panic: change nmi_panic from macro to function
[sfrench/cifs-2.6.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67 #include <linux/fault-inject.h>
68
69 #include <asm/futex.h>
70
71 #include "locking/rtmutex_common.h"
72
73 /*
74  * READ this before attempting to hack on futexes!
75  *
76  * Basic futex operation and ordering guarantees
77  * =============================================
78  *
79  * The waiter reads the futex value in user space and calls
80  * futex_wait(). This function computes the hash bucket and acquires
81  * the hash bucket lock. After that it reads the futex user space value
82  * again and verifies that the data has not changed. If it has not changed
83  * it enqueues itself into the hash bucket, releases the hash bucket lock
84  * and schedules.
85  *
86  * The waker side modifies the user space value of the futex and calls
87  * futex_wake(). This function computes the hash bucket and acquires the
88  * hash bucket lock. Then it looks for waiters on that futex in the hash
89  * bucket and wakes them.
90  *
91  * In futex wake up scenarios where no tasks are blocked on a futex, taking
92  * the hb spinlock can be avoided and simply return. In order for this
93  * optimization to work, ordering guarantees must exist so that the waiter
94  * being added to the list is acknowledged when the list is concurrently being
95  * checked by the waker, avoiding scenarios like the following:
96  *
97  * CPU 0                               CPU 1
98  * val = *futex;
99  * sys_futex(WAIT, futex, val);
100  *   futex_wait(futex, val);
101  *   uval = *futex;
102  *                                     *futex = newval;
103  *                                     sys_futex(WAKE, futex);
104  *                                       futex_wake(futex);
105  *                                       if (queue_empty())
106  *                                         return;
107  *   if (uval == val)
108  *      lock(hash_bucket(futex));
109  *      queue();
110  *     unlock(hash_bucket(futex));
111  *     schedule();
112  *
113  * This would cause the waiter on CPU 0 to wait forever because it
114  * missed the transition of the user space value from val to newval
115  * and the waker did not find the waiter in the hash bucket queue.
116  *
117  * The correct serialization ensures that a waiter either observes
118  * the changed user space value before blocking or is woken by a
119  * concurrent waker:
120  *
121  * CPU 0                                 CPU 1
122  * val = *futex;
123  * sys_futex(WAIT, futex, val);
124  *   futex_wait(futex, val);
125  *
126  *   waiters++; (a)
127  *   smp_mb(); (A) <-- paired with -.
128  *                                  |
129  *   lock(hash_bucket(futex));      |
130  *                                  |
131  *   uval = *futex;                 |
132  *                                  |        *futex = newval;
133  *                                  |        sys_futex(WAKE, futex);
134  *                                  |          futex_wake(futex);
135  *                                  |
136  *                                  `--------> smp_mb(); (B)
137  *   if (uval == val)
138  *     queue();
139  *     unlock(hash_bucket(futex));
140  *     schedule();                         if (waiters)
141  *                                           lock(hash_bucket(futex));
142  *   else                                    wake_waiters(futex);
143  *     waiters--; (b)                        unlock(hash_bucket(futex));
144  *
145  * Where (A) orders the waiters increment and the futex value read through
146  * atomic operations (see hb_waiters_inc) and where (B) orders the write
147  * to futex and the waiters read -- this is done by the barriers for both
148  * shared and private futexes in get_futex_key_refs().
149  *
150  * This yields the following case (where X:=waiters, Y:=futex):
151  *
152  *      X = Y = 0
153  *
154  *      w[X]=1          w[Y]=1
155  *      MB              MB
156  *      r[Y]=y          r[X]=x
157  *
158  * Which guarantees that x==0 && y==0 is impossible; which translates back into
159  * the guarantee that we cannot both miss the futex variable change and the
160  * enqueue.
161  *
162  * Note that a new waiter is accounted for in (a) even when it is possible that
163  * the wait call can return error, in which case we backtrack from it in (b).
164  * Refer to the comment in queue_lock().
165  *
166  * Similarly, in order to account for waiters being requeued on another
167  * address we always increment the waiters for the destination bucket before
168  * acquiring the lock. It then decrements them again  after releasing it -
169  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170  * will do the additional required waiter count housekeeping. This is done for
171  * double_lock_hb() and double_unlock_hb(), respectively.
172  */
173
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
177
178 /*
179  * Futex flags used to encode options to functions and preserve them across
180  * restarts.
181  */
182 #define FLAGS_SHARED            0x01
183 #define FLAGS_CLOCKRT           0x02
184 #define FLAGS_HAS_TIMEOUT       0x04
185
186 /*
187  * Priority Inheritance state:
188  */
189 struct futex_pi_state {
190         /*
191          * list of 'owned' pi_state instances - these have to be
192          * cleaned up in do_exit() if the task exits prematurely:
193          */
194         struct list_head list;
195
196         /*
197          * The PI object:
198          */
199         struct rt_mutex pi_mutex;
200
201         struct task_struct *owner;
202         atomic_t refcount;
203
204         union futex_key key;
205 };
206
207 /**
208  * struct futex_q - The hashed futex queue entry, one per waiting task
209  * @list:               priority-sorted list of tasks waiting on this futex
210  * @task:               the task waiting on the futex
211  * @lock_ptr:           the hash bucket lock
212  * @key:                the key the futex is hashed on
213  * @pi_state:           optional priority inheritance state
214  * @rt_waiter:          rt_waiter storage for use with requeue_pi
215  * @requeue_pi_key:     the requeue_pi target futex key
216  * @bitset:             bitset for the optional bitmasked wakeup
217  *
218  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
219  * we can wake only the relevant ones (hashed queues may be shared).
220  *
221  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223  * The order of wakeup is always to make the first condition true, then
224  * the second.
225  *
226  * PI futexes are typically woken before they are removed from the hash list via
227  * the rt_mutex code. See unqueue_me_pi().
228  */
229 struct futex_q {
230         struct plist_node list;
231
232         struct task_struct *task;
233         spinlock_t *lock_ptr;
234         union futex_key key;
235         struct futex_pi_state *pi_state;
236         struct rt_mutex_waiter *rt_waiter;
237         union futex_key *requeue_pi_key;
238         u32 bitset;
239 };
240
241 static const struct futex_q futex_q_init = {
242         /* list gets initialized in queue_me()*/
243         .key = FUTEX_KEY_INIT,
244         .bitset = FUTEX_BITSET_MATCH_ANY
245 };
246
247 /*
248  * Hash buckets are shared by all the futex_keys that hash to the same
249  * location.  Each key may have multiple futex_q structures, one for each task
250  * waiting on a futex.
251  */
252 struct futex_hash_bucket {
253         atomic_t waiters;
254         spinlock_t lock;
255         struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
257
258 /*
259  * The base of the bucket array and its size are always used together
260  * (after initialization only in hash_futex()), so ensure that they
261  * reside in the same cacheline.
262  */
263 static struct {
264         struct futex_hash_bucket *queues;
265         unsigned long            hashsize;
266 } __futex_data __read_mostly __aligned(2*sizeof(long));
267 #define futex_queues   (__futex_data.queues)
268 #define futex_hashsize (__futex_data.hashsize)
269
270
271 /*
272  * Fault injections for futexes.
273  */
274 #ifdef CONFIG_FAIL_FUTEX
275
276 static struct {
277         struct fault_attr attr;
278
279         bool ignore_private;
280 } fail_futex = {
281         .attr = FAULT_ATTR_INITIALIZER,
282         .ignore_private = false,
283 };
284
285 static int __init setup_fail_futex(char *str)
286 {
287         return setup_fault_attr(&fail_futex.attr, str);
288 }
289 __setup("fail_futex=", setup_fail_futex);
290
291 static bool should_fail_futex(bool fshared)
292 {
293         if (fail_futex.ignore_private && !fshared)
294                 return false;
295
296         return should_fail(&fail_futex.attr, 1);
297 }
298
299 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
300
301 static int __init fail_futex_debugfs(void)
302 {
303         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
304         struct dentry *dir;
305
306         dir = fault_create_debugfs_attr("fail_futex", NULL,
307                                         &fail_futex.attr);
308         if (IS_ERR(dir))
309                 return PTR_ERR(dir);
310
311         if (!debugfs_create_bool("ignore-private", mode, dir,
312                                  &fail_futex.ignore_private)) {
313                 debugfs_remove_recursive(dir);
314                 return -ENOMEM;
315         }
316
317         return 0;
318 }
319
320 late_initcall(fail_futex_debugfs);
321
322 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
323
324 #else
325 static inline bool should_fail_futex(bool fshared)
326 {
327         return false;
328 }
329 #endif /* CONFIG_FAIL_FUTEX */
330
331 static inline void futex_get_mm(union futex_key *key)
332 {
333         atomic_inc(&key->private.mm->mm_count);
334         /*
335          * Ensure futex_get_mm() implies a full barrier such that
336          * get_futex_key() implies a full barrier. This is relied upon
337          * as smp_mb(); (B), see the ordering comment above.
338          */
339         smp_mb__after_atomic();
340 }
341
342 /*
343  * Reflects a new waiter being added to the waitqueue.
344  */
345 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
346 {
347 #ifdef CONFIG_SMP
348         atomic_inc(&hb->waiters);
349         /*
350          * Full barrier (A), see the ordering comment above.
351          */
352         smp_mb__after_atomic();
353 #endif
354 }
355
356 /*
357  * Reflects a waiter being removed from the waitqueue by wakeup
358  * paths.
359  */
360 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
361 {
362 #ifdef CONFIG_SMP
363         atomic_dec(&hb->waiters);
364 #endif
365 }
366
367 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
368 {
369 #ifdef CONFIG_SMP
370         return atomic_read(&hb->waiters);
371 #else
372         return 1;
373 #endif
374 }
375
376 /*
377  * We hash on the keys returned from get_futex_key (see below).
378  */
379 static struct futex_hash_bucket *hash_futex(union futex_key *key)
380 {
381         u32 hash = jhash2((u32*)&key->both.word,
382                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
383                           key->both.offset);
384         return &futex_queues[hash & (futex_hashsize - 1)];
385 }
386
387 /*
388  * Return 1 if two futex_keys are equal, 0 otherwise.
389  */
390 static inline int match_futex(union futex_key *key1, union futex_key *key2)
391 {
392         return (key1 && key2
393                 && key1->both.word == key2->both.word
394                 && key1->both.ptr == key2->both.ptr
395                 && key1->both.offset == key2->both.offset);
396 }
397
398 /*
399  * Take a reference to the resource addressed by a key.
400  * Can be called while holding spinlocks.
401  *
402  */
403 static void get_futex_key_refs(union futex_key *key)
404 {
405         if (!key->both.ptr)
406                 return;
407
408         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
409         case FUT_OFF_INODE:
410                 ihold(key->shared.inode); /* implies smp_mb(); (B) */
411                 break;
412         case FUT_OFF_MMSHARED:
413                 futex_get_mm(key); /* implies smp_mb(); (B) */
414                 break;
415         default:
416                 /*
417                  * Private futexes do not hold reference on an inode or
418                  * mm, therefore the only purpose of calling get_futex_key_refs
419                  * is because we need the barrier for the lockless waiter check.
420                  */
421                 smp_mb(); /* explicit smp_mb(); (B) */
422         }
423 }
424
425 /*
426  * Drop a reference to the resource addressed by a key.
427  * The hash bucket spinlock must not be held. This is
428  * a no-op for private futexes, see comment in the get
429  * counterpart.
430  */
431 static void drop_futex_key_refs(union futex_key *key)
432 {
433         if (!key->both.ptr) {
434                 /* If we're here then we tried to put a key we failed to get */
435                 WARN_ON_ONCE(1);
436                 return;
437         }
438
439         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
440         case FUT_OFF_INODE:
441                 iput(key->shared.inode);
442                 break;
443         case FUT_OFF_MMSHARED:
444                 mmdrop(key->private.mm);
445                 break;
446         }
447 }
448
449 /**
450  * get_futex_key() - Get parameters which are the keys for a futex
451  * @uaddr:      virtual address of the futex
452  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
453  * @key:        address where result is stored.
454  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
455  *              VERIFY_WRITE)
456  *
457  * Return: a negative error code or 0
458  *
459  * The key words are stored in *key on success.
460  *
461  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
462  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
463  * We can usually work out the index without swapping in the page.
464  *
465  * lock_page() might sleep, the caller should not hold a spinlock.
466  */
467 static int
468 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
469 {
470         unsigned long address = (unsigned long)uaddr;
471         struct mm_struct *mm = current->mm;
472         struct page *page;
473         struct address_space *mapping;
474         int err, ro = 0;
475
476         /*
477          * The futex address must be "naturally" aligned.
478          */
479         key->both.offset = address % PAGE_SIZE;
480         if (unlikely((address % sizeof(u32)) != 0))
481                 return -EINVAL;
482         address -= key->both.offset;
483
484         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
485                 return -EFAULT;
486
487         if (unlikely(should_fail_futex(fshared)))
488                 return -EFAULT;
489
490         /*
491          * PROCESS_PRIVATE futexes are fast.
492          * As the mm cannot disappear under us and the 'key' only needs
493          * virtual address, we dont even have to find the underlying vma.
494          * Note : We do have to check 'uaddr' is a valid user address,
495          *        but access_ok() should be faster than find_vma()
496          */
497         if (!fshared) {
498                 key->private.mm = mm;
499                 key->private.address = address;
500                 get_futex_key_refs(key);  /* implies smp_mb(); (B) */
501                 return 0;
502         }
503
504 again:
505         /* Ignore any VERIFY_READ mapping (futex common case) */
506         if (unlikely(should_fail_futex(fshared)))
507                 return -EFAULT;
508
509         err = get_user_pages_fast(address, 1, 1, &page);
510         /*
511          * If write access is not required (eg. FUTEX_WAIT), try
512          * and get read-only access.
513          */
514         if (err == -EFAULT && rw == VERIFY_READ) {
515                 err = get_user_pages_fast(address, 1, 0, &page);
516                 ro = 1;
517         }
518         if (err < 0)
519                 return err;
520         else
521                 err = 0;
522
523         /*
524          * The treatment of mapping from this point on is critical. The page
525          * lock protects many things but in this context the page lock
526          * stabilizes mapping, prevents inode freeing in the shared
527          * file-backed region case and guards against movement to swap cache.
528          *
529          * Strictly speaking the page lock is not needed in all cases being
530          * considered here and page lock forces unnecessarily serialization
531          * From this point on, mapping will be re-verified if necessary and
532          * page lock will be acquired only if it is unavoidable
533          */
534         page = compound_head(page);
535         mapping = READ_ONCE(page->mapping);
536
537         /*
538          * If page->mapping is NULL, then it cannot be a PageAnon
539          * page; but it might be the ZERO_PAGE or in the gate area or
540          * in a special mapping (all cases which we are happy to fail);
541          * or it may have been a good file page when get_user_pages_fast
542          * found it, but truncated or holepunched or subjected to
543          * invalidate_complete_page2 before we got the page lock (also
544          * cases which we are happy to fail).  And we hold a reference,
545          * so refcount care in invalidate_complete_page's remove_mapping
546          * prevents drop_caches from setting mapping to NULL beneath us.
547          *
548          * The case we do have to guard against is when memory pressure made
549          * shmem_writepage move it from filecache to swapcache beneath us:
550          * an unlikely race, but we do need to retry for page->mapping.
551          */
552         if (unlikely(!mapping)) {
553                 int shmem_swizzled;
554
555                 /*
556                  * Page lock is required to identify which special case above
557                  * applies. If this is really a shmem page then the page lock
558                  * will prevent unexpected transitions.
559                  */
560                 lock_page(page);
561                 shmem_swizzled = PageSwapCache(page) || page->mapping;
562                 unlock_page(page);
563                 put_page(page);
564
565                 if (shmem_swizzled)
566                         goto again;
567
568                 return -EFAULT;
569         }
570
571         /*
572          * Private mappings are handled in a simple way.
573          *
574          * If the futex key is stored on an anonymous page, then the associated
575          * object is the mm which is implicitly pinned by the calling process.
576          *
577          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
578          * it's a read-only handle, it's expected that futexes attach to
579          * the object not the particular process.
580          */
581         if (PageAnon(page)) {
582                 /*
583                  * A RO anonymous page will never change and thus doesn't make
584                  * sense for futex operations.
585                  */
586                 if (unlikely(should_fail_futex(fshared)) || ro) {
587                         err = -EFAULT;
588                         goto out;
589                 }
590
591                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
592                 key->private.mm = mm;
593                 key->private.address = address;
594
595                 get_futex_key_refs(key); /* implies smp_mb(); (B) */
596
597         } else {
598                 struct inode *inode;
599
600                 /*
601                  * The associated futex object in this case is the inode and
602                  * the page->mapping must be traversed. Ordinarily this should
603                  * be stabilised under page lock but it's not strictly
604                  * necessary in this case as we just want to pin the inode, not
605                  * update the radix tree or anything like that.
606                  *
607                  * The RCU read lock is taken as the inode is finally freed
608                  * under RCU. If the mapping still matches expectations then the
609                  * mapping->host can be safely accessed as being a valid inode.
610                  */
611                 rcu_read_lock();
612
613                 if (READ_ONCE(page->mapping) != mapping) {
614                         rcu_read_unlock();
615                         put_page(page);
616
617                         goto again;
618                 }
619
620                 inode = READ_ONCE(mapping->host);
621                 if (!inode) {
622                         rcu_read_unlock();
623                         put_page(page);
624
625                         goto again;
626                 }
627
628                 /*
629                  * Take a reference unless it is about to be freed. Previously
630                  * this reference was taken by ihold under the page lock
631                  * pinning the inode in place so i_lock was unnecessary. The
632                  * only way for this check to fail is if the inode was
633                  * truncated in parallel so warn for now if this happens.
634                  *
635                  * We are not calling into get_futex_key_refs() in file-backed
636                  * cases, therefore a successful atomic_inc return below will
637                  * guarantee that get_futex_key() will still imply smp_mb(); (B).
638                  */
639                 if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
640                         rcu_read_unlock();
641                         put_page(page);
642
643                         goto again;
644                 }
645
646                 /* Should be impossible but lets be paranoid for now */
647                 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
648                         err = -EFAULT;
649                         rcu_read_unlock();
650                         iput(inode);
651
652                         goto out;
653                 }
654
655                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
656                 key->shared.inode = inode;
657                 key->shared.pgoff = basepage_index(page);
658                 rcu_read_unlock();
659         }
660
661 out:
662         put_page(page);
663         return err;
664 }
665
666 static inline void put_futex_key(union futex_key *key)
667 {
668         drop_futex_key_refs(key);
669 }
670
671 /**
672  * fault_in_user_writeable() - Fault in user address and verify RW access
673  * @uaddr:      pointer to faulting user space address
674  *
675  * Slow path to fixup the fault we just took in the atomic write
676  * access to @uaddr.
677  *
678  * We have no generic implementation of a non-destructive write to the
679  * user address. We know that we faulted in the atomic pagefault
680  * disabled section so we can as well avoid the #PF overhead by
681  * calling get_user_pages() right away.
682  */
683 static int fault_in_user_writeable(u32 __user *uaddr)
684 {
685         struct mm_struct *mm = current->mm;
686         int ret;
687
688         down_read(&mm->mmap_sem);
689         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
690                                FAULT_FLAG_WRITE, NULL);
691         up_read(&mm->mmap_sem);
692
693         return ret < 0 ? ret : 0;
694 }
695
696 /**
697  * futex_top_waiter() - Return the highest priority waiter on a futex
698  * @hb:         the hash bucket the futex_q's reside in
699  * @key:        the futex key (to distinguish it from other futex futex_q's)
700  *
701  * Must be called with the hb lock held.
702  */
703 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
704                                         union futex_key *key)
705 {
706         struct futex_q *this;
707
708         plist_for_each_entry(this, &hb->chain, list) {
709                 if (match_futex(&this->key, key))
710                         return this;
711         }
712         return NULL;
713 }
714
715 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
716                                       u32 uval, u32 newval)
717 {
718         int ret;
719
720         pagefault_disable();
721         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
722         pagefault_enable();
723
724         return ret;
725 }
726
727 static int get_futex_value_locked(u32 *dest, u32 __user *from)
728 {
729         int ret;
730
731         pagefault_disable();
732         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
733         pagefault_enable();
734
735         return ret ? -EFAULT : 0;
736 }
737
738
739 /*
740  * PI code:
741  */
742 static int refill_pi_state_cache(void)
743 {
744         struct futex_pi_state *pi_state;
745
746         if (likely(current->pi_state_cache))
747                 return 0;
748
749         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
750
751         if (!pi_state)
752                 return -ENOMEM;
753
754         INIT_LIST_HEAD(&pi_state->list);
755         /* pi_mutex gets initialized later */
756         pi_state->owner = NULL;
757         atomic_set(&pi_state->refcount, 1);
758         pi_state->key = FUTEX_KEY_INIT;
759
760         current->pi_state_cache = pi_state;
761
762         return 0;
763 }
764
765 static struct futex_pi_state * alloc_pi_state(void)
766 {
767         struct futex_pi_state *pi_state = current->pi_state_cache;
768
769         WARN_ON(!pi_state);
770         current->pi_state_cache = NULL;
771
772         return pi_state;
773 }
774
775 /*
776  * Drops a reference to the pi_state object and frees or caches it
777  * when the last reference is gone.
778  *
779  * Must be called with the hb lock held.
780  */
781 static void put_pi_state(struct futex_pi_state *pi_state)
782 {
783         if (!pi_state)
784                 return;
785
786         if (!atomic_dec_and_test(&pi_state->refcount))
787                 return;
788
789         /*
790          * If pi_state->owner is NULL, the owner is most probably dying
791          * and has cleaned up the pi_state already
792          */
793         if (pi_state->owner) {
794                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
795                 list_del_init(&pi_state->list);
796                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
797
798                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
799         }
800
801         if (current->pi_state_cache)
802                 kfree(pi_state);
803         else {
804                 /*
805                  * pi_state->list is already empty.
806                  * clear pi_state->owner.
807                  * refcount is at 0 - put it back to 1.
808                  */
809                 pi_state->owner = NULL;
810                 atomic_set(&pi_state->refcount, 1);
811                 current->pi_state_cache = pi_state;
812         }
813 }
814
815 /*
816  * Look up the task based on what TID userspace gave us.
817  * We dont trust it.
818  */
819 static struct task_struct * futex_find_get_task(pid_t pid)
820 {
821         struct task_struct *p;
822
823         rcu_read_lock();
824         p = find_task_by_vpid(pid);
825         if (p)
826                 get_task_struct(p);
827
828         rcu_read_unlock();
829
830         return p;
831 }
832
833 /*
834  * This task is holding PI mutexes at exit time => bad.
835  * Kernel cleans up PI-state, but userspace is likely hosed.
836  * (Robust-futex cleanup is separate and might save the day for userspace.)
837  */
838 void exit_pi_state_list(struct task_struct *curr)
839 {
840         struct list_head *next, *head = &curr->pi_state_list;
841         struct futex_pi_state *pi_state;
842         struct futex_hash_bucket *hb;
843         union futex_key key = FUTEX_KEY_INIT;
844
845         if (!futex_cmpxchg_enabled)
846                 return;
847         /*
848          * We are a ZOMBIE and nobody can enqueue itself on
849          * pi_state_list anymore, but we have to be careful
850          * versus waiters unqueueing themselves:
851          */
852         raw_spin_lock_irq(&curr->pi_lock);
853         while (!list_empty(head)) {
854
855                 next = head->next;
856                 pi_state = list_entry(next, struct futex_pi_state, list);
857                 key = pi_state->key;
858                 hb = hash_futex(&key);
859                 raw_spin_unlock_irq(&curr->pi_lock);
860
861                 spin_lock(&hb->lock);
862
863                 raw_spin_lock_irq(&curr->pi_lock);
864                 /*
865                  * We dropped the pi-lock, so re-check whether this
866                  * task still owns the PI-state:
867                  */
868                 if (head->next != next) {
869                         spin_unlock(&hb->lock);
870                         continue;
871                 }
872
873                 WARN_ON(pi_state->owner != curr);
874                 WARN_ON(list_empty(&pi_state->list));
875                 list_del_init(&pi_state->list);
876                 pi_state->owner = NULL;
877                 raw_spin_unlock_irq(&curr->pi_lock);
878
879                 rt_mutex_unlock(&pi_state->pi_mutex);
880
881                 spin_unlock(&hb->lock);
882
883                 raw_spin_lock_irq(&curr->pi_lock);
884         }
885         raw_spin_unlock_irq(&curr->pi_lock);
886 }
887
888 /*
889  * We need to check the following states:
890  *
891  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
892  *
893  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
894  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
895  *
896  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
897  *
898  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
899  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
900  *
901  * [6]  Found  | Found    | task      | 0         | 1      | Valid
902  *
903  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
904  *
905  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
906  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
907  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
908  *
909  * [1]  Indicates that the kernel can acquire the futex atomically. We
910  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
911  *
912  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
913  *      thread is found then it indicates that the owner TID has died.
914  *
915  * [3]  Invalid. The waiter is queued on a non PI futex
916  *
917  * [4]  Valid state after exit_robust_list(), which sets the user space
918  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
919  *
920  * [5]  The user space value got manipulated between exit_robust_list()
921  *      and exit_pi_state_list()
922  *
923  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
924  *      the pi_state but cannot access the user space value.
925  *
926  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
927  *
928  * [8]  Owner and user space value match
929  *
930  * [9]  There is no transient state which sets the user space TID to 0
931  *      except exit_robust_list(), but this is indicated by the
932  *      FUTEX_OWNER_DIED bit. See [4]
933  *
934  * [10] There is no transient state which leaves owner and user space
935  *      TID out of sync.
936  */
937
938 /*
939  * Validate that the existing waiter has a pi_state and sanity check
940  * the pi_state against the user space value. If correct, attach to
941  * it.
942  */
943 static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
944                               struct futex_pi_state **ps)
945 {
946         pid_t pid = uval & FUTEX_TID_MASK;
947
948         /*
949          * Userspace might have messed up non-PI and PI futexes [3]
950          */
951         if (unlikely(!pi_state))
952                 return -EINVAL;
953
954         WARN_ON(!atomic_read(&pi_state->refcount));
955
956         /*
957          * Handle the owner died case:
958          */
959         if (uval & FUTEX_OWNER_DIED) {
960                 /*
961                  * exit_pi_state_list sets owner to NULL and wakes the
962                  * topmost waiter. The task which acquires the
963                  * pi_state->rt_mutex will fixup owner.
964                  */
965                 if (!pi_state->owner) {
966                         /*
967                          * No pi state owner, but the user space TID
968                          * is not 0. Inconsistent state. [5]
969                          */
970                         if (pid)
971                                 return -EINVAL;
972                         /*
973                          * Take a ref on the state and return success. [4]
974                          */
975                         goto out_state;
976                 }
977
978                 /*
979                  * If TID is 0, then either the dying owner has not
980                  * yet executed exit_pi_state_list() or some waiter
981                  * acquired the rtmutex in the pi state, but did not
982                  * yet fixup the TID in user space.
983                  *
984                  * Take a ref on the state and return success. [6]
985                  */
986                 if (!pid)
987                         goto out_state;
988         } else {
989                 /*
990                  * If the owner died bit is not set, then the pi_state
991                  * must have an owner. [7]
992                  */
993                 if (!pi_state->owner)
994                         return -EINVAL;
995         }
996
997         /*
998          * Bail out if user space manipulated the futex value. If pi
999          * state exists then the owner TID must be the same as the
1000          * user space TID. [9/10]
1001          */
1002         if (pid != task_pid_vnr(pi_state->owner))
1003                 return -EINVAL;
1004 out_state:
1005         atomic_inc(&pi_state->refcount);
1006         *ps = pi_state;
1007         return 0;
1008 }
1009
1010 /*
1011  * Lookup the task for the TID provided from user space and attach to
1012  * it after doing proper sanity checks.
1013  */
1014 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1015                               struct futex_pi_state **ps)
1016 {
1017         pid_t pid = uval & FUTEX_TID_MASK;
1018         struct futex_pi_state *pi_state;
1019         struct task_struct *p;
1020
1021         /*
1022          * We are the first waiter - try to look up the real owner and attach
1023          * the new pi_state to it, but bail out when TID = 0 [1]
1024          */
1025         if (!pid)
1026                 return -ESRCH;
1027         p = futex_find_get_task(pid);
1028         if (!p)
1029                 return -ESRCH;
1030
1031         if (unlikely(p->flags & PF_KTHREAD)) {
1032                 put_task_struct(p);
1033                 return -EPERM;
1034         }
1035
1036         /*
1037          * We need to look at the task state flags to figure out,
1038          * whether the task is exiting. To protect against the do_exit
1039          * change of the task flags, we do this protected by
1040          * p->pi_lock:
1041          */
1042         raw_spin_lock_irq(&p->pi_lock);
1043         if (unlikely(p->flags & PF_EXITING)) {
1044                 /*
1045                  * The task is on the way out. When PF_EXITPIDONE is
1046                  * set, we know that the task has finished the
1047                  * cleanup:
1048                  */
1049                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1050
1051                 raw_spin_unlock_irq(&p->pi_lock);
1052                 put_task_struct(p);
1053                 return ret;
1054         }
1055
1056         /*
1057          * No existing pi state. First waiter. [2]
1058          */
1059         pi_state = alloc_pi_state();
1060
1061         /*
1062          * Initialize the pi_mutex in locked state and make @p
1063          * the owner of it:
1064          */
1065         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1066
1067         /* Store the key for possible exit cleanups: */
1068         pi_state->key = *key;
1069
1070         WARN_ON(!list_empty(&pi_state->list));
1071         list_add(&pi_state->list, &p->pi_state_list);
1072         pi_state->owner = p;
1073         raw_spin_unlock_irq(&p->pi_lock);
1074
1075         put_task_struct(p);
1076
1077         *ps = pi_state;
1078
1079         return 0;
1080 }
1081
1082 static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1083                            union futex_key *key, struct futex_pi_state **ps)
1084 {
1085         struct futex_q *match = futex_top_waiter(hb, key);
1086
1087         /*
1088          * If there is a waiter on that futex, validate it and
1089          * attach to the pi_state when the validation succeeds.
1090          */
1091         if (match)
1092                 return attach_to_pi_state(uval, match->pi_state, ps);
1093
1094         /*
1095          * We are the first waiter - try to look up the owner based on
1096          * @uval and attach to it.
1097          */
1098         return attach_to_pi_owner(uval, key, ps);
1099 }
1100
1101 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1102 {
1103         u32 uninitialized_var(curval);
1104
1105         if (unlikely(should_fail_futex(true)))
1106                 return -EFAULT;
1107
1108         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1109                 return -EFAULT;
1110
1111         /*If user space value changed, let the caller retry */
1112         return curval != uval ? -EAGAIN : 0;
1113 }
1114
1115 /**
1116  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1117  * @uaddr:              the pi futex user address
1118  * @hb:                 the pi futex hash bucket
1119  * @key:                the futex key associated with uaddr and hb
1120  * @ps:                 the pi_state pointer where we store the result of the
1121  *                      lookup
1122  * @task:               the task to perform the atomic lock work for.  This will
1123  *                      be "current" except in the case of requeue pi.
1124  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1125  *
1126  * Return:
1127  *  0 - ready to wait;
1128  *  1 - acquired the lock;
1129  * <0 - error
1130  *
1131  * The hb->lock and futex_key refs shall be held by the caller.
1132  */
1133 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1134                                 union futex_key *key,
1135                                 struct futex_pi_state **ps,
1136                                 struct task_struct *task, int set_waiters)
1137 {
1138         u32 uval, newval, vpid = task_pid_vnr(task);
1139         struct futex_q *match;
1140         int ret;
1141
1142         /*
1143          * Read the user space value first so we can validate a few
1144          * things before proceeding further.
1145          */
1146         if (get_futex_value_locked(&uval, uaddr))
1147                 return -EFAULT;
1148
1149         if (unlikely(should_fail_futex(true)))
1150                 return -EFAULT;
1151
1152         /*
1153          * Detect deadlocks.
1154          */
1155         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1156                 return -EDEADLK;
1157
1158         if ((unlikely(should_fail_futex(true))))
1159                 return -EDEADLK;
1160
1161         /*
1162          * Lookup existing state first. If it exists, try to attach to
1163          * its pi_state.
1164          */
1165         match = futex_top_waiter(hb, key);
1166         if (match)
1167                 return attach_to_pi_state(uval, match->pi_state, ps);
1168
1169         /*
1170          * No waiter and user TID is 0. We are here because the
1171          * waiters or the owner died bit is set or called from
1172          * requeue_cmp_pi or for whatever reason something took the
1173          * syscall.
1174          */
1175         if (!(uval & FUTEX_TID_MASK)) {
1176                 /*
1177                  * We take over the futex. No other waiters and the user space
1178                  * TID is 0. We preserve the owner died bit.
1179                  */
1180                 newval = uval & FUTEX_OWNER_DIED;
1181                 newval |= vpid;
1182
1183                 /* The futex requeue_pi code can enforce the waiters bit */
1184                 if (set_waiters)
1185                         newval |= FUTEX_WAITERS;
1186
1187                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1188                 /* If the take over worked, return 1 */
1189                 return ret < 0 ? ret : 1;
1190         }
1191
1192         /*
1193          * First waiter. Set the waiters bit before attaching ourself to
1194          * the owner. If owner tries to unlock, it will be forced into
1195          * the kernel and blocked on hb->lock.
1196          */
1197         newval = uval | FUTEX_WAITERS;
1198         ret = lock_pi_update_atomic(uaddr, uval, newval);
1199         if (ret)
1200                 return ret;
1201         /*
1202          * If the update of the user space value succeeded, we try to
1203          * attach to the owner. If that fails, no harm done, we only
1204          * set the FUTEX_WAITERS bit in the user space variable.
1205          */
1206         return attach_to_pi_owner(uval, key, ps);
1207 }
1208
1209 /**
1210  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1211  * @q:  The futex_q to unqueue
1212  *
1213  * The q->lock_ptr must not be NULL and must be held by the caller.
1214  */
1215 static void __unqueue_futex(struct futex_q *q)
1216 {
1217         struct futex_hash_bucket *hb;
1218
1219         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1220             || WARN_ON(plist_node_empty(&q->list)))
1221                 return;
1222
1223         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1224         plist_del(&q->list, &hb->chain);
1225         hb_waiters_dec(hb);
1226 }
1227
1228 /*
1229  * The hash bucket lock must be held when this is called.
1230  * Afterwards, the futex_q must not be accessed. Callers
1231  * must ensure to later call wake_up_q() for the actual
1232  * wakeups to occur.
1233  */
1234 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1235 {
1236         struct task_struct *p = q->task;
1237
1238         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1239                 return;
1240
1241         /*
1242          * Queue the task for later wakeup for after we've released
1243          * the hb->lock. wake_q_add() grabs reference to p.
1244          */
1245         wake_q_add(wake_q, p);
1246         __unqueue_futex(q);
1247         /*
1248          * The waiting task can free the futex_q as soon as
1249          * q->lock_ptr = NULL is written, without taking any locks. A
1250          * memory barrier is required here to prevent the following
1251          * store to lock_ptr from getting ahead of the plist_del.
1252          */
1253         smp_wmb();
1254         q->lock_ptr = NULL;
1255 }
1256
1257 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1258                          struct futex_hash_bucket *hb)
1259 {
1260         struct task_struct *new_owner;
1261         struct futex_pi_state *pi_state = this->pi_state;
1262         u32 uninitialized_var(curval), newval;
1263         WAKE_Q(wake_q);
1264         bool deboost;
1265         int ret = 0;
1266
1267         if (!pi_state)
1268                 return -EINVAL;
1269
1270         /*
1271          * If current does not own the pi_state then the futex is
1272          * inconsistent and user space fiddled with the futex value.
1273          */
1274         if (pi_state->owner != current)
1275                 return -EINVAL;
1276
1277         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1278         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1279
1280         /*
1281          * It is possible that the next waiter (the one that brought
1282          * this owner to the kernel) timed out and is no longer
1283          * waiting on the lock.
1284          */
1285         if (!new_owner)
1286                 new_owner = this->task;
1287
1288         /*
1289          * We pass it to the next owner. The WAITERS bit is always
1290          * kept enabled while there is PI state around. We cleanup the
1291          * owner died bit, because we are the owner.
1292          */
1293         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1294
1295         if (unlikely(should_fail_futex(true)))
1296                 ret = -EFAULT;
1297
1298         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1299                 ret = -EFAULT;
1300         else if (curval != uval)
1301                 ret = -EINVAL;
1302         if (ret) {
1303                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1304                 return ret;
1305         }
1306
1307         raw_spin_lock(&pi_state->owner->pi_lock);
1308         WARN_ON(list_empty(&pi_state->list));
1309         list_del_init(&pi_state->list);
1310         raw_spin_unlock(&pi_state->owner->pi_lock);
1311
1312         raw_spin_lock(&new_owner->pi_lock);
1313         WARN_ON(!list_empty(&pi_state->list));
1314         list_add(&pi_state->list, &new_owner->pi_state_list);
1315         pi_state->owner = new_owner;
1316         raw_spin_unlock(&new_owner->pi_lock);
1317
1318         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1319
1320         deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1321
1322         /*
1323          * First unlock HB so the waiter does not spin on it once he got woken
1324          * up. Second wake up the waiter before the priority is adjusted. If we
1325          * deboost first (and lose our higher priority), then the task might get
1326          * scheduled away before the wake up can take place.
1327          */
1328         spin_unlock(&hb->lock);
1329         wake_up_q(&wake_q);
1330         if (deboost)
1331                 rt_mutex_adjust_prio(current);
1332
1333         return 0;
1334 }
1335
1336 /*
1337  * Express the locking dependencies for lockdep:
1338  */
1339 static inline void
1340 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1341 {
1342         if (hb1 <= hb2) {
1343                 spin_lock(&hb1->lock);
1344                 if (hb1 < hb2)
1345                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1346         } else { /* hb1 > hb2 */
1347                 spin_lock(&hb2->lock);
1348                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1349         }
1350 }
1351
1352 static inline void
1353 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1354 {
1355         spin_unlock(&hb1->lock);
1356         if (hb1 != hb2)
1357                 spin_unlock(&hb2->lock);
1358 }
1359
1360 /*
1361  * Wake up waiters matching bitset queued on this futex (uaddr).
1362  */
1363 static int
1364 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1365 {
1366         struct futex_hash_bucket *hb;
1367         struct futex_q *this, *next;
1368         union futex_key key = FUTEX_KEY_INIT;
1369         int ret;
1370         WAKE_Q(wake_q);
1371
1372         if (!bitset)
1373                 return -EINVAL;
1374
1375         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1376         if (unlikely(ret != 0))
1377                 goto out;
1378
1379         hb = hash_futex(&key);
1380
1381         /* Make sure we really have tasks to wakeup */
1382         if (!hb_waiters_pending(hb))
1383                 goto out_put_key;
1384
1385         spin_lock(&hb->lock);
1386
1387         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1388                 if (match_futex (&this->key, &key)) {
1389                         if (this->pi_state || this->rt_waiter) {
1390                                 ret = -EINVAL;
1391                                 break;
1392                         }
1393
1394                         /* Check if one of the bits is set in both bitsets */
1395                         if (!(this->bitset & bitset))
1396                                 continue;
1397
1398                         mark_wake_futex(&wake_q, this);
1399                         if (++ret >= nr_wake)
1400                                 break;
1401                 }
1402         }
1403
1404         spin_unlock(&hb->lock);
1405         wake_up_q(&wake_q);
1406 out_put_key:
1407         put_futex_key(&key);
1408 out:
1409         return ret;
1410 }
1411
1412 /*
1413  * Wake up all waiters hashed on the physical page that is mapped
1414  * to this virtual address:
1415  */
1416 static int
1417 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1418               int nr_wake, int nr_wake2, int op)
1419 {
1420         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1421         struct futex_hash_bucket *hb1, *hb2;
1422         struct futex_q *this, *next;
1423         int ret, op_ret;
1424         WAKE_Q(wake_q);
1425
1426 retry:
1427         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1428         if (unlikely(ret != 0))
1429                 goto out;
1430         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1431         if (unlikely(ret != 0))
1432                 goto out_put_key1;
1433
1434         hb1 = hash_futex(&key1);
1435         hb2 = hash_futex(&key2);
1436
1437 retry_private:
1438         double_lock_hb(hb1, hb2);
1439         op_ret = futex_atomic_op_inuser(op, uaddr2);
1440         if (unlikely(op_ret < 0)) {
1441
1442                 double_unlock_hb(hb1, hb2);
1443
1444 #ifndef CONFIG_MMU
1445                 /*
1446                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1447                  * but we might get them from range checking
1448                  */
1449                 ret = op_ret;
1450                 goto out_put_keys;
1451 #endif
1452
1453                 if (unlikely(op_ret != -EFAULT)) {
1454                         ret = op_ret;
1455                         goto out_put_keys;
1456                 }
1457
1458                 ret = fault_in_user_writeable(uaddr2);
1459                 if (ret)
1460                         goto out_put_keys;
1461
1462                 if (!(flags & FLAGS_SHARED))
1463                         goto retry_private;
1464
1465                 put_futex_key(&key2);
1466                 put_futex_key(&key1);
1467                 goto retry;
1468         }
1469
1470         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1471                 if (match_futex (&this->key, &key1)) {
1472                         if (this->pi_state || this->rt_waiter) {
1473                                 ret = -EINVAL;
1474                                 goto out_unlock;
1475                         }
1476                         mark_wake_futex(&wake_q, this);
1477                         if (++ret >= nr_wake)
1478                                 break;
1479                 }
1480         }
1481
1482         if (op_ret > 0) {
1483                 op_ret = 0;
1484                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1485                         if (match_futex (&this->key, &key2)) {
1486                                 if (this->pi_state || this->rt_waiter) {
1487                                         ret = -EINVAL;
1488                                         goto out_unlock;
1489                                 }
1490                                 mark_wake_futex(&wake_q, this);
1491                                 if (++op_ret >= nr_wake2)
1492                                         break;
1493                         }
1494                 }
1495                 ret += op_ret;
1496         }
1497
1498 out_unlock:
1499         double_unlock_hb(hb1, hb2);
1500         wake_up_q(&wake_q);
1501 out_put_keys:
1502         put_futex_key(&key2);
1503 out_put_key1:
1504         put_futex_key(&key1);
1505 out:
1506         return ret;
1507 }
1508
1509 /**
1510  * requeue_futex() - Requeue a futex_q from one hb to another
1511  * @q:          the futex_q to requeue
1512  * @hb1:        the source hash_bucket
1513  * @hb2:        the target hash_bucket
1514  * @key2:       the new key for the requeued futex_q
1515  */
1516 static inline
1517 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1518                    struct futex_hash_bucket *hb2, union futex_key *key2)
1519 {
1520
1521         /*
1522          * If key1 and key2 hash to the same bucket, no need to
1523          * requeue.
1524          */
1525         if (likely(&hb1->chain != &hb2->chain)) {
1526                 plist_del(&q->list, &hb1->chain);
1527                 hb_waiters_dec(hb1);
1528                 plist_add(&q->list, &hb2->chain);
1529                 hb_waiters_inc(hb2);
1530                 q->lock_ptr = &hb2->lock;
1531         }
1532         get_futex_key_refs(key2);
1533         q->key = *key2;
1534 }
1535
1536 /**
1537  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1538  * @q:          the futex_q
1539  * @key:        the key of the requeue target futex
1540  * @hb:         the hash_bucket of the requeue target futex
1541  *
1542  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1543  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1544  * to the requeue target futex so the waiter can detect the wakeup on the right
1545  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1546  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1547  * to protect access to the pi_state to fixup the owner later.  Must be called
1548  * with both q->lock_ptr and hb->lock held.
1549  */
1550 static inline
1551 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1552                            struct futex_hash_bucket *hb)
1553 {
1554         get_futex_key_refs(key);
1555         q->key = *key;
1556
1557         __unqueue_futex(q);
1558
1559         WARN_ON(!q->rt_waiter);
1560         q->rt_waiter = NULL;
1561
1562         q->lock_ptr = &hb->lock;
1563
1564         wake_up_state(q->task, TASK_NORMAL);
1565 }
1566
1567 /**
1568  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1569  * @pifutex:            the user address of the to futex
1570  * @hb1:                the from futex hash bucket, must be locked by the caller
1571  * @hb2:                the to futex hash bucket, must be locked by the caller
1572  * @key1:               the from futex key
1573  * @key2:               the to futex key
1574  * @ps:                 address to store the pi_state pointer
1575  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1576  *
1577  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1578  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1579  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1580  * hb1 and hb2 must be held by the caller.
1581  *
1582  * Return:
1583  *  0 - failed to acquire the lock atomically;
1584  * >0 - acquired the lock, return value is vpid of the top_waiter
1585  * <0 - error
1586  */
1587 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1588                                  struct futex_hash_bucket *hb1,
1589                                  struct futex_hash_bucket *hb2,
1590                                  union futex_key *key1, union futex_key *key2,
1591                                  struct futex_pi_state **ps, int set_waiters)
1592 {
1593         struct futex_q *top_waiter = NULL;
1594         u32 curval;
1595         int ret, vpid;
1596
1597         if (get_futex_value_locked(&curval, pifutex))
1598                 return -EFAULT;
1599
1600         if (unlikely(should_fail_futex(true)))
1601                 return -EFAULT;
1602
1603         /*
1604          * Find the top_waiter and determine if there are additional waiters.
1605          * If the caller intends to requeue more than 1 waiter to pifutex,
1606          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1607          * as we have means to handle the possible fault.  If not, don't set
1608          * the bit unecessarily as it will force the subsequent unlock to enter
1609          * the kernel.
1610          */
1611         top_waiter = futex_top_waiter(hb1, key1);
1612
1613         /* There are no waiters, nothing for us to do. */
1614         if (!top_waiter)
1615                 return 0;
1616
1617         /* Ensure we requeue to the expected futex. */
1618         if (!match_futex(top_waiter->requeue_pi_key, key2))
1619                 return -EINVAL;
1620
1621         /*
1622          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1623          * the contended case or if set_waiters is 1.  The pi_state is returned
1624          * in ps in contended cases.
1625          */
1626         vpid = task_pid_vnr(top_waiter->task);
1627         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1628                                    set_waiters);
1629         if (ret == 1) {
1630                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1631                 return vpid;
1632         }
1633         return ret;
1634 }
1635
1636 /**
1637  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1638  * @uaddr1:     source futex user address
1639  * @flags:      futex flags (FLAGS_SHARED, etc.)
1640  * @uaddr2:     target futex user address
1641  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1642  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1643  * @cmpval:     @uaddr1 expected value (or %NULL)
1644  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1645  *              pi futex (pi to pi requeue is not supported)
1646  *
1647  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1648  * uaddr2 atomically on behalf of the top waiter.
1649  *
1650  * Return:
1651  * >=0 - on success, the number of tasks requeued or woken;
1652  *  <0 - on error
1653  */
1654 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1655                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1656                          u32 *cmpval, int requeue_pi)
1657 {
1658         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1659         int drop_count = 0, task_count = 0, ret;
1660         struct futex_pi_state *pi_state = NULL;
1661         struct futex_hash_bucket *hb1, *hb2;
1662         struct futex_q *this, *next;
1663         WAKE_Q(wake_q);
1664
1665         if (requeue_pi) {
1666                 /*
1667                  * Requeue PI only works on two distinct uaddrs. This
1668                  * check is only valid for private futexes. See below.
1669                  */
1670                 if (uaddr1 == uaddr2)
1671                         return -EINVAL;
1672
1673                 /*
1674                  * requeue_pi requires a pi_state, try to allocate it now
1675                  * without any locks in case it fails.
1676                  */
1677                 if (refill_pi_state_cache())
1678                         return -ENOMEM;
1679                 /*
1680                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1681                  * + nr_requeue, since it acquires the rt_mutex prior to
1682                  * returning to userspace, so as to not leave the rt_mutex with
1683                  * waiters and no owner.  However, second and third wake-ups
1684                  * cannot be predicted as they involve race conditions with the
1685                  * first wake and a fault while looking up the pi_state.  Both
1686                  * pthread_cond_signal() and pthread_cond_broadcast() should
1687                  * use nr_wake=1.
1688                  */
1689                 if (nr_wake != 1)
1690                         return -EINVAL;
1691         }
1692
1693 retry:
1694         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1695         if (unlikely(ret != 0))
1696                 goto out;
1697         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1698                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1699         if (unlikely(ret != 0))
1700                 goto out_put_key1;
1701
1702         /*
1703          * The check above which compares uaddrs is not sufficient for
1704          * shared futexes. We need to compare the keys:
1705          */
1706         if (requeue_pi && match_futex(&key1, &key2)) {
1707                 ret = -EINVAL;
1708                 goto out_put_keys;
1709         }
1710
1711         hb1 = hash_futex(&key1);
1712         hb2 = hash_futex(&key2);
1713
1714 retry_private:
1715         hb_waiters_inc(hb2);
1716         double_lock_hb(hb1, hb2);
1717
1718         if (likely(cmpval != NULL)) {
1719                 u32 curval;
1720
1721                 ret = get_futex_value_locked(&curval, uaddr1);
1722
1723                 if (unlikely(ret)) {
1724                         double_unlock_hb(hb1, hb2);
1725                         hb_waiters_dec(hb2);
1726
1727                         ret = get_user(curval, uaddr1);
1728                         if (ret)
1729                                 goto out_put_keys;
1730
1731                         if (!(flags & FLAGS_SHARED))
1732                                 goto retry_private;
1733
1734                         put_futex_key(&key2);
1735                         put_futex_key(&key1);
1736                         goto retry;
1737                 }
1738                 if (curval != *cmpval) {
1739                         ret = -EAGAIN;
1740                         goto out_unlock;
1741                 }
1742         }
1743
1744         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1745                 /*
1746                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1747                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1748                  * bit.  We force this here where we are able to easily handle
1749                  * faults rather in the requeue loop below.
1750                  */
1751                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1752                                                  &key2, &pi_state, nr_requeue);
1753
1754                 /*
1755                  * At this point the top_waiter has either taken uaddr2 or is
1756                  * waiting on it.  If the former, then the pi_state will not
1757                  * exist yet, look it up one more time to ensure we have a
1758                  * reference to it. If the lock was taken, ret contains the
1759                  * vpid of the top waiter task.
1760                  * If the lock was not taken, we have pi_state and an initial
1761                  * refcount on it. In case of an error we have nothing.
1762                  */
1763                 if (ret > 0) {
1764                         WARN_ON(pi_state);
1765                         drop_count++;
1766                         task_count++;
1767                         /*
1768                          * If we acquired the lock, then the user space value
1769                          * of uaddr2 should be vpid. It cannot be changed by
1770                          * the top waiter as it is blocked on hb2 lock if it
1771                          * tries to do so. If something fiddled with it behind
1772                          * our back the pi state lookup might unearth it. So
1773                          * we rather use the known value than rereading and
1774                          * handing potential crap to lookup_pi_state.
1775                          *
1776                          * If that call succeeds then we have pi_state and an
1777                          * initial refcount on it.
1778                          */
1779                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1780                 }
1781
1782                 switch (ret) {
1783                 case 0:
1784                         /* We hold a reference on the pi state. */
1785                         break;
1786
1787                         /* If the above failed, then pi_state is NULL */
1788                 case -EFAULT:
1789                         double_unlock_hb(hb1, hb2);
1790                         hb_waiters_dec(hb2);
1791                         put_futex_key(&key2);
1792                         put_futex_key(&key1);
1793                         ret = fault_in_user_writeable(uaddr2);
1794                         if (!ret)
1795                                 goto retry;
1796                         goto out;
1797                 case -EAGAIN:
1798                         /*
1799                          * Two reasons for this:
1800                          * - Owner is exiting and we just wait for the
1801                          *   exit to complete.
1802                          * - The user space value changed.
1803                          */
1804                         double_unlock_hb(hb1, hb2);
1805                         hb_waiters_dec(hb2);
1806                         put_futex_key(&key2);
1807                         put_futex_key(&key1);
1808                         cond_resched();
1809                         goto retry;
1810                 default:
1811                         goto out_unlock;
1812                 }
1813         }
1814
1815         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1816                 if (task_count - nr_wake >= nr_requeue)
1817                         break;
1818
1819                 if (!match_futex(&this->key, &key1))
1820                         continue;
1821
1822                 /*
1823                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1824                  * be paired with each other and no other futex ops.
1825                  *
1826                  * We should never be requeueing a futex_q with a pi_state,
1827                  * which is awaiting a futex_unlock_pi().
1828                  */
1829                 if ((requeue_pi && !this->rt_waiter) ||
1830                     (!requeue_pi && this->rt_waiter) ||
1831                     this->pi_state) {
1832                         ret = -EINVAL;
1833                         break;
1834                 }
1835
1836                 /*
1837                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1838                  * lock, we already woke the top_waiter.  If not, it will be
1839                  * woken by futex_unlock_pi().
1840                  */
1841                 if (++task_count <= nr_wake && !requeue_pi) {
1842                         mark_wake_futex(&wake_q, this);
1843                         continue;
1844                 }
1845
1846                 /* Ensure we requeue to the expected futex for requeue_pi. */
1847                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1848                         ret = -EINVAL;
1849                         break;
1850                 }
1851
1852                 /*
1853                  * Requeue nr_requeue waiters and possibly one more in the case
1854                  * of requeue_pi if we couldn't acquire the lock atomically.
1855                  */
1856                 if (requeue_pi) {
1857                         /*
1858                          * Prepare the waiter to take the rt_mutex. Take a
1859                          * refcount on the pi_state and store the pointer in
1860                          * the futex_q object of the waiter.
1861                          */
1862                         atomic_inc(&pi_state->refcount);
1863                         this->pi_state = pi_state;
1864                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1865                                                         this->rt_waiter,
1866                                                         this->task);
1867                         if (ret == 1) {
1868                                 /*
1869                                  * We got the lock. We do neither drop the
1870                                  * refcount on pi_state nor clear
1871                                  * this->pi_state because the waiter needs the
1872                                  * pi_state for cleaning up the user space
1873                                  * value. It will drop the refcount after
1874                                  * doing so.
1875                                  */
1876                                 requeue_pi_wake_futex(this, &key2, hb2);
1877                                 drop_count++;
1878                                 continue;
1879                         } else if (ret) {
1880                                 /*
1881                                  * rt_mutex_start_proxy_lock() detected a
1882                                  * potential deadlock when we tried to queue
1883                                  * that waiter. Drop the pi_state reference
1884                                  * which we took above and remove the pointer
1885                                  * to the state from the waiters futex_q
1886                                  * object.
1887                                  */
1888                                 this->pi_state = NULL;
1889                                 put_pi_state(pi_state);
1890                                 /*
1891                                  * We stop queueing more waiters and let user
1892                                  * space deal with the mess.
1893                                  */
1894                                 break;
1895                         }
1896                 }
1897                 requeue_futex(this, hb1, hb2, &key2);
1898                 drop_count++;
1899         }
1900
1901         /*
1902          * We took an extra initial reference to the pi_state either
1903          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
1904          * need to drop it here again.
1905          */
1906         put_pi_state(pi_state);
1907
1908 out_unlock:
1909         double_unlock_hb(hb1, hb2);
1910         wake_up_q(&wake_q);
1911         hb_waiters_dec(hb2);
1912
1913         /*
1914          * drop_futex_key_refs() must be called outside the spinlocks. During
1915          * the requeue we moved futex_q's from the hash bucket at key1 to the
1916          * one at key2 and updated their key pointer.  We no longer need to
1917          * hold the references to key1.
1918          */
1919         while (--drop_count >= 0)
1920                 drop_futex_key_refs(&key1);
1921
1922 out_put_keys:
1923         put_futex_key(&key2);
1924 out_put_key1:
1925         put_futex_key(&key1);
1926 out:
1927         return ret ? ret : task_count;
1928 }
1929
1930 /* The key must be already stored in q->key. */
1931 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1932         __acquires(&hb->lock)
1933 {
1934         struct futex_hash_bucket *hb;
1935
1936         hb = hash_futex(&q->key);
1937
1938         /*
1939          * Increment the counter before taking the lock so that
1940          * a potential waker won't miss a to-be-slept task that is
1941          * waiting for the spinlock. This is safe as all queue_lock()
1942          * users end up calling queue_me(). Similarly, for housekeeping,
1943          * decrement the counter at queue_unlock() when some error has
1944          * occurred and we don't end up adding the task to the list.
1945          */
1946         hb_waiters_inc(hb);
1947
1948         q->lock_ptr = &hb->lock;
1949
1950         spin_lock(&hb->lock); /* implies smp_mb(); (A) */
1951         return hb;
1952 }
1953
1954 static inline void
1955 queue_unlock(struct futex_hash_bucket *hb)
1956         __releases(&hb->lock)
1957 {
1958         spin_unlock(&hb->lock);
1959         hb_waiters_dec(hb);
1960 }
1961
1962 /**
1963  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1964  * @q:  The futex_q to enqueue
1965  * @hb: The destination hash bucket
1966  *
1967  * The hb->lock must be held by the caller, and is released here. A call to
1968  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1969  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1970  * or nothing if the unqueue is done as part of the wake process and the unqueue
1971  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1972  * an example).
1973  */
1974 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1975         __releases(&hb->lock)
1976 {
1977         int prio;
1978
1979         /*
1980          * The priority used to register this element is
1981          * - either the real thread-priority for the real-time threads
1982          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1983          * - or MAX_RT_PRIO for non-RT threads.
1984          * Thus, all RT-threads are woken first in priority order, and
1985          * the others are woken last, in FIFO order.
1986          */
1987         prio = min(current->normal_prio, MAX_RT_PRIO);
1988
1989         plist_node_init(&q->list, prio);
1990         plist_add(&q->list, &hb->chain);
1991         q->task = current;
1992         spin_unlock(&hb->lock);
1993 }
1994
1995 /**
1996  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1997  * @q:  The futex_q to unqueue
1998  *
1999  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2000  * be paired with exactly one earlier call to queue_me().
2001  *
2002  * Return:
2003  *   1 - if the futex_q was still queued (and we removed unqueued it);
2004  *   0 - if the futex_q was already removed by the waking thread
2005  */
2006 static int unqueue_me(struct futex_q *q)
2007 {
2008         spinlock_t *lock_ptr;
2009         int ret = 0;
2010
2011         /* In the common case we don't take the spinlock, which is nice. */
2012 retry:
2013         /*
2014          * q->lock_ptr can change between this read and the following spin_lock.
2015          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2016          * optimizing lock_ptr out of the logic below.
2017          */
2018         lock_ptr = READ_ONCE(q->lock_ptr);
2019         if (lock_ptr != NULL) {
2020                 spin_lock(lock_ptr);
2021                 /*
2022                  * q->lock_ptr can change between reading it and
2023                  * spin_lock(), causing us to take the wrong lock.  This
2024                  * corrects the race condition.
2025                  *
2026                  * Reasoning goes like this: if we have the wrong lock,
2027                  * q->lock_ptr must have changed (maybe several times)
2028                  * between reading it and the spin_lock().  It can
2029                  * change again after the spin_lock() but only if it was
2030                  * already changed before the spin_lock().  It cannot,
2031                  * however, change back to the original value.  Therefore
2032                  * we can detect whether we acquired the correct lock.
2033                  */
2034                 if (unlikely(lock_ptr != q->lock_ptr)) {
2035                         spin_unlock(lock_ptr);
2036                         goto retry;
2037                 }
2038                 __unqueue_futex(q);
2039
2040                 BUG_ON(q->pi_state);
2041
2042                 spin_unlock(lock_ptr);
2043                 ret = 1;
2044         }
2045
2046         drop_futex_key_refs(&q->key);
2047         return ret;
2048 }
2049
2050 /*
2051  * PI futexes can not be requeued and must remove themself from the
2052  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2053  * and dropped here.
2054  */
2055 static void unqueue_me_pi(struct futex_q *q)
2056         __releases(q->lock_ptr)
2057 {
2058         __unqueue_futex(q);
2059
2060         BUG_ON(!q->pi_state);
2061         put_pi_state(q->pi_state);
2062         q->pi_state = NULL;
2063
2064         spin_unlock(q->lock_ptr);
2065 }
2066
2067 /*
2068  * Fixup the pi_state owner with the new owner.
2069  *
2070  * Must be called with hash bucket lock held and mm->sem held for non
2071  * private futexes.
2072  */
2073 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2074                                 struct task_struct *newowner)
2075 {
2076         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2077         struct futex_pi_state *pi_state = q->pi_state;
2078         struct task_struct *oldowner = pi_state->owner;
2079         u32 uval, uninitialized_var(curval), newval;
2080         int ret;
2081
2082         /* Owner died? */
2083         if (!pi_state->owner)
2084                 newtid |= FUTEX_OWNER_DIED;
2085
2086         /*
2087          * We are here either because we stole the rtmutex from the
2088          * previous highest priority waiter or we are the highest priority
2089          * waiter but failed to get the rtmutex the first time.
2090          * We have to replace the newowner TID in the user space variable.
2091          * This must be atomic as we have to preserve the owner died bit here.
2092          *
2093          * Note: We write the user space value _before_ changing the pi_state
2094          * because we can fault here. Imagine swapped out pages or a fork
2095          * that marked all the anonymous memory readonly for cow.
2096          *
2097          * Modifying pi_state _before_ the user space value would
2098          * leave the pi_state in an inconsistent state when we fault
2099          * here, because we need to drop the hash bucket lock to
2100          * handle the fault. This might be observed in the PID check
2101          * in lookup_pi_state.
2102          */
2103 retry:
2104         if (get_futex_value_locked(&uval, uaddr))
2105                 goto handle_fault;
2106
2107         while (1) {
2108                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2109
2110                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2111                         goto handle_fault;
2112                 if (curval == uval)
2113                         break;
2114                 uval = curval;
2115         }
2116
2117         /*
2118          * We fixed up user space. Now we need to fix the pi_state
2119          * itself.
2120          */
2121         if (pi_state->owner != NULL) {
2122                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
2123                 WARN_ON(list_empty(&pi_state->list));
2124                 list_del_init(&pi_state->list);
2125                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2126         }
2127
2128         pi_state->owner = newowner;
2129
2130         raw_spin_lock_irq(&newowner->pi_lock);
2131         WARN_ON(!list_empty(&pi_state->list));
2132         list_add(&pi_state->list, &newowner->pi_state_list);
2133         raw_spin_unlock_irq(&newowner->pi_lock);
2134         return 0;
2135
2136         /*
2137          * To handle the page fault we need to drop the hash bucket
2138          * lock here. That gives the other task (either the highest priority
2139          * waiter itself or the task which stole the rtmutex) the
2140          * chance to try the fixup of the pi_state. So once we are
2141          * back from handling the fault we need to check the pi_state
2142          * after reacquiring the hash bucket lock and before trying to
2143          * do another fixup. When the fixup has been done already we
2144          * simply return.
2145          */
2146 handle_fault:
2147         spin_unlock(q->lock_ptr);
2148
2149         ret = fault_in_user_writeable(uaddr);
2150
2151         spin_lock(q->lock_ptr);
2152
2153         /*
2154          * Check if someone else fixed it for us:
2155          */
2156         if (pi_state->owner != oldowner)
2157                 return 0;
2158
2159         if (ret)
2160                 return ret;
2161
2162         goto retry;
2163 }
2164
2165 static long futex_wait_restart(struct restart_block *restart);
2166
2167 /**
2168  * fixup_owner() - Post lock pi_state and corner case management
2169  * @uaddr:      user address of the futex
2170  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2171  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2172  *
2173  * After attempting to lock an rt_mutex, this function is called to cleanup
2174  * the pi_state owner as well as handle race conditions that may allow us to
2175  * acquire the lock. Must be called with the hb lock held.
2176  *
2177  * Return:
2178  *  1 - success, lock taken;
2179  *  0 - success, lock not taken;
2180  * <0 - on error (-EFAULT)
2181  */
2182 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2183 {
2184         struct task_struct *owner;
2185         int ret = 0;
2186
2187         if (locked) {
2188                 /*
2189                  * Got the lock. We might not be the anticipated owner if we
2190                  * did a lock-steal - fix up the PI-state in that case:
2191                  */
2192                 if (q->pi_state->owner != current)
2193                         ret = fixup_pi_state_owner(uaddr, q, current);
2194                 goto out;
2195         }
2196
2197         /*
2198          * Catch the rare case, where the lock was released when we were on the
2199          * way back before we locked the hash bucket.
2200          */
2201         if (q->pi_state->owner == current) {
2202                 /*
2203                  * Try to get the rt_mutex now. This might fail as some other
2204                  * task acquired the rt_mutex after we removed ourself from the
2205                  * rt_mutex waiters list.
2206                  */
2207                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2208                         locked = 1;
2209                         goto out;
2210                 }
2211
2212                 /*
2213                  * pi_state is incorrect, some other task did a lock steal and
2214                  * we returned due to timeout or signal without taking the
2215                  * rt_mutex. Too late.
2216                  */
2217                 raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
2218                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2219                 if (!owner)
2220                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2221                 raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
2222                 ret = fixup_pi_state_owner(uaddr, q, owner);
2223                 goto out;
2224         }
2225
2226         /*
2227          * Paranoia check. If we did not take the lock, then we should not be
2228          * the owner of the rt_mutex.
2229          */
2230         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2231                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2232                                 "pi-state %p\n", ret,
2233                                 q->pi_state->pi_mutex.owner,
2234                                 q->pi_state->owner);
2235
2236 out:
2237         return ret ? ret : locked;
2238 }
2239
2240 /**
2241  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2242  * @hb:         the futex hash bucket, must be locked by the caller
2243  * @q:          the futex_q to queue up on
2244  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2245  */
2246 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2247                                 struct hrtimer_sleeper *timeout)
2248 {
2249         /*
2250          * The task state is guaranteed to be set before another task can
2251          * wake it. set_current_state() is implemented using smp_store_mb() and
2252          * queue_me() calls spin_unlock() upon completion, both serializing
2253          * access to the hash list and forcing another memory barrier.
2254          */
2255         set_current_state(TASK_INTERRUPTIBLE);
2256         queue_me(q, hb);
2257
2258         /* Arm the timer */
2259         if (timeout)
2260                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2261
2262         /*
2263          * If we have been removed from the hash list, then another task
2264          * has tried to wake us, and we can skip the call to schedule().
2265          */
2266         if (likely(!plist_node_empty(&q->list))) {
2267                 /*
2268                  * If the timer has already expired, current will already be
2269                  * flagged for rescheduling. Only call schedule if there
2270                  * is no timeout, or if it has yet to expire.
2271                  */
2272                 if (!timeout || timeout->task)
2273                         freezable_schedule();
2274         }
2275         __set_current_state(TASK_RUNNING);
2276 }
2277
2278 /**
2279  * futex_wait_setup() - Prepare to wait on a futex
2280  * @uaddr:      the futex userspace address
2281  * @val:        the expected value
2282  * @flags:      futex flags (FLAGS_SHARED, etc.)
2283  * @q:          the associated futex_q
2284  * @hb:         storage for hash_bucket pointer to be returned to caller
2285  *
2286  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2287  * compare it with the expected value.  Handle atomic faults internally.
2288  * Return with the hb lock held and a q.key reference on success, and unlocked
2289  * with no q.key reference on failure.
2290  *
2291  * Return:
2292  *  0 - uaddr contains val and hb has been locked;
2293  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2294  */
2295 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2296                            struct futex_q *q, struct futex_hash_bucket **hb)
2297 {
2298         u32 uval;
2299         int ret;
2300
2301         /*
2302          * Access the page AFTER the hash-bucket is locked.
2303          * Order is important:
2304          *
2305          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2306          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2307          *
2308          * The basic logical guarantee of a futex is that it blocks ONLY
2309          * if cond(var) is known to be true at the time of blocking, for
2310          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2311          * would open a race condition where we could block indefinitely with
2312          * cond(var) false, which would violate the guarantee.
2313          *
2314          * On the other hand, we insert q and release the hash-bucket only
2315          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2316          * absorb a wakeup if *uaddr does not match the desired values
2317          * while the syscall executes.
2318          */
2319 retry:
2320         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2321         if (unlikely(ret != 0))
2322                 return ret;
2323
2324 retry_private:
2325         *hb = queue_lock(q);
2326
2327         ret = get_futex_value_locked(&uval, uaddr);
2328
2329         if (ret) {
2330                 queue_unlock(*hb);
2331
2332                 ret = get_user(uval, uaddr);
2333                 if (ret)
2334                         goto out;
2335
2336                 if (!(flags & FLAGS_SHARED))
2337                         goto retry_private;
2338
2339                 put_futex_key(&q->key);
2340                 goto retry;
2341         }
2342
2343         if (uval != val) {
2344                 queue_unlock(*hb);
2345                 ret = -EWOULDBLOCK;
2346         }
2347
2348 out:
2349         if (ret)
2350                 put_futex_key(&q->key);
2351         return ret;
2352 }
2353
2354 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2355                       ktime_t *abs_time, u32 bitset)
2356 {
2357         struct hrtimer_sleeper timeout, *to = NULL;
2358         struct restart_block *restart;
2359         struct futex_hash_bucket *hb;
2360         struct futex_q q = futex_q_init;
2361         int ret;
2362
2363         if (!bitset)
2364                 return -EINVAL;
2365         q.bitset = bitset;
2366
2367         if (abs_time) {
2368                 to = &timeout;
2369
2370                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2371                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2372                                       HRTIMER_MODE_ABS);
2373                 hrtimer_init_sleeper(to, current);
2374                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2375                                              current->timer_slack_ns);
2376         }
2377
2378 retry:
2379         /*
2380          * Prepare to wait on uaddr. On success, holds hb lock and increments
2381          * q.key refs.
2382          */
2383         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2384         if (ret)
2385                 goto out;
2386
2387         /* queue_me and wait for wakeup, timeout, or a signal. */
2388         futex_wait_queue_me(hb, &q, to);
2389
2390         /* If we were woken (and unqueued), we succeeded, whatever. */
2391         ret = 0;
2392         /* unqueue_me() drops q.key ref */
2393         if (!unqueue_me(&q))
2394                 goto out;
2395         ret = -ETIMEDOUT;
2396         if (to && !to->task)
2397                 goto out;
2398
2399         /*
2400          * We expect signal_pending(current), but we might be the
2401          * victim of a spurious wakeup as well.
2402          */
2403         if (!signal_pending(current))
2404                 goto retry;
2405
2406         ret = -ERESTARTSYS;
2407         if (!abs_time)
2408                 goto out;
2409
2410         restart = &current->restart_block;
2411         restart->fn = futex_wait_restart;
2412         restart->futex.uaddr = uaddr;
2413         restart->futex.val = val;
2414         restart->futex.time = abs_time->tv64;
2415         restart->futex.bitset = bitset;
2416         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2417
2418         ret = -ERESTART_RESTARTBLOCK;
2419
2420 out:
2421         if (to) {
2422                 hrtimer_cancel(&to->timer);
2423                 destroy_hrtimer_on_stack(&to->timer);
2424         }
2425         return ret;
2426 }
2427
2428
2429 static long futex_wait_restart(struct restart_block *restart)
2430 {
2431         u32 __user *uaddr = restart->futex.uaddr;
2432         ktime_t t, *tp = NULL;
2433
2434         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2435                 t.tv64 = restart->futex.time;
2436                 tp = &t;
2437         }
2438         restart->fn = do_no_restart_syscall;
2439
2440         return (long)futex_wait(uaddr, restart->futex.flags,
2441                                 restart->futex.val, tp, restart->futex.bitset);
2442 }
2443
2444
2445 /*
2446  * Userspace tried a 0 -> TID atomic transition of the futex value
2447  * and failed. The kernel side here does the whole locking operation:
2448  * if there are waiters then it will block as a consequence of relying
2449  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2450  * a 0 value of the futex too.).
2451  *
2452  * Also serves as futex trylock_pi()'ing, and due semantics.
2453  */
2454 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2455                          ktime_t *time, int trylock)
2456 {
2457         struct hrtimer_sleeper timeout, *to = NULL;
2458         struct futex_hash_bucket *hb;
2459         struct futex_q q = futex_q_init;
2460         int res, ret;
2461
2462         if (refill_pi_state_cache())
2463                 return -ENOMEM;
2464
2465         if (time) {
2466                 to = &timeout;
2467                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2468                                       HRTIMER_MODE_ABS);
2469                 hrtimer_init_sleeper(to, current);
2470                 hrtimer_set_expires(&to->timer, *time);
2471         }
2472
2473 retry:
2474         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2475         if (unlikely(ret != 0))
2476                 goto out;
2477
2478 retry_private:
2479         hb = queue_lock(&q);
2480
2481         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2482         if (unlikely(ret)) {
2483                 /*
2484                  * Atomic work succeeded and we got the lock,
2485                  * or failed. Either way, we do _not_ block.
2486                  */
2487                 switch (ret) {
2488                 case 1:
2489                         /* We got the lock. */
2490                         ret = 0;
2491                         goto out_unlock_put_key;
2492                 case -EFAULT:
2493                         goto uaddr_faulted;
2494                 case -EAGAIN:
2495                         /*
2496                          * Two reasons for this:
2497                          * - Task is exiting and we just wait for the
2498                          *   exit to complete.
2499                          * - The user space value changed.
2500                          */
2501                         queue_unlock(hb);
2502                         put_futex_key(&q.key);
2503                         cond_resched();
2504                         goto retry;
2505                 default:
2506                         goto out_unlock_put_key;
2507                 }
2508         }
2509
2510         /*
2511          * Only actually queue now that the atomic ops are done:
2512          */
2513         queue_me(&q, hb);
2514
2515         WARN_ON(!q.pi_state);
2516         /*
2517          * Block on the PI mutex:
2518          */
2519         if (!trylock) {
2520                 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2521         } else {
2522                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2523                 /* Fixup the trylock return value: */
2524                 ret = ret ? 0 : -EWOULDBLOCK;
2525         }
2526
2527         spin_lock(q.lock_ptr);
2528         /*
2529          * Fixup the pi_state owner and possibly acquire the lock if we
2530          * haven't already.
2531          */
2532         res = fixup_owner(uaddr, &q, !ret);
2533         /*
2534          * If fixup_owner() returned an error, proprogate that.  If it acquired
2535          * the lock, clear our -ETIMEDOUT or -EINTR.
2536          */
2537         if (res)
2538                 ret = (res < 0) ? res : 0;
2539
2540         /*
2541          * If fixup_owner() faulted and was unable to handle the fault, unlock
2542          * it and return the fault to userspace.
2543          */
2544         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2545                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2546
2547         /* Unqueue and drop the lock */
2548         unqueue_me_pi(&q);
2549
2550         goto out_put_key;
2551
2552 out_unlock_put_key:
2553         queue_unlock(hb);
2554
2555 out_put_key:
2556         put_futex_key(&q.key);
2557 out:
2558         if (to)
2559                 destroy_hrtimer_on_stack(&to->timer);
2560         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2561
2562 uaddr_faulted:
2563         queue_unlock(hb);
2564
2565         ret = fault_in_user_writeable(uaddr);
2566         if (ret)
2567                 goto out_put_key;
2568
2569         if (!(flags & FLAGS_SHARED))
2570                 goto retry_private;
2571
2572         put_futex_key(&q.key);
2573         goto retry;
2574 }
2575
2576 /*
2577  * Userspace attempted a TID -> 0 atomic transition, and failed.
2578  * This is the in-kernel slowpath: we look up the PI state (if any),
2579  * and do the rt-mutex unlock.
2580  */
2581 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2582 {
2583         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2584         union futex_key key = FUTEX_KEY_INIT;
2585         struct futex_hash_bucket *hb;
2586         struct futex_q *match;
2587         int ret;
2588
2589 retry:
2590         if (get_user(uval, uaddr))
2591                 return -EFAULT;
2592         /*
2593          * We release only a lock we actually own:
2594          */
2595         if ((uval & FUTEX_TID_MASK) != vpid)
2596                 return -EPERM;
2597
2598         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2599         if (ret)
2600                 return ret;
2601
2602         hb = hash_futex(&key);
2603         spin_lock(&hb->lock);
2604
2605         /*
2606          * Check waiters first. We do not trust user space values at
2607          * all and we at least want to know if user space fiddled
2608          * with the futex value instead of blindly unlocking.
2609          */
2610         match = futex_top_waiter(hb, &key);
2611         if (match) {
2612                 ret = wake_futex_pi(uaddr, uval, match, hb);
2613                 /*
2614                  * In case of success wake_futex_pi dropped the hash
2615                  * bucket lock.
2616                  */
2617                 if (!ret)
2618                         goto out_putkey;
2619                 /*
2620                  * The atomic access to the futex value generated a
2621                  * pagefault, so retry the user-access and the wakeup:
2622                  */
2623                 if (ret == -EFAULT)
2624                         goto pi_faulted;
2625                 /*
2626                  * wake_futex_pi has detected invalid state. Tell user
2627                  * space.
2628                  */
2629                 goto out_unlock;
2630         }
2631
2632         /*
2633          * We have no kernel internal state, i.e. no waiters in the
2634          * kernel. Waiters which are about to queue themselves are stuck
2635          * on hb->lock. So we can safely ignore them. We do neither
2636          * preserve the WAITERS bit not the OWNER_DIED one. We are the
2637          * owner.
2638          */
2639         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2640                 goto pi_faulted;
2641
2642         /*
2643          * If uval has changed, let user space handle it.
2644          */
2645         ret = (curval == uval) ? 0 : -EAGAIN;
2646
2647 out_unlock:
2648         spin_unlock(&hb->lock);
2649 out_putkey:
2650         put_futex_key(&key);
2651         return ret;
2652
2653 pi_faulted:
2654         spin_unlock(&hb->lock);
2655         put_futex_key(&key);
2656
2657         ret = fault_in_user_writeable(uaddr);
2658         if (!ret)
2659                 goto retry;
2660
2661         return ret;
2662 }
2663
2664 /**
2665  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2666  * @hb:         the hash_bucket futex_q was original enqueued on
2667  * @q:          the futex_q woken while waiting to be requeued
2668  * @key2:       the futex_key of the requeue target futex
2669  * @timeout:    the timeout associated with the wait (NULL if none)
2670  *
2671  * Detect if the task was woken on the initial futex as opposed to the requeue
2672  * target futex.  If so, determine if it was a timeout or a signal that caused
2673  * the wakeup and return the appropriate error code to the caller.  Must be
2674  * called with the hb lock held.
2675  *
2676  * Return:
2677  *  0 = no early wakeup detected;
2678  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2679  */
2680 static inline
2681 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2682                                    struct futex_q *q, union futex_key *key2,
2683                                    struct hrtimer_sleeper *timeout)
2684 {
2685         int ret = 0;
2686
2687         /*
2688          * With the hb lock held, we avoid races while we process the wakeup.
2689          * We only need to hold hb (and not hb2) to ensure atomicity as the
2690          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2691          * It can't be requeued from uaddr2 to something else since we don't
2692          * support a PI aware source futex for requeue.
2693          */
2694         if (!match_futex(&q->key, key2)) {
2695                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2696                 /*
2697                  * We were woken prior to requeue by a timeout or a signal.
2698                  * Unqueue the futex_q and determine which it was.
2699                  */
2700                 plist_del(&q->list, &hb->chain);
2701                 hb_waiters_dec(hb);
2702
2703                 /* Handle spurious wakeups gracefully */
2704                 ret = -EWOULDBLOCK;
2705                 if (timeout && !timeout->task)
2706                         ret = -ETIMEDOUT;
2707                 else if (signal_pending(current))
2708                         ret = -ERESTARTNOINTR;
2709         }
2710         return ret;
2711 }
2712
2713 /**
2714  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2715  * @uaddr:      the futex we initially wait on (non-pi)
2716  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2717  *              the same type, no requeueing from private to shared, etc.
2718  * @val:        the expected value of uaddr
2719  * @abs_time:   absolute timeout
2720  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2721  * @uaddr2:     the pi futex we will take prior to returning to user-space
2722  *
2723  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2724  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2725  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2726  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2727  * without one, the pi logic would not know which task to boost/deboost, if
2728  * there was a need to.
2729  *
2730  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2731  * via the following--
2732  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2733  * 2) wakeup on uaddr2 after a requeue
2734  * 3) signal
2735  * 4) timeout
2736  *
2737  * If 3, cleanup and return -ERESTARTNOINTR.
2738  *
2739  * If 2, we may then block on trying to take the rt_mutex and return via:
2740  * 5) successful lock
2741  * 6) signal
2742  * 7) timeout
2743  * 8) other lock acquisition failure
2744  *
2745  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2746  *
2747  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2748  *
2749  * Return:
2750  *  0 - On success;
2751  * <0 - On error
2752  */
2753 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2754                                  u32 val, ktime_t *abs_time, u32 bitset,
2755                                  u32 __user *uaddr2)
2756 {
2757         struct hrtimer_sleeper timeout, *to = NULL;
2758         struct rt_mutex_waiter rt_waiter;
2759         struct rt_mutex *pi_mutex = NULL;
2760         struct futex_hash_bucket *hb;
2761         union futex_key key2 = FUTEX_KEY_INIT;
2762         struct futex_q q = futex_q_init;
2763         int res, ret;
2764
2765         if (uaddr == uaddr2)
2766                 return -EINVAL;
2767
2768         if (!bitset)
2769                 return -EINVAL;
2770
2771         if (abs_time) {
2772                 to = &timeout;
2773                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2774                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2775                                       HRTIMER_MODE_ABS);
2776                 hrtimer_init_sleeper(to, current);
2777                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2778                                              current->timer_slack_ns);
2779         }
2780
2781         /*
2782          * The waiter is allocated on our stack, manipulated by the requeue
2783          * code while we sleep on uaddr.
2784          */
2785         debug_rt_mutex_init_waiter(&rt_waiter);
2786         RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2787         RB_CLEAR_NODE(&rt_waiter.tree_entry);
2788         rt_waiter.task = NULL;
2789
2790         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2791         if (unlikely(ret != 0))
2792                 goto out;
2793
2794         q.bitset = bitset;
2795         q.rt_waiter = &rt_waiter;
2796         q.requeue_pi_key = &key2;
2797
2798         /*
2799          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2800          * count.
2801          */
2802         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2803         if (ret)
2804                 goto out_key2;
2805
2806         /*
2807          * The check above which compares uaddrs is not sufficient for
2808          * shared futexes. We need to compare the keys:
2809          */
2810         if (match_futex(&q.key, &key2)) {
2811                 queue_unlock(hb);
2812                 ret = -EINVAL;
2813                 goto out_put_keys;
2814         }
2815
2816         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2817         futex_wait_queue_me(hb, &q, to);
2818
2819         spin_lock(&hb->lock);
2820         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2821         spin_unlock(&hb->lock);
2822         if (ret)
2823                 goto out_put_keys;
2824
2825         /*
2826          * In order for us to be here, we know our q.key == key2, and since
2827          * we took the hb->lock above, we also know that futex_requeue() has
2828          * completed and we no longer have to concern ourselves with a wakeup
2829          * race with the atomic proxy lock acquisition by the requeue code. The
2830          * futex_requeue dropped our key1 reference and incremented our key2
2831          * reference count.
2832          */
2833
2834         /* Check if the requeue code acquired the second futex for us. */
2835         if (!q.rt_waiter) {
2836                 /*
2837                  * Got the lock. We might not be the anticipated owner if we
2838                  * did a lock-steal - fix up the PI-state in that case.
2839                  */
2840                 if (q.pi_state && (q.pi_state->owner != current)) {
2841                         spin_lock(q.lock_ptr);
2842                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2843                         /*
2844                          * Drop the reference to the pi state which
2845                          * the requeue_pi() code acquired for us.
2846                          */
2847                         put_pi_state(q.pi_state);
2848                         spin_unlock(q.lock_ptr);
2849                 }
2850         } else {
2851                 /*
2852                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2853                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2854                  * the pi_state.
2855                  */
2856                 WARN_ON(!q.pi_state);
2857                 pi_mutex = &q.pi_state->pi_mutex;
2858                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2859                 debug_rt_mutex_free_waiter(&rt_waiter);
2860
2861                 spin_lock(q.lock_ptr);
2862                 /*
2863                  * Fixup the pi_state owner and possibly acquire the lock if we
2864                  * haven't already.
2865                  */
2866                 res = fixup_owner(uaddr2, &q, !ret);
2867                 /*
2868                  * If fixup_owner() returned an error, proprogate that.  If it
2869                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2870                  */
2871                 if (res)
2872                         ret = (res < 0) ? res : 0;
2873
2874                 /* Unqueue and drop the lock. */
2875                 unqueue_me_pi(&q);
2876         }
2877
2878         /*
2879          * If fixup_pi_state_owner() faulted and was unable to handle the
2880          * fault, unlock the rt_mutex and return the fault to userspace.
2881          */
2882         if (ret == -EFAULT) {
2883                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2884                         rt_mutex_unlock(pi_mutex);
2885         } else if (ret == -EINTR) {
2886                 /*
2887                  * We've already been requeued, but cannot restart by calling
2888                  * futex_lock_pi() directly. We could restart this syscall, but
2889                  * it would detect that the user space "val" changed and return
2890                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2891                  * -EWOULDBLOCK directly.
2892                  */
2893                 ret = -EWOULDBLOCK;
2894         }
2895
2896 out_put_keys:
2897         put_futex_key(&q.key);
2898 out_key2:
2899         put_futex_key(&key2);
2900
2901 out:
2902         if (to) {
2903                 hrtimer_cancel(&to->timer);
2904                 destroy_hrtimer_on_stack(&to->timer);
2905         }
2906         return ret;
2907 }
2908
2909 /*
2910  * Support for robust futexes: the kernel cleans up held futexes at
2911  * thread exit time.
2912  *
2913  * Implementation: user-space maintains a per-thread list of locks it
2914  * is holding. Upon do_exit(), the kernel carefully walks this list,
2915  * and marks all locks that are owned by this thread with the
2916  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2917  * always manipulated with the lock held, so the list is private and
2918  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2919  * field, to allow the kernel to clean up if the thread dies after
2920  * acquiring the lock, but just before it could have added itself to
2921  * the list. There can only be one such pending lock.
2922  */
2923
2924 /**
2925  * sys_set_robust_list() - Set the robust-futex list head of a task
2926  * @head:       pointer to the list-head
2927  * @len:        length of the list-head, as userspace expects
2928  */
2929 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2930                 size_t, len)
2931 {
2932         if (!futex_cmpxchg_enabled)
2933                 return -ENOSYS;
2934         /*
2935          * The kernel knows only one size for now:
2936          */
2937         if (unlikely(len != sizeof(*head)))
2938                 return -EINVAL;
2939
2940         current->robust_list = head;
2941
2942         return 0;
2943 }
2944
2945 /**
2946  * sys_get_robust_list() - Get the robust-futex list head of a task
2947  * @pid:        pid of the process [zero for current task]
2948  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2949  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2950  */
2951 SYSCALL_DEFINE3(get_robust_list, int, pid,
2952                 struct robust_list_head __user * __user *, head_ptr,
2953                 size_t __user *, len_ptr)
2954 {
2955         struct robust_list_head __user *head;
2956         unsigned long ret;
2957         struct task_struct *p;
2958
2959         if (!futex_cmpxchg_enabled)
2960                 return -ENOSYS;
2961
2962         rcu_read_lock();
2963
2964         ret = -ESRCH;
2965         if (!pid)
2966                 p = current;
2967         else {
2968                 p = find_task_by_vpid(pid);
2969                 if (!p)
2970                         goto err_unlock;
2971         }
2972
2973         ret = -EPERM;
2974         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
2975                 goto err_unlock;
2976
2977         head = p->robust_list;
2978         rcu_read_unlock();
2979
2980         if (put_user(sizeof(*head), len_ptr))
2981                 return -EFAULT;
2982         return put_user(head, head_ptr);
2983
2984 err_unlock:
2985         rcu_read_unlock();
2986
2987         return ret;
2988 }
2989
2990 /*
2991  * Process a futex-list entry, check whether it's owned by the
2992  * dying task, and do notification if so:
2993  */
2994 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2995 {
2996         u32 uval, uninitialized_var(nval), mval;
2997
2998 retry:
2999         if (get_user(uval, uaddr))
3000                 return -1;
3001
3002         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3003                 /*
3004                  * Ok, this dying thread is truly holding a futex
3005                  * of interest. Set the OWNER_DIED bit atomically
3006                  * via cmpxchg, and if the value had FUTEX_WAITERS
3007                  * set, wake up a waiter (if any). (We have to do a
3008                  * futex_wake() even if OWNER_DIED is already set -
3009                  * to handle the rare but possible case of recursive
3010                  * thread-death.) The rest of the cleanup is done in
3011                  * userspace.
3012                  */
3013                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3014                 /*
3015                  * We are not holding a lock here, but we want to have
3016                  * the pagefault_disable/enable() protection because
3017                  * we want to handle the fault gracefully. If the
3018                  * access fails we try to fault in the futex with R/W
3019                  * verification via get_user_pages. get_user() above
3020                  * does not guarantee R/W access. If that fails we
3021                  * give up and leave the futex locked.
3022                  */
3023                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3024                         if (fault_in_user_writeable(uaddr))
3025                                 return -1;
3026                         goto retry;
3027                 }
3028                 if (nval != uval)
3029                         goto retry;
3030
3031                 /*
3032                  * Wake robust non-PI futexes here. The wakeup of
3033                  * PI futexes happens in exit_pi_state():
3034                  */
3035                 if (!pi && (uval & FUTEX_WAITERS))
3036                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3037         }
3038         return 0;
3039 }
3040
3041 /*
3042  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3043  */
3044 static inline int fetch_robust_entry(struct robust_list __user **entry,
3045                                      struct robust_list __user * __user *head,
3046                                      unsigned int *pi)
3047 {
3048         unsigned long uentry;
3049
3050         if (get_user(uentry, (unsigned long __user *)head))
3051                 return -EFAULT;
3052
3053         *entry = (void __user *)(uentry & ~1UL);
3054         *pi = uentry & 1;
3055
3056         return 0;
3057 }
3058
3059 /*
3060  * Walk curr->robust_list (very carefully, it's a userspace list!)
3061  * and mark any locks found there dead, and notify any waiters.
3062  *
3063  * We silently return on any sign of list-walking problem.
3064  */
3065 void exit_robust_list(struct task_struct *curr)
3066 {
3067         struct robust_list_head __user *head = curr->robust_list;
3068         struct robust_list __user *entry, *next_entry, *pending;
3069         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3070         unsigned int uninitialized_var(next_pi);
3071         unsigned long futex_offset;
3072         int rc;
3073
3074         if (!futex_cmpxchg_enabled)
3075                 return;
3076
3077         /*
3078          * Fetch the list head (which was registered earlier, via
3079          * sys_set_robust_list()):
3080          */
3081         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3082                 return;
3083         /*
3084          * Fetch the relative futex offset:
3085          */
3086         if (get_user(futex_offset, &head->futex_offset))
3087                 return;
3088         /*
3089          * Fetch any possibly pending lock-add first, and handle it
3090          * if it exists:
3091          */
3092         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3093                 return;
3094
3095         next_entry = NULL;      /* avoid warning with gcc */
3096         while (entry != &head->list) {
3097                 /*
3098                  * Fetch the next entry in the list before calling
3099                  * handle_futex_death:
3100                  */
3101                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3102                 /*
3103                  * A pending lock might already be on the list, so
3104                  * don't process it twice:
3105                  */
3106                 if (entry != pending)
3107                         if (handle_futex_death((void __user *)entry + futex_offset,
3108                                                 curr, pi))
3109                                 return;
3110                 if (rc)
3111                         return;
3112                 entry = next_entry;
3113                 pi = next_pi;
3114                 /*
3115                  * Avoid excessively long or circular lists:
3116                  */
3117                 if (!--limit)
3118                         break;
3119
3120                 cond_resched();
3121         }
3122
3123         if (pending)
3124                 handle_futex_death((void __user *)pending + futex_offset,
3125                                    curr, pip);
3126 }
3127
3128 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3129                 u32 __user *uaddr2, u32 val2, u32 val3)
3130 {
3131         int cmd = op & FUTEX_CMD_MASK;
3132         unsigned int flags = 0;
3133
3134         if (!(op & FUTEX_PRIVATE_FLAG))
3135                 flags |= FLAGS_SHARED;
3136
3137         if (op & FUTEX_CLOCK_REALTIME) {
3138                 flags |= FLAGS_CLOCKRT;
3139                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3140                     cmd != FUTEX_WAIT_REQUEUE_PI)
3141                         return -ENOSYS;
3142         }
3143
3144         switch (cmd) {
3145         case FUTEX_LOCK_PI:
3146         case FUTEX_UNLOCK_PI:
3147         case FUTEX_TRYLOCK_PI:
3148         case FUTEX_WAIT_REQUEUE_PI:
3149         case FUTEX_CMP_REQUEUE_PI:
3150                 if (!futex_cmpxchg_enabled)
3151                         return -ENOSYS;
3152         }
3153
3154         switch (cmd) {
3155         case FUTEX_WAIT:
3156                 val3 = FUTEX_BITSET_MATCH_ANY;
3157         case FUTEX_WAIT_BITSET:
3158                 return futex_wait(uaddr, flags, val, timeout, val3);
3159         case FUTEX_WAKE:
3160                 val3 = FUTEX_BITSET_MATCH_ANY;
3161         case FUTEX_WAKE_BITSET:
3162                 return futex_wake(uaddr, flags, val, val3);
3163         case FUTEX_REQUEUE:
3164                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3165         case FUTEX_CMP_REQUEUE:
3166                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3167         case FUTEX_WAKE_OP:
3168                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3169         case FUTEX_LOCK_PI:
3170                 return futex_lock_pi(uaddr, flags, timeout, 0);
3171         case FUTEX_UNLOCK_PI:
3172                 return futex_unlock_pi(uaddr, flags);
3173         case FUTEX_TRYLOCK_PI:
3174                 return futex_lock_pi(uaddr, flags, NULL, 1);
3175         case FUTEX_WAIT_REQUEUE_PI:
3176                 val3 = FUTEX_BITSET_MATCH_ANY;
3177                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3178                                              uaddr2);
3179         case FUTEX_CMP_REQUEUE_PI:
3180                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3181         }
3182         return -ENOSYS;
3183 }
3184
3185
3186 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3187                 struct timespec __user *, utime, u32 __user *, uaddr2,
3188                 u32, val3)
3189 {
3190         struct timespec ts;
3191         ktime_t t, *tp = NULL;
3192         u32 val2 = 0;
3193         int cmd = op & FUTEX_CMD_MASK;
3194
3195         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3196                       cmd == FUTEX_WAIT_BITSET ||
3197                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3198                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3199                         return -EFAULT;
3200                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3201                         return -EFAULT;
3202                 if (!timespec_valid(&ts))
3203                         return -EINVAL;
3204
3205                 t = timespec_to_ktime(ts);
3206                 if (cmd == FUTEX_WAIT)
3207                         t = ktime_add_safe(ktime_get(), t);
3208                 tp = &t;
3209         }
3210         /*
3211          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3212          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3213          */
3214         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3215             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3216                 val2 = (u32) (unsigned long) utime;
3217
3218         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3219 }
3220
3221 static void __init futex_detect_cmpxchg(void)
3222 {
3223 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3224         u32 curval;
3225
3226         /*
3227          * This will fail and we want it. Some arch implementations do
3228          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3229          * functionality. We want to know that before we call in any
3230          * of the complex code paths. Also we want to prevent
3231          * registration of robust lists in that case. NULL is
3232          * guaranteed to fault and we get -EFAULT on functional
3233          * implementation, the non-functional ones will return
3234          * -ENOSYS.
3235          */
3236         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3237                 futex_cmpxchg_enabled = 1;
3238 #endif
3239 }
3240
3241 static int __init futex_init(void)
3242 {
3243         unsigned int futex_shift;
3244         unsigned long i;
3245
3246 #if CONFIG_BASE_SMALL
3247         futex_hashsize = 16;
3248 #else
3249         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3250 #endif
3251
3252         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3253                                                futex_hashsize, 0,
3254                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3255                                                &futex_shift, NULL,
3256                                                futex_hashsize, futex_hashsize);
3257         futex_hashsize = 1UL << futex_shift;
3258
3259         futex_detect_cmpxchg();
3260
3261         for (i = 0; i < futex_hashsize; i++) {
3262                 atomic_set(&futex_queues[i].waiters, 0);
3263                 plist_head_init(&futex_queues[i].chain);
3264                 spin_lock_init(&futex_queues[i].lock);
3265         }
3266
3267         return 0;
3268 }
3269 __initcall(futex_init);