irq_settings_is_per_cpu_devid(desc))
2034             __free_percpu_irq(irq, act->percpu_dev_id);
2035 }
2036
2037 /**
2038  *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
2039  *      @irq: Interrupt line to free
2040  *      @dev_id: Device identity to free
2041  *
2042  *      Remove a percpu interrupt handler. The handler is removed, but
2043  *      the interrupt line is not disabled. This must be done on each
2044  *      CPU before calling this function. The function does not return
2045  *      until any executing interrupts for this IRQ have completed.
2046  *
2047  *      This function must not be called from interrupt context.
2048  */
2049 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2050 {
2051         struct irq_desc *desc = irq_to_desc(irq);
2052
2053         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2054                 return;
2055
2056         chip_bus_lock(desc);
2057         kfree(__free_percpu_irq(irq, dev_id));
2058         chip_bus_sync_unlock(desc);
2059 }
2060 EXPORT_SYMBOL_GPL(free_percpu_irq);
2061
2062 /**
2063  *      setup_percpu_irq - setup a per-cpu interrupt
2064  *      @irq: Interrupt line to setup
2065  *      @act: irqaction for the interrupt
2066  *
2067  * Used to statically setup per-cpu interrupts in the early boot process.
2068  */
2069 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2070 {
2071         struct irq_desc *desc = irq_to_desc(irq);
2072         int retval;
2073
2074         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2075                 return -EINVAL;
2076
2077         retval = irq_chip_pm_get(&desc->irq_data);
2078         if (retval < 0)
2079                 return retval;
2080
2081         retval = __setup_irq(irq, desc, act);
2082
2083         if (retval)
2084                 irq_chip_pm_put(&desc->irq_data);
2085
2086         return retval;
2087 }
2088
2089 /**
2090  *      __request_percpu_irq - allocate a percpu interrupt line
2091  *      @irq: Interrupt line to allocate
2092  *      @handler: Function to be called when the IRQ occurs.
2093  *      @flags: Interrupt type flags (IRQF_TIMER only)
2094  *      @devname: An ascii name for the claiming device
2095  *      @dev_id: A percpu cookie passed back to the handler function
2096  *
2097  *      This call allocates interrupt resources and enables the
2098  *      interrupt on the local CPU. If the interrupt is supposed to be
2099  *      enabled on other CPUs, it has to be done on each CPU using
2100  *      enable_percpu_irq().
2101  *
2102  *      Dev_id must be globally unique. It is a per-cpu variable, and
2103  *      the handler gets called with the interrupted CPU's instance of
2104  *      that variable.
2105  */
2106 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2107                          unsigned long flags, const char *devname,
2108                          void __percpu *dev_id)
2109 {
2110         struct irqaction *action;
2111         struct irq_desc *desc;
2112         int retval;
2113
2114         if (!dev_id)
2115                 return -EINVAL;
2116
2117         desc = irq_to_desc(irq);
2118         if (!desc || !irq_settings_can_request(desc) ||
2119             !irq_settings_is_per_cpu_devid(desc))
2120                 return -EINVAL;
2121
2122         if (flags && flags != IRQF_TIMER)
2123                 return -EINVAL;
2124
2125         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2126         if (!action)
2127                 return -ENOMEM;
2128
2129         action->handler = handler;
2130         action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2131         action->name = devname;
2132         action->percpu_dev_id = dev_id;
2133
2134         retval = irq_chip_pm_get(&desc->irq_data);
2135         if (retval < 0) {
2136                 kfree(action);
2137                 return retval;
2138         }
2139
2140         retval = __setup_irq(irq, desc, action);
2141
2142         if (retval) {
2143                 irq_chip_pm_put(&desc->irq_data);
2144                 kfree(action);
2145         }
2146
2147         return retval;
2148 }
2149 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2150
2151 /**
2152  *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2153  *      @irq: Interrupt line that is forwarded to a VM
2154  *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2155  *      @state: a pointer to a boolean where the state is to be storeed
2156  *
2157  *      This call snapshots the internal irqchip state of an
2158  *      interrupt, returning into @state the bit corresponding to
2159  *      stage @which
2160  *
2161  *      This function should be called with preemption disabled if the
2162  *      interrupt controller has per-cpu registers.
2163  */
2164 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2165                           bool *state)
2166 {
2167         struct irq_desc *desc;
2168         struct irq_data *data;
2169         struct irq_chip *chip;
2170         unsigned long flags;
2171         int err = -EINVAL;
2172
2173         desc = irq_get_desc_buslock(irq, &flags, 0);
2174         if (!desc)
2175                 return err;
2176
2177         data = irq_desc_get_irq_data(desc);
2178
2179         do {
2180                 chip = irq_data_get_irq_chip(data);
2181                 if (chip->irq_get_irqchip_state)
2182                         break;
2183 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2184                 data = data->parent_data;
2185 #else
2186                 data = NULL;
2187 #endif
2188         } while (data);
2189
2190         if (data)
2191                 err = chip->irq_get_irqchip_state(data, which, state);
2192
2193         irq_put_desc_busunlock(desc, flags);
2194         return err;
2195 }
2196 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2197
2198 /**
2199  *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2200  *      @irq: Interrupt line that is forwarded to a VM
2201  *      @which: State to be restored (one of IRQCHIP_STATE_*)
2202  *      @val: Value corresponding to @which
2203  *
2204  *      This call sets the internal irqchip state of an interrupt,
2205  *      depending on the value of @which.
2206  *
2207  *      This function should be called with preemption disabled if the
2208  *      interrupt controller has per-cpu registers.
2209  */
2210 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2211                           bool val)
2212 {
2213         struct irq_desc *desc;
2214         struct irq_data *data;
2215         struct irq_chip *chip;
2216         unsigned long flags;
2217         int err = -EINVAL;
2218
2219         desc = irq_get_desc_buslock(irq, &flags, 0);
2220         if (!desc)
2221                 return err;
2222
2223         data = irq_desc_get_irq_data(desc);
2224
2225         do {
2226                 chip = irq_data_get_irq_chip(data);
2227                 if (chip->irq_set_irqchip_state)
2228                         break;
2229 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2230                 data = data->parent_data;
2231 #else
2232                 data = NULL;
2233 #endif
2234         } while (data);
2235
2236         if (data)
2237                 err = chip->irq_set_irqchip_state(data, which, val);
2238
2239         irq_put_desc_busunlock(desc, flags);
2240         return err;
2241 }
2242 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);