Merge branch 'for-linus-4.21-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/compat.h>
48 #include <linux/slab.h>
49 #include <linux/poll.h>
50 #include <linux/fs.h>
51 #include <linux/file.h>
52 #include <linux/jhash.h>
53 #include <linux/init.h>
54 #include <linux/futex.h>
55 #include <linux/mount.h>
56 #include <linux/pagemap.h>
57 #include <linux/syscalls.h>
58 #include <linux/signal.h>
59 #include <linux/export.h>
60 #include <linux/magic.h>
61 #include <linux/pid.h>
62 #include <linux/nsproxy.h>
63 #include <linux/ptrace.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/wake_q.h>
66 #include <linux/sched/mm.h>
67 #include <linux/hugetlb.h>
68 #include <linux/freezer.h>
69 #include <linux/memblock.h>
70 #include <linux/fault-inject.h>
71
72 #include <asm/futex.h>
73
74 #include "locking/rtmutex_common.h"
75
76 /*
77  * READ this before attempting to hack on futexes!
78  *
79  * Basic futex operation and ordering guarantees
80  * =============================================
81  *
82  * The waiter reads the futex value in user space and calls
83  * futex_wait(). This function computes the hash bucket and acquires
84  * the hash bucket lock. After that it reads the futex user space value
85  * again and verifies that the data has not changed. If it has not changed
86  * it enqueues itself into the hash bucket, releases the hash bucket lock
87  * and schedules.
88  *
89  * The waker side modifies the user space value of the futex and calls
90  * futex_wake(). This function computes the hash bucket and acquires the
91  * hash bucket lock. Then it looks for waiters on that futex in the hash
92  * bucket and wakes them.
93  *
94  * In futex wake up scenarios where no tasks are blocked on a futex, taking
95  * the hb spinlock can be avoided and simply return. In order for this
96  * optimization to work, ordering guarantees must exist so that the waiter
97  * being added to the list is acknowledged when the list is concurrently being
98  * checked by the waker, avoiding scenarios like the following:
99  *
100  * CPU 0                               CPU 1
101  * val = *futex;
102  * sys_futex(WAIT, futex, val);
103  *   futex_wait(futex, val);
104  *   uval = *futex;
105  *                                     *futex = newval;
106  *                                     sys_futex(WAKE, futex);
107  *                                       futex_wake(futex);
108  *                                       if (queue_empty())
109  *                                         return;
110  *   if (uval == val)
111  *      lock(hash_bucket(futex));
112  *      queue();
113  *     unlock(hash_bucket(futex));
114  *     schedule();
115  *
116  * This would cause the waiter on CPU 0 to wait forever because it
117  * missed the transition of the user space value from val to newval
118  * and the waker did not find the waiter in the hash bucket queue.
119  *
120  * The correct serialization ensures that a waiter either observes
121  * the changed user space value before blocking or is woken by a
122  * concurrent waker:
123  *
124  * CPU 0                                 CPU 1
125  * val = *futex;
126  * sys_futex(WAIT, futex, val);
127  *   futex_wait(futex, val);
128  *
129  *   waiters++; (a)
130  *   smp_mb(); (A) <-- paired with -.
131  *                                  |
132  *   lock(hash_bucket(futex));      |
133  *                                  |
134  *   uval = *futex;                 |
135  *                                  |        *futex = newval;
136  *                                  |        sys_futex(WAKE, futex);
137  *                                  |          futex_wake(futex);
138  *                                  |
139  *                                  `--------> smp_mb(); (B)
140  *   if (uval == val)
141  *     queue();
142  *     unlock(hash_bucket(futex));
143  *     schedule();                         if (waiters)
144  *                                           lock(hash_bucket(futex));
145  *   else                                    wake_waiters(futex);
146  *     waiters--; (b)                        unlock(hash_bucket(futex));
147  *
148  * Where (A) orders the waiters increment and the futex value read through
149  * atomic operations (see hb_waiters_inc) and where (B) orders the write
150  * to futex and the waiters read -- this is done by the barriers for both
151  * shared and private futexes in get_futex_key_refs().
152  *
153  * This yields the following case (where X:=waiters, Y:=futex):
154  *
155  *      X = Y = 0
156  *
157  *      w[X]=1          w[Y]=1
158  *      MB              MB
159  *      r[Y]=y          r[X]=x
160  *
161  * Which guarantees that x==0 && y==0 is impossible; which translates back into
162  * the guarantee that we cannot both miss the futex variable change and the
163  * enqueue.
164  *
165  * Note that a new waiter is accounted for in (a) even when it is possible that
166  * the wait call can return error, in which case we backtrack from it in (b).
167  * Refer to the comment in queue_lock().
168  *
169  * Similarly, in order to account for waiters being requeued on another
170  * address we always increment the waiters for the destination bucket before
171  * acquiring the lock. It then decrements them again  after releasing it -
172  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
173  * will do the additional required waiter count housekeeping. This is done for
174  * double_lock_hb() and double_unlock_hb(), respectively.
175  */
176
177 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
178 #define futex_cmpxchg_enabled 1
179 #else
180 static int  __read_mostly futex_cmpxchg_enabled;
181 #endif
182
183 /*
184  * Futex flags used to encode options to functions and preserve them across
185  * restarts.
186  */
187 #ifdef CONFIG_MMU
188 # define FLAGS_SHARED           0x01
189 #else
190 /*
191  * NOMMU does not have per process address space. Let the compiler optimize
192  * code away.
193  */
194 # define FLAGS_SHARED           0x00
195 #endif
196 #define FLAGS_CLOCKRT           0x02
197 #define FLAGS_HAS_TIMEOUT       0x04
198
199 /*
200  * Priority Inheritance state:
201  */
202 struct futex_pi_state {
203         /*
204          * list of 'owned' pi_state instances - these have to be
205          * cleaned up in do_exit() if the task exits prematurely:
206          */
207         struct list_head list;
208
209         /*
210          * The PI object:
211          */
212         struct rt_mutex pi_mutex;
213
214         struct task_struct *owner;
215         atomic_t refcount;
216
217         union futex_key key;
218 } __randomize_layout;
219
220 /**
221  * struct futex_q - The hashed futex queue entry, one per waiting task
222  * @list:               priority-sorted list of tasks waiting on this futex
223  * @task:               the task waiting on the futex
224  * @lock_ptr:           the hash bucket lock
225  * @key:                the key the futex is hashed on
226  * @pi_state:           optional priority inheritance state
227  * @rt_waiter:          rt_waiter storage for use with requeue_pi
228  * @requeue_pi_key:     the requeue_pi target futex key
229  * @bitset:             bitset for the optional bitmasked wakeup
230  *
231  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
232  * we can wake only the relevant ones (hashed queues may be shared).
233  *
234  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
235  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
236  * The order of wakeup is always to make the first condition true, then
237  * the second.
238  *
239  * PI futexes are typically woken before they are removed from the hash list via
240  * the rt_mutex code. See unqueue_me_pi().
241  */
242 struct futex_q {
243         struct plist_node list;
244
245         struct task_struct *task;
246         spinlock_t *lock_ptr;
247         union futex_key key;
248         struct futex_pi_state *pi_state;
249         struct rt_mutex_waiter *rt_waiter;
250         union futex_key *requeue_pi_key;
251         u32 bitset;
252 } __randomize_layout;
253
254 static const struct futex_q futex_q_init = {
255         /* list gets initialized in queue_me()*/
256         .key = FUTEX_KEY_INIT,
257         .bitset = FUTEX_BITSET_MATCH_ANY
258 };
259
260 /*
261  * Hash buckets are shared by all the futex_keys that hash to the same
262  * location.  Each key may have multiple futex_q structures, one for each task
263  * waiting on a futex.
264  */
265 struct futex_hash_bucket {
266         atomic_t waiters;
267         spinlock_t lock;
268         struct plist_head chain;
269 } ____cacheline_aligned_in_smp;
270
271 /*
272  * The base of the bucket array and its size are always used together
273  * (after initialization only in hash_futex()), so ensure that they
274  * reside in the same cacheline.
275  */
276 static struct {
277         struct futex_hash_bucket *queues;
278         unsigned long            hashsize;
279 } __futex_data __read_mostly __aligned(2*sizeof(long));
280 #define futex_queues   (__futex_data.queues)
281 #define futex_hashsize (__futex_data.hashsize)
282
283
284 /*
285  * Fault injections for futexes.
286  */
287 #ifdef CONFIG_FAIL_FUTEX
288
289 static struct {
290         struct fault_attr attr;
291
292         bool ignore_private;
293 } fail_futex = {
294         .attr = FAULT_ATTR_INITIALIZER,
295         .ignore_private = false,
296 };
297
298 static int __init setup_fail_futex(char *str)
299 {
300         return setup_fault_attr(&fail_futex.attr, str);
301 }
302 __setup("fail_futex=", setup_fail_futex);
303
304 static bool should_fail_futex(bool fshared)
305 {
306         if (fail_futex.ignore_private && !fshared)
307                 return false;
308
309         return should_fail(&fail_futex.attr, 1);
310 }
311
312 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
313
314 static int __init fail_futex_debugfs(void)
315 {
316         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
317         struct dentry *dir;
318
319         dir = fault_create_debugfs_attr("fail_futex", NULL,
320                                         &fail_futex.attr);
321         if (IS_ERR(dir))
322                 return PTR_ERR(dir);
323
324         if (!debugfs_create_bool("ignore-private", mode, dir,
325                                  &fail_futex.ignore_private)) {
326                 debugfs_remove_recursive(dir);
327                 return -ENOMEM;
328         }
329
330         return 0;
331 }
332
333 late_initcall(fail_futex_debugfs);
334
335 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
336
337 #else
338 static inline bool should_fail_futex(bool fshared)
339 {
340         return false;
341 }
342 #endif /* CONFIG_FAIL_FUTEX */
343
344 static inline void futex_get_mm(union futex_key *key)
345 {
346         mmgrab(key->private.mm);
347         /*
348          * Ensure futex_get_mm() implies a full barrier such that
349          * get_futex_key() implies a full barrier. This is relied upon
350          * as smp_mb(); (B), see the ordering comment above.
351          */
352         smp_mb__after_atomic();
353 }
354
355 /*
356  * Reflects a new waiter being added to the waitqueue.
357  */
358 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
359 {
360 #ifdef CONFIG_SMP
361         atomic_inc(&hb->waiters);
362         /*
363          * Full barrier (A), see the ordering comment above.
364          */
365         smp_mb__after_atomic();
366 #endif
367 }
368
369 /*
370  * Reflects a waiter being removed from the waitqueue by wakeup
371  * paths.
372  */
373 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
374 {
375 #ifdef CONFIG_SMP
376         atomic_dec(&hb->waiters);
377 #endif
378 }
379
380 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
381 {
382 #ifdef CONFIG_SMP
383         return atomic_read(&hb->waiters);
384 #else
385         return 1;
386 #endif
387 }
388
389 /**
390  * hash_futex - Return the hash bucket in the global hash
391  * @key:        Pointer to the futex key for which the hash is calculated
392  *
393  * We hash on the keys returned from get_futex_key (see below) and return the
394  * corresponding hash bucket in the global hash.
395  */
396 static struct futex_hash_bucket *hash_futex(union futex_key *key)
397 {
398         u32 hash = jhash2((u32*)&key->both.word,
399                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
400                           key->both.offset);
401         return &futex_queues[hash & (futex_hashsize - 1)];
402 }
403
404
405 /**
406  * match_futex - Check whether two futex keys are equal
407  * @key1:       Pointer to key1
408  * @key2:       Pointer to key2
409  *
410  * Return 1 if two futex_keys are equal, 0 otherwise.
411  */
412 static inline int match_futex(union futex_key *key1, union futex_key *key2)
413 {
414         return (key1 && key2
415                 && key1->both.word == key2->both.word
416                 && key1->both.ptr == key2->both.ptr
417                 && key1->both.offset == key2->both.offset);
418 }
419
420 /*
421  * Take a reference to the resource addressed by a key.
422  * Can be called while holding spinlocks.
423  *
424  */
425 static void get_futex_key_refs(union futex_key *key)
426 {
427         if (!key->both.ptr)
428                 return;
429
430         /*
431          * On MMU less systems futexes are always "private" as there is no per
432          * process address space. We need the smp wmb nevertheless - yes,
433          * arch/blackfin has MMU less SMP ...
434          */
435         if (!IS_ENABLED(CONFIG_MMU)) {
436                 smp_mb(); /* explicit smp_mb(); (B) */
437                 return;
438         }
439
440         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
441         case FUT_OFF_INODE:
442                 ihold(key->shared.inode); /* implies smp_mb(); (B) */
443                 break;
444         case FUT_OFF_MMSHARED:
445                 futex_get_mm(key); /* implies smp_mb(); (B) */
446                 break;
447         default:
448                 /*
449                  * Private futexes do not hold reference on an inode or
450                  * mm, therefore the only purpose of calling get_futex_key_refs
451                  * is because we need the barrier for the lockless waiter check.
452                  */
453                 smp_mb(); /* explicit smp_mb(); (B) */
454         }
455 }
456
457 /*
458  * Drop a reference to the resource addressed by a key.
459  * The hash bucket spinlock must not be held. This is
460  * a no-op for private futexes, see comment in the get
461  * counterpart.
462  */
463 static void drop_futex_key_refs(union futex_key *key)
464 {
465         if (!key->both.ptr) {
466                 /* If we're here then we tried to put a key we failed to get */
467                 WARN_ON_ONCE(1);
468                 return;
469         }
470
471         if (!IS_ENABLED(CONFIG_MMU))
472                 return;
473
474         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
475         case FUT_OFF_INODE:
476                 iput(key->shared.inode);
477                 break;
478         case FUT_OFF_MMSHARED:
479                 mmdrop(key->private.mm);
480                 break;
481         }
482 }
483
484 /**
485  * get_futex_key() - Get parameters which are the keys for a futex
486  * @uaddr:      virtual address of the futex
487  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
488  * @key:        address where result is stored.
489  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
490  *              VERIFY_WRITE)
491  *
492  * Return: a negative error code or 0
493  *
494  * The key words are stored in @key on success.
495  *
496  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
497  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
498  * We can usually work out the index without swapping in the page.
499  *
500  * lock_page() might sleep, the caller should not hold a spinlock.
501  */
502 static int
503 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
504 {
505         unsigned long address = (unsigned long)uaddr;
506         struct mm_struct *mm = current->mm;
507         struct page *page, *tail;
508         struct address_space *mapping;
509         int err, ro = 0;
510
511         /*
512          * The futex address must be "naturally" aligned.
513          */
514         key->both.offset = address % PAGE_SIZE;
515         if (unlikely((address % sizeof(u32)) != 0))
516                 return -EINVAL;
517         address -= key->both.offset;
518
519         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
520                 return -EFAULT;
521
522         if (unlikely(should_fail_futex(fshared)))
523                 return -EFAULT;
524
525         /*
526          * PROCESS_PRIVATE futexes are fast.
527          * As the mm cannot disappear under us and the 'key' only needs
528          * virtual address, we dont even have to find the underlying vma.
529          * Note : We do have to check 'uaddr' is a valid user address,
530          *        but access_ok() should be faster than find_vma()
531          */
532         if (!fshared) {
533                 key->private.mm = mm;
534                 key->private.address = address;
535                 get_futex_key_refs(key);  /* implies smp_mb(); (B) */
536                 return 0;
537         }
538
539 again:
540         /* Ignore any VERIFY_READ mapping (futex common case) */
541         if (unlikely(should_fail_futex(fshared)))
542                 return -EFAULT;
543
544         err = get_user_pages_fast(address, 1, 1, &page);
545         /*
546          * If write access is not required (eg. FUTEX_WAIT), try
547          * and get read-only access.
548          */
549         if (err == -EFAULT && rw == VERIFY_READ) {
550                 err = get_user_pages_fast(address, 1, 0, &page);
551                 ro = 1;
552         }
553         if (err < 0)
554                 return err;
555         else
556                 err = 0;
557
558         /*
559          * The treatment of mapping from this point on is critical. The page
560          * lock protects many things but in this context the page lock
561          * stabilizes mapping, prevents inode freeing in the shared
562          * file-backed region case and guards against movement to swap cache.
563          *
564          * Strictly speaking the page lock is not needed in all cases being
565          * considered here and page lock forces unnecessarily serialization
566          * From this point on, mapping will be re-verified if necessary and
567          * page lock will be acquired only if it is unavoidable
568          *
569          * Mapping checks require the head page for any compound page so the
570          * head page and mapping is looked up now. For anonymous pages, it
571          * does not matter if the page splits in the future as the key is
572          * based on the address. For filesystem-backed pages, the tail is
573          * required as the index of the page determines the key. For
574          * base pages, there is no tail page and tail == page.
575          */
576         tail = page;
577         page = compound_head(page);
578         mapping = READ_ONCE(page->mapping);
579
580         /*
581          * If page->mapping is NULL, then it cannot be a PageAnon
582          * page; but it might be the ZERO_PAGE or in the gate area or
583          * in a special mapping (all cases which we are happy to fail);
584          * or it may have been a good file page when get_user_pages_fast
585          * found it, but truncated or holepunched or subjected to
586          * invalidate_complete_page2 before we got the page lock (also
587          * cases which we are happy to fail).  And we hold a reference,
588          * so refcount care in invalidate_complete_page's remove_mapping
589          * prevents drop_caches from setting mapping to NULL beneath us.
590          *
591          * The case we do have to guard against is when memory pressure made
592          * shmem_writepage move it from filecache to swapcache beneath us:
593          * an unlikely race, but we do need to retry for page->mapping.
594          */
595         if (unlikely(!mapping)) {
596                 int shmem_swizzled;
597
598                 /*
599                  * Page lock is required to identify which special case above
600                  * applies. If this is really a shmem page then the page lock
601                  * will prevent unexpected transitions.
602                  */
603                 lock_page(page);
604                 shmem_swizzled = PageSwapCache(page) || page->mapping;
605                 unlock_page(page);
606                 put_page(page);
607
608                 if (shmem_swizzled)
609                         goto again;
610
611                 return -EFAULT;
612         }
613
614         /*
615          * Private mappings are handled in a simple way.
616          *
617          * If the futex key is stored on an anonymous page, then the associated
618          * object is the mm which is implicitly pinned by the calling process.
619          *
620          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
621          * it's a read-only handle, it's expected that futexes attach to
622          * the object not the particular process.
623          */
624         if (PageAnon(page)) {
625                 /*
626                  * A RO anonymous page will never change and thus doesn't make
627                  * sense for futex operations.
628                  */
629                 if (unlikely(should_fail_futex(fshared)) || ro) {
630                         err = -EFAULT;
631                         goto out;
632                 }
633
634                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
635                 key->private.mm = mm;
636                 key->private.address = address;
637
638                 get_futex_key_refs(key); /* implies smp_mb(); (B) */
639
640         } else {
641                 struct inode *inode;
642
643                 /*
644                  * The associated futex object in this case is the inode and
645                  * the page->mapping must be traversed. Ordinarily this should
646                  * be stabilised under page lock but it's not strictly
647                  * necessary in this case as we just want to pin the inode, not
648                  * update the radix tree or anything like that.
649                  *
650                  * The RCU read lock is taken as the inode is finally freed
651                  * under RCU. If the mapping still matches expectations then the
652                  * mapping->host can be safely accessed as being a valid inode.
653                  */
654                 rcu_read_lock();
655
656                 if (READ_ONCE(page->mapping) != mapping) {
657                         rcu_read_unlock();
658                         put_page(page);
659
660                         goto again;
661                 }
662
663                 inode = READ_ONCE(mapping->host);
664                 if (!inode) {
665                         rcu_read_unlock();
666                         put_page(page);
667
668                         goto again;
669                 }
670
671                 /*
672                  * Take a reference unless it is about to be freed. Previously
673                  * this reference was taken by ihold under the page lock
674                  * pinning the inode in place so i_lock was unnecessary. The
675                  * only way for this check to fail is if the inode was
676                  * truncated in parallel which is almost certainly an
677                  * application bug. In such a case, just retry.
678                  *
679                  * We are not calling into get_futex_key_refs() in file-backed
680                  * cases, therefore a successful atomic_inc return below will
681                  * guarantee that get_futex_key() will still imply smp_mb(); (B).
682                  */
683                 if (!atomic_inc_not_zero(&inode->i_count)) {
684                         rcu_read_unlock();
685                         put_page(page);
686
687                         goto again;
688                 }
689
690                 /* Should be impossible but lets be paranoid for now */
691                 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
692                         err = -EFAULT;
693                         rcu_read_unlock();
694                         iput(inode);
695
696                         goto out;
697                 }
698
699                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
700                 key->shared.inode = inode;
701                 key->shared.pgoff = basepage_index(tail);
702                 rcu_read_unlock();
703         }
704
705 out:
706         put_page(page);
707         return err;
708 }
709
710 static inline void put_futex_key(union futex_key *key)
711 {
712         drop_futex_key_refs(key);
713 }
714
715 /**
716  * fault_in_user_writeable() - Fault in user address and verify RW access
717  * @uaddr:      pointer to faulting user space address
718  *
719  * Slow path to fixup the fault we just took in the atomic write
720  * access to @uaddr.
721  *
722  * We have no generic implementation of a non-destructive write to the
723  * user address. We know that we faulted in the atomic pagefault
724  * disabled section so we can as well avoid the #PF overhead by
725  * calling get_user_pages() right away.
726  */
727 static int fault_in_user_writeable(u32 __user *uaddr)
728 {
729         struct mm_struct *mm = current->mm;
730         int ret;
731
732         down_read(&mm->mmap_sem);
733         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
734                                FAULT_FLAG_WRITE, NULL);
735         up_read(&mm->mmap_sem);
736
737         return ret < 0 ? ret : 0;
738 }
739
740 /**
741  * futex_top_waiter() - Return the highest priority waiter on a futex
742  * @hb:         the hash bucket the futex_q's reside in
743  * @key:        the futex key (to distinguish it from other futex futex_q's)
744  *
745  * Must be called with the hb lock held.
746  */
747 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
748                                         union futex_key *key)
749 {
750         struct futex_q *this;
751
752         plist_for_each_entry(this, &hb->chain, list) {
753                 if (match_futex(&this->key, key))
754                         return this;
755         }
756         return NULL;
757 }
758
759 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
760                                       u32 uval, u32 newval)
761 {
762         int ret;
763
764         pagefault_disable();
765         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
766         pagefault_enable();
767
768         return ret;
769 }
770
771 static int get_futex_value_locked(u32 *dest, u32 __user *from)
772 {
773         int ret;
774
775         pagefault_disable();
776         ret = __get_user(*dest, from);
777         pagefault_enable();
778
779         return ret ? -EFAULT : 0;
780 }
781
782
783 /*
784  * PI code:
785  */
786 static int refill_pi_state_cache(void)
787 {
788         struct futex_pi_state *pi_state;
789
790         if (likely(current->pi_state_cache))
791                 return 0;
792
793         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
794
795         if (!pi_state)
796                 return -ENOMEM;
797
798         INIT_LIST_HEAD(&pi_state->list);
799         /* pi_mutex gets initialized later */
800         pi_state->owner = NULL;
801         atomic_set(&pi_state->refcount, 1);
802         pi_state->key = FUTEX_KEY_INIT;
803
804         current->pi_state_cache = pi_state;
805
806         return 0;
807 }
808
809 static struct futex_pi_state *alloc_pi_state(void)
810 {
811         struct futex_pi_state *pi_state = current->pi_state_cache;
812
813         WARN_ON(!pi_state);
814         current->pi_state_cache = NULL;
815
816         return pi_state;
817 }
818
819 static void get_pi_state(struct futex_pi_state *pi_state)
820 {
821         WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
822 }
823
824 /*
825  * Drops a reference to the pi_state object and frees or caches it
826  * when the last reference is gone.
827  */
828 static void put_pi_state(struct futex_pi_state *pi_state)
829 {
830         if (!pi_state)
831                 return;
832
833         if (!atomic_dec_and_test(&pi_state->refcount))
834                 return;
835
836         /*
837          * If pi_state->owner is NULL, the owner is most probably dying
838          * and has cleaned up the pi_state already
839          */
840         if (pi_state->owner) {
841                 struct task_struct *owner;
842
843                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
844                 owner = pi_state->owner;
845                 if (owner) {
846                         raw_spin_lock(&owner->pi_lock);
847                         list_del_init(&pi_state->list);
848                         raw_spin_unlock(&owner->pi_lock);
849                 }
850                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
851                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
852         }
853
854         if (current->pi_state_cache) {
855                 kfree(pi_state);
856         } else {
857                 /*
858                  * pi_state->list is already empty.
859                  * clear pi_state->owner.
860                  * refcount is at 0 - put it back to 1.
861                  */
862                 pi_state->owner = NULL;
863                 atomic_set(&pi_state->refcount, 1);
864                 current->pi_state_cache = pi_state;
865         }
866 }
867
868 #ifdef CONFIG_FUTEX_PI
869
870 /*
871  * This task is holding PI mutexes at exit time => bad.
872  * Kernel cleans up PI-state, but userspace is likely hosed.
873  * (Robust-futex cleanup is separate and might save the day for userspace.)
874  */
875 void exit_pi_state_list(struct task_struct *curr)
876 {
877         struct list_head *next, *head = &curr->pi_state_list;
878         struct futex_pi_state *pi_state;
879         struct futex_hash_bucket *hb;
880         union futex_key key = FUTEX_KEY_INIT;
881
882         if (!futex_cmpxchg_enabled)
883                 return;
884         /*
885          * We are a ZOMBIE and nobody can enqueue itself on
886          * pi_state_list anymore, but we have to be careful
887          * versus waiters unqueueing themselves:
888          */
889         raw_spin_lock_irq(&curr->pi_lock);
890         while (!list_empty(head)) {
891                 next = head->next;
892                 pi_state = list_entry(next, struct futex_pi_state, list);
893                 key = pi_state->key;
894                 hb = hash_futex(&key);
895
896                 /*
897                  * We can race against put_pi_state() removing itself from the
898                  * list (a waiter going away). put_pi_state() will first
899                  * decrement the reference count and then modify the list, so
900                  * its possible to see the list entry but fail this reference
901                  * acquire.
902                  *
903                  * In that case; drop the locks to let put_pi_state() make
904                  * progress and retry the loop.
905                  */
906                 if (!atomic_inc_not_zero(&pi_state->refcount)) {
907                         raw_spin_unlock_irq(&curr->pi_lock);
908                         cpu_relax();
909                         raw_spin_lock_irq(&curr->pi_lock);
910                         continue;
911                 }
912                 raw_spin_unlock_irq(&curr->pi_lock);
913
914                 spin_lock(&hb->lock);
915                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
916                 raw_spin_lock(&curr->pi_lock);
917                 /*
918                  * We dropped the pi-lock, so re-check whether this
919                  * task still owns the PI-state:
920                  */
921                 if (head->next != next) {
922                         /* retain curr->pi_lock for the loop invariant */
923                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
924                         spin_unlock(&hb->lock);
925                         put_pi_state(pi_state);
926                         continue;
927                 }
928
929                 WARN_ON(pi_state->owner != curr);
930                 WARN_ON(list_empty(&pi_state->list));
931                 list_del_init(&pi_state->list);
932                 pi_state->owner = NULL;
933
934                 raw_spin_unlock(&curr->pi_lock);
935                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
936                 spin_unlock(&hb->lock);
937
938                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
939                 put_pi_state(pi_state);
940
941                 raw_spin_lock_irq(&curr->pi_lock);
942         }
943         raw_spin_unlock_irq(&curr->pi_lock);
944 }
945
946 #endif
947
948 /*
949  * We need to check the following states:
950  *
951  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
952  *
953  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
954  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
955  *
956  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
957  *
958  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
959  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
960  *
961  * [6]  Found  | Found    | task      | 0         | 1      | Valid
962  *
963  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
964  *
965  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
966  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
967  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
968  *
969  * [1]  Indicates that the kernel can acquire the futex atomically. We
970  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
971  *
972  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
973  *      thread is found then it indicates that the owner TID has died.
974  *
975  * [3]  Invalid. The waiter is queued on a non PI futex
976  *
977  * [4]  Valid state after exit_robust_list(), which sets the user space
978  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
979  *
980  * [5]  The user space value got manipulated between exit_robust_list()
981  *      and exit_pi_state_list()
982  *
983  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
984  *      the pi_state but cannot access the user space value.
985  *
986  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
987  *
988  * [8]  Owner and user space value match
989  *
990  * [9]  There is no transient state which sets the user space TID to 0
991  *      except exit_robust_list(), but this is indicated by the
992  *      FUTEX_OWNER_DIED bit. See [4]
993  *
994  * [10] There is no transient state which leaves owner and user space
995  *      TID out of sync.
996  *
997  *
998  * Serialization and lifetime rules:
999  *
1000  * hb->lock:
1001  *
1002  *      hb -> futex_q, relation
1003  *      futex_q -> pi_state, relation
1004  *
1005  *      (cannot be raw because hb can contain arbitrary amount
1006  *       of futex_q's)
1007  *
1008  * pi_mutex->wait_lock:
1009  *
1010  *      {uval, pi_state}
1011  *
1012  *      (and pi_mutex 'obviously')
1013  *
1014  * p->pi_lock:
1015  *
1016  *      p->pi_state_list -> pi_state->list, relation
1017  *
1018  * pi_state->refcount:
1019  *
1020  *      pi_state lifetime
1021  *
1022  *
1023  * Lock order:
1024  *
1025  *   hb->lock
1026  *     pi_mutex->wait_lock
1027  *       p->pi_lock
1028  *
1029  */
1030
1031 /*
1032  * Validate that the existing waiter has a pi_state and sanity check
1033  * the pi_state against the user space value. If correct, attach to
1034  * it.
1035  */
1036 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1037                               struct futex_pi_state *pi_state,
1038                               struct futex_pi_state **ps)
1039 {
1040         pid_t pid = uval & FUTEX_TID_MASK;
1041         u32 uval2;
1042         int ret;
1043
1044         /*
1045          * Userspace might have messed up non-PI and PI futexes [3]
1046          */
1047         if (unlikely(!pi_state))
1048                 return -EINVAL;
1049
1050         /*
1051          * We get here with hb->lock held, and having found a
1052          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1053          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1054          * which in turn means that futex_lock_pi() still has a reference on
1055          * our pi_state.
1056          *
1057          * The waiter holding a reference on @pi_state also protects against
1058          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1059          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1060          * free pi_state before we can take a reference ourselves.
1061          */
1062         WARN_ON(!atomic_read(&pi_state->refcount));
1063
1064         /*
1065          * Now that we have a pi_state, we can acquire wait_lock
1066          * and do the state validation.
1067          */
1068         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1069
1070         /*
1071          * Since {uval, pi_state} is serialized by wait_lock, and our current
1072          * uval was read without holding it, it can have changed. Verify it
1073          * still is what we expect it to be, otherwise retry the entire
1074          * operation.
1075          */
1076         if (get_futex_value_locked(&uval2, uaddr))
1077                 goto out_efault;
1078
1079         if (uval != uval2)
1080                 goto out_eagain;
1081
1082         /*
1083          * Handle the owner died case:
1084          */
1085         if (uval & FUTEX_OWNER_DIED) {
1086                 /*
1087                  * exit_pi_state_list sets owner to NULL and wakes the
1088                  * topmost waiter. The task which acquires the
1089                  * pi_state->rt_mutex will fixup owner.
1090                  */
1091                 if (!pi_state->owner) {
1092                         /*
1093                          * No pi state owner, but the user space TID
1094                          * is not 0. Inconsistent state. [5]
1095                          */
1096                         if (pid)
1097                                 goto out_einval;
1098                         /*
1099                          * Take a ref on the state and return success. [4]
1100                          */
1101                         goto out_attach;
1102                 }
1103
1104                 /*
1105                  * If TID is 0, then either the dying owner has not
1106                  * yet executed exit_pi_state_list() or some waiter
1107                  * acquired the rtmutex in the pi state, but did not
1108                  * yet fixup the TID in user space.
1109                  *
1110                  * Take a ref on the state and return success. [6]
1111                  */
1112                 if (!pid)
1113                         goto out_attach;
1114         } else {
1115                 /*
1116                  * If the owner died bit is not set, then the pi_state
1117                  * must have an owner. [7]
1118                  */
1119                 if (!pi_state->owner)
1120                         goto out_einval;
1121         }
1122
1123         /*
1124          * Bail out if user space manipulated the futex value. If pi
1125          * state exists then the owner TID must be the same as the
1126          * user space TID. [9/10]
1127          */
1128         if (pid != task_pid_vnr(pi_state->owner))
1129                 goto out_einval;
1130
1131 out_attach:
1132         get_pi_state(pi_state);
1133         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1134         *ps = pi_state;
1135         return 0;
1136
1137 out_einval:
1138         ret = -EINVAL;
1139         goto out_error;
1140
1141 out_eagain:
1142         ret = -EAGAIN;
1143         goto out_error;
1144
1145 out_efault:
1146         ret = -EFAULT;
1147         goto out_error;
1148
1149 out_error:
1150         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1151         return ret;
1152 }
1153
1154 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1155                             struct task_struct *tsk)
1156 {
1157         u32 uval2;
1158
1159         /*
1160          * If PF_EXITPIDONE is not yet set, then try again.
1161          */
1162         if (tsk && !(tsk->flags & PF_EXITPIDONE))
1163                 return -EAGAIN;
1164
1165         /*
1166          * Reread the user space value to handle the following situation:
1167          *
1168          * CPU0                         CPU1
1169          *
1170          * sys_exit()                   sys_futex()
1171          *  do_exit()                    futex_lock_pi()
1172          *                                futex_lock_pi_atomic()
1173          *   exit_signals(tsk)              No waiters:
1174          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1175          *  mm_release(tsk)                 Set waiter bit
1176          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1177          *      Set owner died              attach_to_pi_owner() {
1178          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1179          *   }                               if (!tsk->flags & PF_EXITING) {
1180          *  ...                                attach();
1181          *  tsk->flags |= PF_EXITPIDONE;     } else {
1182          *                                     if (!(tsk->flags & PF_EXITPIDONE))
1183          *                                       return -EAGAIN;
1184          *                                     return -ESRCH; <--- FAIL
1185          *                                   }
1186          *
1187          * Returning ESRCH unconditionally is wrong here because the
1188          * user space value has been changed by the exiting task.
1189          *
1190          * The same logic applies to the case where the exiting task is
1191          * already gone.
1192          */
1193         if (get_futex_value_locked(&uval2, uaddr))
1194                 return -EFAULT;
1195
1196         /* If the user space value has changed, try again. */
1197         if (uval2 != uval)
1198                 return -EAGAIN;
1199
1200         /*
1201          * The exiting task did not have a robust list, the robust list was
1202          * corrupted or the user space value in *uaddr is simply bogus.
1203          * Give up and tell user space.
1204          */
1205         return -ESRCH;
1206 }
1207
1208 /*
1209  * Lookup the task for the TID provided from user space and attach to
1210  * it after doing proper sanity checks.
1211  */
1212 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1213                               struct futex_pi_state **ps)
1214 {
1215         pid_t pid = uval & FUTEX_TID_MASK;
1216         struct futex_pi_state *pi_state;
1217         struct task_struct *p;
1218
1219         /*
1220          * We are the first waiter - try to look up the real owner and attach
1221          * the new pi_state to it, but bail out when TID = 0 [1]
1222          *
1223          * The !pid check is paranoid. None of the call sites should end up
1224          * with pid == 0, but better safe than sorry. Let the caller retry
1225          */
1226         if (!pid)
1227                 return -EAGAIN;
1228         p = find_get_task_by_vpid(pid);
1229         if (!p)
1230                 return handle_exit_race(uaddr, uval, NULL);
1231
1232         if (unlikely(p->flags & PF_KTHREAD)) {
1233                 put_task_struct(p);
1234                 return -EPERM;
1235         }
1236
1237         /*
1238          * We need to look at the task state flags to figure out,
1239          * whether the task is exiting. To protect against the do_exit
1240          * change of the task flags, we do this protected by
1241          * p->pi_lock:
1242          */
1243         raw_spin_lock_irq(&p->pi_lock);
1244         if (unlikely(p->flags & PF_EXITING)) {
1245                 /*
1246                  * The task is on the way out. When PF_EXITPIDONE is
1247                  * set, we know that the task has finished the
1248                  * cleanup:
1249                  */
1250                 int ret = handle_exit_race(uaddr, uval, p);
1251
1252                 raw_spin_unlock_irq(&p->pi_lock);
1253                 put_task_struct(p);
1254                 return ret;
1255         }
1256
1257         /*
1258          * No existing pi state. First waiter. [2]
1259          *
1260          * This creates pi_state, we have hb->lock held, this means nothing can
1261          * observe this state, wait_lock is irrelevant.
1262          */
1263         pi_state = alloc_pi_state();
1264
1265         /*
1266          * Initialize the pi_mutex in locked state and make @p
1267          * the owner of it:
1268          */
1269         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1270
1271         /* Store the key for possible exit cleanups: */
1272         pi_state->key = *key;
1273
1274         WARN_ON(!list_empty(&pi_state->list));
1275         list_add(&pi_state->list, &p->pi_state_list);
1276         /*
1277          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1278          * because there is no concurrency as the object is not published yet.
1279          */
1280         pi_state->owner = p;
1281         raw_spin_unlock_irq(&p->pi_lock);
1282
1283         put_task_struct(p);
1284
1285         *ps = pi_state;
1286
1287         return 0;
1288 }
1289
1290 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1291                            struct futex_hash_bucket *hb,
1292                            union futex_key *key, struct futex_pi_state **ps)
1293 {
1294         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1295
1296         /*
1297          * If there is a waiter on that futex, validate it and
1298          * attach to the pi_state when the validation succeeds.
1299          */
1300         if (top_waiter)
1301                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1302
1303         /*
1304          * We are the first waiter - try to look up the owner based on
1305          * @uval and attach to it.
1306          */
1307         return attach_to_pi_owner(uaddr, uval, key, ps);
1308 }
1309
1310 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1311 {
1312         u32 uninitialized_var(curval);
1313
1314         if (unlikely(should_fail_futex(true)))
1315                 return -EFAULT;
1316
1317         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1318                 return -EFAULT;
1319
1320         /* If user space value changed, let the caller retry */
1321         return curval != uval ? -EAGAIN : 0;
1322 }
1323
1324 /**
1325  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1326  * @uaddr:              the pi futex user address
1327  * @hb:                 the pi futex hash bucket
1328  * @key:                the futex key associated with uaddr and hb
1329  * @ps:                 the pi_state pointer where we store the result of the
1330  *                      lookup
1331  * @task:               the task to perform the atomic lock work for.  This will
1332  *                      be "current" except in the case of requeue pi.
1333  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1334  *
1335  * Return:
1336  *  -  0 - ready to wait;
1337  *  -  1 - acquired the lock;
1338  *  - <0 - error
1339  *
1340  * The hb->lock and futex_key refs shall be held by the caller.
1341  */
1342 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1343                                 union futex_key *key,
1344                                 struct futex_pi_state **ps,
1345                                 struct task_struct *task, int set_waiters)
1346 {
1347         u32 uval, newval, vpid = task_pid_vnr(task);
1348         struct futex_q *top_waiter;
1349         int ret;
1350
1351         /*
1352          * Read the user space value first so we can validate a few
1353          * things before proceeding further.
1354          */
1355         if (get_futex_value_locked(&uval, uaddr))
1356                 return -EFAULT;
1357
1358         if (unlikely(should_fail_futex(true)))
1359                 return -EFAULT;
1360
1361         /*
1362          * Detect deadlocks.
1363          */
1364         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1365                 return -EDEADLK;
1366
1367         if ((unlikely(should_fail_futex(true))))
1368                 return -EDEADLK;
1369
1370         /*
1371          * Lookup existing state first. If it exists, try to attach to
1372          * its pi_state.
1373          */
1374         top_waiter = futex_top_waiter(hb, key);
1375         if (top_waiter)
1376                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1377
1378         /*
1379          * No waiter and user TID is 0. We are here because the
1380          * waiters or the owner died bit is set or called from
1381          * requeue_cmp_pi or for whatever reason something took the
1382          * syscall.
1383          */
1384         if (!(uval & FUTEX_TID_MASK)) {
1385                 /*
1386                  * We take over the futex. No other waiters and the user space
1387                  * TID is 0. We preserve the owner died bit.
1388                  */
1389                 newval = uval & FUTEX_OWNER_DIED;
1390                 newval |= vpid;
1391
1392                 /* The futex requeue_pi code can enforce the waiters bit */
1393                 if (set_waiters)
1394                         newval |= FUTEX_WAITERS;
1395
1396                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1397                 /* If the take over worked, return 1 */
1398                 return ret < 0 ? ret : 1;
1399         }
1400
1401         /*
1402          * First waiter. Set the waiters bit before attaching ourself to
1403          * the owner. If owner tries to unlock, it will be forced into
1404          * the kernel and blocked on hb->lock.
1405          */
1406         newval = uval | FUTEX_WAITERS;
1407         ret = lock_pi_update_atomic(uaddr, uval, newval);
1408         if (ret)
1409                 return ret;
1410         /*
1411          * If the update of the user space value succeeded, we try to
1412          * attach to the owner. If that fails, no harm done, we only
1413          * set the FUTEX_WAITERS bit in the user space variable.
1414          */
1415         return attach_to_pi_owner(uaddr, newval, key, ps);
1416 }
1417
1418 /**
1419  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1420  * @q:  The futex_q to unqueue
1421  *
1422  * The q->lock_ptr must not be NULL and must be held by the caller.
1423  */
1424 static void __unqueue_futex(struct futex_q *q)
1425 {
1426         struct futex_hash_bucket *hb;
1427
1428         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1429                 return;
1430         lockdep_assert_held(q->lock_ptr);
1431
1432         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1433         plist_del(&q->list, &hb->chain);
1434         hb_waiters_dec(hb);
1435 }
1436
1437 /*
1438  * The hash bucket lock must be held when this is called.
1439  * Afterwards, the futex_q must not be accessed. Callers
1440  * must ensure to later call wake_up_q() for the actual
1441  * wakeups to occur.
1442  */
1443 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1444 {
1445         struct task_struct *p = q->task;
1446
1447         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1448                 return;
1449
1450         /*
1451          * Queue the task for later wakeup for after we've released
1452          * the hb->lock. wake_q_add() grabs reference to p.
1453          */
1454         wake_q_add(wake_q, p);
1455         __unqueue_futex(q);
1456         /*
1457          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1458          * is written, without taking any locks. This is possible in the event
1459          * of a spurious wakeup, for example. A memory barrier is required here
1460          * to prevent the following store to lock_ptr from getting ahead of the
1461          * plist_del in __unqueue_futex().
1462          */
1463         smp_store_release(&q->lock_ptr, NULL);
1464 }
1465
1466 /*
1467  * Caller must hold a reference on @pi_state.
1468  */
1469 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1470 {
1471         u32 uninitialized_var(curval), newval;
1472         struct task_struct *new_owner;
1473         bool postunlock = false;
1474         DEFINE_WAKE_Q(wake_q);
1475         int ret = 0;
1476
1477         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1478         if (WARN_ON_ONCE(!new_owner)) {
1479                 /*
1480                  * As per the comment in futex_unlock_pi() this should not happen.
1481                  *
1482                  * When this happens, give up our locks and try again, giving
1483                  * the futex_lock_pi() instance time to complete, either by
1484                  * waiting on the rtmutex or removing itself from the futex
1485                  * queue.
1486                  */
1487                 ret = -EAGAIN;
1488                 goto out_unlock;
1489         }
1490
1491         /*
1492          * We pass it to the next owner. The WAITERS bit is always kept
1493          * enabled while there is PI state around. We cleanup the owner
1494          * died bit, because we are the owner.
1495          */
1496         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1497
1498         if (unlikely(should_fail_futex(true)))
1499                 ret = -EFAULT;
1500
1501         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1502                 ret = -EFAULT;
1503
1504         } else if (curval != uval) {
1505                 /*
1506                  * If a unconditional UNLOCK_PI operation (user space did not
1507                  * try the TID->0 transition) raced with a waiter setting the
1508                  * FUTEX_WAITERS flag between get_user() and locking the hash
1509                  * bucket lock, retry the operation.
1510                  */
1511                 if ((FUTEX_TID_MASK & curval) == uval)
1512                         ret = -EAGAIN;
1513                 else
1514                         ret = -EINVAL;
1515         }
1516
1517         if (ret)
1518                 goto out_unlock;
1519
1520         /*
1521          * This is a point of no return; once we modify the uval there is no
1522          * going back and subsequent operations must not fail.
1523          */
1524
1525         raw_spin_lock(&pi_state->owner->pi_lock);
1526         WARN_ON(list_empty(&pi_state->list));
1527         list_del_init(&pi_state->list);
1528         raw_spin_unlock(&pi_state->owner->pi_lock);
1529
1530         raw_spin_lock(&new_owner->pi_lock);
1531         WARN_ON(!list_empty(&pi_state->list));
1532         list_add(&pi_state->list, &new_owner->pi_state_list);
1533         pi_state->owner = new_owner;
1534         raw_spin_unlock(&new_owner->pi_lock);
1535
1536         postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1537
1538 out_unlock:
1539         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1540
1541         if (postunlock)
1542                 rt_mutex_postunlock(&wake_q);
1543
1544         return ret;
1545 }
1546
1547 /*
1548  * Express the locking dependencies for lockdep:
1549  */
1550 static inline void
1551 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1552 {
1553         if (hb1 <= hb2) {
1554                 spin_lock(&hb1->lock);
1555                 if (hb1 < hb2)
1556                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1557         } else { /* hb1 > hb2 */
1558                 spin_lock(&hb2->lock);
1559                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1560         }
1561 }
1562
1563 static inline void
1564 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1565 {
1566         spin_unlock(&hb1->lock);
1567         if (hb1 != hb2)
1568                 spin_unlock(&hb2->lock);
1569 }
1570
1571 /*
1572  * Wake up waiters matching bitset queued on this futex (uaddr).
1573  */
1574 static int
1575 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1576 {
1577         struct futex_hash_bucket *hb;
1578         struct futex_q *this, *next;
1579         union futex_key key = FUTEX_KEY_INIT;
1580         int ret;
1581         DEFINE_WAKE_Q(wake_q);
1582
1583         if (!bitset)
1584                 return -EINVAL;
1585
1586         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1587         if (unlikely(ret != 0))
1588                 goto out;
1589
1590         hb = hash_futex(&key);
1591
1592         /* Make sure we really have tasks to wakeup */
1593         if (!hb_waiters_pending(hb))
1594                 goto out_put_key;
1595
1596         spin_lock(&hb->lock);
1597
1598         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1599                 if (match_futex (&this->key, &key)) {
1600                         if (this->pi_state || this->rt_waiter) {
1601                                 ret = -EINVAL;
1602                                 break;
1603                         }
1604
1605                         /* Check if one of the bits is set in both bitsets */
1606                         if (!(this->bitset & bitset))
1607                                 continue;
1608
1609                         mark_wake_futex(&wake_q, this);
1610                         if (++ret >= nr_wake)
1611                                 break;
1612                 }
1613         }
1614
1615         spin_unlock(&hb->lock);
1616         wake_up_q(&wake_q);
1617 out_put_key:
1618         put_futex_key(&key);
1619 out:
1620         return ret;
1621 }
1622
1623 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1624 {
1625         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1626         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1627         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1628         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1629         int oldval, ret;
1630
1631         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1632                 if (oparg < 0 || oparg > 31) {
1633                         char comm[sizeof(current->comm)];
1634                         /*
1635                          * kill this print and return -EINVAL when userspace
1636                          * is sane again
1637                          */
1638                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1639                                         get_task_comm(comm, current), oparg);
1640                         oparg &= 31;
1641                 }
1642                 oparg = 1 << oparg;
1643         }
1644
1645         if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1646                 return -EFAULT;
1647
1648         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1649         if (ret)
1650                 return ret;
1651
1652         switch (cmp) {
1653         case FUTEX_OP_CMP_EQ:
1654                 return oldval == cmparg;
1655         case FUTEX_OP_CMP_NE:
1656                 return oldval != cmparg;
1657         case FUTEX_OP_CMP_LT:
1658                 return oldval < cmparg;
1659         case FUTEX_OP_CMP_GE:
1660                 return oldval >= cmparg;
1661         case FUTEX_OP_CMP_LE:
1662                 return oldval <= cmparg;
1663         case FUTEX_OP_CMP_GT:
1664                 return oldval > cmparg;
1665         default:
1666                 return -ENOSYS;
1667         }
1668 }
1669
1670 /*
1671  * Wake up all waiters hashed on the physical page that is mapped
1672  * to this virtual address:
1673  */
1674 static int
1675 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1676               int nr_wake, int nr_wake2, int op)
1677 {
1678         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1679         struct futex_hash_bucket *hb1, *hb2;
1680         struct futex_q *this, *next;
1681         int ret, op_ret;
1682         DEFINE_WAKE_Q(wake_q);
1683
1684 retry:
1685         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1686         if (unlikely(ret != 0))
1687                 goto out;
1688         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1689         if (unlikely(ret != 0))
1690                 goto out_put_key1;
1691
1692         hb1 = hash_futex(&key1);
1693         hb2 = hash_futex(&key2);
1694
1695 retry_private:
1696         double_lock_hb(hb1, hb2);
1697         op_ret = futex_atomic_op_inuser(op, uaddr2);
1698         if (unlikely(op_ret < 0)) {
1699
1700                 double_unlock_hb(hb1, hb2);
1701
1702 #ifndef CONFIG_MMU
1703                 /*
1704                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1705                  * but we might get them from range checking
1706                  */
1707                 ret = op_ret;
1708                 goto out_put_keys;
1709 #endif
1710
1711                 if (unlikely(op_ret != -EFAULT)) {
1712                         ret = op_ret;
1713                         goto out_put_keys;
1714                 }
1715
1716                 ret = fault_in_user_writeable(uaddr2);
1717                 if (ret)
1718                         goto out_put_keys;
1719
1720                 if (!(flags & FLAGS_SHARED))
1721                         goto retry_private;
1722
1723                 put_futex_key(&key2);
1724                 put_futex_key(&key1);
1725                 goto retry;
1726         }
1727
1728         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1729                 if (match_futex (&this->key, &key1)) {
1730                         if (this->pi_state || this->rt_waiter) {
1731                                 ret = -EINVAL;
1732                                 goto out_unlock;
1733                         }
1734                         mark_wake_futex(&wake_q, this);
1735                         if (++ret >= nr_wake)
1736                                 break;
1737                 }
1738         }
1739
1740         if (op_ret > 0) {
1741                 op_ret = 0;
1742                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1743                         if (match_futex (&this->key, &key2)) {
1744                                 if (this->pi_state || this->rt_waiter) {
1745                                         ret = -EINVAL;
1746                                         goto out_unlock;
1747                                 }
1748                                 mark_wake_futex(&wake_q, this);
1749                                 if (++op_ret >= nr_wake2)
1750                                         break;
1751                         }
1752                 }
1753                 ret += op_ret;
1754         }
1755
1756 out_unlock:
1757         double_unlock_hb(hb1, hb2);
1758         wake_up_q(&wake_q);
1759 out_put_keys:
1760         put_futex_key(&key2);
1761 out_put_key1:
1762         put_futex_key(&key1);
1763 out:
1764         return ret;
1765 }
1766
1767 /**
1768  * requeue_futex() - Requeue a futex_q from one hb to another
1769  * @q:          the futex_q to requeue
1770  * @hb1:        the source hash_bucket
1771  * @hb2:        the target hash_bucket
1772  * @key2:       the new key for the requeued futex_q
1773  */
1774 static inline
1775 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1776                    struct futex_hash_bucket *hb2, union futex_key *key2)
1777 {
1778
1779         /*
1780          * If key1 and key2 hash to the same bucket, no need to
1781          * requeue.
1782          */
1783         if (likely(&hb1->chain != &hb2->chain)) {
1784                 plist_del(&q->list, &hb1->chain);
1785                 hb_waiters_dec(hb1);
1786                 hb_waiters_inc(hb2);
1787                 plist_add(&q->list, &hb2->chain);
1788                 q->lock_ptr = &hb2->lock;
1789         }
1790         get_futex_key_refs(key2);
1791         q->key = *key2;
1792 }
1793
1794 /**
1795  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1796  * @q:          the futex_q
1797  * @key:        the key of the requeue target futex
1798  * @hb:         the hash_bucket of the requeue target futex
1799  *
1800  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1801  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1802  * to the requeue target futex so the waiter can detect the wakeup on the right
1803  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1804  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1805  * to protect access to the pi_state to fixup the owner later.  Must be called
1806  * with both q->lock_ptr and hb->lock held.
1807  */
1808 static inline
1809 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1810                            struct futex_hash_bucket *hb)
1811 {
1812         get_futex_key_refs(key);
1813         q->key = *key;
1814
1815         __unqueue_futex(q);
1816
1817         WARN_ON(!q->rt_waiter);
1818         q->rt_waiter = NULL;
1819
1820         q->lock_ptr = &hb->lock;
1821
1822         wake_up_state(q->task, TASK_NORMAL);
1823 }
1824
1825 /**
1826  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1827  * @pifutex:            the user address of the to futex
1828  * @hb1:                the from futex hash bucket, must be locked by the caller
1829  * @hb2:                the to futex hash bucket, must be locked by the caller
1830  * @key1:               the from futex key
1831  * @key2:               the to futex key
1832  * @ps:                 address to store the pi_state pointer
1833  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1834  *
1835  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1836  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1837  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1838  * hb1 and hb2 must be held by the caller.
1839  *
1840  * Return:
1841  *  -  0 - failed to acquire the lock atomically;
1842  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1843  *  - <0 - error
1844  */
1845 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1846                                  struct futex_hash_bucket *hb1,
1847                                  struct futex_hash_bucket *hb2,
1848                                  union futex_key *key1, union futex_key *key2,
1849                                  struct futex_pi_state **ps, int set_waiters)
1850 {
1851         struct futex_q *top_waiter = NULL;
1852         u32 curval;
1853         int ret, vpid;
1854
1855         if (get_futex_value_locked(&curval, pifutex))
1856                 return -EFAULT;
1857
1858         if (unlikely(should_fail_futex(true)))
1859                 return -EFAULT;
1860
1861         /*
1862          * Find the top_waiter and determine if there are additional waiters.
1863          * If the caller intends to requeue more than 1 waiter to pifutex,
1864          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1865          * as we have means to handle the possible fault.  If not, don't set
1866          * the bit unecessarily as it will force the subsequent unlock to enter
1867          * the kernel.
1868          */
1869         top_waiter = futex_top_waiter(hb1, key1);
1870
1871         /* There are no waiters, nothing for us to do. */
1872         if (!top_waiter)
1873                 return 0;
1874
1875         /* Ensure we requeue to the expected futex. */
1876         if (!match_futex(top_waiter->requeue_pi_key, key2))
1877                 return -EINVAL;
1878
1879         /*
1880          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1881          * the contended case or if set_waiters is 1.  The pi_state is returned
1882          * in ps in contended cases.
1883          */
1884         vpid = task_pid_vnr(top_waiter->task);
1885         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1886                                    set_waiters);
1887         if (ret == 1) {
1888                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1889                 return vpid;
1890         }
1891         return ret;
1892 }
1893
1894 /**
1895  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1896  * @uaddr1:     source futex user address
1897  * @flags:      futex flags (FLAGS_SHARED, etc.)
1898  * @uaddr2:     target futex user address
1899  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1900  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1901  * @cmpval:     @uaddr1 expected value (or %NULL)
1902  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1903  *              pi futex (pi to pi requeue is not supported)
1904  *
1905  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1906  * uaddr2 atomically on behalf of the top waiter.
1907  *
1908  * Return:
1909  *  - >=0 - on success, the number of tasks requeued or woken;
1910  *  -  <0 - on error
1911  */
1912 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1913                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1914                          u32 *cmpval, int requeue_pi)
1915 {
1916         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1917         int drop_count = 0, task_count = 0, ret;
1918         struct futex_pi_state *pi_state = NULL;
1919         struct futex_hash_bucket *hb1, *hb2;
1920         struct futex_q *this, *next;
1921         DEFINE_WAKE_Q(wake_q);
1922
1923         if (nr_wake < 0 || nr_requeue < 0)
1924                 return -EINVAL;
1925
1926         /*
1927          * When PI not supported: return -ENOSYS if requeue_pi is true,
1928          * consequently the compiler knows requeue_pi is always false past
1929          * this point which will optimize away all the conditional code
1930          * further down.
1931          */
1932         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1933                 return -ENOSYS;
1934
1935         if (requeue_pi) {
1936                 /*
1937                  * Requeue PI only works on two distinct uaddrs. This
1938                  * check is only valid for private futexes. See below.
1939                  */
1940                 if (uaddr1 == uaddr2)
1941                         return -EINVAL;
1942
1943                 /*
1944                  * requeue_pi requires a pi_state, try to allocate it now
1945                  * without any locks in case it fails.
1946                  */
1947                 if (refill_pi_state_cache())
1948                         return -ENOMEM;
1949                 /*
1950                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1951                  * + nr_requeue, since it acquires the rt_mutex prior to
1952                  * returning to userspace, so as to not leave the rt_mutex with
1953                  * waiters and no owner.  However, second and third wake-ups
1954                  * cannot be predicted as they involve race conditions with the
1955                  * first wake and a fault while looking up the pi_state.  Both
1956                  * pthread_cond_signal() and pthread_cond_broadcast() should
1957                  * use nr_wake=1.
1958                  */
1959                 if (nr_wake != 1)
1960                         return -EINVAL;
1961         }
1962
1963 retry:
1964         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1965         if (unlikely(ret != 0))
1966                 goto out;
1967         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1968                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1969         if (unlikely(ret != 0))
1970                 goto out_put_key1;
1971
1972         /*
1973          * The check above which compares uaddrs is not sufficient for
1974          * shared futexes. We need to compare the keys:
1975          */
1976         if (requeue_pi && match_futex(&key1, &key2)) {
1977                 ret = -EINVAL;
1978                 goto out_put_keys;
1979         }
1980
1981         hb1 = hash_futex(&key1);
1982         hb2 = hash_futex(&key2);
1983
1984 retry_private:
1985         hb_waiters_inc(hb2);
1986         double_lock_hb(hb1, hb2);
1987
1988         if (likely(cmpval != NULL)) {
1989                 u32 curval;
1990
1991                 ret = get_futex_value_locked(&curval, uaddr1);
1992
1993                 if (unlikely(ret)) {
1994                         double_unlock_hb(hb1, hb2);
1995                         hb_waiters_dec(hb2);
1996
1997                         ret = get_user(curval, uaddr1);
1998                         if (ret)
1999                                 goto out_put_keys;
2000
2001                         if (!(flags & FLAGS_SHARED))
2002                                 goto retry_private;
2003
2004                         put_futex_key(&key2);
2005                         put_futex_key(&key1);
2006                         goto retry;
2007                 }
2008                 if (curval != *cmpval) {
2009                         ret = -EAGAIN;
2010                         goto out_unlock;
2011                 }
2012         }
2013
2014         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2015                 /*
2016                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2017                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2018                  * bit.  We force this here where we are able to easily handle
2019                  * faults rather in the requeue loop below.
2020                  */
2021                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2022                                                  &key2, &pi_state, nr_requeue);
2023
2024                 /*
2025                  * At this point the top_waiter has either taken uaddr2 or is
2026                  * waiting on it.  If the former, then the pi_state will not
2027                  * exist yet, look it up one more time to ensure we have a
2028                  * reference to it. If the lock was taken, ret contains the
2029                  * vpid of the top waiter task.
2030                  * If the lock was not taken, we have pi_state and an initial
2031                  * refcount on it. In case of an error we have nothing.
2032                  */
2033                 if (ret > 0) {
2034                         WARN_ON(pi_state);
2035                         drop_count++;
2036                         task_count++;
2037                         /*
2038                          * If we acquired the lock, then the user space value
2039                          * of uaddr2 should be vpid. It cannot be changed by
2040                          * the top waiter as it is blocked on hb2 lock if it
2041                          * tries to do so. If something fiddled with it behind
2042                          * our back the pi state lookup might unearth it. So
2043                          * we rather use the known value than rereading and
2044                          * handing potential crap to lookup_pi_state.
2045                          *
2046                          * If that call succeeds then we have pi_state and an
2047                          * initial refcount on it.
2048                          */
2049                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2050                 }
2051
2052                 switch (ret) {
2053                 case 0:
2054                         /* We hold a reference on the pi state. */
2055                         break;
2056
2057                         /* If the above failed, then pi_state is NULL */
2058                 case -EFAULT:
2059                         double_unlock_hb(hb1, hb2);
2060                         hb_waiters_dec(hb2);
2061                         put_futex_key(&key2);
2062                         put_futex_key(&key1);
2063                         ret = fault_in_user_writeable(uaddr2);
2064                         if (!ret)
2065                                 goto retry;
2066                         goto out;
2067                 case -EAGAIN:
2068                         /*
2069                          * Two reasons for this:
2070                          * - Owner is exiting and we just wait for the
2071                          *   exit to complete.
2072                          * - The user space value changed.
2073                          */
2074                         double_unlock_hb(hb1, hb2);
2075                         hb_waiters_dec(hb2);
2076                         put_futex_key(&key2);
2077                         put_futex_key(&key1);
2078                         cond_resched();
2079                         goto retry;
2080                 default:
2081                         goto out_unlock;
2082                 }
2083         }
2084
2085         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2086                 if (task_count - nr_wake >= nr_requeue)
2087                         break;
2088
2089                 if (!match_futex(&this->key, &key1))
2090                         continue;
2091
2092                 /*
2093                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2094                  * be paired with each other and no other futex ops.
2095                  *
2096                  * We should never be requeueing a futex_q with a pi_state,
2097                  * which is awaiting a futex_unlock_pi().
2098                  */
2099                 if ((requeue_pi && !this->rt_waiter) ||
2100                     (!requeue_pi && this->rt_waiter) ||
2101                     this->pi_state) {
2102                         ret = -EINVAL;
2103                         break;
2104                 }
2105
2106                 /*
2107                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2108                  * lock, we already woke the top_waiter.  If not, it will be
2109                  * woken by futex_unlock_pi().
2110                  */
2111                 if (++task_count <= nr_wake && !requeue_pi) {
2112                         mark_wake_futex(&wake_q, this);
2113                         continue;
2114                 }
2115
2116                 /* Ensure we requeue to the expected futex for requeue_pi. */
2117                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2118                         ret = -EINVAL;
2119                         break;
2120                 }
2121
2122                 /*
2123                  * Requeue nr_requeue waiters and possibly one more in the case
2124                  * of requeue_pi if we couldn't acquire the lock atomically.
2125                  */
2126                 if (requeue_pi) {
2127                         /*
2128                          * Prepare the waiter to take the rt_mutex. Take a
2129                          * refcount on the pi_state and store the pointer in
2130                          * the futex_q object of the waiter.
2131                          */
2132                         get_pi_state(pi_state);
2133                         this->pi_state = pi_state;
2134                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2135                                                         this->rt_waiter,
2136                                                         this->task);
2137                         if (ret == 1) {
2138                                 /*
2139                                  * We got the lock. We do neither drop the
2140                                  * refcount on pi_state nor clear
2141                                  * this->pi_state because the waiter needs the
2142                                  * pi_state for cleaning up the user space
2143                                  * value. It will drop the refcount after
2144                                  * doing so.
2145                                  */
2146                                 requeue_pi_wake_futex(this, &key2, hb2);
2147                                 drop_count++;
2148                                 continue;
2149                         } else if (ret) {
2150                                 /*
2151                                  * rt_mutex_start_proxy_lock() detected a
2152                                  * potential deadlock when we tried to queue
2153                                  * that waiter. Drop the pi_state reference
2154                                  * which we took above and remove the pointer
2155                                  * to the state from the waiters futex_q
2156                                  * object.
2157                                  */
2158                                 this->pi_state = NULL;
2159                                 put_pi_state(pi_state);
2160                                 /*
2161                                  * We stop queueing more waiters and let user
2162                                  * space deal with the mess.
2163                                  */
2164                                 break;
2165                         }
2166                 }
2167                 requeue_futex(this, hb1, hb2, &key2);
2168                 drop_count++;
2169         }
2170
2171         /*
2172          * We took an extra initial reference to the pi_state either
2173          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2174          * need to drop it here again.
2175          */
2176         put_pi_state(pi_state);
2177
2178 out_unlock:
2179         double_unlock_hb(hb1, hb2);
2180         wake_up_q(&wake_q);
2181         hb_waiters_dec(hb2);
2182
2183         /*
2184          * drop_futex_key_refs() must be called outside the spinlocks. During
2185          * the requeue we moved futex_q's from the hash bucket at key1 to the
2186          * one at key2 and updated their key pointer.  We no longer need to
2187          * hold the references to key1.
2188          */
2189         while (--drop_count >= 0)
2190                 drop_futex_key_refs(&key1);
2191
2192 out_put_keys:
2193         put_futex_key(&key2);
2194 out_put_key1:
2195         put_futex_key(&key1);
2196 out:
2197         return ret ? ret : task_count;
2198 }
2199
2200 /* The key must be already stored in q->key. */
2201 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2202         __acquires(&hb->lock)
2203 {
2204         struct futex_hash_bucket *hb;
2205
2206         hb = hash_futex(&q->key);
2207
2208         /*
2209          * Increment the counter before taking the lock so that
2210          * a potential waker won't miss a to-be-slept task that is
2211          * waiting for the spinlock. This is safe as all queue_lock()
2212          * users end up calling queue_me(). Similarly, for housekeeping,
2213          * decrement the counter at queue_unlock() when some error has
2214          * occurred and we don't end up adding the task to the list.
2215          */
2216         hb_waiters_inc(hb);
2217
2218         q->lock_ptr = &hb->lock;
2219
2220         spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2221         return hb;
2222 }
2223
2224 static inline void
2225 queue_unlock(struct futex_hash_bucket *hb)
2226         __releases(&hb->lock)
2227 {
2228         spin_unlock(&hb->lock);
2229         hb_waiters_dec(hb);
2230 }
2231
2232 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2233 {
2234         int prio;
2235
2236         /*
2237          * The priority used to register this element is
2238          * - either the real thread-priority for the real-time threads
2239          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2240          * - or MAX_RT_PRIO for non-RT threads.
2241          * Thus, all RT-threads are woken first in priority order, and
2242          * the others are woken last, in FIFO order.
2243          */
2244         prio = min(current->normal_prio, MAX_RT_PRIO);
2245
2246         plist_node_init(&q->list, prio);
2247         plist_add(&q->list, &hb->chain);
2248         q->task = current;
2249 }
2250
2251 /**
2252  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2253  * @q:  The futex_q to enqueue
2254  * @hb: The destination hash bucket
2255  *
2256  * The hb->lock must be held by the caller, and is released here. A call to
2257  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2258  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2259  * or nothing if the unqueue is done as part of the wake process and the unqueue
2260  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2261  * an example).
2262  */
2263 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2264         __releases(&hb->lock)
2265 {
2266         __queue_me(q, hb);
2267         spin_unlock(&hb->lock);
2268 }
2269
2270 /**
2271  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2272  * @q:  The futex_q to unqueue
2273  *
2274  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2275  * be paired with exactly one earlier call to queue_me().
2276  *
2277  * Return:
2278  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2279  *  - 0 - if the futex_q was already removed by the waking thread
2280  */
2281 static int unqueue_me(struct futex_q *q)
2282 {
2283         spinlock_t *lock_ptr;
2284         int ret = 0;
2285
2286         /* In the common case we don't take the spinlock, which is nice. */
2287 retry:
2288         /*
2289          * q->lock_ptr can change between this read and the following spin_lock.
2290          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2291          * optimizing lock_ptr out of the logic below.
2292          */
2293         lock_ptr = READ_ONCE(q->lock_ptr);
2294         if (lock_ptr != NULL) {
2295                 spin_lock(lock_ptr);
2296                 /*
2297                  * q->lock_ptr can change between reading it and
2298                  * spin_lock(), causing us to take the wrong lock.  This
2299                  * corrects the race condition.
2300                  *
2301                  * Reasoning goes like this: if we have the wrong lock,
2302                  * q->lock_ptr must have changed (maybe several times)
2303                  * between reading it and the spin_lock().  It can
2304                  * change again after the spin_lock() but only if it was
2305                  * already changed before the spin_lock().  It cannot,
2306                  * however, change back to the original value.  Therefore
2307                  * we can detect whether we acquired the correct lock.
2308                  */
2309                 if (unlikely(lock_ptr != q->lock_ptr)) {
2310                         spin_unlock(lock_ptr);
2311                         goto retry;
2312                 }
2313                 __unqueue_futex(q);
2314
2315                 BUG_ON(q->pi_state);
2316
2317                 spin_unlock(lock_ptr);
2318                 ret = 1;
2319         }
2320
2321         drop_futex_key_refs(&q->key);
2322         return ret;
2323 }
2324
2325 /*
2326  * PI futexes can not be requeued and must remove themself from the
2327  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2328  * and dropped here.
2329  */
2330 static void unqueue_me_pi(struct futex_q *q)
2331         __releases(q->lock_ptr)
2332 {
2333         __unqueue_futex(q);
2334
2335         BUG_ON(!q->pi_state);
2336         put_pi_state(q->pi_state);
2337         q->pi_state = NULL;
2338
2339         spin_unlock(q->lock_ptr);
2340 }
2341
2342 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2343                                 struct task_struct *argowner)
2344 {
2345         struct futex_pi_state *pi_state = q->pi_state;
2346         u32 uval, uninitialized_var(curval), newval;
2347         struct task_struct *oldowner, *newowner;
2348         u32 newtid;
2349         int ret;
2350
2351         lockdep_assert_held(q->lock_ptr);
2352
2353         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2354
2355         oldowner = pi_state->owner;
2356
2357         /*
2358          * We are here because either:
2359          *
2360          *  - we stole the lock and pi_state->owner needs updating to reflect
2361          *    that (@argowner == current),
2362          *
2363          * or:
2364          *
2365          *  - someone stole our lock and we need to fix things to point to the
2366          *    new owner (@argowner == NULL).
2367          *
2368          * Either way, we have to replace the TID in the user space variable.
2369          * This must be atomic as we have to preserve the owner died bit here.
2370          *
2371          * Note: We write the user space value _before_ changing the pi_state
2372          * because we can fault here. Imagine swapped out pages or a fork
2373          * that marked all the anonymous memory readonly for cow.
2374          *
2375          * Modifying pi_state _before_ the user space value would leave the
2376          * pi_state in an inconsistent state when we fault here, because we
2377          * need to drop the locks to handle the fault. This might be observed
2378          * in the PID check in lookup_pi_state.
2379          */
2380 retry:
2381         if (!argowner) {
2382                 if (oldowner != current) {
2383                         /*
2384                          * We raced against a concurrent self; things are
2385                          * already fixed up. Nothing to do.
2386                          */
2387                         ret = 0;
2388                         goto out_unlock;
2389                 }
2390
2391                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2392                         /* We got the lock after all, nothing to fix. */
2393                         ret = 0;
2394                         goto out_unlock;
2395                 }
2396
2397                 /*
2398                  * Since we just failed the trylock; there must be an owner.
2399                  */
2400                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2401                 BUG_ON(!newowner);
2402         } else {
2403                 WARN_ON_ONCE(argowner != current);
2404                 if (oldowner == current) {
2405                         /*
2406                          * We raced against a concurrent self; things are
2407                          * already fixed up. Nothing to do.
2408                          */
2409                         ret = 0;
2410                         goto out_unlock;
2411                 }
2412                 newowner = argowner;
2413         }
2414
2415         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2416         /* Owner died? */
2417         if (!pi_state->owner)
2418                 newtid |= FUTEX_OWNER_DIED;
2419
2420         if (get_futex_value_locked(&uval, uaddr))
2421                 goto handle_fault;
2422
2423         for (;;) {
2424                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2425
2426                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2427                         goto handle_fault;
2428                 if (curval == uval)
2429                         break;
2430                 uval = curval;
2431         }
2432
2433         /*
2434          * We fixed up user space. Now we need to fix the pi_state
2435          * itself.
2436          */
2437         if (pi_state->owner != NULL) {
2438                 raw_spin_lock(&pi_state->owner->pi_lock);
2439                 WARN_ON(list_empty(&pi_state->list));
2440                 list_del_init(&pi_state->list);
2441                 raw_spin_unlock(&pi_state->owner->pi_lock);
2442         }
2443
2444         pi_state->owner = newowner;
2445
2446         raw_spin_lock(&newowner->pi_lock);
2447         WARN_ON(!list_empty(&pi_state->list));
2448         list_add(&pi_state->list, &newowner->pi_state_list);
2449         raw_spin_unlock(&newowner->pi_lock);
2450         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2451
2452         return 0;
2453
2454         /*
2455          * To handle the page fault we need to drop the locks here. That gives
2456          * the other task (either the highest priority waiter itself or the
2457          * task which stole the rtmutex) the chance to try the fixup of the
2458          * pi_state. So once we are back from handling the fault we need to
2459          * check the pi_state after reacquiring the locks and before trying to
2460          * do another fixup. When the fixup has been done already we simply
2461          * return.
2462          *
2463          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2464          * drop hb->lock since the caller owns the hb -> futex_q relation.
2465          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2466          */
2467 handle_fault:
2468         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2469         spin_unlock(q->lock_ptr);
2470
2471         ret = fault_in_user_writeable(uaddr);
2472
2473         spin_lock(q->lock_ptr);
2474         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2475
2476         /*
2477          * Check if someone else fixed it for us:
2478          */
2479         if (pi_state->owner != oldowner) {
2480                 ret = 0;
2481                 goto out_unlock;
2482         }
2483
2484         if (ret)
2485                 goto out_unlock;
2486
2487         goto retry;
2488
2489 out_unlock:
2490         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2491         return ret;
2492 }
2493
2494 static long futex_wait_restart(struct restart_block *restart);
2495
2496 /**
2497  * fixup_owner() - Post lock pi_state and corner case management
2498  * @uaddr:      user address of the futex
2499  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2500  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2501  *
2502  * After attempting to lock an rt_mutex, this function is called to cleanup
2503  * the pi_state owner as well as handle race conditions that may allow us to
2504  * acquire the lock. Must be called with the hb lock held.
2505  *
2506  * Return:
2507  *  -  1 - success, lock taken;
2508  *  -  0 - success, lock not taken;
2509  *  - <0 - on error (-EFAULT)
2510  */
2511 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2512 {
2513         int ret = 0;
2514
2515         if (locked) {
2516                 /*
2517                  * Got the lock. We might not be the anticipated owner if we
2518                  * did a lock-steal - fix up the PI-state in that case:
2519                  *
2520                  * Speculative pi_state->owner read (we don't hold wait_lock);
2521                  * since we own the lock pi_state->owner == current is the
2522                  * stable state, anything else needs more attention.
2523                  */
2524                 if (q->pi_state->owner != current)
2525                         ret = fixup_pi_state_owner(uaddr, q, current);
2526                 goto out;
2527         }
2528
2529         /*
2530          * If we didn't get the lock; check if anybody stole it from us. In
2531          * that case, we need to fix up the uval to point to them instead of
2532          * us, otherwise bad things happen. [10]
2533          *
2534          * Another speculative read; pi_state->owner == current is unstable
2535          * but needs our attention.
2536          */
2537         if (q->pi_state->owner == current) {
2538                 ret = fixup_pi_state_owner(uaddr, q, NULL);
2539                 goto out;
2540         }
2541
2542         /*
2543          * Paranoia check. If we did not take the lock, then we should not be
2544          * the owner of the rt_mutex.
2545          */
2546         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2547                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2548                                 "pi-state %p\n", ret,
2549                                 q->pi_state->pi_mutex.owner,
2550                                 q->pi_state->owner);
2551         }
2552
2553 out:
2554         return ret ? ret : locked;
2555 }
2556
2557 /**
2558  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2559  * @hb:         the futex hash bucket, must be locked by the caller
2560  * @q:          the futex_q to queue up on
2561  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2562  */
2563 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2564                                 struct hrtimer_sleeper *timeout)
2565 {
2566         /*
2567          * The task state is guaranteed to be set before another task can
2568          * wake it. set_current_state() is implemented using smp_store_mb() and
2569          * queue_me() calls spin_unlock() upon completion, both serializing
2570          * access to the hash list and forcing another memory barrier.
2571          */
2572         set_current_state(TASK_INTERRUPTIBLE);
2573         queue_me(q, hb);
2574
2575         /* Arm the timer */
2576         if (timeout)
2577                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2578
2579         /*
2580          * If we have been removed from the hash list, then another task
2581          * has tried to wake us, and we can skip the call to schedule().
2582          */
2583         if (likely(!plist_node_empty(&q->list))) {
2584                 /*
2585                  * If the timer has already expired, current will already be
2586                  * flagged for rescheduling. Only call schedule if there
2587                  * is no timeout, or if it has yet to expire.
2588                  */
2589                 if (!timeout || timeout->task)
2590                         freezable_schedule();
2591         }
2592         __set_current_state(TASK_RUNNING);
2593 }
2594
2595 /**
2596  * futex_wait_setup() - Prepare to wait on a futex
2597  * @uaddr:      the futex userspace address
2598  * @val:        the expected value
2599  * @flags:      futex flags (FLAGS_SHARED, etc.)
2600  * @q:          the associated futex_q
2601  * @hb:         storage for hash_bucket pointer to be returned to caller
2602  *
2603  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2604  * compare it with the expected value.  Handle atomic faults internally.
2605  * Return with the hb lock held and a q.key reference on success, and unlocked
2606  * with no q.key reference on failure.
2607  *
2608  * Return:
2609  *  -  0 - uaddr contains val and hb has been locked;
2610  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2611  */
2612 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2613                            struct futex_q *q, struct futex_hash_bucket **hb)
2614 {
2615         u32 uval;
2616         int ret;
2617
2618         /*
2619          * Access the page AFTER the hash-bucket is locked.
2620          * Order is important:
2621          *
2622          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2623          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2624          *
2625          * The basic logical guarantee of a futex is that it blocks ONLY
2626          * if cond(var) is known to be true at the time of blocking, for
2627          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2628          * would open a race condition where we could block indefinitely with
2629          * cond(var) false, which would violate the guarantee.
2630          *
2631          * On the other hand, we insert q and release the hash-bucket only
2632          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2633          * absorb a wakeup if *uaddr does not match the desired values
2634          * while the syscall executes.
2635          */
2636 retry:
2637         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2638         if (unlikely(ret != 0))
2639                 return ret;
2640
2641 retry_private:
2642         *hb = queue_lock(q);
2643
2644         ret = get_futex_value_locked(&uval, uaddr);
2645
2646         if (ret) {
2647                 queue_unlock(*hb);
2648
2649                 ret = get_user(uval, uaddr);
2650                 if (ret)
2651                         goto out;
2652
2653                 if (!(flags & FLAGS_SHARED))
2654                         goto retry_private;
2655
2656                 put_futex_key(&q->key);
2657                 goto retry;
2658         }
2659
2660         if (uval != val) {
2661                 queue_unlock(*hb);
2662                 ret = -EWOULDBLOCK;
2663         }
2664
2665 out:
2666         if (ret)
2667                 put_futex_key(&q->key);
2668         return ret;
2669 }
2670
2671 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2672                       ktime_t *abs_time, u32 bitset)
2673 {
2674         struct hrtimer_sleeper timeout, *to = NULL;
2675         struct restart_block *restart;
2676         struct futex_hash_bucket *hb;
2677         struct futex_q q = futex_q_init;
2678         int ret;
2679
2680         if (!bitset)
2681                 return -EINVAL;
2682         q.bitset = bitset;
2683
2684         if (abs_time) {
2685                 to = &timeout;
2686
2687                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2688                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2689                                       HRTIMER_MODE_ABS);
2690                 hrtimer_init_sleeper(to, current);
2691                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2692                                              current->timer_slack_ns);
2693         }
2694
2695 retry:
2696         /*
2697          * Prepare to wait on uaddr. On success, holds hb lock and increments
2698          * q.key refs.
2699          */
2700         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2701         if (ret)
2702                 goto out;
2703
2704         /* queue_me and wait for wakeup, timeout, or a signal. */
2705         futex_wait_queue_me(hb, &q, to);
2706
2707         /* If we were woken (and unqueued), we succeeded, whatever. */
2708         ret = 0;
2709         /* unqueue_me() drops q.key ref */
2710         if (!unqueue_me(&q))
2711                 goto out;
2712         ret = -ETIMEDOUT;
2713         if (to && !to->task)
2714                 goto out;
2715
2716         /*
2717          * We expect signal_pending(current), but we might be the
2718          * victim of a spurious wakeup as well.
2719          */
2720         if (!signal_pending(current))
2721                 goto retry;
2722
2723         ret = -ERESTARTSYS;
2724         if (!abs_time)
2725                 goto out;
2726
2727         restart = &current->restart_block;
2728         restart->fn = futex_wait_restart;
2729         restart->futex.uaddr = uaddr;
2730         restart->futex.val = val;
2731         restart->futex.time = *abs_time;
2732         restart->futex.bitset = bitset;
2733         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2734
2735         ret = -ERESTART_RESTARTBLOCK;
2736
2737 out:
2738         if (to) {
2739                 hrtimer_cancel(&to->timer);
2740                 destroy_hrtimer_on_stack(&to->timer);
2741         }
2742         return ret;
2743 }
2744
2745
2746 static long futex_wait_restart(struct restart_block *restart)
2747 {
2748         u32 __user *uaddr = restart->futex.uaddr;
2749         ktime_t t, *tp = NULL;
2750
2751         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2752                 t = restart->futex.time;
2753                 tp = &t;
2754         }
2755         restart->fn = do_no_restart_syscall;
2756
2757         return (long)futex_wait(uaddr, restart->futex.flags,
2758                                 restart->futex.val, tp, restart->futex.bitset);
2759 }
2760
2761
2762 /*
2763  * Userspace tried a 0 -> TID atomic transition of the futex value
2764  * and failed. The kernel side here does the whole locking operation:
2765  * if there are waiters then it will block as a consequence of relying
2766  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2767  * a 0 value of the futex too.).
2768  *
2769  * Also serves as futex trylock_pi()'ing, and due semantics.
2770  */
2771 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2772                          ktime_t *time, int trylock)
2773 {
2774         struct hrtimer_sleeper timeout, *to = NULL;
2775         struct futex_pi_state *pi_state = NULL;
2776         struct rt_mutex_waiter rt_waiter;
2777         struct futex_hash_bucket *hb;
2778         struct futex_q q = futex_q_init;
2779         int res, ret;
2780
2781         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2782                 return -ENOSYS;
2783
2784         if (refill_pi_state_cache())
2785                 return -ENOMEM;
2786
2787         if (time) {
2788                 to = &timeout;
2789                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2790                                       HRTIMER_MODE_ABS);
2791                 hrtimer_init_sleeper(to, current);
2792                 hrtimer_set_expires(&to->timer, *time);
2793         }
2794
2795 retry:
2796         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2797         if (unlikely(ret != 0))
2798                 goto out;
2799
2800 retry_private:
2801         hb = queue_lock(&q);
2802
2803         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2804         if (unlikely(ret)) {
2805                 /*
2806                  * Atomic work succeeded and we got the lock,
2807                  * or failed. Either way, we do _not_ block.
2808                  */
2809                 switch (ret) {
2810                 case 1:
2811                         /* We got the lock. */
2812                         ret = 0;
2813                         goto out_unlock_put_key;
2814                 case -EFAULT:
2815                         goto uaddr_faulted;
2816                 case -EAGAIN:
2817                         /*
2818                          * Two reasons for this:
2819                          * - Task is exiting and we just wait for the
2820                          *   exit to complete.
2821                          * - The user space value changed.
2822                          */
2823                         queue_unlock(hb);
2824                         put_futex_key(&q.key);
2825                         cond_resched();
2826                         goto retry;
2827                 default:
2828                         goto out_unlock_put_key;
2829                 }
2830         }
2831
2832         WARN_ON(!q.pi_state);
2833
2834         /*
2835          * Only actually queue now that the atomic ops are done:
2836          */
2837         __queue_me(&q, hb);
2838
2839         if (trylock) {
2840                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2841                 /* Fixup the trylock return value: */
2842                 ret = ret ? 0 : -EWOULDBLOCK;
2843                 goto no_block;
2844         }
2845
2846         rt_mutex_init_waiter(&rt_waiter);
2847
2848         /*
2849          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2850          * hold it while doing rt_mutex_start_proxy(), because then it will
2851          * include hb->lock in the blocking chain, even through we'll not in
2852          * fact hold it while blocking. This will lead it to report -EDEADLK
2853          * and BUG when futex_unlock_pi() interleaves with this.
2854          *
2855          * Therefore acquire wait_lock while holding hb->lock, but drop the
2856          * latter before calling rt_mutex_start_proxy_lock(). This still fully
2857          * serializes against futex_unlock_pi() as that does the exact same
2858          * lock handoff sequence.
2859          */
2860         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2861         spin_unlock(q.lock_ptr);
2862         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2863         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2864
2865         if (ret) {
2866                 if (ret == 1)
2867                         ret = 0;
2868
2869                 spin_lock(q.lock_ptr);
2870                 goto no_block;
2871         }
2872
2873
2874         if (unlikely(to))
2875                 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2876
2877         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2878
2879         spin_lock(q.lock_ptr);
2880         /*
2881          * If we failed to acquire the lock (signal/timeout), we must
2882          * first acquire the hb->lock before removing the lock from the
2883          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2884          * wait lists consistent.
2885          *
2886          * In particular; it is important that futex_unlock_pi() can not
2887          * observe this inconsistency.
2888          */
2889         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2890                 ret = 0;
2891
2892 no_block:
2893         /*
2894          * Fixup the pi_state owner and possibly acquire the lock if we
2895          * haven't already.
2896          */
2897         res = fixup_owner(uaddr, &q, !ret);
2898         /*
2899          * If fixup_owner() returned an error, proprogate that.  If it acquired
2900          * the lock, clear our -ETIMEDOUT or -EINTR.
2901          */
2902         if (res)
2903                 ret = (res < 0) ? res : 0;
2904
2905         /*
2906          * If fixup_owner() faulted and was unable to handle the fault, unlock
2907          * it and return the fault to userspace.
2908          */
2909         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2910                 pi_state = q.pi_state;
2911                 get_pi_state(pi_state);
2912         }
2913
2914         /* Unqueue and drop the lock */
2915         unqueue_me_pi(&q);
2916
2917         if (pi_state) {
2918                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2919                 put_pi_state(pi_state);
2920         }
2921
2922         goto out_put_key;
2923
2924 out_unlock_put_key:
2925         queue_unlock(hb);
2926
2927 out_put_key:
2928         put_futex_key(&q.key);
2929 out:
2930         if (to) {
2931                 hrtimer_cancel(&to->timer);
2932                 destroy_hrtimer_on_stack(&to->timer);
2933         }
2934         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2935
2936 uaddr_faulted:
2937         queue_unlock(hb);
2938
2939         ret = fault_in_user_writeable(uaddr);
2940         if (ret)
2941                 goto out_put_key;
2942
2943         if (!(flags & FLAGS_SHARED))
2944                 goto retry_private;
2945
2946         put_futex_key(&q.key);
2947         goto retry;
2948 }
2949
2950 /*
2951  * Userspace attempted a TID -> 0 atomic transition, and failed.
2952  * This is the in-kernel slowpath: we look up the PI state (if any),
2953  * and do the rt-mutex unlock.
2954  */
2955 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2956 {
2957         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2958         union futex_key key = FUTEX_KEY_INIT;
2959         struct futex_hash_bucket *hb;
2960         struct futex_q *top_waiter;
2961         int ret;
2962
2963         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2964                 return -ENOSYS;
2965
2966 retry:
2967         if (get_user(uval, uaddr))
2968                 return -EFAULT;
2969         /*
2970          * We release only a lock we actually own:
2971          */
2972         if ((uval & FUTEX_TID_MASK) != vpid)
2973                 return -EPERM;
2974
2975         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2976         if (ret)
2977                 return ret;
2978
2979         hb = hash_futex(&key);
2980         spin_lock(&hb->lock);
2981
2982         /*
2983          * Check waiters first. We do not trust user space values at
2984          * all and we at least want to know if user space fiddled
2985          * with the futex value instead of blindly unlocking.
2986          */
2987         top_waiter = futex_top_waiter(hb, &key);
2988         if (top_waiter) {
2989                 struct futex_pi_state *pi_state = top_waiter->pi_state;
2990
2991                 ret = -EINVAL;
2992                 if (!pi_state)
2993                         goto out_unlock;
2994
2995                 /*
2996                  * If current does not own the pi_state then the futex is
2997                  * inconsistent and user space fiddled with the futex value.
2998                  */
2999                 if (pi_state->owner != current)
3000                         goto out_unlock;
3001
3002                 get_pi_state(pi_state);
3003                 /*
3004                  * By taking wait_lock while still holding hb->lock, we ensure
3005                  * there is no point where we hold neither; and therefore
3006                  * wake_futex_pi() must observe a state consistent with what we
3007                  * observed.
3008                  */
3009                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3010                 spin_unlock(&hb->lock);
3011
3012                 /* drops pi_state->pi_mutex.wait_lock */
3013                 ret = wake_futex_pi(uaddr, uval, pi_state);
3014
3015                 put_pi_state(pi_state);
3016
3017                 /*
3018                  * Success, we're done! No tricky corner cases.
3019                  */
3020                 if (!ret)
3021                         goto out_putkey;
3022                 /*
3023                  * The atomic access to the futex value generated a
3024                  * pagefault, so retry the user-access and the wakeup:
3025                  */
3026                 if (ret == -EFAULT)
3027                         goto pi_faulted;
3028                 /*
3029                  * A unconditional UNLOCK_PI op raced against a waiter
3030                  * setting the FUTEX_WAITERS bit. Try again.
3031                  */
3032                 if (ret == -EAGAIN) {
3033                         put_futex_key(&key);
3034                         goto retry;
3035                 }
3036                 /*
3037                  * wake_futex_pi has detected invalid state. Tell user
3038                  * space.
3039                  */
3040                 goto out_putkey;
3041         }
3042
3043         /*
3044          * We have no kernel internal state, i.e. no waiters in the
3045          * kernel. Waiters which are about to queue themselves are stuck
3046          * on hb->lock. So we can safely ignore them. We do neither
3047          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3048          * owner.
3049          */
3050         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
3051                 spin_unlock(&hb->lock);
3052                 goto pi_faulted;
3053         }
3054
3055         /*
3056          * If uval has changed, let user space handle it.
3057          */
3058         ret = (curval == uval) ? 0 : -EAGAIN;
3059
3060 out_unlock:
3061         spin_unlock(&hb->lock);
3062 out_putkey:
3063         put_futex_key(&key);
3064         return ret;
3065
3066 pi_faulted:
3067         put_futex_key(&key);
3068
3069         ret = fault_in_user_writeable(uaddr);
3070         if (!ret)
3071                 goto retry;
3072
3073         return ret;
3074 }
3075
3076 /**
3077  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3078  * @hb:         the hash_bucket futex_q was original enqueued on
3079  * @q:          the futex_q woken while waiting to be requeued
3080  * @key2:       the futex_key of the requeue target futex
3081  * @timeout:    the timeout associated with the wait (NULL if none)
3082  *
3083  * Detect if the task was woken on the initial futex as opposed to the requeue
3084  * target futex.  If so, determine if it was a timeout or a signal that caused
3085  * the wakeup and return the appropriate error code to the caller.  Must be
3086  * called with the hb lock held.
3087  *
3088  * Return:
3089  *  -  0 = no early wakeup detected;
3090  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3091  */
3092 static inline
3093 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3094                                    struct futex_q *q, union futex_key *key2,
3095                                    struct hrtimer_sleeper *timeout)
3096 {
3097         int ret = 0;
3098
3099         /*
3100          * With the hb lock held, we avoid races while we process the wakeup.
3101          * We only need to hold hb (and not hb2) to ensure atomicity as the
3102          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3103          * It can't be requeued from uaddr2 to something else since we don't
3104          * support a PI aware source futex for requeue.
3105          */
3106         if (!match_futex(&q->key, key2)) {
3107                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3108                 /*
3109                  * We were woken prior to requeue by a timeout or a signal.
3110                  * Unqueue the futex_q and determine which it was.
3111                  */
3112                 plist_del(&q->list, &hb->chain);
3113                 hb_waiters_dec(hb);
3114
3115                 /* Handle spurious wakeups gracefully */
3116                 ret = -EWOULDBLOCK;
3117                 if (timeout && !timeout->task)
3118                         ret = -ETIMEDOUT;
3119                 else if (signal_pending(current))
3120                         ret = -ERESTARTNOINTR;
3121         }
3122         return ret;
3123 }
3124
3125 /**
3126  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3127  * @uaddr:      the futex we initially wait on (non-pi)
3128  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3129  *              the same type, no requeueing from private to shared, etc.
3130  * @val:        the expected value of uaddr
3131  * @abs_time:   absolute timeout
3132  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3133  * @uaddr2:     the pi futex we will take prior to returning to user-space
3134  *
3135  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3136  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3137  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3138  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3139  * without one, the pi logic would not know which task to boost/deboost, if
3140  * there was a need to.
3141  *
3142  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3143  * via the following--
3144  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3145  * 2) wakeup on uaddr2 after a requeue
3146  * 3) signal
3147  * 4) timeout
3148  *
3149  * If 3, cleanup and return -ERESTARTNOINTR.
3150  *
3151  * If 2, we may then block on trying to take the rt_mutex and return via:
3152  * 5) successful lock
3153  * 6) signal
3154  * 7) timeout
3155  * 8) other lock acquisition failure
3156  *
3157  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3158  *
3159  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3160  *
3161  * Return:
3162  *  -  0 - On success;
3163  *  - <0 - On error
3164  */
3165 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3166                                  u32 val, ktime_t *abs_time, u32 bitset,
3167                                  u32 __user *uaddr2)
3168 {
3169         struct hrtimer_sleeper timeout, *to = NULL;
3170         struct futex_pi_state *pi_state = NULL;
3171         struct rt_mutex_waiter rt_waiter;
3172         struct futex_hash_bucket *hb;
3173         union futex_key key2 = FUTEX_KEY_INIT;
3174         struct futex_q q = futex_q_init;
3175         int res, ret;
3176
3177         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3178                 return -ENOSYS;
3179
3180         if (uaddr == uaddr2)
3181                 return -EINVAL;
3182
3183         if (!bitset)
3184                 return -EINVAL;
3185
3186         if (abs_time) {
3187                 to = &timeout;
3188                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3189                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
3190                                       HRTIMER_MODE_ABS);
3191                 hrtimer_init_sleeper(to, current);
3192                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3193                                              current->timer_slack_ns);
3194         }
3195
3196         /*
3197          * The waiter is allocated on our stack, manipulated by the requeue
3198          * code while we sleep on uaddr.
3199          */
3200         rt_mutex_init_waiter(&rt_waiter);
3201
3202         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3203         if (unlikely(ret != 0))
3204                 goto out;
3205
3206         q.bitset = bitset;
3207         q.rt_waiter = &rt_waiter;
3208         q.requeue_pi_key = &key2;
3209
3210         /*
3211          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3212          * count.
3213          */
3214         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3215         if (ret)
3216                 goto out_key2;
3217
3218         /*
3219          * The check above which compares uaddrs is not sufficient for
3220          * shared futexes. We need to compare the keys:
3221          */
3222         if (match_futex(&q.key, &key2)) {
3223                 queue_unlock(hb);
3224                 ret = -EINVAL;
3225                 goto out_put_keys;
3226         }
3227
3228         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3229         futex_wait_queue_me(hb, &q, to);
3230
3231         spin_lock(&hb->lock);
3232         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3233         spin_unlock(&hb->lock);
3234         if (ret)
3235                 goto out_put_keys;
3236
3237         /*
3238          * In order for us to be here, we know our q.key == key2, and since
3239          * we took the hb->lock above, we also know that futex_requeue() has
3240          * completed and we no longer have to concern ourselves with a wakeup
3241          * race with the atomic proxy lock acquisition by the requeue code. The
3242          * futex_requeue dropped our key1 reference and incremented our key2
3243          * reference count.
3244          */
3245
3246         /* Check if the requeue code acquired the second futex for us. */
3247         if (!q.rt_waiter) {
3248                 /*
3249                  * Got the lock. We might not be the anticipated owner if we
3250                  * did a lock-steal - fix up the PI-state in that case.
3251                  */
3252                 if (q.pi_state && (q.pi_state->owner != current)) {
3253                         spin_lock(q.lock_ptr);
3254                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3255                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3256                                 pi_state = q.pi_state;
3257                                 get_pi_state(pi_state);
3258                         }
3259                         /*
3260                          * Drop the reference to the pi state which
3261                          * the requeue_pi() code acquired for us.
3262                          */
3263                         put_pi_state(q.pi_state);
3264                         spin_unlock(q.lock_ptr);
3265                 }
3266         } else {
3267                 struct rt_mutex *pi_mutex;
3268
3269                 /*
3270                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3271                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3272                  * the pi_state.
3273                  */
3274                 WARN_ON(!q.pi_state);
3275                 pi_mutex = &q.pi_state->pi_mutex;
3276                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3277
3278                 spin_lock(q.lock_ptr);
3279                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3280                         ret = 0;
3281
3282                 debug_rt_mutex_free_waiter(&rt_waiter);
3283                 /*
3284                  * Fixup the pi_state owner and possibly acquire the lock if we
3285                  * haven't already.
3286                  */
3287                 res = fixup_owner(uaddr2, &q, !ret);
3288                 /*
3289                  * If fixup_owner() returned an error, proprogate that.  If it
3290                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3291                  */
3292                 if (res)
3293                         ret = (res < 0) ? res : 0;
3294
3295                 /*
3296                  * If fixup_pi_state_owner() faulted and was unable to handle
3297                  * the fault, unlock the rt_mutex and return the fault to
3298                  * userspace.
3299                  */
3300                 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3301                         pi_state = q.pi_state;
3302                         get_pi_state(pi_state);
3303                 }
3304
3305                 /* Unqueue and drop the lock. */
3306                 unqueue_me_pi(&q);
3307         }
3308
3309         if (pi_state) {
3310                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3311                 put_pi_state(pi_state);
3312         }
3313
3314         if (ret == -EINTR) {
3315                 /*
3316                  * We've already been requeued, but cannot restart by calling
3317                  * futex_lock_pi() directly. We could restart this syscall, but
3318                  * it would detect that the user space "val" changed and return
3319                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3320                  * -EWOULDBLOCK directly.
3321                  */
3322                 ret = -EWOULDBLOCK;
3323         }
3324
3325 out_put_keys:
3326         put_futex_key(&q.key);
3327 out_key2:
3328         put_futex_key(&key2);
3329
3330 out:
3331         if (to) {
3332                 hrtimer_cancel(&to->timer);
3333                 destroy_hrtimer_on_stack(&to->timer);
3334         }
3335         return ret;
3336 }
3337
3338 /*
3339  * Support for robust futexes: the kernel cleans up held futexes at
3340  * thread exit time.
3341  *
3342  * Implementation: user-space maintains a per-thread list of locks it
3343  * is holding. Upon do_exit(), the kernel carefully walks this list,
3344  * and marks all locks that are owned by this thread with the
3345  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3346  * always manipulated with the lock held, so the list is private and
3347  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3348  * field, to allow the kernel to clean up if the thread dies after
3349  * acquiring the lock, but just before it could have added itself to
3350  * the list. There can only be one such pending lock.
3351  */
3352
3353 /**
3354  * sys_set_robust_list() - Set the robust-futex list head of a task
3355  * @head:       pointer to the list-head
3356  * @len:        length of the list-head, as userspace expects
3357  */
3358 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3359                 size_t, len)
3360 {
3361         if (!futex_cmpxchg_enabled)
3362                 return -ENOSYS;
3363         /*
3364          * The kernel knows only one size for now:
3365          */
3366         if (unlikely(len != sizeof(*head)))
3367                 return -EINVAL;
3368
3369         current->robust_list = head;
3370
3371         return 0;
3372 }
3373
3374 /**
3375  * sys_get_robust_list() - Get the robust-futex list head of a task
3376  * @pid:        pid of the process [zero for current task]
3377  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3378  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3379  */
3380 SYSCALL_DEFINE3(get_robust_list, int, pid,
3381                 struct robust_list_head __user * __user *, head_ptr,
3382                 size_t __user *, len_ptr)
3383 {
3384         struct robust_list_head __user *head;
3385         unsigned long ret;
3386         struct task_struct *p;
3387
3388         if (!futex_cmpxchg_enabled)
3389                 return -ENOSYS;
3390
3391         rcu_read_lock();
3392
3393         ret = -ESRCH;
3394         if (!pid)
3395                 p = current;
3396         else {
3397                 p = find_task_by_vpid(pid);
3398                 if (!p)
3399                         goto err_unlock;
3400         }
3401
3402         ret = -EPERM;
3403         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3404                 goto err_unlock;
3405
3406         head = p->robust_list;
3407         rcu_read_unlock();
3408
3409         if (put_user(sizeof(*head), len_ptr))
3410                 return -EFAULT;
3411         return put_user(head, head_ptr);
3412
3413 err_unlock:
3414         rcu_read_unlock();
3415
3416         return ret;
3417 }
3418
3419 /*
3420  * Process a futex-list entry, check whether it's owned by the
3421  * dying task, and do notification if so:
3422  */
3423 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3424 {
3425         u32 uval, uninitialized_var(nval), mval;
3426
3427 retry:
3428         if (get_user(uval, uaddr))
3429                 return -1;
3430
3431         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3432                 /*
3433                  * Ok, this dying thread is truly holding a futex
3434                  * of interest. Set the OWNER_DIED bit atomically
3435                  * via cmpxchg, and if the value had FUTEX_WAITERS
3436                  * set, wake up a waiter (if any). (We have to do a
3437                  * futex_wake() even if OWNER_DIED is already set -
3438                  * to handle the rare but possible case of recursive
3439                  * thread-death.) The rest of the cleanup is done in
3440                  * userspace.
3441                  */
3442                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3443                 /*
3444                  * We are not holding a lock here, but we want to have
3445                  * the pagefault_disable/enable() protection because
3446                  * we want to handle the fault gracefully. If the
3447                  * access fails we try to fault in the futex with R/W
3448                  * verification via get_user_pages. get_user() above
3449                  * does not guarantee R/W access. If that fails we
3450                  * give up and leave the futex locked.
3451                  */
3452                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3453                         if (fault_in_user_writeable(uaddr))
3454                                 return -1;
3455                         goto retry;
3456                 }
3457                 if (nval != uval)
3458                         goto retry;
3459
3460                 /*
3461                  * Wake robust non-PI futexes here. The wakeup of
3462                  * PI futexes happens in exit_pi_state():
3463                  */
3464                 if (!pi && (uval & FUTEX_WAITERS))
3465                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3466         }
3467         return 0;
3468 }
3469
3470 /*
3471  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3472  */
3473 static inline int fetch_robust_entry(struct robust_list __user **entry,
3474                                      struct robust_list __user * __user *head,
3475                                      unsigned int *pi)
3476 {
3477         unsigned long uentry;
3478
3479         if (get_user(uentry, (unsigned long __user *)head))
3480                 return -EFAULT;
3481
3482         *entry = (void __user *)(uentry & ~1UL);
3483         *pi = uentry & 1;
3484
3485         return 0;
3486 }
3487
3488 /*
3489  * Walk curr->robust_list (very carefully, it's a userspace list!)
3490  * and mark any locks found there dead, and notify any waiters.
3491  *
3492  * We silently return on any sign of list-walking problem.
3493  */
3494 void exit_robust_list(struct task_struct *curr)
3495 {
3496         struct robust_list_head __user *head = curr->robust_list;
3497         struct robust_list __user *entry, *next_entry, *pending;
3498         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3499         unsigned int uninitialized_var(next_pi);
3500         unsigned long futex_offset;
3501         int rc;
3502
3503         if (!futex_cmpxchg_enabled)
3504                 return;
3505
3506         /*
3507          * Fetch the list head (which was registered earlier, via
3508          * sys_set_robust_list()):
3509          */
3510         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3511                 return;
3512         /*
3513          * Fetch the relative futex offset:
3514          */
3515         if (get_user(futex_offset, &head->futex_offset))
3516                 return;
3517         /*
3518          * Fetch any possibly pending lock-add first, and handle it
3519          * if it exists:
3520          */
3521         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3522                 return;
3523
3524         next_entry = NULL;      /* avoid warning with gcc */
3525         while (entry != &head->list) {
3526                 /*
3527                  * Fetch the next entry in the list before calling
3528                  * handle_futex_death:
3529                  */
3530                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3531                 /*
3532                  * A pending lock might already be on the list, so
3533                  * don't process it twice:
3534                  */
3535                 if (entry != pending)
3536                         if (handle_futex_death((void __user *)entry + futex_offset,
3537                                                 curr, pi))
3538                                 return;
3539                 if (rc)
3540                         return;
3541                 entry = next_entry;
3542                 pi = next_pi;
3543                 /*
3544                  * Avoid excessively long or circular lists:
3545                  */
3546                 if (!--limit)
3547                         break;
3548
3549                 cond_resched();
3550         }
3551
3552         if (pending)
3553                 handle_futex_death((void __user *)pending + futex_offset,
3554                                    curr, pip);
3555 }
3556
3557 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3558                 u32 __user *uaddr2, u32 val2, u32 val3)
3559 {
3560         int cmd = op & FUTEX_CMD_MASK;
3561         unsigned int flags = 0;
3562
3563         if (!(op & FUTEX_PRIVATE_FLAG))
3564                 flags |= FLAGS_SHARED;
3565
3566         if (op & FUTEX_CLOCK_REALTIME) {
3567                 flags |= FLAGS_CLOCKRT;
3568                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3569                     cmd != FUTEX_WAIT_REQUEUE_PI)
3570                         return -ENOSYS;
3571         }
3572
3573         switch (cmd) {
3574         case FUTEX_LOCK_PI:
3575         case FUTEX_UNLOCK_PI:
3576         case FUTEX_TRYLOCK_PI:
3577         case FUTEX_WAIT_REQUEUE_PI:
3578         case FUTEX_CMP_REQUEUE_PI:
3579                 if (!futex_cmpxchg_enabled)
3580                         return -ENOSYS;
3581         }
3582
3583         switch (cmd) {
3584         case FUTEX_WAIT:
3585                 val3 = FUTEX_BITSET_MATCH_ANY;
3586                 /* fall through */
3587         case FUTEX_WAIT_BITSET:
3588                 return futex_wait(uaddr, flags, val, timeout, val3);
3589         case FUTEX_WAKE:
3590                 val3 = FUTEX_BITSET_MATCH_ANY;
3591                 /* fall through */
3592         case FUTEX_WAKE_BITSET:
3593                 return futex_wake(uaddr, flags, val, val3);
3594         case FUTEX_REQUEUE:
3595                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3596         case FUTEX_CMP_REQUEUE:
3597                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3598         case FUTEX_WAKE_OP:
3599                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3600         case FUTEX_LOCK_PI:
3601                 return futex_lock_pi(uaddr, flags, timeout, 0);
3602         case FUTEX_UNLOCK_PI:
3603                 return futex_unlock_pi(uaddr, flags);
3604         case FUTEX_TRYLOCK_PI:
3605                 return futex_lock_pi(uaddr, flags, NULL, 1);
3606         case FUTEX_WAIT_REQUEUE_PI:
3607                 val3 = FUTEX_BITSET_MATCH_ANY;
3608                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3609                                              uaddr2);
3610         case FUTEX_CMP_REQUEUE_PI:
3611                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3612         }
3613         return -ENOSYS;
3614 }
3615
3616
3617 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3618                 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3619                 u32, val3)
3620 {
3621         struct timespec64 ts;
3622         ktime_t t, *tp = NULL;
3623         u32 val2 = 0;
3624         int cmd = op & FUTEX_CMD_MASK;
3625
3626         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3627                       cmd == FUTEX_WAIT_BITSET ||
3628                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3629                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3630                         return -EFAULT;
3631                 if (get_timespec64(&ts, utime))
3632                         return -EFAULT;
3633                 if (!timespec64_valid(&ts))
3634                         return -EINVAL;
3635
3636                 t = timespec64_to_ktime(ts);
3637                 if (cmd == FUTEX_WAIT)
3638                         t = ktime_add_safe(ktime_get(), t);
3639                 tp = &t;
3640         }
3641         /*
3642          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3643          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3644          */
3645         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3646             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3647                 val2 = (u32) (unsigned long) utime;
3648
3649         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3650 }
3651
3652 #ifdef CONFIG_COMPAT
3653 /*
3654  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3655  */
3656 static inline int
3657 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3658                    compat_uptr_t __user *head, unsigned int *pi)
3659 {
3660         if (get_user(*uentry, head))
3661                 return -EFAULT;
3662
3663         *entry = compat_ptr((*uentry) & ~1);
3664         *pi = (unsigned int)(*uentry) & 1;
3665
3666         return 0;
3667 }
3668
3669 static void __user *futex_uaddr(struct robust_list __user *entry,
3670                                 compat_long_t futex_offset)
3671 {
3672         compat_uptr_t base = ptr_to_compat(entry);
3673         void __user *uaddr = compat_ptr(base + futex_offset);
3674
3675         return uaddr;
3676 }
3677
3678 /*
3679  * Walk curr->robust_list (very carefully, it's a userspace list!)
3680  * and mark any locks found there dead, and notify any waiters.
3681  *
3682  * We silently return on any sign of list-walking problem.
3683  */
3684 void compat_exit_robust_list(struct task_struct *curr)
3685 {
3686         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3687         struct robust_list __user *entry, *next_entry, *pending;
3688         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3689         unsigned int uninitialized_var(next_pi);
3690         compat_uptr_t uentry, next_uentry, upending;
3691         compat_long_t futex_offset;
3692         int rc;
3693
3694         if (!futex_cmpxchg_enabled)
3695                 return;
3696
3697         /*
3698          * Fetch the list head (which was registered earlier, via
3699          * sys_set_robust_list()):
3700          */
3701         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3702                 return;
3703         /*
3704          * Fetch the relative futex offset:
3705          */
3706         if (get_user(futex_offset, &head->futex_offset))
3707                 return;
3708         /*
3709          * Fetch any possibly pending lock-add first, and handle it
3710          * if it exists:
3711          */
3712         if (compat_fetch_robust_entry(&upending, &pending,
3713                                &head->list_op_pending, &pip))
3714                 return;
3715
3716         next_entry = NULL;      /* avoid warning with gcc */
3717         while (entry != (struct robust_list __user *) &head->list) {
3718                 /*
3719                  * Fetch the next entry in the list before calling
3720                  * handle_futex_death:
3721                  */
3722                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3723                         (compat_uptr_t __user *)&entry->next, &next_pi);
3724                 /*
3725                  * A pending lock might already be on the list, so
3726                  * dont process it twice:
3727                  */
3728                 if (entry != pending) {
3729                         void __user *uaddr = futex_uaddr(entry, futex_offset);
3730
3731                         if (handle_futex_death(uaddr, curr, pi))
3732                                 return;
3733                 }
3734                 if (rc)
3735                         return;
3736                 uentry = next_uentry;
3737                 entry = next_entry;
3738                 pi = next_pi;
3739                 /*
3740                  * Avoid excessively long or circular lists:
3741                  */
3742                 if (!--limit)
3743                         break;
3744
3745                 cond_resched();
3746         }
3747         if (pending) {
3748                 void __user *uaddr = futex_uaddr(pending, futex_offset);
3749
3750                 handle_futex_death(uaddr, curr, pip);
3751         }
3752 }
3753
3754 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3755                 struct compat_robust_list_head __user *, head,
3756                 compat_size_t, len)
3757 {
3758         if (!futex_cmpxchg_enabled)
3759                 return -ENOSYS;
3760
3761         if (unlikely(len != sizeof(*head)))
3762                 return -EINVAL;
3763
3764         current->compat_robust_list = head;
3765
3766         return 0;
3767 }
3768
3769 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3770                         compat_uptr_t __user *, head_ptr,
3771                         compat_size_t __user *, len_ptr)
3772 {
3773         struct compat_robust_list_head __user *head;
3774         unsigned long ret;
3775         struct task_struct *p;
3776
3777         if (!futex_cmpxchg_enabled)
3778                 return -ENOSYS;
3779
3780         rcu_read_lock();
3781
3782         ret = -ESRCH;
3783         if (!pid)
3784                 p = current;
3785         else {
3786                 p = find_task_by_vpid(pid);
3787                 if (!p)
3788                         goto err_unlock;
3789         }
3790
3791         ret = -EPERM;
3792         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3793                 goto err_unlock;
3794
3795         head = p->compat_robust_list;
3796         rcu_read_unlock();
3797
3798         if (put_user(sizeof(*head), len_ptr))
3799                 return -EFAULT;
3800         return put_user(ptr_to_compat(head), head_ptr);
3801
3802 err_unlock:
3803         rcu_read_unlock();
3804
3805         return ret;
3806 }
3807 #endif /* CONFIG_COMPAT */
3808
3809 #ifdef CONFIG_COMPAT_32BIT_TIME
3810 COMPAT_SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3811                 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3812                 u32, val3)
3813 {
3814         struct timespec64 ts;
3815         ktime_t t, *tp = NULL;
3816         int val2 = 0;
3817         int cmd = op & FUTEX_CMD_MASK;
3818
3819         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3820                       cmd == FUTEX_WAIT_BITSET ||
3821                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3822                 if (get_old_timespec32(&ts, utime))
3823                         return -EFAULT;
3824                 if (!timespec64_valid(&ts))
3825                         return -EINVAL;
3826
3827                 t = timespec64_to_ktime(ts);
3828                 if (cmd == FUTEX_WAIT)
3829                         t = ktime_add_safe(ktime_get(), t);
3830                 tp = &t;
3831         }
3832         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3833             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3834                 val2 = (int) (unsigned long) utime;
3835
3836         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3837 }
3838 #endif /* CONFIG_COMPAT_32BIT_TIME */
3839
3840 static void __init futex_detect_cmpxchg(void)
3841 {
3842 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3843         u32 curval;
3844
3845         /*
3846          * This will fail and we want it. Some arch implementations do
3847          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3848          * functionality. We want to know that before we call in any
3849          * of the complex code paths. Also we want to prevent
3850          * registration of robust lists in that case. NULL is
3851          * guaranteed to fault and we get -EFAULT on functional
3852          * implementation, the non-functional ones will return
3853          * -ENOSYS.
3854          */
3855         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3856                 futex_cmpxchg_enabled = 1;
3857 #endif
3858 }
3859
3860 static int __init futex_init(void)
3861 {
3862         unsigned int futex_shift;
3863         unsigned long i;
3864
3865 #if CONFIG_BASE_SMALL
3866         futex_hashsize = 16;
3867 #else
3868         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3869 #endif
3870
3871         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3872                                                futex_hashsize, 0,
3873                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3874                                                &futex_shift, NULL,
3875                                                futex_hashsize, futex_hashsize);
3876         futex_hashsize = 1UL << futex_shift;
3877
3878         futex_detect_cmpxchg();
3879
3880         for (i = 0; i < futex_hashsize; i++) {
3881                 atomic_set(&futex_queues[i].waiters, 0);
3882                 plist_head_init(&futex_queues[i].chain);
3883                 spin_lock_init(&futex_queues[i].lock);
3884         }
3885
3886         return 0;
3887 }
3888 core_initcall(futex_init);