Merge tag 'ceph-for-4.20-rc1' of git://github.com/ceph/ceph-client
[sfrench/cifs-2.6.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/coredump.h>
32 #include <linux/export.h>
33 #include <linux/rmap.h>         /* anon_vma_prepare */
34 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
35 #include <linux/swap.h>         /* try_to_free_swap */
36 #include <linux/ptrace.h>       /* user_enable_single_step */
37 #include <linux/kdebug.h>       /* notifier mechanism */
38 #include "../../mm/internal.h"  /* munlock_vma_page */
39 #include <linux/percpu-rwsem.h>
40 #include <linux/task_work.h>
41 #include <linux/shmem_fs.h>
42
43 #include <linux/uprobes.h>
44
45 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
46 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
47
48 static struct rb_root uprobes_tree = RB_ROOT;
49 /*
50  * allows us to skip the uprobe_mmap if there are no uprobe events active
51  * at this time.  Probably a fine grained per inode count is better?
52  */
53 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
54
55 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
56
57 #define UPROBES_HASH_SZ 13
58 /* serialize uprobe->pending_list */
59 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
60 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
61
62 static struct percpu_rw_semaphore dup_mmap_sem;
63
64 /* Have a copy of original instruction */
65 #define UPROBE_COPY_INSN        0
66
67 struct uprobe {
68         struct rb_node          rb_node;        /* node in the rb tree */
69         atomic_t                ref;
70         struct rw_semaphore     register_rwsem;
71         struct rw_semaphore     consumer_rwsem;
72         struct list_head        pending_list;
73         struct uprobe_consumer  *consumers;
74         struct inode            *inode;         /* Also hold a ref to inode */
75         loff_t                  offset;
76         loff_t                  ref_ctr_offset;
77         unsigned long           flags;
78
79         /*
80          * The generic code assumes that it has two members of unknown type
81          * owned by the arch-specific code:
82          *
83          *      insn -  copy_insn() saves the original instruction here for
84          *              arch_uprobe_analyze_insn().
85          *
86          *      ixol -  potentially modified instruction to execute out of
87          *              line, copied to xol_area by xol_get_insn_slot().
88          */
89         struct arch_uprobe      arch;
90 };
91
92 struct delayed_uprobe {
93         struct list_head list;
94         struct uprobe *uprobe;
95         struct mm_struct *mm;
96 };
97
98 static DEFINE_MUTEX(delayed_uprobe_lock);
99 static LIST_HEAD(delayed_uprobe_list);
100
101 /*
102  * Execute out of line area: anonymous executable mapping installed
103  * by the probed task to execute the copy of the original instruction
104  * mangled by set_swbp().
105  *
106  * On a breakpoint hit, thread contests for a slot.  It frees the
107  * slot after singlestep. Currently a fixed number of slots are
108  * allocated.
109  */
110 struct xol_area {
111         wait_queue_head_t               wq;             /* if all slots are busy */
112         atomic_t                        slot_count;     /* number of in-use slots */
113         unsigned long                   *bitmap;        /* 0 = free slot */
114
115         struct vm_special_mapping       xol_mapping;
116         struct page                     *pages[2];
117         /*
118          * We keep the vma's vm_start rather than a pointer to the vma
119          * itself.  The probed process or a naughty kernel module could make
120          * the vma go away, and we must handle that reasonably gracefully.
121          */
122         unsigned long                   vaddr;          /* Page(s) of instruction slots */
123 };
124
125 /*
126  * valid_vma: Verify if the specified vma is an executable vma
127  * Relax restrictions while unregistering: vm_flags might have
128  * changed after breakpoint was inserted.
129  *      - is_register: indicates if we are in register context.
130  *      - Return 1 if the specified virtual address is in an
131  *        executable vma.
132  */
133 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
134 {
135         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
136
137         if (is_register)
138                 flags |= VM_WRITE;
139
140         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
141 }
142
143 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
144 {
145         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
146 }
147
148 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
149 {
150         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
151 }
152
153 /**
154  * __replace_page - replace page in vma by new page.
155  * based on replace_page in mm/ksm.c
156  *
157  * @vma:      vma that holds the pte pointing to page
158  * @addr:     address the old @page is mapped at
159  * @page:     the cowed page we are replacing by kpage
160  * @kpage:    the modified page we replace page by
161  *
162  * Returns 0 on success, -EFAULT on failure.
163  */
164 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
165                                 struct page *old_page, struct page *new_page)
166 {
167         struct mm_struct *mm = vma->vm_mm;
168         struct page_vma_mapped_walk pvmw = {
169                 .page = old_page,
170                 .vma = vma,
171                 .address = addr,
172         };
173         int err;
174         /* For mmu_notifiers */
175         const unsigned long mmun_start = addr;
176         const unsigned long mmun_end   = addr + PAGE_SIZE;
177         struct mem_cgroup *memcg;
178
179         VM_BUG_ON_PAGE(PageTransHuge(old_page), old_page);
180
181         err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg,
182                         false);
183         if (err)
184                 return err;
185
186         /* For try_to_free_swap() and munlock_vma_page() below */
187         lock_page(old_page);
188
189         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
190         err = -EAGAIN;
191         if (!page_vma_mapped_walk(&pvmw)) {
192                 mem_cgroup_cancel_charge(new_page, memcg, false);
193                 goto unlock;
194         }
195         VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
196
197         get_page(new_page);
198         page_add_new_anon_rmap(new_page, vma, addr, false);
199         mem_cgroup_commit_charge(new_page, memcg, false, false);
200         lru_cache_add_active_or_unevictable(new_page, vma);
201
202         if (!PageAnon(old_page)) {
203                 dec_mm_counter(mm, mm_counter_file(old_page));
204                 inc_mm_counter(mm, MM_ANONPAGES);
205         }
206
207         flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
208         ptep_clear_flush_notify(vma, addr, pvmw.pte);
209         set_pte_at_notify(mm, addr, pvmw.pte,
210                         mk_pte(new_page, vma->vm_page_prot));
211
212         page_remove_rmap(old_page, false);
213         if (!page_mapped(old_page))
214                 try_to_free_swap(old_page);
215         page_vma_mapped_walk_done(&pvmw);
216
217         if (vma->vm_flags & VM_LOCKED)
218                 munlock_vma_page(old_page);
219         put_page(old_page);
220
221         err = 0;
222  unlock:
223         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
224         unlock_page(old_page);
225         return err;
226 }
227
228 /**
229  * is_swbp_insn - check if instruction is breakpoint instruction.
230  * @insn: instruction to be checked.
231  * Default implementation of is_swbp_insn
232  * Returns true if @insn is a breakpoint instruction.
233  */
234 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
235 {
236         return *insn == UPROBE_SWBP_INSN;
237 }
238
239 /**
240  * is_trap_insn - check if instruction is breakpoint instruction.
241  * @insn: instruction to be checked.
242  * Default implementation of is_trap_insn
243  * Returns true if @insn is a breakpoint instruction.
244  *
245  * This function is needed for the case where an architecture has multiple
246  * trap instructions (like powerpc).
247  */
248 bool __weak is_trap_insn(uprobe_opcode_t *insn)
249 {
250         return is_swbp_insn(insn);
251 }
252
253 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
254 {
255         void *kaddr = kmap_atomic(page);
256         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
257         kunmap_atomic(kaddr);
258 }
259
260 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
261 {
262         void *kaddr = kmap_atomic(page);
263         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
264         kunmap_atomic(kaddr);
265 }
266
267 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
268 {
269         uprobe_opcode_t old_opcode;
270         bool is_swbp;
271
272         /*
273          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
274          * We do not check if it is any other 'trap variant' which could
275          * be conditional trap instruction such as the one powerpc supports.
276          *
277          * The logic is that we do not care if the underlying instruction
278          * is a trap variant; uprobes always wins over any other (gdb)
279          * breakpoint.
280          */
281         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
282         is_swbp = is_swbp_insn(&old_opcode);
283
284         if (is_swbp_insn(new_opcode)) {
285                 if (is_swbp)            /* register: already installed? */
286                         return 0;
287         } else {
288                 if (!is_swbp)           /* unregister: was it changed by us? */
289                         return 0;
290         }
291
292         return 1;
293 }
294
295 static struct delayed_uprobe *
296 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
297 {
298         struct delayed_uprobe *du;
299
300         list_for_each_entry(du, &delayed_uprobe_list, list)
301                 if (du->uprobe == uprobe && du->mm == mm)
302                         return du;
303         return NULL;
304 }
305
306 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
307 {
308         struct delayed_uprobe *du;
309
310         if (delayed_uprobe_check(uprobe, mm))
311                 return 0;
312
313         du  = kzalloc(sizeof(*du), GFP_KERNEL);
314         if (!du)
315                 return -ENOMEM;
316
317         du->uprobe = uprobe;
318         du->mm = mm;
319         list_add(&du->list, &delayed_uprobe_list);
320         return 0;
321 }
322
323 static void delayed_uprobe_delete(struct delayed_uprobe *du)
324 {
325         if (WARN_ON(!du))
326                 return;
327         list_del(&du->list);
328         kfree(du);
329 }
330
331 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
332 {
333         struct list_head *pos, *q;
334         struct delayed_uprobe *du;
335
336         if (!uprobe && !mm)
337                 return;
338
339         list_for_each_safe(pos, q, &delayed_uprobe_list) {
340                 du = list_entry(pos, struct delayed_uprobe, list);
341
342                 if (uprobe && du->uprobe != uprobe)
343                         continue;
344                 if (mm && du->mm != mm)
345                         continue;
346
347                 delayed_uprobe_delete(du);
348         }
349 }
350
351 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
352                               struct vm_area_struct *vma)
353 {
354         unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
355
356         return uprobe->ref_ctr_offset &&
357                 vma->vm_file &&
358                 file_inode(vma->vm_file) == uprobe->inode &&
359                 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
360                 vma->vm_start <= vaddr &&
361                 vma->vm_end > vaddr;
362 }
363
364 static struct vm_area_struct *
365 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
366 {
367         struct vm_area_struct *tmp;
368
369         for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
370                 if (valid_ref_ctr_vma(uprobe, tmp))
371                         return tmp;
372
373         return NULL;
374 }
375
376 static int
377 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
378 {
379         void *kaddr;
380         struct page *page;
381         struct vm_area_struct *vma;
382         int ret;
383         short *ptr;
384
385         if (!vaddr || !d)
386                 return -EINVAL;
387
388         ret = get_user_pages_remote(NULL, mm, vaddr, 1,
389                         FOLL_WRITE, &page, &vma, NULL);
390         if (unlikely(ret <= 0)) {
391                 /*
392                  * We are asking for 1 page. If get_user_pages_remote() fails,
393                  * it may return 0, in that case we have to return error.
394                  */
395                 return ret == 0 ? -EBUSY : ret;
396         }
397
398         kaddr = kmap_atomic(page);
399         ptr = kaddr + (vaddr & ~PAGE_MASK);
400
401         if (unlikely(*ptr + d < 0)) {
402                 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
403                         "curr val: %d, delta: %d\n", vaddr, *ptr, d);
404                 ret = -EINVAL;
405                 goto out;
406         }
407
408         *ptr += d;
409         ret = 0;
410 out:
411         kunmap_atomic(kaddr);
412         put_page(page);
413         return ret;
414 }
415
416 static void update_ref_ctr_warn(struct uprobe *uprobe,
417                                 struct mm_struct *mm, short d)
418 {
419         pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
420                 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
421                 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
422                 (unsigned long long) uprobe->offset,
423                 (unsigned long long) uprobe->ref_ctr_offset, mm);
424 }
425
426 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
427                           short d)
428 {
429         struct vm_area_struct *rc_vma;
430         unsigned long rc_vaddr;
431         int ret = 0;
432
433         rc_vma = find_ref_ctr_vma(uprobe, mm);
434
435         if (rc_vma) {
436                 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
437                 ret = __update_ref_ctr(mm, rc_vaddr, d);
438                 if (ret)
439                         update_ref_ctr_warn(uprobe, mm, d);
440
441                 if (d > 0)
442                         return ret;
443         }
444
445         mutex_lock(&delayed_uprobe_lock);
446         if (d > 0)
447                 ret = delayed_uprobe_add(uprobe, mm);
448         else
449                 delayed_uprobe_remove(uprobe, mm);
450         mutex_unlock(&delayed_uprobe_lock);
451
452         return ret;
453 }
454
455 /*
456  * NOTE:
457  * Expect the breakpoint instruction to be the smallest size instruction for
458  * the architecture. If an arch has variable length instruction and the
459  * breakpoint instruction is not of the smallest length instruction
460  * supported by that architecture then we need to modify is_trap_at_addr and
461  * uprobe_write_opcode accordingly. This would never be a problem for archs
462  * that have fixed length instructions.
463  *
464  * uprobe_write_opcode - write the opcode at a given virtual address.
465  * @mm: the probed process address space.
466  * @vaddr: the virtual address to store the opcode.
467  * @opcode: opcode to be written at @vaddr.
468  *
469  * Called with mm->mmap_sem held for write.
470  * Return 0 (success) or a negative errno.
471  */
472 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
473                         unsigned long vaddr, uprobe_opcode_t opcode)
474 {
475         struct uprobe *uprobe;
476         struct page *old_page, *new_page;
477         struct vm_area_struct *vma;
478         int ret, is_register, ref_ctr_updated = 0;
479
480         is_register = is_swbp_insn(&opcode);
481         uprobe = container_of(auprobe, struct uprobe, arch);
482
483 retry:
484         /* Read the page with vaddr into memory */
485         ret = get_user_pages_remote(NULL, mm, vaddr, 1,
486                         FOLL_FORCE | FOLL_SPLIT, &old_page, &vma, NULL);
487         if (ret <= 0)
488                 return ret;
489
490         ret = verify_opcode(old_page, vaddr, &opcode);
491         if (ret <= 0)
492                 goto put_old;
493
494         /* We are going to replace instruction, update ref_ctr. */
495         if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
496                 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
497                 if (ret)
498                         goto put_old;
499
500                 ref_ctr_updated = 1;
501         }
502
503         ret = anon_vma_prepare(vma);
504         if (ret)
505                 goto put_old;
506
507         ret = -ENOMEM;
508         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
509         if (!new_page)
510                 goto put_old;
511
512         __SetPageUptodate(new_page);
513         copy_highpage(new_page, old_page);
514         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
515
516         ret = __replace_page(vma, vaddr, old_page, new_page);
517         put_page(new_page);
518 put_old:
519         put_page(old_page);
520
521         if (unlikely(ret == -EAGAIN))
522                 goto retry;
523
524         /* Revert back reference counter if instruction update failed. */
525         if (ret && is_register && ref_ctr_updated)
526                 update_ref_ctr(uprobe, mm, -1);
527
528         return ret;
529 }
530
531 /**
532  * set_swbp - store breakpoint at a given address.
533  * @auprobe: arch specific probepoint information.
534  * @mm: the probed process address space.
535  * @vaddr: the virtual address to insert the opcode.
536  *
537  * For mm @mm, store the breakpoint instruction at @vaddr.
538  * Return 0 (success) or a negative errno.
539  */
540 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
541 {
542         return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
543 }
544
545 /**
546  * set_orig_insn - Restore the original instruction.
547  * @mm: the probed process address space.
548  * @auprobe: arch specific probepoint information.
549  * @vaddr: the virtual address to insert the opcode.
550  *
551  * For mm @mm, restore the original opcode (opcode) at @vaddr.
552  * Return 0 (success) or a negative errno.
553  */
554 int __weak
555 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
556 {
557         return uprobe_write_opcode(auprobe, mm, vaddr,
558                         *(uprobe_opcode_t *)&auprobe->insn);
559 }
560
561 static struct uprobe *get_uprobe(struct uprobe *uprobe)
562 {
563         atomic_inc(&uprobe->ref);
564         return uprobe;
565 }
566
567 static void put_uprobe(struct uprobe *uprobe)
568 {
569         if (atomic_dec_and_test(&uprobe->ref)) {
570                 /*
571                  * If application munmap(exec_vma) before uprobe_unregister()
572                  * gets called, we don't get a chance to remove uprobe from
573                  * delayed_uprobe_list from remove_breakpoint(). Do it here.
574                  */
575                 delayed_uprobe_remove(uprobe, NULL);
576                 kfree(uprobe);
577         }
578 }
579
580 static int match_uprobe(struct uprobe *l, struct uprobe *r)
581 {
582         if (l->inode < r->inode)
583                 return -1;
584
585         if (l->inode > r->inode)
586                 return 1;
587
588         if (l->offset < r->offset)
589                 return -1;
590
591         if (l->offset > r->offset)
592                 return 1;
593
594         return 0;
595 }
596
597 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
598 {
599         struct uprobe u = { .inode = inode, .offset = offset };
600         struct rb_node *n = uprobes_tree.rb_node;
601         struct uprobe *uprobe;
602         int match;
603
604         while (n) {
605                 uprobe = rb_entry(n, struct uprobe, rb_node);
606                 match = match_uprobe(&u, uprobe);
607                 if (!match)
608                         return get_uprobe(uprobe);
609
610                 if (match < 0)
611                         n = n->rb_left;
612                 else
613                         n = n->rb_right;
614         }
615         return NULL;
616 }
617
618 /*
619  * Find a uprobe corresponding to a given inode:offset
620  * Acquires uprobes_treelock
621  */
622 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
623 {
624         struct uprobe *uprobe;
625
626         spin_lock(&uprobes_treelock);
627         uprobe = __find_uprobe(inode, offset);
628         spin_unlock(&uprobes_treelock);
629
630         return uprobe;
631 }
632
633 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
634 {
635         struct rb_node **p = &uprobes_tree.rb_node;
636         struct rb_node *parent = NULL;
637         struct uprobe *u;
638         int match;
639
640         while (*p) {
641                 parent = *p;
642                 u = rb_entry(parent, struct uprobe, rb_node);
643                 match = match_uprobe(uprobe, u);
644                 if (!match)
645                         return get_uprobe(u);
646
647                 if (match < 0)
648                         p = &parent->rb_left;
649                 else
650                         p = &parent->rb_right;
651
652         }
653
654         u = NULL;
655         rb_link_node(&uprobe->rb_node, parent, p);
656         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
657         /* get access + creation ref */
658         atomic_set(&uprobe->ref, 2);
659
660         return u;
661 }
662
663 /*
664  * Acquire uprobes_treelock.
665  * Matching uprobe already exists in rbtree;
666  *      increment (access refcount) and return the matching uprobe.
667  *
668  * No matching uprobe; insert the uprobe in rb_tree;
669  *      get a double refcount (access + creation) and return NULL.
670  */
671 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
672 {
673         struct uprobe *u;
674
675         spin_lock(&uprobes_treelock);
676         u = __insert_uprobe(uprobe);
677         spin_unlock(&uprobes_treelock);
678
679         return u;
680 }
681
682 static void
683 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
684 {
685         pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
686                 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
687                 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
688                 (unsigned long long) cur_uprobe->ref_ctr_offset,
689                 (unsigned long long) uprobe->ref_ctr_offset);
690 }
691
692 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
693                                    loff_t ref_ctr_offset)
694 {
695         struct uprobe *uprobe, *cur_uprobe;
696
697         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
698         if (!uprobe)
699                 return NULL;
700
701         uprobe->inode = inode;
702         uprobe->offset = offset;
703         uprobe->ref_ctr_offset = ref_ctr_offset;
704         init_rwsem(&uprobe->register_rwsem);
705         init_rwsem(&uprobe->consumer_rwsem);
706
707         /* add to uprobes_tree, sorted on inode:offset */
708         cur_uprobe = insert_uprobe(uprobe);
709         /* a uprobe exists for this inode:offset combination */
710         if (cur_uprobe) {
711                 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
712                         ref_ctr_mismatch_warn(cur_uprobe, uprobe);
713                         put_uprobe(cur_uprobe);
714                         kfree(uprobe);
715                         return ERR_PTR(-EINVAL);
716                 }
717                 kfree(uprobe);
718                 uprobe = cur_uprobe;
719         }
720
721         return uprobe;
722 }
723
724 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
725 {
726         down_write(&uprobe->consumer_rwsem);
727         uc->next = uprobe->consumers;
728         uprobe->consumers = uc;
729         up_write(&uprobe->consumer_rwsem);
730 }
731
732 /*
733  * For uprobe @uprobe, delete the consumer @uc.
734  * Return true if the @uc is deleted successfully
735  * or return false.
736  */
737 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
738 {
739         struct uprobe_consumer **con;
740         bool ret = false;
741
742         down_write(&uprobe->consumer_rwsem);
743         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
744                 if (*con == uc) {
745                         *con = uc->next;
746                         ret = true;
747                         break;
748                 }
749         }
750         up_write(&uprobe->consumer_rwsem);
751
752         return ret;
753 }
754
755 static int __copy_insn(struct address_space *mapping, struct file *filp,
756                         void *insn, int nbytes, loff_t offset)
757 {
758         struct page *page;
759         /*
760          * Ensure that the page that has the original instruction is populated
761          * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
762          * see uprobe_register().
763          */
764         if (mapping->a_ops->readpage)
765                 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
766         else
767                 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
768         if (IS_ERR(page))
769                 return PTR_ERR(page);
770
771         copy_from_page(page, offset, insn, nbytes);
772         put_page(page);
773
774         return 0;
775 }
776
777 static int copy_insn(struct uprobe *uprobe, struct file *filp)
778 {
779         struct address_space *mapping = uprobe->inode->i_mapping;
780         loff_t offs = uprobe->offset;
781         void *insn = &uprobe->arch.insn;
782         int size = sizeof(uprobe->arch.insn);
783         int len, err = -EIO;
784
785         /* Copy only available bytes, -EIO if nothing was read */
786         do {
787                 if (offs >= i_size_read(uprobe->inode))
788                         break;
789
790                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
791                 err = __copy_insn(mapping, filp, insn, len, offs);
792                 if (err)
793                         break;
794
795                 insn += len;
796                 offs += len;
797                 size -= len;
798         } while (size);
799
800         return err;
801 }
802
803 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
804                                 struct mm_struct *mm, unsigned long vaddr)
805 {
806         int ret = 0;
807
808         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
809                 return ret;
810
811         /* TODO: move this into _register, until then we abuse this sem. */
812         down_write(&uprobe->consumer_rwsem);
813         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
814                 goto out;
815
816         ret = copy_insn(uprobe, file);
817         if (ret)
818                 goto out;
819
820         ret = -ENOTSUPP;
821         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
822                 goto out;
823
824         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
825         if (ret)
826                 goto out;
827
828         /* uprobe_write_opcode() assumes we don't cross page boundary */
829         BUG_ON((uprobe->offset & ~PAGE_MASK) +
830                         UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
831
832         smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
833         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
834
835  out:
836         up_write(&uprobe->consumer_rwsem);
837
838         return ret;
839 }
840
841 static inline bool consumer_filter(struct uprobe_consumer *uc,
842                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
843 {
844         return !uc->filter || uc->filter(uc, ctx, mm);
845 }
846
847 static bool filter_chain(struct uprobe *uprobe,
848                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
849 {
850         struct uprobe_consumer *uc;
851         bool ret = false;
852
853         down_read(&uprobe->consumer_rwsem);
854         for (uc = uprobe->consumers; uc; uc = uc->next) {
855                 ret = consumer_filter(uc, ctx, mm);
856                 if (ret)
857                         break;
858         }
859         up_read(&uprobe->consumer_rwsem);
860
861         return ret;
862 }
863
864 static int
865 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
866                         struct vm_area_struct *vma, unsigned long vaddr)
867 {
868         bool first_uprobe;
869         int ret;
870
871         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
872         if (ret)
873                 return ret;
874
875         /*
876          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
877          * the task can hit this breakpoint right after __replace_page().
878          */
879         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
880         if (first_uprobe)
881                 set_bit(MMF_HAS_UPROBES, &mm->flags);
882
883         ret = set_swbp(&uprobe->arch, mm, vaddr);
884         if (!ret)
885                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
886         else if (first_uprobe)
887                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
888
889         return ret;
890 }
891
892 static int
893 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
894 {
895         set_bit(MMF_RECALC_UPROBES, &mm->flags);
896         return set_orig_insn(&uprobe->arch, mm, vaddr);
897 }
898
899 static inline bool uprobe_is_active(struct uprobe *uprobe)
900 {
901         return !RB_EMPTY_NODE(&uprobe->rb_node);
902 }
903 /*
904  * There could be threads that have already hit the breakpoint. They
905  * will recheck the current insn and restart if find_uprobe() fails.
906  * See find_active_uprobe().
907  */
908 static void delete_uprobe(struct uprobe *uprobe)
909 {
910         if (WARN_ON(!uprobe_is_active(uprobe)))
911                 return;
912
913         spin_lock(&uprobes_treelock);
914         rb_erase(&uprobe->rb_node, &uprobes_tree);
915         spin_unlock(&uprobes_treelock);
916         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
917         put_uprobe(uprobe);
918 }
919
920 struct map_info {
921         struct map_info *next;
922         struct mm_struct *mm;
923         unsigned long vaddr;
924 };
925
926 static inline struct map_info *free_map_info(struct map_info *info)
927 {
928         struct map_info *next = info->next;
929         kfree(info);
930         return next;
931 }
932
933 static struct map_info *
934 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
935 {
936         unsigned long pgoff = offset >> PAGE_SHIFT;
937         struct vm_area_struct *vma;
938         struct map_info *curr = NULL;
939         struct map_info *prev = NULL;
940         struct map_info *info;
941         int more = 0;
942
943  again:
944         i_mmap_lock_read(mapping);
945         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
946                 if (!valid_vma(vma, is_register))
947                         continue;
948
949                 if (!prev && !more) {
950                         /*
951                          * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
952                          * reclaim. This is optimistic, no harm done if it fails.
953                          */
954                         prev = kmalloc(sizeof(struct map_info),
955                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
956                         if (prev)
957                                 prev->next = NULL;
958                 }
959                 if (!prev) {
960                         more++;
961                         continue;
962                 }
963
964                 if (!mmget_not_zero(vma->vm_mm))
965                         continue;
966
967                 info = prev;
968                 prev = prev->next;
969                 info->next = curr;
970                 curr = info;
971
972                 info->mm = vma->vm_mm;
973                 info->vaddr = offset_to_vaddr(vma, offset);
974         }
975         i_mmap_unlock_read(mapping);
976
977         if (!more)
978                 goto out;
979
980         prev = curr;
981         while (curr) {
982                 mmput(curr->mm);
983                 curr = curr->next;
984         }
985
986         do {
987                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
988                 if (!info) {
989                         curr = ERR_PTR(-ENOMEM);
990                         goto out;
991                 }
992                 info->next = prev;
993                 prev = info;
994         } while (--more);
995
996         goto again;
997  out:
998         while (prev)
999                 prev = free_map_info(prev);
1000         return curr;
1001 }
1002
1003 static int
1004 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1005 {
1006         bool is_register = !!new;
1007         struct map_info *info;
1008         int err = 0;
1009
1010         percpu_down_write(&dup_mmap_sem);
1011         info = build_map_info(uprobe->inode->i_mapping,
1012                                         uprobe->offset, is_register);
1013         if (IS_ERR(info)) {
1014                 err = PTR_ERR(info);
1015                 goto out;
1016         }
1017
1018         while (info) {
1019                 struct mm_struct *mm = info->mm;
1020                 struct vm_area_struct *vma;
1021
1022                 if (err && is_register)
1023                         goto free;
1024
1025                 down_write(&mm->mmap_sem);
1026                 vma = find_vma(mm, info->vaddr);
1027                 if (!vma || !valid_vma(vma, is_register) ||
1028                     file_inode(vma->vm_file) != uprobe->inode)
1029                         goto unlock;
1030
1031                 if (vma->vm_start > info->vaddr ||
1032                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1033                         goto unlock;
1034
1035                 if (is_register) {
1036                         /* consult only the "caller", new consumer. */
1037                         if (consumer_filter(new,
1038                                         UPROBE_FILTER_REGISTER, mm))
1039                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1040                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1041                         if (!filter_chain(uprobe,
1042                                         UPROBE_FILTER_UNREGISTER, mm))
1043                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1044                 }
1045
1046  unlock:
1047                 up_write(&mm->mmap_sem);
1048  free:
1049                 mmput(mm);
1050                 info = free_map_info(info);
1051         }
1052  out:
1053         percpu_up_write(&dup_mmap_sem);
1054         return err;
1055 }
1056
1057 static void
1058 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1059 {
1060         int err;
1061
1062         if (WARN_ON(!consumer_del(uprobe, uc)))
1063                 return;
1064
1065         err = register_for_each_vma(uprobe, NULL);
1066         /* TODO : cant unregister? schedule a worker thread */
1067         if (!uprobe->consumers && !err)
1068                 delete_uprobe(uprobe);
1069 }
1070
1071 /*
1072  * uprobe_unregister - unregister an already registered probe.
1073  * @inode: the file in which the probe has to be removed.
1074  * @offset: offset from the start of the file.
1075  * @uc: identify which probe if multiple probes are colocated.
1076  */
1077 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1078 {
1079         struct uprobe *uprobe;
1080
1081         uprobe = find_uprobe(inode, offset);
1082         if (WARN_ON(!uprobe))
1083                 return;
1084
1085         down_write(&uprobe->register_rwsem);
1086         __uprobe_unregister(uprobe, uc);
1087         up_write(&uprobe->register_rwsem);
1088         put_uprobe(uprobe);
1089 }
1090 EXPORT_SYMBOL_GPL(uprobe_unregister);
1091
1092 /*
1093  * __uprobe_register - register a probe
1094  * @inode: the file in which the probe has to be placed.
1095  * @offset: offset from the start of the file.
1096  * @uc: information on howto handle the probe..
1097  *
1098  * Apart from the access refcount, __uprobe_register() takes a creation
1099  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1100  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1101  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1102  * @uprobe even before the register operation is complete. Creation
1103  * refcount is released when the last @uc for the @uprobe
1104  * unregisters. Caller of __uprobe_register() is required to keep @inode
1105  * (and the containing mount) referenced.
1106  *
1107  * Return errno if it cannot successully install probes
1108  * else return 0 (success)
1109  */
1110 static int __uprobe_register(struct inode *inode, loff_t offset,
1111                              loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1112 {
1113         struct uprobe *uprobe;
1114         int ret;
1115
1116         /* Uprobe must have at least one set consumer */
1117         if (!uc->handler && !uc->ret_handler)
1118                 return -EINVAL;
1119
1120         /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1121         if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1122                 return -EIO;
1123         /* Racy, just to catch the obvious mistakes */
1124         if (offset > i_size_read(inode))
1125                 return -EINVAL;
1126
1127  retry:
1128         uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1129         if (!uprobe)
1130                 return -ENOMEM;
1131         if (IS_ERR(uprobe))
1132                 return PTR_ERR(uprobe);
1133
1134         /*
1135          * We can race with uprobe_unregister()->delete_uprobe().
1136          * Check uprobe_is_active() and retry if it is false.
1137          */
1138         down_write(&uprobe->register_rwsem);
1139         ret = -EAGAIN;
1140         if (likely(uprobe_is_active(uprobe))) {
1141                 consumer_add(uprobe, uc);
1142                 ret = register_for_each_vma(uprobe, uc);
1143                 if (ret)
1144                         __uprobe_unregister(uprobe, uc);
1145         }
1146         up_write(&uprobe->register_rwsem);
1147         put_uprobe(uprobe);
1148
1149         if (unlikely(ret == -EAGAIN))
1150                 goto retry;
1151         return ret;
1152 }
1153
1154 int uprobe_register(struct inode *inode, loff_t offset,
1155                     struct uprobe_consumer *uc)
1156 {
1157         return __uprobe_register(inode, offset, 0, uc);
1158 }
1159 EXPORT_SYMBOL_GPL(uprobe_register);
1160
1161 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1162                            loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1163 {
1164         return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1165 }
1166 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1167
1168 /*
1169  * uprobe_apply - unregister an already registered probe.
1170  * @inode: the file in which the probe has to be removed.
1171  * @offset: offset from the start of the file.
1172  * @uc: consumer which wants to add more or remove some breakpoints
1173  * @add: add or remove the breakpoints
1174  */
1175 int uprobe_apply(struct inode *inode, loff_t offset,
1176                         struct uprobe_consumer *uc, bool add)
1177 {
1178         struct uprobe *uprobe;
1179         struct uprobe_consumer *con;
1180         int ret = -ENOENT;
1181
1182         uprobe = find_uprobe(inode, offset);
1183         if (WARN_ON(!uprobe))
1184                 return ret;
1185
1186         down_write(&uprobe->register_rwsem);
1187         for (con = uprobe->consumers; con && con != uc ; con = con->next)
1188                 ;
1189         if (con)
1190                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1191         up_write(&uprobe->register_rwsem);
1192         put_uprobe(uprobe);
1193
1194         return ret;
1195 }
1196
1197 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1198 {
1199         struct vm_area_struct *vma;
1200         int err = 0;
1201
1202         down_read(&mm->mmap_sem);
1203         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1204                 unsigned long vaddr;
1205                 loff_t offset;
1206
1207                 if (!valid_vma(vma, false) ||
1208                     file_inode(vma->vm_file) != uprobe->inode)
1209                         continue;
1210
1211                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1212                 if (uprobe->offset <  offset ||
1213                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1214                         continue;
1215
1216                 vaddr = offset_to_vaddr(vma, uprobe->offset);
1217                 err |= remove_breakpoint(uprobe, mm, vaddr);
1218         }
1219         up_read(&mm->mmap_sem);
1220
1221         return err;
1222 }
1223
1224 static struct rb_node *
1225 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1226 {
1227         struct rb_node *n = uprobes_tree.rb_node;
1228
1229         while (n) {
1230                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1231
1232                 if (inode < u->inode) {
1233                         n = n->rb_left;
1234                 } else if (inode > u->inode) {
1235                         n = n->rb_right;
1236                 } else {
1237                         if (max < u->offset)
1238                                 n = n->rb_left;
1239                         else if (min > u->offset)
1240                                 n = n->rb_right;
1241                         else
1242                                 break;
1243                 }
1244         }
1245
1246         return n;
1247 }
1248
1249 /*
1250  * For a given range in vma, build a list of probes that need to be inserted.
1251  */
1252 static void build_probe_list(struct inode *inode,
1253                                 struct vm_area_struct *vma,
1254                                 unsigned long start, unsigned long end,
1255                                 struct list_head *head)
1256 {
1257         loff_t min, max;
1258         struct rb_node *n, *t;
1259         struct uprobe *u;
1260
1261         INIT_LIST_HEAD(head);
1262         min = vaddr_to_offset(vma, start);
1263         max = min + (end - start) - 1;
1264
1265         spin_lock(&uprobes_treelock);
1266         n = find_node_in_range(inode, min, max);
1267         if (n) {
1268                 for (t = n; t; t = rb_prev(t)) {
1269                         u = rb_entry(t, struct uprobe, rb_node);
1270                         if (u->inode != inode || u->offset < min)
1271                                 break;
1272                         list_add(&u->pending_list, head);
1273                         get_uprobe(u);
1274                 }
1275                 for (t = n; (t = rb_next(t)); ) {
1276                         u = rb_entry(t, struct uprobe, rb_node);
1277                         if (u->inode != inode || u->offset > max)
1278                                 break;
1279                         list_add(&u->pending_list, head);
1280                         get_uprobe(u);
1281                 }
1282         }
1283         spin_unlock(&uprobes_treelock);
1284 }
1285
1286 /* @vma contains reference counter, not the probed instruction. */
1287 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1288 {
1289         struct list_head *pos, *q;
1290         struct delayed_uprobe *du;
1291         unsigned long vaddr;
1292         int ret = 0, err = 0;
1293
1294         mutex_lock(&delayed_uprobe_lock);
1295         list_for_each_safe(pos, q, &delayed_uprobe_list) {
1296                 du = list_entry(pos, struct delayed_uprobe, list);
1297
1298                 if (du->mm != vma->vm_mm ||
1299                     !valid_ref_ctr_vma(du->uprobe, vma))
1300                         continue;
1301
1302                 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1303                 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1304                 if (ret) {
1305                         update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1306                         if (!err)
1307                                 err = ret;
1308                 }
1309                 delayed_uprobe_delete(du);
1310         }
1311         mutex_unlock(&delayed_uprobe_lock);
1312         return err;
1313 }
1314
1315 /*
1316  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1317  *
1318  * Currently we ignore all errors and always return 0, the callers
1319  * can't handle the failure anyway.
1320  */
1321 int uprobe_mmap(struct vm_area_struct *vma)
1322 {
1323         struct list_head tmp_list;
1324         struct uprobe *uprobe, *u;
1325         struct inode *inode;
1326
1327         if (no_uprobe_events())
1328                 return 0;
1329
1330         if (vma->vm_file &&
1331             (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1332             test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1333                 delayed_ref_ctr_inc(vma);
1334
1335         if (!valid_vma(vma, true))
1336                 return 0;
1337
1338         inode = file_inode(vma->vm_file);
1339         if (!inode)
1340                 return 0;
1341
1342         mutex_lock(uprobes_mmap_hash(inode));
1343         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1344         /*
1345          * We can race with uprobe_unregister(), this uprobe can be already
1346          * removed. But in this case filter_chain() must return false, all
1347          * consumers have gone away.
1348          */
1349         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1350                 if (!fatal_signal_pending(current) &&
1351                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1352                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1353                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1354                 }
1355                 put_uprobe(uprobe);
1356         }
1357         mutex_unlock(uprobes_mmap_hash(inode));
1358
1359         return 0;
1360 }
1361
1362 static bool
1363 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1364 {
1365         loff_t min, max;
1366         struct inode *inode;
1367         struct rb_node *n;
1368
1369         inode = file_inode(vma->vm_file);
1370
1371         min = vaddr_to_offset(vma, start);
1372         max = min + (end - start) - 1;
1373
1374         spin_lock(&uprobes_treelock);
1375         n = find_node_in_range(inode, min, max);
1376         spin_unlock(&uprobes_treelock);
1377
1378         return !!n;
1379 }
1380
1381 /*
1382  * Called in context of a munmap of a vma.
1383  */
1384 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1385 {
1386         if (no_uprobe_events() || !valid_vma(vma, false))
1387                 return;
1388
1389         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1390                 return;
1391
1392         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1393              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1394                 return;
1395
1396         if (vma_has_uprobes(vma, start, end))
1397                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1398 }
1399
1400 /* Slot allocation for XOL */
1401 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1402 {
1403         struct vm_area_struct *vma;
1404         int ret;
1405
1406         if (down_write_killable(&mm->mmap_sem))
1407                 return -EINTR;
1408
1409         if (mm->uprobes_state.xol_area) {
1410                 ret = -EALREADY;
1411                 goto fail;
1412         }
1413
1414         if (!area->vaddr) {
1415                 /* Try to map as high as possible, this is only a hint. */
1416                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1417                                                 PAGE_SIZE, 0, 0);
1418                 if (area->vaddr & ~PAGE_MASK) {
1419                         ret = area->vaddr;
1420                         goto fail;
1421                 }
1422         }
1423
1424         vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1425                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1426                                 &area->xol_mapping);
1427         if (IS_ERR(vma)) {
1428                 ret = PTR_ERR(vma);
1429                 goto fail;
1430         }
1431
1432         ret = 0;
1433         /* pairs with get_xol_area() */
1434         smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1435  fail:
1436         up_write(&mm->mmap_sem);
1437
1438         return ret;
1439 }
1440
1441 static struct xol_area *__create_xol_area(unsigned long vaddr)
1442 {
1443         struct mm_struct *mm = current->mm;
1444         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1445         struct xol_area *area;
1446
1447         area = kmalloc(sizeof(*area), GFP_KERNEL);
1448         if (unlikely(!area))
1449                 goto out;
1450
1451         area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1452                                GFP_KERNEL);
1453         if (!area->bitmap)
1454                 goto free_area;
1455
1456         area->xol_mapping.name = "[uprobes]";
1457         area->xol_mapping.fault = NULL;
1458         area->xol_mapping.pages = area->pages;
1459         area->pages[0] = alloc_page(GFP_HIGHUSER);
1460         if (!area->pages[0])
1461                 goto free_bitmap;
1462         area->pages[1] = NULL;
1463
1464         area->vaddr = vaddr;
1465         init_waitqueue_head(&area->wq);
1466         /* Reserve the 1st slot for get_trampoline_vaddr() */
1467         set_bit(0, area->bitmap);
1468         atomic_set(&area->slot_count, 1);
1469         arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1470
1471         if (!xol_add_vma(mm, area))
1472                 return area;
1473
1474         __free_page(area->pages[0]);
1475  free_bitmap:
1476         kfree(area->bitmap);
1477  free_area:
1478         kfree(area);
1479  out:
1480         return NULL;
1481 }
1482
1483 /*
1484  * get_xol_area - Allocate process's xol_area if necessary.
1485  * This area will be used for storing instructions for execution out of line.
1486  *
1487  * Returns the allocated area or NULL.
1488  */
1489 static struct xol_area *get_xol_area(void)
1490 {
1491         struct mm_struct *mm = current->mm;
1492         struct xol_area *area;
1493
1494         if (!mm->uprobes_state.xol_area)
1495                 __create_xol_area(0);
1496
1497         /* Pairs with xol_add_vma() smp_store_release() */
1498         area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1499         return area;
1500 }
1501
1502 /*
1503  * uprobe_clear_state - Free the area allocated for slots.
1504  */
1505 void uprobe_clear_state(struct mm_struct *mm)
1506 {
1507         struct xol_area *area = mm->uprobes_state.xol_area;
1508
1509         mutex_lock(&delayed_uprobe_lock);
1510         delayed_uprobe_remove(NULL, mm);
1511         mutex_unlock(&delayed_uprobe_lock);
1512
1513         if (!area)
1514                 return;
1515
1516         put_page(area->pages[0]);
1517         kfree(area->bitmap);
1518         kfree(area);
1519 }
1520
1521 void uprobe_start_dup_mmap(void)
1522 {
1523         percpu_down_read(&dup_mmap_sem);
1524 }
1525
1526 void uprobe_end_dup_mmap(void)
1527 {
1528         percpu_up_read(&dup_mmap_sem);
1529 }
1530
1531 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1532 {
1533         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1534                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1535                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1536                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1537         }
1538 }
1539
1540 /*
1541  *  - search for a free slot.
1542  */
1543 static unsigned long xol_take_insn_slot(struct xol_area *area)
1544 {
1545         unsigned long slot_addr;
1546         int slot_nr;
1547
1548         do {
1549                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1550                 if (slot_nr < UINSNS_PER_PAGE) {
1551                         if (!test_and_set_bit(slot_nr, area->bitmap))
1552                                 break;
1553
1554                         slot_nr = UINSNS_PER_PAGE;
1555                         continue;
1556                 }
1557                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1558         } while (slot_nr >= UINSNS_PER_PAGE);
1559
1560         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1561         atomic_inc(&area->slot_count);
1562
1563         return slot_addr;
1564 }
1565
1566 /*
1567  * xol_get_insn_slot - allocate a slot for xol.
1568  * Returns the allocated slot address or 0.
1569  */
1570 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1571 {
1572         struct xol_area *area;
1573         unsigned long xol_vaddr;
1574
1575         area = get_xol_area();
1576         if (!area)
1577                 return 0;
1578
1579         xol_vaddr = xol_take_insn_slot(area);
1580         if (unlikely(!xol_vaddr))
1581                 return 0;
1582
1583         arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1584                               &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1585
1586         return xol_vaddr;
1587 }
1588
1589 /*
1590  * xol_free_insn_slot - If slot was earlier allocated by
1591  * @xol_get_insn_slot(), make the slot available for
1592  * subsequent requests.
1593  */
1594 static void xol_free_insn_slot(struct task_struct *tsk)
1595 {
1596         struct xol_area *area;
1597         unsigned long vma_end;
1598         unsigned long slot_addr;
1599
1600         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1601                 return;
1602
1603         slot_addr = tsk->utask->xol_vaddr;
1604         if (unlikely(!slot_addr))
1605                 return;
1606
1607         area = tsk->mm->uprobes_state.xol_area;
1608         vma_end = area->vaddr + PAGE_SIZE;
1609         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1610                 unsigned long offset;
1611                 int slot_nr;
1612
1613                 offset = slot_addr - area->vaddr;
1614                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1615                 if (slot_nr >= UINSNS_PER_PAGE)
1616                         return;
1617
1618                 clear_bit(slot_nr, area->bitmap);
1619                 atomic_dec(&area->slot_count);
1620                 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1621                 if (waitqueue_active(&area->wq))
1622                         wake_up(&area->wq);
1623
1624                 tsk->utask->xol_vaddr = 0;
1625         }
1626 }
1627
1628 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1629                                   void *src, unsigned long len)
1630 {
1631         /* Initialize the slot */
1632         copy_to_page(page, vaddr, src, len);
1633
1634         /*
1635          * We probably need flush_icache_user_range() but it needs vma.
1636          * This should work on most of architectures by default. If
1637          * architecture needs to do something different it can define
1638          * its own version of the function.
1639          */
1640         flush_dcache_page(page);
1641 }
1642
1643 /**
1644  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1645  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1646  * instruction.
1647  * Return the address of the breakpoint instruction.
1648  */
1649 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1650 {
1651         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1652 }
1653
1654 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1655 {
1656         struct uprobe_task *utask = current->utask;
1657
1658         if (unlikely(utask && utask->active_uprobe))
1659                 return utask->vaddr;
1660
1661         return instruction_pointer(regs);
1662 }
1663
1664 static struct return_instance *free_ret_instance(struct return_instance *ri)
1665 {
1666         struct return_instance *next = ri->next;
1667         put_uprobe(ri->uprobe);
1668         kfree(ri);
1669         return next;
1670 }
1671
1672 /*
1673  * Called with no locks held.
1674  * Called in context of an exiting or an exec-ing thread.
1675  */
1676 void uprobe_free_utask(struct task_struct *t)
1677 {
1678         struct uprobe_task *utask = t->utask;
1679         struct return_instance *ri;
1680
1681         if (!utask)
1682                 return;
1683
1684         if (utask->active_uprobe)
1685                 put_uprobe(utask->active_uprobe);
1686
1687         ri = utask->return_instances;
1688         while (ri)
1689                 ri = free_ret_instance(ri);
1690
1691         xol_free_insn_slot(t);
1692         kfree(utask);
1693         t->utask = NULL;
1694 }
1695
1696 /*
1697  * Allocate a uprobe_task object for the task if if necessary.
1698  * Called when the thread hits a breakpoint.
1699  *
1700  * Returns:
1701  * - pointer to new uprobe_task on success
1702  * - NULL otherwise
1703  */
1704 static struct uprobe_task *get_utask(void)
1705 {
1706         if (!current->utask)
1707                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1708         return current->utask;
1709 }
1710
1711 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1712 {
1713         struct uprobe_task *n_utask;
1714         struct return_instance **p, *o, *n;
1715
1716         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1717         if (!n_utask)
1718                 return -ENOMEM;
1719         t->utask = n_utask;
1720
1721         p = &n_utask->return_instances;
1722         for (o = o_utask->return_instances; o; o = o->next) {
1723                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1724                 if (!n)
1725                         return -ENOMEM;
1726
1727                 *n = *o;
1728                 get_uprobe(n->uprobe);
1729                 n->next = NULL;
1730
1731                 *p = n;
1732                 p = &n->next;
1733                 n_utask->depth++;
1734         }
1735
1736         return 0;
1737 }
1738
1739 static void uprobe_warn(struct task_struct *t, const char *msg)
1740 {
1741         pr_warn("uprobe: %s:%d failed to %s\n",
1742                         current->comm, current->pid, msg);
1743 }
1744
1745 static void dup_xol_work(struct callback_head *work)
1746 {
1747         if (current->flags & PF_EXITING)
1748                 return;
1749
1750         if (!__create_xol_area(current->utask->dup_xol_addr) &&
1751                         !fatal_signal_pending(current))
1752                 uprobe_warn(current, "dup xol area");
1753 }
1754
1755 /*
1756  * Called in context of a new clone/fork from copy_process.
1757  */
1758 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1759 {
1760         struct uprobe_task *utask = current->utask;
1761         struct mm_struct *mm = current->mm;
1762         struct xol_area *area;
1763
1764         t->utask = NULL;
1765
1766         if (!utask || !utask->return_instances)
1767                 return;
1768
1769         if (mm == t->mm && !(flags & CLONE_VFORK))
1770                 return;
1771
1772         if (dup_utask(t, utask))
1773                 return uprobe_warn(t, "dup ret instances");
1774
1775         /* The task can fork() after dup_xol_work() fails */
1776         area = mm->uprobes_state.xol_area;
1777         if (!area)
1778                 return uprobe_warn(t, "dup xol area");
1779
1780         if (mm == t->mm)
1781                 return;
1782
1783         t->utask->dup_xol_addr = area->vaddr;
1784         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1785         task_work_add(t, &t->utask->dup_xol_work, true);
1786 }
1787
1788 /*
1789  * Current area->vaddr notion assume the trampoline address is always
1790  * equal area->vaddr.
1791  *
1792  * Returns -1 in case the xol_area is not allocated.
1793  */
1794 static unsigned long get_trampoline_vaddr(void)
1795 {
1796         struct xol_area *area;
1797         unsigned long trampoline_vaddr = -1;
1798
1799         /* Pairs with xol_add_vma() smp_store_release() */
1800         area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1801         if (area)
1802                 trampoline_vaddr = area->vaddr;
1803
1804         return trampoline_vaddr;
1805 }
1806
1807 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1808                                         struct pt_regs *regs)
1809 {
1810         struct return_instance *ri = utask->return_instances;
1811         enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1812
1813         while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1814                 ri = free_ret_instance(ri);
1815                 utask->depth--;
1816         }
1817         utask->return_instances = ri;
1818 }
1819
1820 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1821 {
1822         struct return_instance *ri;
1823         struct uprobe_task *utask;
1824         unsigned long orig_ret_vaddr, trampoline_vaddr;
1825         bool chained;
1826
1827         if (!get_xol_area())
1828                 return;
1829
1830         utask = get_utask();
1831         if (!utask)
1832                 return;
1833
1834         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1835                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1836                                 " nestedness limit pid/tgid=%d/%d\n",
1837                                 current->pid, current->tgid);
1838                 return;
1839         }
1840
1841         ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1842         if (!ri)
1843                 return;
1844
1845         trampoline_vaddr = get_trampoline_vaddr();
1846         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1847         if (orig_ret_vaddr == -1)
1848                 goto fail;
1849
1850         /* drop the entries invalidated by longjmp() */
1851         chained = (orig_ret_vaddr == trampoline_vaddr);
1852         cleanup_return_instances(utask, chained, regs);
1853
1854         /*
1855          * We don't want to keep trampoline address in stack, rather keep the
1856          * original return address of first caller thru all the consequent
1857          * instances. This also makes breakpoint unwrapping easier.
1858          */
1859         if (chained) {
1860                 if (!utask->return_instances) {
1861                         /*
1862                          * This situation is not possible. Likely we have an
1863                          * attack from user-space.
1864                          */
1865                         uprobe_warn(current, "handle tail call");
1866                         goto fail;
1867                 }
1868                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1869         }
1870
1871         ri->uprobe = get_uprobe(uprobe);
1872         ri->func = instruction_pointer(regs);
1873         ri->stack = user_stack_pointer(regs);
1874         ri->orig_ret_vaddr = orig_ret_vaddr;
1875         ri->chained = chained;
1876
1877         utask->depth++;
1878         ri->next = utask->return_instances;
1879         utask->return_instances = ri;
1880
1881         return;
1882  fail:
1883         kfree(ri);
1884 }
1885
1886 /* Prepare to single-step probed instruction out of line. */
1887 static int
1888 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1889 {
1890         struct uprobe_task *utask;
1891         unsigned long xol_vaddr;
1892         int err;
1893
1894         utask = get_utask();
1895         if (!utask)
1896                 return -ENOMEM;
1897
1898         xol_vaddr = xol_get_insn_slot(uprobe);
1899         if (!xol_vaddr)
1900                 return -ENOMEM;
1901
1902         utask->xol_vaddr = xol_vaddr;
1903         utask->vaddr = bp_vaddr;
1904
1905         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1906         if (unlikely(err)) {
1907                 xol_free_insn_slot(current);
1908                 return err;
1909         }
1910
1911         utask->active_uprobe = uprobe;
1912         utask->state = UTASK_SSTEP;
1913         return 0;
1914 }
1915
1916 /*
1917  * If we are singlestepping, then ensure this thread is not connected to
1918  * non-fatal signals until completion of singlestep.  When xol insn itself
1919  * triggers the signal,  restart the original insn even if the task is
1920  * already SIGKILL'ed (since coredump should report the correct ip).  This
1921  * is even more important if the task has a handler for SIGSEGV/etc, The
1922  * _same_ instruction should be repeated again after return from the signal
1923  * handler, and SSTEP can never finish in this case.
1924  */
1925 bool uprobe_deny_signal(void)
1926 {
1927         struct task_struct *t = current;
1928         struct uprobe_task *utask = t->utask;
1929
1930         if (likely(!utask || !utask->active_uprobe))
1931                 return false;
1932
1933         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1934
1935         if (signal_pending(t)) {
1936                 spin_lock_irq(&t->sighand->siglock);
1937                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1938                 spin_unlock_irq(&t->sighand->siglock);
1939
1940                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1941                         utask->state = UTASK_SSTEP_TRAPPED;
1942                         set_tsk_thread_flag(t, TIF_UPROBE);
1943                 }
1944         }
1945
1946         return true;
1947 }
1948
1949 static void mmf_recalc_uprobes(struct mm_struct *mm)
1950 {
1951         struct vm_area_struct *vma;
1952
1953         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1954                 if (!valid_vma(vma, false))
1955                         continue;
1956                 /*
1957                  * This is not strictly accurate, we can race with
1958                  * uprobe_unregister() and see the already removed
1959                  * uprobe if delete_uprobe() was not yet called.
1960                  * Or this uprobe can be filtered out.
1961                  */
1962                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1963                         return;
1964         }
1965
1966         clear_bit(MMF_HAS_UPROBES, &mm->flags);
1967 }
1968
1969 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1970 {
1971         struct page *page;
1972         uprobe_opcode_t opcode;
1973         int result;
1974
1975         pagefault_disable();
1976         result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1977         pagefault_enable();
1978
1979         if (likely(result == 0))
1980                 goto out;
1981
1982         /*
1983          * The NULL 'tsk' here ensures that any faults that occur here
1984          * will not be accounted to the task.  'mm' *is* current->mm,
1985          * but we treat this as a 'remote' access since it is
1986          * essentially a kernel access to the memory.
1987          */
1988         result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
1989                         NULL, NULL);
1990         if (result < 0)
1991                 return result;
1992
1993         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1994         put_page(page);
1995  out:
1996         /* This needs to return true for any variant of the trap insn */
1997         return is_trap_insn(&opcode);
1998 }
1999
2000 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2001 {
2002         struct mm_struct *mm = current->mm;
2003         struct uprobe *uprobe = NULL;
2004         struct vm_area_struct *vma;
2005
2006         down_read(&mm->mmap_sem);
2007         vma = find_vma(mm, bp_vaddr);
2008         if (vma && vma->vm_start <= bp_vaddr) {
2009                 if (valid_vma(vma, false)) {
2010                         struct inode *inode = file_inode(vma->vm_file);
2011                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2012
2013                         uprobe = find_uprobe(inode, offset);
2014                 }
2015
2016                 if (!uprobe)
2017                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2018         } else {
2019                 *is_swbp = -EFAULT;
2020         }
2021
2022         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2023                 mmf_recalc_uprobes(mm);
2024         up_read(&mm->mmap_sem);
2025
2026         return uprobe;
2027 }
2028
2029 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2030 {
2031         struct uprobe_consumer *uc;
2032         int remove = UPROBE_HANDLER_REMOVE;
2033         bool need_prep = false; /* prepare return uprobe, when needed */
2034
2035         down_read(&uprobe->register_rwsem);
2036         for (uc = uprobe->consumers; uc; uc = uc->next) {
2037                 int rc = 0;
2038
2039                 if (uc->handler) {
2040                         rc = uc->handler(uc, regs);
2041                         WARN(rc & ~UPROBE_HANDLER_MASK,
2042                                 "bad rc=0x%x from %pf()\n", rc, uc->handler);
2043                 }
2044
2045                 if (uc->ret_handler)
2046                         need_prep = true;
2047
2048                 remove &= rc;
2049         }
2050
2051         if (need_prep && !remove)
2052                 prepare_uretprobe(uprobe, regs); /* put bp at return */
2053
2054         if (remove && uprobe->consumers) {
2055                 WARN_ON(!uprobe_is_active(uprobe));
2056                 unapply_uprobe(uprobe, current->mm);
2057         }
2058         up_read(&uprobe->register_rwsem);
2059 }
2060
2061 static void
2062 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2063 {
2064         struct uprobe *uprobe = ri->uprobe;
2065         struct uprobe_consumer *uc;
2066
2067         down_read(&uprobe->register_rwsem);
2068         for (uc = uprobe->consumers; uc; uc = uc->next) {
2069                 if (uc->ret_handler)
2070                         uc->ret_handler(uc, ri->func, regs);
2071         }
2072         up_read(&uprobe->register_rwsem);
2073 }
2074
2075 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2076 {
2077         bool chained;
2078
2079         do {
2080                 chained = ri->chained;
2081                 ri = ri->next;  /* can't be NULL if chained */
2082         } while (chained);
2083
2084         return ri;
2085 }
2086
2087 static void handle_trampoline(struct pt_regs *regs)
2088 {
2089         struct uprobe_task *utask;
2090         struct return_instance *ri, *next;
2091         bool valid;
2092
2093         utask = current->utask;
2094         if (!utask)
2095                 goto sigill;
2096
2097         ri = utask->return_instances;
2098         if (!ri)
2099                 goto sigill;
2100
2101         do {
2102                 /*
2103                  * We should throw out the frames invalidated by longjmp().
2104                  * If this chain is valid, then the next one should be alive
2105                  * or NULL; the latter case means that nobody but ri->func
2106                  * could hit this trampoline on return. TODO: sigaltstack().
2107                  */
2108                 next = find_next_ret_chain(ri);
2109                 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2110
2111                 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2112                 do {
2113                         if (valid)
2114                                 handle_uretprobe_chain(ri, regs);
2115                         ri = free_ret_instance(ri);
2116                         utask->depth--;
2117                 } while (ri != next);
2118         } while (!valid);
2119
2120         utask->return_instances = ri;
2121         return;
2122
2123  sigill:
2124         uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2125         force_sig(SIGILL, current);
2126
2127 }
2128
2129 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2130 {
2131         return false;
2132 }
2133
2134 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2135                                         struct pt_regs *regs)
2136 {
2137         return true;
2138 }
2139
2140 /*
2141  * Run handler and ask thread to singlestep.
2142  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2143  */
2144 static void handle_swbp(struct pt_regs *regs)
2145 {
2146         struct uprobe *uprobe;
2147         unsigned long bp_vaddr;
2148         int uninitialized_var(is_swbp);
2149
2150         bp_vaddr = uprobe_get_swbp_addr(regs);
2151         if (bp_vaddr == get_trampoline_vaddr())
2152                 return handle_trampoline(regs);
2153
2154         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2155         if (!uprobe) {
2156                 if (is_swbp > 0) {
2157                         /* No matching uprobe; signal SIGTRAP. */
2158                         send_sig(SIGTRAP, current, 0);
2159                 } else {
2160                         /*
2161                          * Either we raced with uprobe_unregister() or we can't
2162                          * access this memory. The latter is only possible if
2163                          * another thread plays with our ->mm. In both cases
2164                          * we can simply restart. If this vma was unmapped we
2165                          * can pretend this insn was not executed yet and get
2166                          * the (correct) SIGSEGV after restart.
2167                          */
2168                         instruction_pointer_set(regs, bp_vaddr);
2169                 }
2170                 return;
2171         }
2172
2173         /* change it in advance for ->handler() and restart */
2174         instruction_pointer_set(regs, bp_vaddr);
2175
2176         /*
2177          * TODO: move copy_insn/etc into _register and remove this hack.
2178          * After we hit the bp, _unregister + _register can install the
2179          * new and not-yet-analyzed uprobe at the same address, restart.
2180          */
2181         smp_rmb(); /* pairs with wmb() in install_breakpoint() */
2182         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2183                 goto out;
2184
2185         /* Tracing handlers use ->utask to communicate with fetch methods */
2186         if (!get_utask())
2187                 goto out;
2188
2189         if (arch_uprobe_ignore(&uprobe->arch, regs))
2190                 goto out;
2191
2192         handler_chain(uprobe, regs);
2193
2194         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2195                 goto out;
2196
2197         if (!pre_ssout(uprobe, regs, bp_vaddr))
2198                 return;
2199
2200         /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2201 out:
2202         put_uprobe(uprobe);
2203 }
2204
2205 /*
2206  * Perform required fix-ups and disable singlestep.
2207  * Allow pending signals to take effect.
2208  */
2209 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2210 {
2211         struct uprobe *uprobe;
2212         int err = 0;
2213
2214         uprobe = utask->active_uprobe;
2215         if (utask->state == UTASK_SSTEP_ACK)
2216                 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2217         else if (utask->state == UTASK_SSTEP_TRAPPED)
2218                 arch_uprobe_abort_xol(&uprobe->arch, regs);
2219         else
2220                 WARN_ON_ONCE(1);
2221
2222         put_uprobe(uprobe);
2223         utask->active_uprobe = NULL;
2224         utask->state = UTASK_RUNNING;
2225         xol_free_insn_slot(current);
2226
2227         spin_lock_irq(&current->sighand->siglock);
2228         recalc_sigpending(); /* see uprobe_deny_signal() */
2229         spin_unlock_irq(&current->sighand->siglock);
2230
2231         if (unlikely(err)) {
2232                 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2233                 force_sig(SIGILL, current);
2234         }
2235 }
2236
2237 /*
2238  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2239  * allows the thread to return from interrupt. After that handle_swbp()
2240  * sets utask->active_uprobe.
2241  *
2242  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2243  * and allows the thread to return from interrupt.
2244  *
2245  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2246  * uprobe_notify_resume().
2247  */
2248 void uprobe_notify_resume(struct pt_regs *regs)
2249 {
2250         struct uprobe_task *utask;
2251
2252         clear_thread_flag(TIF_UPROBE);
2253
2254         utask = current->utask;
2255         if (utask && utask->active_uprobe)
2256                 handle_singlestep(utask, regs);
2257         else
2258                 handle_swbp(regs);
2259 }
2260
2261 /*
2262  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2263  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2264  */
2265 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2266 {
2267         if (!current->mm)
2268                 return 0;
2269
2270         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2271             (!current->utask || !current->utask->return_instances))
2272                 return 0;
2273
2274         set_thread_flag(TIF_UPROBE);
2275         return 1;
2276 }
2277
2278 /*
2279  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2280  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2281  */
2282 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2283 {
2284         struct uprobe_task *utask = current->utask;
2285
2286         if (!current->mm || !utask || !utask->active_uprobe)
2287                 /* task is currently not uprobed */
2288                 return 0;
2289
2290         utask->state = UTASK_SSTEP_ACK;
2291         set_thread_flag(TIF_UPROBE);
2292         return 1;
2293 }
2294
2295 static struct notifier_block uprobe_exception_nb = {
2296         .notifier_call          = arch_uprobe_exception_notify,
2297         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
2298 };
2299
2300 static int __init init_uprobes(void)
2301 {
2302         int i;
2303
2304         for (i = 0; i < UPROBES_HASH_SZ; i++)
2305                 mutex_init(&uprobes_mmap_mutex[i]);
2306
2307         if (percpu_init_rwsem(&dup_mmap_sem))
2308                 return -ENOMEM;
2309
2310         return register_die_notifier(&uprobe_exception_nb);
2311 }
2312 __initcall(init_uprobes);