Merge tag 'mediatek-drm-fixes-5.3' of https://github.com/ckhu-mediatek/linux.git...
[sfrench/cifs-2.6.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52
53 #include "internal.h"
54
55 #include <asm/irq_regs.h>
56
57 typedef int (*remote_function_f)(void *);
58
59 struct remote_function_call {
60         struct task_struct      *p;
61         remote_function_f       func;
62         void                    *info;
63         int                     ret;
64 };
65
66 static void remote_function(void *data)
67 {
68         struct remote_function_call *tfc = data;
69         struct task_struct *p = tfc->p;
70
71         if (p) {
72                 /* -EAGAIN */
73                 if (task_cpu(p) != smp_processor_id())
74                         return;
75
76                 /*
77                  * Now that we're on right CPU with IRQs disabled, we can test
78                  * if we hit the right task without races.
79                  */
80
81                 tfc->ret = -ESRCH; /* No such (running) process */
82                 if (p != current)
83                         return;
84         }
85
86         tfc->ret = tfc->func(tfc->info);
87 }
88
89 /**
90  * task_function_call - call a function on the cpu on which a task runs
91  * @p:          the task to evaluate
92  * @func:       the function to be called
93  * @info:       the function call argument
94  *
95  * Calls the function @func when the task is currently running. This might
96  * be on the current CPU, which just calls the function directly
97  *
98  * returns: @func return value, or
99  *          -ESRCH  - when the process isn't running
100  *          -EAGAIN - when the process moved away
101  */
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105         struct remote_function_call data = {
106                 .p      = p,
107                 .func   = func,
108                 .info   = info,
109                 .ret    = -EAGAIN,
110         };
111         int ret;
112
113         do {
114                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115                 if (!ret)
116                         ret = data.ret;
117         } while (ret == -EAGAIN);
118
119         return ret;
120 }
121
122 /**
123  * cpu_function_call - call a function on the cpu
124  * @func:       the function to be called
125  * @info:       the function call argument
126  *
127  * Calls the function @func on the remote cpu.
128  *
129  * returns: @func return value or -ENXIO when the cpu is offline
130  */
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133         struct remote_function_call data = {
134                 .p      = NULL,
135                 .func   = func,
136                 .info   = info,
137                 .ret    = -ENXIO, /* No such CPU */
138         };
139
140         smp_call_function_single(cpu, remote_function, &data, 1);
141
142         return data.ret;
143 }
144
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152                           struct perf_event_context *ctx)
153 {
154         raw_spin_lock(&cpuctx->ctx.lock);
155         if (ctx)
156                 raw_spin_lock(&ctx->lock);
157 }
158
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160                             struct perf_event_context *ctx)
161 {
162         if (ctx)
163                 raw_spin_unlock(&ctx->lock);
164         raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166
167 #define TASK_TOMBSTONE ((void *)-1L)
168
169 static bool is_kernel_event(struct perf_event *event)
170 {
171         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173
174 /*
175  * On task ctx scheduling...
176  *
177  * When !ctx->nr_events a task context will not be scheduled. This means
178  * we can disable the scheduler hooks (for performance) without leaving
179  * pending task ctx state.
180  *
181  * This however results in two special cases:
182  *
183  *  - removing the last event from a task ctx; this is relatively straight
184  *    forward and is done in __perf_remove_from_context.
185  *
186  *  - adding the first event to a task ctx; this is tricky because we cannot
187  *    rely on ctx->is_active and therefore cannot use event_function_call().
188  *    See perf_install_in_context().
189  *
190  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191  */
192
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194                         struct perf_event_context *, void *);
195
196 struct event_function_struct {
197         struct perf_event *event;
198         event_f func;
199         void *data;
200 };
201
202 static int event_function(void *info)
203 {
204         struct event_function_struct *efs = info;
205         struct perf_event *event = efs->event;
206         struct perf_event_context *ctx = event->ctx;
207         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208         struct perf_event_context *task_ctx = cpuctx->task_ctx;
209         int ret = 0;
210
211         lockdep_assert_irqs_disabled();
212
213         perf_ctx_lock(cpuctx, task_ctx);
214         /*
215          * Since we do the IPI call without holding ctx->lock things can have
216          * changed, double check we hit the task we set out to hit.
217          */
218         if (ctx->task) {
219                 if (ctx->task != current) {
220                         ret = -ESRCH;
221                         goto unlock;
222                 }
223
224                 /*
225                  * We only use event_function_call() on established contexts,
226                  * and event_function() is only ever called when active (or
227                  * rather, we'll have bailed in task_function_call() or the
228                  * above ctx->task != current test), therefore we must have
229                  * ctx->is_active here.
230                  */
231                 WARN_ON_ONCE(!ctx->is_active);
232                 /*
233                  * And since we have ctx->is_active, cpuctx->task_ctx must
234                  * match.
235                  */
236                 WARN_ON_ONCE(task_ctx != ctx);
237         } else {
238                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
239         }
240
241         efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243         perf_ctx_unlock(cpuctx, task_ctx);
244
245         return ret;
246 }
247
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250         struct perf_event_context *ctx = event->ctx;
251         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252         struct event_function_struct efs = {
253                 .event = event,
254                 .func = func,
255                 .data = data,
256         };
257
258         if (!event->parent) {
259                 /*
260                  * If this is a !child event, we must hold ctx::mutex to
261                  * stabilize the the event->ctx relation. See
262                  * perf_event_ctx_lock().
263                  */
264                 lockdep_assert_held(&ctx->mutex);
265         }
266
267         if (!task) {
268                 cpu_function_call(event->cpu, event_function, &efs);
269                 return;
270         }
271
272         if (task == TASK_TOMBSTONE)
273                 return;
274
275 again:
276         if (!task_function_call(task, event_function, &efs))
277                 return;
278
279         raw_spin_lock_irq(&ctx->lock);
280         /*
281          * Reload the task pointer, it might have been changed by
282          * a concurrent perf_event_context_sched_out().
283          */
284         task = ctx->task;
285         if (task == TASK_TOMBSTONE) {
286                 raw_spin_unlock_irq(&ctx->lock);
287                 return;
288         }
289         if (ctx->is_active) {
290                 raw_spin_unlock_irq(&ctx->lock);
291                 goto again;
292         }
293         func(event, NULL, ctx, data);
294         raw_spin_unlock_irq(&ctx->lock);
295 }
296
297 /*
298  * Similar to event_function_call() + event_function(), but hard assumes IRQs
299  * are already disabled and we're on the right CPU.
300  */
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303         struct perf_event_context *ctx = event->ctx;
304         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305         struct task_struct *task = READ_ONCE(ctx->task);
306         struct perf_event_context *task_ctx = NULL;
307
308         lockdep_assert_irqs_disabled();
309
310         if (task) {
311                 if (task == TASK_TOMBSTONE)
312                         return;
313
314                 task_ctx = ctx;
315         }
316
317         perf_ctx_lock(cpuctx, task_ctx);
318
319         task = ctx->task;
320         if (task == TASK_TOMBSTONE)
321                 goto unlock;
322
323         if (task) {
324                 /*
325                  * We must be either inactive or active and the right task,
326                  * otherwise we're screwed, since we cannot IPI to somewhere
327                  * else.
328                  */
329                 if (ctx->is_active) {
330                         if (WARN_ON_ONCE(task != current))
331                                 goto unlock;
332
333                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334                                 goto unlock;
335                 }
336         } else {
337                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338         }
339
340         func(event, cpuctx, ctx, data);
341 unlock:
342         perf_ctx_unlock(cpuctx, task_ctx);
343 }
344
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346                        PERF_FLAG_FD_OUTPUT  |\
347                        PERF_FLAG_PID_CGROUP |\
348                        PERF_FLAG_FD_CLOEXEC)
349
350 /*
351  * branch priv levels that need permission checks
352  */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354         (PERF_SAMPLE_BRANCH_KERNEL |\
355          PERF_SAMPLE_BRANCH_HV)
356
357 enum event_type_t {
358         EVENT_FLEXIBLE = 0x1,
359         EVENT_PINNED = 0x2,
360         EVENT_TIME = 0x4,
361         /* see ctx_resched() for details */
362         EVENT_CPU = 0x8,
363         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365
366 /*
367  * perf_sched_events : >0 events exist
368  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369  */
370
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394
395 /*
396  * perf event paranoia level:
397  *  -1 - not paranoid at all
398  *   0 - disallow raw tracepoint access for unpriv
399  *   1 - disallow cpu events for unpriv
400  *   2 - disallow kernel profiling for unpriv
401  */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406
407 /*
408  * max perf event sample rate
409  */
410 #define DEFAULT_MAX_SAMPLE_RATE         100000
411 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
413
414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
418
419 static int perf_sample_allowed_ns __read_mostly =
420         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421
422 static void update_perf_cpu_limits(void)
423 {
424         u64 tmp = perf_sample_period_ns;
425
426         tmp *= sysctl_perf_cpu_time_max_percent;
427         tmp = div_u64(tmp, 100);
428         if (!tmp)
429                 tmp = 1;
430
431         WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437                 void __user *buffer, size_t *lenp,
438                 loff_t *ppos)
439 {
440         int ret;
441         int perf_cpu = sysctl_perf_cpu_time_max_percent;
442         /*
443          * If throttling is disabled don't allow the write:
444          */
445         if (write && (perf_cpu == 100 || perf_cpu == 0))
446                 return -EINVAL;
447
448         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449         if (ret || !write)
450                 return ret;
451
452         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454         update_perf_cpu_limits();
455
456         return 0;
457 }
458
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462                                 void __user *buffer, size_t *lenp,
463                                 loff_t *ppos)
464 {
465         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466
467         if (ret || !write)
468                 return ret;
469
470         if (sysctl_perf_cpu_time_max_percent == 100 ||
471             sysctl_perf_cpu_time_max_percent == 0) {
472                 printk(KERN_WARNING
473                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474                 WRITE_ONCE(perf_sample_allowed_ns, 0);
475         } else {
476                 update_perf_cpu_limits();
477         }
478
479         return 0;
480 }
481
482 /*
483  * perf samples are done in some very critical code paths (NMIs).
484  * If they take too much CPU time, the system can lock up and not
485  * get any real work done.  This will drop the sample rate when
486  * we detect that events are taking too long.
487  */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490
491 static u64 __report_avg;
492 static u64 __report_allowed;
493
494 static void perf_duration_warn(struct irq_work *w)
495 {
496         printk_ratelimited(KERN_INFO
497                 "perf: interrupt took too long (%lld > %lld), lowering "
498                 "kernel.perf_event_max_sample_rate to %d\n",
499                 __report_avg, __report_allowed,
500                 sysctl_perf_event_sample_rate);
501 }
502
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508         u64 running_len;
509         u64 avg_len;
510         u32 max;
511
512         if (max_len == 0)
513                 return;
514
515         /* Decay the counter by 1 average sample. */
516         running_len = __this_cpu_read(running_sample_length);
517         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518         running_len += sample_len_ns;
519         __this_cpu_write(running_sample_length, running_len);
520
521         /*
522          * Note: this will be biased artifically low until we have
523          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524          * from having to maintain a count.
525          */
526         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527         if (avg_len <= max_len)
528                 return;
529
530         __report_avg = avg_len;
531         __report_allowed = max_len;
532
533         /*
534          * Compute a throttle threshold 25% below the current duration.
535          */
536         avg_len += avg_len / 4;
537         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538         if (avg_len < max)
539                 max /= (u32)avg_len;
540         else
541                 max = 1;
542
543         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544         WRITE_ONCE(max_samples_per_tick, max);
545
546         sysctl_perf_event_sample_rate = max * HZ;
547         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548
549         if (!irq_work_queue(&perf_duration_work)) {
550                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551                              "kernel.perf_event_max_sample_rate to %d\n",
552                              __report_avg, __report_allowed,
553                              sysctl_perf_event_sample_rate);
554         }
555 }
556
557 static atomic64_t perf_event_id;
558
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560                               enum event_type_t event_type);
561
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563                              enum event_type_t event_type,
564                              struct task_struct *task);
565
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568
569 void __weak perf_event_print_debug(void)        { }
570
571 extern __weak const char *perf_pmu_name(void)
572 {
573         return "pmu";
574 }
575
576 static inline u64 perf_clock(void)
577 {
578         return local_clock();
579 }
580
581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583         return event->clock();
584 }
585
586 /*
587  * State based event timekeeping...
588  *
589  * The basic idea is to use event->state to determine which (if any) time
590  * fields to increment with the current delta. This means we only need to
591  * update timestamps when we change state or when they are explicitly requested
592  * (read).
593  *
594  * Event groups make things a little more complicated, but not terribly so. The
595  * rules for a group are that if the group leader is OFF the entire group is
596  * OFF, irrespecive of what the group member states are. This results in
597  * __perf_effective_state().
598  *
599  * A futher ramification is that when a group leader flips between OFF and
600  * !OFF, we need to update all group member times.
601  *
602  *
603  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604  * need to make sure the relevant context time is updated before we try and
605  * update our timestamps.
606  */
607
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
610 {
611         struct perf_event *leader = event->group_leader;
612
613         if (leader->state <= PERF_EVENT_STATE_OFF)
614                 return leader->state;
615
616         return event->state;
617 }
618
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622         enum perf_event_state state = __perf_effective_state(event);
623         u64 delta = now - event->tstamp;
624
625         *enabled = event->total_time_enabled;
626         if (state >= PERF_EVENT_STATE_INACTIVE)
627                 *enabled += delta;
628
629         *running = event->total_time_running;
630         if (state >= PERF_EVENT_STATE_ACTIVE)
631                 *running += delta;
632 }
633
634 static void perf_event_update_time(struct perf_event *event)
635 {
636         u64 now = perf_event_time(event);
637
638         __perf_update_times(event, now, &event->total_time_enabled,
639                                         &event->total_time_running);
640         event->tstamp = now;
641 }
642
643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645         struct perf_event *sibling;
646
647         for_each_sibling_event(sibling, leader)
648                 perf_event_update_time(sibling);
649 }
650
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654         if (event->state == state)
655                 return;
656
657         perf_event_update_time(event);
658         /*
659          * If a group leader gets enabled/disabled all its siblings
660          * are affected too.
661          */
662         if ((event->state < 0) ^ (state < 0))
663                 perf_event_update_sibling_time(event);
664
665         WRITE_ONCE(event->state, state);
666 }
667
668 #ifdef CONFIG_CGROUP_PERF
669
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
672 {
673         struct perf_event_context *ctx = event->ctx;
674         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
676         /* @event doesn't care about cgroup */
677         if (!event->cgrp)
678                 return true;
679
680         /* wants specific cgroup scope but @cpuctx isn't associated with any */
681         if (!cpuctx->cgrp)
682                 return false;
683
684         /*
685          * Cgroup scoping is recursive.  An event enabled for a cgroup is
686          * also enabled for all its descendant cgroups.  If @cpuctx's
687          * cgroup is a descendant of @event's (the test covers identity
688          * case), it's a match.
689          */
690         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691                                     event->cgrp->css.cgroup);
692 }
693
694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696         css_put(&event->cgrp->css);
697         event->cgrp = NULL;
698 }
699
700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702         return event->cgrp != NULL;
703 }
704
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707         struct perf_cgroup_info *t;
708
709         t = per_cpu_ptr(event->cgrp->info, event->cpu);
710         return t->time;
711 }
712
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715         struct perf_cgroup_info *info;
716         u64 now;
717
718         now = perf_clock();
719
720         info = this_cpu_ptr(cgrp->info);
721
722         info->time += now - info->timestamp;
723         info->timestamp = now;
724 }
725
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728         struct perf_cgroup *cgrp = cpuctx->cgrp;
729         struct cgroup_subsys_state *css;
730
731         if (cgrp) {
732                 for (css = &cgrp->css; css; css = css->parent) {
733                         cgrp = container_of(css, struct perf_cgroup, css);
734                         __update_cgrp_time(cgrp);
735                 }
736         }
737 }
738
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741         struct perf_cgroup *cgrp;
742
743         /*
744          * ensure we access cgroup data only when needed and
745          * when we know the cgroup is pinned (css_get)
746          */
747         if (!is_cgroup_event(event))
748                 return;
749
750         cgrp = perf_cgroup_from_task(current, event->ctx);
751         /*
752          * Do not update time when cgroup is not active
753          */
754         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755                 __update_cgrp_time(event->cgrp);
756 }
757
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760                           struct perf_event_context *ctx)
761 {
762         struct perf_cgroup *cgrp;
763         struct perf_cgroup_info *info;
764         struct cgroup_subsys_state *css;
765
766         /*
767          * ctx->lock held by caller
768          * ensure we do not access cgroup data
769          * unless we have the cgroup pinned (css_get)
770          */
771         if (!task || !ctx->nr_cgroups)
772                 return;
773
774         cgrp = perf_cgroup_from_task(task, ctx);
775
776         for (css = &cgrp->css; css; css = css->parent) {
777                 cgrp = container_of(css, struct perf_cgroup, css);
778                 info = this_cpu_ptr(cgrp->info);
779                 info->timestamp = ctx->timestamp;
780         }
781 }
782
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
785 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
787
788 /*
789  * reschedule events based on the cgroup constraint of task.
790  *
791  * mode SWOUT : schedule out everything
792  * mode SWIN : schedule in based on cgroup for next
793  */
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796         struct perf_cpu_context *cpuctx;
797         struct list_head *list;
798         unsigned long flags;
799
800         /*
801          * Disable interrupts and preemption to avoid this CPU's
802          * cgrp_cpuctx_entry to change under us.
803          */
804         local_irq_save(flags);
805
806         list = this_cpu_ptr(&cgrp_cpuctx_list);
807         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809
810                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811                 perf_pmu_disable(cpuctx->ctx.pmu);
812
813                 if (mode & PERF_CGROUP_SWOUT) {
814                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815                         /*
816                          * must not be done before ctxswout due
817                          * to event_filter_match() in event_sched_out()
818                          */
819                         cpuctx->cgrp = NULL;
820                 }
821
822                 if (mode & PERF_CGROUP_SWIN) {
823                         WARN_ON_ONCE(cpuctx->cgrp);
824                         /*
825                          * set cgrp before ctxsw in to allow
826                          * event_filter_match() to not have to pass
827                          * task around
828                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
829                          * because cgorup events are only per-cpu
830                          */
831                         cpuctx->cgrp = perf_cgroup_from_task(task,
832                                                              &cpuctx->ctx);
833                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834                 }
835                 perf_pmu_enable(cpuctx->ctx.pmu);
836                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837         }
838
839         local_irq_restore(flags);
840 }
841
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843                                          struct task_struct *next)
844 {
845         struct perf_cgroup *cgrp1;
846         struct perf_cgroup *cgrp2 = NULL;
847
848         rcu_read_lock();
849         /*
850          * we come here when we know perf_cgroup_events > 0
851          * we do not need to pass the ctx here because we know
852          * we are holding the rcu lock
853          */
854         cgrp1 = perf_cgroup_from_task(task, NULL);
855         cgrp2 = perf_cgroup_from_task(next, NULL);
856
857         /*
858          * only schedule out current cgroup events if we know
859          * that we are switching to a different cgroup. Otherwise,
860          * do no touch the cgroup events.
861          */
862         if (cgrp1 != cgrp2)
863                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864
865         rcu_read_unlock();
866 }
867
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869                                         struct task_struct *task)
870 {
871         struct perf_cgroup *cgrp1;
872         struct perf_cgroup *cgrp2 = NULL;
873
874         rcu_read_lock();
875         /*
876          * we come here when we know perf_cgroup_events > 0
877          * we do not need to pass the ctx here because we know
878          * we are holding the rcu lock
879          */
880         cgrp1 = perf_cgroup_from_task(task, NULL);
881         cgrp2 = perf_cgroup_from_task(prev, NULL);
882
883         /*
884          * only need to schedule in cgroup events if we are changing
885          * cgroup during ctxsw. Cgroup events were not scheduled
886          * out of ctxsw out if that was not the case.
887          */
888         if (cgrp1 != cgrp2)
889                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890
891         rcu_read_unlock();
892 }
893
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895                                       struct perf_event_attr *attr,
896                                       struct perf_event *group_leader)
897 {
898         struct perf_cgroup *cgrp;
899         struct cgroup_subsys_state *css;
900         struct fd f = fdget(fd);
901         int ret = 0;
902
903         if (!f.file)
904                 return -EBADF;
905
906         css = css_tryget_online_from_dir(f.file->f_path.dentry,
907                                          &perf_event_cgrp_subsys);
908         if (IS_ERR(css)) {
909                 ret = PTR_ERR(css);
910                 goto out;
911         }
912
913         cgrp = container_of(css, struct perf_cgroup, css);
914         event->cgrp = cgrp;
915
916         /*
917          * all events in a group must monitor
918          * the same cgroup because a task belongs
919          * to only one perf cgroup at a time
920          */
921         if (group_leader && group_leader->cgrp != cgrp) {
922                 perf_detach_cgroup(event);
923                 ret = -EINVAL;
924         }
925 out:
926         fdput(f);
927         return ret;
928 }
929
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933         struct perf_cgroup_info *t;
934         t = per_cpu_ptr(event->cgrp->info, event->cpu);
935         event->shadow_ctx_time = now - t->timestamp;
936 }
937
938 /*
939  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940  * cleared when last cgroup event is removed.
941  */
942 static inline void
943 list_update_cgroup_event(struct perf_event *event,
944                          struct perf_event_context *ctx, bool add)
945 {
946         struct perf_cpu_context *cpuctx;
947         struct list_head *cpuctx_entry;
948
949         if (!is_cgroup_event(event))
950                 return;
951
952         /*
953          * Because cgroup events are always per-cpu events,
954          * this will always be called from the right CPU.
955          */
956         cpuctx = __get_cpu_context(ctx);
957
958         /*
959          * Since setting cpuctx->cgrp is conditional on the current @cgrp
960          * matching the event's cgroup, we must do this for every new event,
961          * because if the first would mismatch, the second would not try again
962          * and we would leave cpuctx->cgrp unset.
963          */
964         if (add && !cpuctx->cgrp) {
965                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
967                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968                         cpuctx->cgrp = cgrp;
969         }
970
971         if (add && ctx->nr_cgroups++)
972                 return;
973         else if (!add && --ctx->nr_cgroups)
974                 return;
975
976         /* no cgroup running */
977         if (!add)
978                 cpuctx->cgrp = NULL;
979
980         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981         if (add)
982                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983         else
984                 list_del(cpuctx_entry);
985 }
986
987 #else /* !CONFIG_CGROUP_PERF */
988
989 static inline bool
990 perf_cgroup_match(struct perf_event *event)
991 {
992         return true;
993 }
994
995 static inline void perf_detach_cgroup(struct perf_event *event)
996 {}
997
998 static inline int is_cgroup_event(struct perf_event *event)
999 {
1000         return 0;
1001 }
1002
1003 static inline void update_cgrp_time_from_event(struct perf_event *event)
1004 {
1005 }
1006
1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008 {
1009 }
1010
1011 static inline void perf_cgroup_sched_out(struct task_struct *task,
1012                                          struct task_struct *next)
1013 {
1014 }
1015
1016 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017                                         struct task_struct *task)
1018 {
1019 }
1020
1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022                                       struct perf_event_attr *attr,
1023                                       struct perf_event *group_leader)
1024 {
1025         return -EINVAL;
1026 }
1027
1028 static inline void
1029 perf_cgroup_set_timestamp(struct task_struct *task,
1030                           struct perf_event_context *ctx)
1031 {
1032 }
1033
1034 void
1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036 {
1037 }
1038
1039 static inline void
1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041 {
1042 }
1043
1044 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045 {
1046         return 0;
1047 }
1048
1049 static inline void
1050 list_update_cgroup_event(struct perf_event *event,
1051                          struct perf_event_context *ctx, bool add)
1052 {
1053 }
1054
1055 #endif
1056
1057 /*
1058  * set default to be dependent on timer tick just
1059  * like original code
1060  */
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 /*
1063  * function must be called with interrupts disabled
1064  */
1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 {
1067         struct perf_cpu_context *cpuctx;
1068         bool rotations;
1069
1070         lockdep_assert_irqs_disabled();
1071
1072         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073         rotations = perf_rotate_context(cpuctx);
1074
1075         raw_spin_lock(&cpuctx->hrtimer_lock);
1076         if (rotations)
1077                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078         else
1079                 cpuctx->hrtimer_active = 0;
1080         raw_spin_unlock(&cpuctx->hrtimer_lock);
1081
1082         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083 }
1084
1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 {
1087         struct hrtimer *timer = &cpuctx->hrtimer;
1088         struct pmu *pmu = cpuctx->ctx.pmu;
1089         u64 interval;
1090
1091         /* no multiplexing needed for SW PMU */
1092         if (pmu->task_ctx_nr == perf_sw_context)
1093                 return;
1094
1095         /*
1096          * check default is sane, if not set then force to
1097          * default interval (1/tick)
1098          */
1099         interval = pmu->hrtimer_interval_ms;
1100         if (interval < 1)
1101                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102
1103         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104
1105         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1107         timer->function = perf_mux_hrtimer_handler;
1108 }
1109
1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 {
1112         struct hrtimer *timer = &cpuctx->hrtimer;
1113         struct pmu *pmu = cpuctx->ctx.pmu;
1114         unsigned long flags;
1115
1116         /* not for SW PMU */
1117         if (pmu->task_ctx_nr == perf_sw_context)
1118                 return 0;
1119
1120         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121         if (!cpuctx->hrtimer_active) {
1122                 cpuctx->hrtimer_active = 1;
1123                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1125         }
1126         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127
1128         return 0;
1129 }
1130
1131 void perf_pmu_disable(struct pmu *pmu)
1132 {
1133         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134         if (!(*count)++)
1135                 pmu->pmu_disable(pmu);
1136 }
1137
1138 void perf_pmu_enable(struct pmu *pmu)
1139 {
1140         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141         if (!--(*count))
1142                 pmu->pmu_enable(pmu);
1143 }
1144
1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1146
1147 /*
1148  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149  * perf_event_task_tick() are fully serialized because they're strictly cpu
1150  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151  * disabled, while perf_event_task_tick is called from IRQ context.
1152  */
1153 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 {
1155         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156
1157         lockdep_assert_irqs_disabled();
1158
1159         WARN_ON(!list_empty(&ctx->active_ctx_list));
1160
1161         list_add(&ctx->active_ctx_list, head);
1162 }
1163
1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 {
1166         lockdep_assert_irqs_disabled();
1167
1168         WARN_ON(list_empty(&ctx->active_ctx_list));
1169
1170         list_del_init(&ctx->active_ctx_list);
1171 }
1172
1173 static void get_ctx(struct perf_event_context *ctx)
1174 {
1175         refcount_inc(&ctx->refcount);
1176 }
1177
1178 static void free_ctx(struct rcu_head *head)
1179 {
1180         struct perf_event_context *ctx;
1181
1182         ctx = container_of(head, struct perf_event_context, rcu_head);
1183         kfree(ctx->task_ctx_data);
1184         kfree(ctx);
1185 }
1186
1187 static void put_ctx(struct perf_event_context *ctx)
1188 {
1189         if (refcount_dec_and_test(&ctx->refcount)) {
1190                 if (ctx->parent_ctx)
1191                         put_ctx(ctx->parent_ctx);
1192                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193                         put_task_struct(ctx->task);
1194                 call_rcu(&ctx->rcu_head, free_ctx);
1195         }
1196 }
1197
1198 /*
1199  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200  * perf_pmu_migrate_context() we need some magic.
1201  *
1202  * Those places that change perf_event::ctx will hold both
1203  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204  *
1205  * Lock ordering is by mutex address. There are two other sites where
1206  * perf_event_context::mutex nests and those are:
1207  *
1208  *  - perf_event_exit_task_context()    [ child , 0 ]
1209  *      perf_event_exit_event()
1210  *        put_event()                   [ parent, 1 ]
1211  *
1212  *  - perf_event_init_context()         [ parent, 0 ]
1213  *      inherit_task_group()
1214  *        inherit_group()
1215  *          inherit_event()
1216  *            perf_event_alloc()
1217  *              perf_init_event()
1218  *                perf_try_init_event() [ child , 1 ]
1219  *
1220  * While it appears there is an obvious deadlock here -- the parent and child
1221  * nesting levels are inverted between the two. This is in fact safe because
1222  * life-time rules separate them. That is an exiting task cannot fork, and a
1223  * spawning task cannot (yet) exit.
1224  *
1225  * But remember that that these are parent<->child context relations, and
1226  * migration does not affect children, therefore these two orderings should not
1227  * interact.
1228  *
1229  * The change in perf_event::ctx does not affect children (as claimed above)
1230  * because the sys_perf_event_open() case will install a new event and break
1231  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232  * concerned with cpuctx and that doesn't have children.
1233  *
1234  * The places that change perf_event::ctx will issue:
1235  *
1236  *   perf_remove_from_context();
1237  *   synchronize_rcu();
1238  *   perf_install_in_context();
1239  *
1240  * to affect the change. The remove_from_context() + synchronize_rcu() should
1241  * quiesce the event, after which we can install it in the new location. This
1242  * means that only external vectors (perf_fops, prctl) can perturb the event
1243  * while in transit. Therefore all such accessors should also acquire
1244  * perf_event_context::mutex to serialize against this.
1245  *
1246  * However; because event->ctx can change while we're waiting to acquire
1247  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248  * function.
1249  *
1250  * Lock order:
1251  *    cred_guard_mutex
1252  *      task_struct::perf_event_mutex
1253  *        perf_event_context::mutex
1254  *          perf_event::child_mutex;
1255  *            perf_event_context::lock
1256  *          perf_event::mmap_mutex
1257  *          mmap_sem
1258  *            perf_addr_filters_head::lock
1259  *
1260  *    cpu_hotplug_lock
1261  *      pmus_lock
1262  *        cpuctx->mutex / perf_event_context::mutex
1263  */
1264 static struct perf_event_context *
1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1266 {
1267         struct perf_event_context *ctx;
1268
1269 again:
1270         rcu_read_lock();
1271         ctx = READ_ONCE(event->ctx);
1272         if (!refcount_inc_not_zero(&ctx->refcount)) {
1273                 rcu_read_unlock();
1274                 goto again;
1275         }
1276         rcu_read_unlock();
1277
1278         mutex_lock_nested(&ctx->mutex, nesting);
1279         if (event->ctx != ctx) {
1280                 mutex_unlock(&ctx->mutex);
1281                 put_ctx(ctx);
1282                 goto again;
1283         }
1284
1285         return ctx;
1286 }
1287
1288 static inline struct perf_event_context *
1289 perf_event_ctx_lock(struct perf_event *event)
1290 {
1291         return perf_event_ctx_lock_nested(event, 0);
1292 }
1293
1294 static void perf_event_ctx_unlock(struct perf_event *event,
1295                                   struct perf_event_context *ctx)
1296 {
1297         mutex_unlock(&ctx->mutex);
1298         put_ctx(ctx);
1299 }
1300
1301 /*
1302  * This must be done under the ctx->lock, such as to serialize against
1303  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304  * calling scheduler related locks and ctx->lock nests inside those.
1305  */
1306 static __must_check struct perf_event_context *
1307 unclone_ctx(struct perf_event_context *ctx)
1308 {
1309         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310
1311         lockdep_assert_held(&ctx->lock);
1312
1313         if (parent_ctx)
1314                 ctx->parent_ctx = NULL;
1315         ctx->generation++;
1316
1317         return parent_ctx;
1318 }
1319
1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321                                 enum pid_type type)
1322 {
1323         u32 nr;
1324         /*
1325          * only top level events have the pid namespace they were created in
1326          */
1327         if (event->parent)
1328                 event = event->parent;
1329
1330         nr = __task_pid_nr_ns(p, type, event->ns);
1331         /* avoid -1 if it is idle thread or runs in another ns */
1332         if (!nr && !pid_alive(p))
1333                 nr = -1;
1334         return nr;
1335 }
1336
1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1338 {
1339         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340 }
1341
1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343 {
1344         return perf_event_pid_type(event, p, PIDTYPE_PID);
1345 }
1346
1347 /*
1348  * If we inherit events we want to return the parent event id
1349  * to userspace.
1350  */
1351 static u64 primary_event_id(struct perf_event *event)
1352 {
1353         u64 id = event->id;
1354
1355         if (event->parent)
1356                 id = event->parent->id;
1357
1358         return id;
1359 }
1360
1361 /*
1362  * Get the perf_event_context for a task and lock it.
1363  *
1364  * This has to cope with with the fact that until it is locked,
1365  * the context could get moved to another task.
1366  */
1367 static struct perf_event_context *
1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1369 {
1370         struct perf_event_context *ctx;
1371
1372 retry:
1373         /*
1374          * One of the few rules of preemptible RCU is that one cannot do
1375          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376          * part of the read side critical section was irqs-enabled -- see
1377          * rcu_read_unlock_special().
1378          *
1379          * Since ctx->lock nests under rq->lock we must ensure the entire read
1380          * side critical section has interrupts disabled.
1381          */
1382         local_irq_save(*flags);
1383         rcu_read_lock();
1384         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385         if (ctx) {
1386                 /*
1387                  * If this context is a clone of another, it might
1388                  * get swapped for another underneath us by
1389                  * perf_event_task_sched_out, though the
1390                  * rcu_read_lock() protects us from any context
1391                  * getting freed.  Lock the context and check if it
1392                  * got swapped before we could get the lock, and retry
1393                  * if so.  If we locked the right context, then it
1394                  * can't get swapped on us any more.
1395                  */
1396                 raw_spin_lock(&ctx->lock);
1397                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398                         raw_spin_unlock(&ctx->lock);
1399                         rcu_read_unlock();
1400                         local_irq_restore(*flags);
1401                         goto retry;
1402                 }
1403
1404                 if (ctx->task == TASK_TOMBSTONE ||
1405                     !refcount_inc_not_zero(&ctx->refcount)) {
1406                         raw_spin_unlock(&ctx->lock);
1407                         ctx = NULL;
1408                 } else {
1409                         WARN_ON_ONCE(ctx->task != task);
1410                 }
1411         }
1412         rcu_read_unlock();
1413         if (!ctx)
1414                 local_irq_restore(*flags);
1415         return ctx;
1416 }
1417
1418 /*
1419  * Get the context for a task and increment its pin_count so it
1420  * can't get swapped to another task.  This also increments its
1421  * reference count so that the context can't get freed.
1422  */
1423 static struct perf_event_context *
1424 perf_pin_task_context(struct task_struct *task, int ctxn)
1425 {
1426         struct perf_event_context *ctx;
1427         unsigned long flags;
1428
1429         ctx = perf_lock_task_context(task, ctxn, &flags);
1430         if (ctx) {
1431                 ++ctx->pin_count;
1432                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1433         }
1434         return ctx;
1435 }
1436
1437 static void perf_unpin_context(struct perf_event_context *ctx)
1438 {
1439         unsigned long flags;
1440
1441         raw_spin_lock_irqsave(&ctx->lock, flags);
1442         --ctx->pin_count;
1443         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444 }
1445
1446 /*
1447  * Update the record of the current time in a context.
1448  */
1449 static void update_context_time(struct perf_event_context *ctx)
1450 {
1451         u64 now = perf_clock();
1452
1453         ctx->time += now - ctx->timestamp;
1454         ctx->timestamp = now;
1455 }
1456
1457 static u64 perf_event_time(struct perf_event *event)
1458 {
1459         struct perf_event_context *ctx = event->ctx;
1460
1461         if (is_cgroup_event(event))
1462                 return perf_cgroup_event_time(event);
1463
1464         return ctx ? ctx->time : 0;
1465 }
1466
1467 static enum event_type_t get_event_type(struct perf_event *event)
1468 {
1469         struct perf_event_context *ctx = event->ctx;
1470         enum event_type_t event_type;
1471
1472         lockdep_assert_held(&ctx->lock);
1473
1474         /*
1475          * It's 'group type', really, because if our group leader is
1476          * pinned, so are we.
1477          */
1478         if (event->group_leader != event)
1479                 event = event->group_leader;
1480
1481         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482         if (!ctx->task)
1483                 event_type |= EVENT_CPU;
1484
1485         return event_type;
1486 }
1487
1488 /*
1489  * Helper function to initialize event group nodes.
1490  */
1491 static void init_event_group(struct perf_event *event)
1492 {
1493         RB_CLEAR_NODE(&event->group_node);
1494         event->group_index = 0;
1495 }
1496
1497 /*
1498  * Extract pinned or flexible groups from the context
1499  * based on event attrs bits.
1500  */
1501 static struct perf_event_groups *
1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1503 {
1504         if (event->attr.pinned)
1505                 return &ctx->pinned_groups;
1506         else
1507                 return &ctx->flexible_groups;
1508 }
1509
1510 /*
1511  * Helper function to initializes perf_event_group trees.
1512  */
1513 static void perf_event_groups_init(struct perf_event_groups *groups)
1514 {
1515         groups->tree = RB_ROOT;
1516         groups->index = 0;
1517 }
1518
1519 /*
1520  * Compare function for event groups;
1521  *
1522  * Implements complex key that first sorts by CPU and then by virtual index
1523  * which provides ordering when rotating groups for the same CPU.
1524  */
1525 static bool
1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1527 {
1528         if (left->cpu < right->cpu)
1529                 return true;
1530         if (left->cpu > right->cpu)
1531                 return false;
1532
1533         if (left->group_index < right->group_index)
1534                 return true;
1535         if (left->group_index > right->group_index)
1536                 return false;
1537
1538         return false;
1539 }
1540
1541 /*
1542  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543  * key (see perf_event_groups_less). This places it last inside the CPU
1544  * subtree.
1545  */
1546 static void
1547 perf_event_groups_insert(struct perf_event_groups *groups,
1548                          struct perf_event *event)
1549 {
1550         struct perf_event *node_event;
1551         struct rb_node *parent;
1552         struct rb_node **node;
1553
1554         event->group_index = ++groups->index;
1555
1556         node = &groups->tree.rb_node;
1557         parent = *node;
1558
1559         while (*node) {
1560                 parent = *node;
1561                 node_event = container_of(*node, struct perf_event, group_node);
1562
1563                 if (perf_event_groups_less(event, node_event))
1564                         node = &parent->rb_left;
1565                 else
1566                         node = &parent->rb_right;
1567         }
1568
1569         rb_link_node(&event->group_node, parent, node);
1570         rb_insert_color(&event->group_node, &groups->tree);
1571 }
1572
1573 /*
1574  * Helper function to insert event into the pinned or flexible groups.
1575  */
1576 static void
1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578 {
1579         struct perf_event_groups *groups;
1580
1581         groups = get_event_groups(event, ctx);
1582         perf_event_groups_insert(groups, event);
1583 }
1584
1585 /*
1586  * Delete a group from a tree.
1587  */
1588 static void
1589 perf_event_groups_delete(struct perf_event_groups *groups,
1590                          struct perf_event *event)
1591 {
1592         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593                      RB_EMPTY_ROOT(&groups->tree));
1594
1595         rb_erase(&event->group_node, &groups->tree);
1596         init_event_group(event);
1597 }
1598
1599 /*
1600  * Helper function to delete event from its groups.
1601  */
1602 static void
1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604 {
1605         struct perf_event_groups *groups;
1606
1607         groups = get_event_groups(event, ctx);
1608         perf_event_groups_delete(groups, event);
1609 }
1610
1611 /*
1612  * Get the leftmost event in the @cpu subtree.
1613  */
1614 static struct perf_event *
1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616 {
1617         struct perf_event *node_event = NULL, *match = NULL;
1618         struct rb_node *node = groups->tree.rb_node;
1619
1620         while (node) {
1621                 node_event = container_of(node, struct perf_event, group_node);
1622
1623                 if (cpu < node_event->cpu) {
1624                         node = node->rb_left;
1625                 } else if (cpu > node_event->cpu) {
1626                         node = node->rb_right;
1627                 } else {
1628                         match = node_event;
1629                         node = node->rb_left;
1630                 }
1631         }
1632
1633         return match;
1634 }
1635
1636 /*
1637  * Like rb_entry_next_safe() for the @cpu subtree.
1638  */
1639 static struct perf_event *
1640 perf_event_groups_next(struct perf_event *event)
1641 {
1642         struct perf_event *next;
1643
1644         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645         if (next && next->cpu == event->cpu)
1646                 return next;
1647
1648         return NULL;
1649 }
1650
1651 /*
1652  * Iterate through the whole groups tree.
1653  */
1654 #define perf_event_groups_for_each(event, groups)                       \
1655         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1656                                 typeof(*event), group_node); event;     \
1657                 event = rb_entry_safe(rb_next(&event->group_node),      \
1658                                 typeof(*event), group_node))
1659
1660 /*
1661  * Add an event from the lists for its context.
1662  * Must be called with ctx->mutex and ctx->lock held.
1663  */
1664 static void
1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667         lockdep_assert_held(&ctx->lock);
1668
1669         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670         event->attach_state |= PERF_ATTACH_CONTEXT;
1671
1672         event->tstamp = perf_event_time(event);
1673
1674         /*
1675          * If we're a stand alone event or group leader, we go to the context
1676          * list, group events are kept attached to the group so that
1677          * perf_group_detach can, at all times, locate all siblings.
1678          */
1679         if (event->group_leader == event) {
1680                 event->group_caps = event->event_caps;
1681                 add_event_to_groups(event, ctx);
1682         }
1683
1684         list_update_cgroup_event(event, ctx, true);
1685
1686         list_add_rcu(&event->event_entry, &ctx->event_list);
1687         ctx->nr_events++;
1688         if (event->attr.inherit_stat)
1689                 ctx->nr_stat++;
1690
1691         ctx->generation++;
1692 }
1693
1694 /*
1695  * Initialize event state based on the perf_event_attr::disabled.
1696  */
1697 static inline void perf_event__state_init(struct perf_event *event)
1698 {
1699         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700                                               PERF_EVENT_STATE_INACTIVE;
1701 }
1702
1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1704 {
1705         int entry = sizeof(u64); /* value */
1706         int size = 0;
1707         int nr = 1;
1708
1709         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710                 size += sizeof(u64);
1711
1712         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713                 size += sizeof(u64);
1714
1715         if (event->attr.read_format & PERF_FORMAT_ID)
1716                 entry += sizeof(u64);
1717
1718         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1719                 nr += nr_siblings;
1720                 size += sizeof(u64);
1721         }
1722
1723         size += entry * nr;
1724         event->read_size = size;
1725 }
1726
1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1728 {
1729         struct perf_sample_data *data;
1730         u16 size = 0;
1731
1732         if (sample_type & PERF_SAMPLE_IP)
1733                 size += sizeof(data->ip);
1734
1735         if (sample_type & PERF_SAMPLE_ADDR)
1736                 size += sizeof(data->addr);
1737
1738         if (sample_type & PERF_SAMPLE_PERIOD)
1739                 size += sizeof(data->period);
1740
1741         if (sample_type & PERF_SAMPLE_WEIGHT)
1742                 size += sizeof(data->weight);
1743
1744         if (sample_type & PERF_SAMPLE_READ)
1745                 size += event->read_size;
1746
1747         if (sample_type & PERF_SAMPLE_DATA_SRC)
1748                 size += sizeof(data->data_src.val);
1749
1750         if (sample_type & PERF_SAMPLE_TRANSACTION)
1751                 size += sizeof(data->txn);
1752
1753         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754                 size += sizeof(data->phys_addr);
1755
1756         event->header_size = size;
1757 }
1758
1759 /*
1760  * Called at perf_event creation and when events are attached/detached from a
1761  * group.
1762  */
1763 static void perf_event__header_size(struct perf_event *event)
1764 {
1765         __perf_event_read_size(event,
1766                                event->group_leader->nr_siblings);
1767         __perf_event_header_size(event, event->attr.sample_type);
1768 }
1769
1770 static void perf_event__id_header_size(struct perf_event *event)
1771 {
1772         struct perf_sample_data *data;
1773         u64 sample_type = event->attr.sample_type;
1774         u16 size = 0;
1775
1776         if (sample_type & PERF_SAMPLE_TID)
1777                 size += sizeof(data->tid_entry);
1778
1779         if (sample_type & PERF_SAMPLE_TIME)
1780                 size += sizeof(data->time);
1781
1782         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783                 size += sizeof(data->id);
1784
1785         if (sample_type & PERF_SAMPLE_ID)
1786                 size += sizeof(data->id);
1787
1788         if (sample_type & PERF_SAMPLE_STREAM_ID)
1789                 size += sizeof(data->stream_id);
1790
1791         if (sample_type & PERF_SAMPLE_CPU)
1792                 size += sizeof(data->cpu_entry);
1793
1794         event->id_header_size = size;
1795 }
1796
1797 static bool perf_event_validate_size(struct perf_event *event)
1798 {
1799         /*
1800          * The values computed here will be over-written when we actually
1801          * attach the event.
1802          */
1803         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805         perf_event__id_header_size(event);
1806
1807         /*
1808          * Sum the lot; should not exceed the 64k limit we have on records.
1809          * Conservative limit to allow for callchains and other variable fields.
1810          */
1811         if (event->read_size + event->header_size +
1812             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813                 return false;
1814
1815         return true;
1816 }
1817
1818 static void perf_group_attach(struct perf_event *event)
1819 {
1820         struct perf_event *group_leader = event->group_leader, *pos;
1821
1822         lockdep_assert_held(&event->ctx->lock);
1823
1824         /*
1825          * We can have double attach due to group movement in perf_event_open.
1826          */
1827         if (event->attach_state & PERF_ATTACH_GROUP)
1828                 return;
1829
1830         event->attach_state |= PERF_ATTACH_GROUP;
1831
1832         if (group_leader == event)
1833                 return;
1834
1835         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836
1837         group_leader->group_caps &= event->event_caps;
1838
1839         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840         group_leader->nr_siblings++;
1841
1842         perf_event__header_size(group_leader);
1843
1844         for_each_sibling_event(pos, group_leader)
1845                 perf_event__header_size(pos);
1846 }
1847
1848 /*
1849  * Remove an event from the lists for its context.
1850  * Must be called with ctx->mutex and ctx->lock held.
1851  */
1852 static void
1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1854 {
1855         WARN_ON_ONCE(event->ctx != ctx);
1856         lockdep_assert_held(&ctx->lock);
1857
1858         /*
1859          * We can have double detach due to exit/hot-unplug + close.
1860          */
1861         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862                 return;
1863
1864         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865
1866         list_update_cgroup_event(event, ctx, false);
1867
1868         ctx->nr_events--;
1869         if (event->attr.inherit_stat)
1870                 ctx->nr_stat--;
1871
1872         list_del_rcu(&event->event_entry);
1873
1874         if (event->group_leader == event)
1875                 del_event_from_groups(event, ctx);
1876
1877         /*
1878          * If event was in error state, then keep it
1879          * that way, otherwise bogus counts will be
1880          * returned on read(). The only way to get out
1881          * of error state is by explicit re-enabling
1882          * of the event
1883          */
1884         if (event->state > PERF_EVENT_STATE_OFF)
1885                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1886
1887         ctx->generation++;
1888 }
1889
1890 static void perf_group_detach(struct perf_event *event)
1891 {
1892         struct perf_event *sibling, *tmp;
1893         struct perf_event_context *ctx = event->ctx;
1894
1895         lockdep_assert_held(&ctx->lock);
1896
1897         /*
1898          * We can have double detach due to exit/hot-unplug + close.
1899          */
1900         if (!(event->attach_state & PERF_ATTACH_GROUP))
1901                 return;
1902
1903         event->attach_state &= ~PERF_ATTACH_GROUP;
1904
1905         /*
1906          * If this is a sibling, remove it from its group.
1907          */
1908         if (event->group_leader != event) {
1909                 list_del_init(&event->sibling_list);
1910                 event->group_leader->nr_siblings--;
1911                 goto out;
1912         }
1913
1914         /*
1915          * If this was a group event with sibling events then
1916          * upgrade the siblings to singleton events by adding them
1917          * to whatever list we are on.
1918          */
1919         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1920
1921                 sibling->group_leader = sibling;
1922                 list_del_init(&sibling->sibling_list);
1923
1924                 /* Inherit group flags from the previous leader */
1925                 sibling->group_caps = event->group_caps;
1926
1927                 if (!RB_EMPTY_NODE(&event->group_node)) {
1928                         add_event_to_groups(sibling, event->ctx);
1929
1930                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1931                                 struct list_head *list = sibling->attr.pinned ?
1932                                         &ctx->pinned_active : &ctx->flexible_active;
1933
1934                                 list_add_tail(&sibling->active_list, list);
1935                         }
1936                 }
1937
1938                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1939         }
1940
1941 out:
1942         perf_event__header_size(event->group_leader);
1943
1944         for_each_sibling_event(tmp, event->group_leader)
1945                 perf_event__header_size(tmp);
1946 }
1947
1948 static bool is_orphaned_event(struct perf_event *event)
1949 {
1950         return event->state == PERF_EVENT_STATE_DEAD;
1951 }
1952
1953 static inline int __pmu_filter_match(struct perf_event *event)
1954 {
1955         struct pmu *pmu = event->pmu;
1956         return pmu->filter_match ? pmu->filter_match(event) : 1;
1957 }
1958
1959 /*
1960  * Check whether we should attempt to schedule an event group based on
1961  * PMU-specific filtering. An event group can consist of HW and SW events,
1962  * potentially with a SW leader, so we must check all the filters, to
1963  * determine whether a group is schedulable:
1964  */
1965 static inline int pmu_filter_match(struct perf_event *event)
1966 {
1967         struct perf_event *sibling;
1968
1969         if (!__pmu_filter_match(event))
1970                 return 0;
1971
1972         for_each_sibling_event(sibling, event) {
1973                 if (!__pmu_filter_match(sibling))
1974                         return 0;
1975         }
1976
1977         return 1;
1978 }
1979
1980 static inline int
1981 event_filter_match(struct perf_event *event)
1982 {
1983         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1984                perf_cgroup_match(event) && pmu_filter_match(event);
1985 }
1986
1987 static void
1988 event_sched_out(struct perf_event *event,
1989                   struct perf_cpu_context *cpuctx,
1990                   struct perf_event_context *ctx)
1991 {
1992         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1993
1994         WARN_ON_ONCE(event->ctx != ctx);
1995         lockdep_assert_held(&ctx->lock);
1996
1997         if (event->state != PERF_EVENT_STATE_ACTIVE)
1998                 return;
1999
2000         /*
2001          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2002          * we can schedule events _OUT_ individually through things like
2003          * __perf_remove_from_context().
2004          */
2005         list_del_init(&event->active_list);
2006
2007         perf_pmu_disable(event->pmu);
2008
2009         event->pmu->del(event, 0);
2010         event->oncpu = -1;
2011
2012         if (READ_ONCE(event->pending_disable) >= 0) {
2013                 WRITE_ONCE(event->pending_disable, -1);
2014                 state = PERF_EVENT_STATE_OFF;
2015         }
2016         perf_event_set_state(event, state);
2017
2018         if (!is_software_event(event))
2019                 cpuctx->active_oncpu--;
2020         if (!--ctx->nr_active)
2021                 perf_event_ctx_deactivate(ctx);
2022         if (event->attr.freq && event->attr.sample_freq)
2023                 ctx->nr_freq--;
2024         if (event->attr.exclusive || !cpuctx->active_oncpu)
2025                 cpuctx->exclusive = 0;
2026
2027         perf_pmu_enable(event->pmu);
2028 }
2029
2030 static void
2031 group_sched_out(struct perf_event *group_event,
2032                 struct perf_cpu_context *cpuctx,
2033                 struct perf_event_context *ctx)
2034 {
2035         struct perf_event *event;
2036
2037         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2038                 return;
2039
2040         perf_pmu_disable(ctx->pmu);
2041
2042         event_sched_out(group_event, cpuctx, ctx);
2043
2044         /*
2045          * Schedule out siblings (if any):
2046          */
2047         for_each_sibling_event(event, group_event)
2048                 event_sched_out(event, cpuctx, ctx);
2049
2050         perf_pmu_enable(ctx->pmu);
2051
2052         if (group_event->attr.exclusive)
2053                 cpuctx->exclusive = 0;
2054 }
2055
2056 #define DETACH_GROUP    0x01UL
2057
2058 /*
2059  * Cross CPU call to remove a performance event
2060  *
2061  * We disable the event on the hardware level first. After that we
2062  * remove it from the context list.
2063  */
2064 static void
2065 __perf_remove_from_context(struct perf_event *event,
2066                            struct perf_cpu_context *cpuctx,
2067                            struct perf_event_context *ctx,
2068                            void *info)
2069 {
2070         unsigned long flags = (unsigned long)info;
2071
2072         if (ctx->is_active & EVENT_TIME) {
2073                 update_context_time(ctx);
2074                 update_cgrp_time_from_cpuctx(cpuctx);
2075         }
2076
2077         event_sched_out(event, cpuctx, ctx);
2078         if (flags & DETACH_GROUP)
2079                 perf_group_detach(event);
2080         list_del_event(event, ctx);
2081
2082         if (!ctx->nr_events && ctx->is_active) {
2083                 ctx->is_active = 0;
2084                 if (ctx->task) {
2085                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2086                         cpuctx->task_ctx = NULL;
2087                 }
2088         }
2089 }
2090
2091 /*
2092  * Remove the event from a task's (or a CPU's) list of events.
2093  *
2094  * If event->ctx is a cloned context, callers must make sure that
2095  * every task struct that event->ctx->task could possibly point to
2096  * remains valid.  This is OK when called from perf_release since
2097  * that only calls us on the top-level context, which can't be a clone.
2098  * When called from perf_event_exit_task, it's OK because the
2099  * context has been detached from its task.
2100  */
2101 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2102 {
2103         struct perf_event_context *ctx = event->ctx;
2104
2105         lockdep_assert_held(&ctx->mutex);
2106
2107         event_function_call(event, __perf_remove_from_context, (void *)flags);
2108
2109         /*
2110          * The above event_function_call() can NO-OP when it hits
2111          * TASK_TOMBSTONE. In that case we must already have been detached
2112          * from the context (by perf_event_exit_event()) but the grouping
2113          * might still be in-tact.
2114          */
2115         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2116         if ((flags & DETACH_GROUP) &&
2117             (event->attach_state & PERF_ATTACH_GROUP)) {
2118                 /*
2119                  * Since in that case we cannot possibly be scheduled, simply
2120                  * detach now.
2121                  */
2122                 raw_spin_lock_irq(&ctx->lock);
2123                 perf_group_detach(event);
2124                 raw_spin_unlock_irq(&ctx->lock);
2125         }
2126 }
2127
2128 /*
2129  * Cross CPU call to disable a performance event
2130  */
2131 static void __perf_event_disable(struct perf_event *event,
2132                                  struct perf_cpu_context *cpuctx,
2133                                  struct perf_event_context *ctx,
2134                                  void *info)
2135 {
2136         if (event->state < PERF_EVENT_STATE_INACTIVE)
2137                 return;
2138
2139         if (ctx->is_active & EVENT_TIME) {
2140                 update_context_time(ctx);
2141                 update_cgrp_time_from_event(event);
2142         }
2143
2144         if (event == event->group_leader)
2145                 group_sched_out(event, cpuctx, ctx);
2146         else
2147                 event_sched_out(event, cpuctx, ctx);
2148
2149         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2150 }
2151
2152 /*
2153  * Disable an event.
2154  *
2155  * If event->ctx is a cloned context, callers must make sure that
2156  * every task struct that event->ctx->task could possibly point to
2157  * remains valid.  This condition is satisifed when called through
2158  * perf_event_for_each_child or perf_event_for_each because they
2159  * hold the top-level event's child_mutex, so any descendant that
2160  * goes to exit will block in perf_event_exit_event().
2161  *
2162  * When called from perf_pending_event it's OK because event->ctx
2163  * is the current context on this CPU and preemption is disabled,
2164  * hence we can't get into perf_event_task_sched_out for this context.
2165  */
2166 static void _perf_event_disable(struct perf_event *event)
2167 {
2168         struct perf_event_context *ctx = event->ctx;
2169
2170         raw_spin_lock_irq(&ctx->lock);
2171         if (event->state <= PERF_EVENT_STATE_OFF) {
2172                 raw_spin_unlock_irq(&ctx->lock);
2173                 return;
2174         }
2175         raw_spin_unlock_irq(&ctx->lock);
2176
2177         event_function_call(event, __perf_event_disable, NULL);
2178 }
2179
2180 void perf_event_disable_local(struct perf_event *event)
2181 {
2182         event_function_local(event, __perf_event_disable, NULL);
2183 }
2184
2185 /*
2186  * Strictly speaking kernel users cannot create groups and therefore this
2187  * interface does not need the perf_event_ctx_lock() magic.
2188  */
2189 void perf_event_disable(struct perf_event *event)
2190 {
2191         struct perf_event_context *ctx;
2192
2193         ctx = perf_event_ctx_lock(event);
2194         _perf_event_disable(event);
2195         perf_event_ctx_unlock(event, ctx);
2196 }
2197 EXPORT_SYMBOL_GPL(perf_event_disable);
2198
2199 void perf_event_disable_inatomic(struct perf_event *event)
2200 {
2201         WRITE_ONCE(event->pending_disable, smp_processor_id());
2202         /* can fail, see perf_pending_event_disable() */
2203         irq_work_queue(&event->pending);
2204 }
2205
2206 static void perf_set_shadow_time(struct perf_event *event,
2207                                  struct perf_event_context *ctx)
2208 {
2209         /*
2210          * use the correct time source for the time snapshot
2211          *
2212          * We could get by without this by leveraging the
2213          * fact that to get to this function, the caller
2214          * has most likely already called update_context_time()
2215          * and update_cgrp_time_xx() and thus both timestamp
2216          * are identical (or very close). Given that tstamp is,
2217          * already adjusted for cgroup, we could say that:
2218          *    tstamp - ctx->timestamp
2219          * is equivalent to
2220          *    tstamp - cgrp->timestamp.
2221          *
2222          * Then, in perf_output_read(), the calculation would
2223          * work with no changes because:
2224          * - event is guaranteed scheduled in
2225          * - no scheduled out in between
2226          * - thus the timestamp would be the same
2227          *
2228          * But this is a bit hairy.
2229          *
2230          * So instead, we have an explicit cgroup call to remain
2231          * within the time time source all along. We believe it
2232          * is cleaner and simpler to understand.
2233          */
2234         if (is_cgroup_event(event))
2235                 perf_cgroup_set_shadow_time(event, event->tstamp);
2236         else
2237                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2238 }
2239
2240 #define MAX_INTERRUPTS (~0ULL)
2241
2242 static void perf_log_throttle(struct perf_event *event, int enable);
2243 static void perf_log_itrace_start(struct perf_event *event);
2244
2245 static int
2246 event_sched_in(struct perf_event *event,
2247                  struct perf_cpu_context *cpuctx,
2248                  struct perf_event_context *ctx)
2249 {
2250         int ret = 0;
2251
2252         lockdep_assert_held(&ctx->lock);
2253
2254         if (event->state <= PERF_EVENT_STATE_OFF)
2255                 return 0;
2256
2257         WRITE_ONCE(event->oncpu, smp_processor_id());
2258         /*
2259          * Order event::oncpu write to happen before the ACTIVE state is
2260          * visible. This allows perf_event_{stop,read}() to observe the correct
2261          * ->oncpu if it sees ACTIVE.
2262          */
2263         smp_wmb();
2264         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2265
2266         /*
2267          * Unthrottle events, since we scheduled we might have missed several
2268          * ticks already, also for a heavily scheduling task there is little
2269          * guarantee it'll get a tick in a timely manner.
2270          */
2271         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2272                 perf_log_throttle(event, 1);
2273                 event->hw.interrupts = 0;
2274         }
2275
2276         perf_pmu_disable(event->pmu);
2277
2278         perf_set_shadow_time(event, ctx);
2279
2280         perf_log_itrace_start(event);
2281
2282         if (event->pmu->add(event, PERF_EF_START)) {
2283                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2284                 event->oncpu = -1;
2285                 ret = -EAGAIN;
2286                 goto out;
2287         }
2288
2289         if (!is_software_event(event))
2290                 cpuctx->active_oncpu++;
2291         if (!ctx->nr_active++)
2292                 perf_event_ctx_activate(ctx);
2293         if (event->attr.freq && event->attr.sample_freq)
2294                 ctx->nr_freq++;
2295
2296         if (event->attr.exclusive)
2297                 cpuctx->exclusive = 1;
2298
2299 out:
2300         perf_pmu_enable(event->pmu);
2301
2302         return ret;
2303 }
2304
2305 static int
2306 group_sched_in(struct perf_event *group_event,
2307                struct perf_cpu_context *cpuctx,
2308                struct perf_event_context *ctx)
2309 {
2310         struct perf_event *event, *partial_group = NULL;
2311         struct pmu *pmu = ctx->pmu;
2312
2313         if (group_event->state == PERF_EVENT_STATE_OFF)
2314                 return 0;
2315
2316         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2317
2318         if (event_sched_in(group_event, cpuctx, ctx)) {
2319                 pmu->cancel_txn(pmu);
2320                 perf_mux_hrtimer_restart(cpuctx);
2321                 return -EAGAIN;
2322         }
2323
2324         /*
2325          * Schedule in siblings as one group (if any):
2326          */
2327         for_each_sibling_event(event, group_event) {
2328                 if (event_sched_in(event, cpuctx, ctx)) {
2329                         partial_group = event;
2330                         goto group_error;
2331                 }
2332         }
2333
2334         if (!pmu->commit_txn(pmu))
2335                 return 0;
2336
2337 group_error:
2338         /*
2339          * Groups can be scheduled in as one unit only, so undo any
2340          * partial group before returning:
2341          * The events up to the failed event are scheduled out normally.
2342          */
2343         for_each_sibling_event(event, group_event) {
2344                 if (event == partial_group)
2345                         break;
2346
2347                 event_sched_out(event, cpuctx, ctx);
2348         }
2349         event_sched_out(group_event, cpuctx, ctx);
2350
2351         pmu->cancel_txn(pmu);
2352
2353         perf_mux_hrtimer_restart(cpuctx);
2354
2355         return -EAGAIN;
2356 }
2357
2358 /*
2359  * Work out whether we can put this event group on the CPU now.
2360  */
2361 static int group_can_go_on(struct perf_event *event,
2362                            struct perf_cpu_context *cpuctx,
2363                            int can_add_hw)
2364 {
2365         /*
2366          * Groups consisting entirely of software events can always go on.
2367          */
2368         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2369                 return 1;
2370         /*
2371          * If an exclusive group is already on, no other hardware
2372          * events can go on.
2373          */
2374         if (cpuctx->exclusive)
2375                 return 0;
2376         /*
2377          * If this group is exclusive and there are already
2378          * events on the CPU, it can't go on.
2379          */
2380         if (event->attr.exclusive && cpuctx->active_oncpu)
2381                 return 0;
2382         /*
2383          * Otherwise, try to add it if all previous groups were able
2384          * to go on.
2385          */
2386         return can_add_hw;
2387 }
2388
2389 static void add_event_to_ctx(struct perf_event *event,
2390                                struct perf_event_context *ctx)
2391 {
2392         list_add_event(event, ctx);
2393         perf_group_attach(event);
2394 }
2395
2396 static void ctx_sched_out(struct perf_event_context *ctx,
2397                           struct perf_cpu_context *cpuctx,
2398                           enum event_type_t event_type);
2399 static void
2400 ctx_sched_in(struct perf_event_context *ctx,
2401              struct perf_cpu_context *cpuctx,
2402              enum event_type_t event_type,
2403              struct task_struct *task);
2404
2405 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2406                                struct perf_event_context *ctx,
2407                                enum event_type_t event_type)
2408 {
2409         if (!cpuctx->task_ctx)
2410                 return;
2411
2412         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2413                 return;
2414
2415         ctx_sched_out(ctx, cpuctx, event_type);
2416 }
2417
2418 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2419                                 struct perf_event_context *ctx,
2420                                 struct task_struct *task)
2421 {
2422         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2423         if (ctx)
2424                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2425         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2426         if (ctx)
2427                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2428 }
2429
2430 /*
2431  * We want to maintain the following priority of scheduling:
2432  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2433  *  - task pinned (EVENT_PINNED)
2434  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2435  *  - task flexible (EVENT_FLEXIBLE).
2436  *
2437  * In order to avoid unscheduling and scheduling back in everything every
2438  * time an event is added, only do it for the groups of equal priority and
2439  * below.
2440  *
2441  * This can be called after a batch operation on task events, in which case
2442  * event_type is a bit mask of the types of events involved. For CPU events,
2443  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2444  */
2445 static void ctx_resched(struct perf_cpu_context *cpuctx,
2446                         struct perf_event_context *task_ctx,
2447                         enum event_type_t event_type)
2448 {
2449         enum event_type_t ctx_event_type;
2450         bool cpu_event = !!(event_type & EVENT_CPU);
2451
2452         /*
2453          * If pinned groups are involved, flexible groups also need to be
2454          * scheduled out.
2455          */
2456         if (event_type & EVENT_PINNED)
2457                 event_type |= EVENT_FLEXIBLE;
2458
2459         ctx_event_type = event_type & EVENT_ALL;
2460
2461         perf_pmu_disable(cpuctx->ctx.pmu);
2462         if (task_ctx)
2463                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2464
2465         /*
2466          * Decide which cpu ctx groups to schedule out based on the types
2467          * of events that caused rescheduling:
2468          *  - EVENT_CPU: schedule out corresponding groups;
2469          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2470          *  - otherwise, do nothing more.
2471          */
2472         if (cpu_event)
2473                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2474         else if (ctx_event_type & EVENT_PINNED)
2475                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2476
2477         perf_event_sched_in(cpuctx, task_ctx, current);
2478         perf_pmu_enable(cpuctx->ctx.pmu);
2479 }
2480
2481 void perf_pmu_resched(struct pmu *pmu)
2482 {
2483         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2484         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2485
2486         perf_ctx_lock(cpuctx, task_ctx);
2487         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2488         perf_ctx_unlock(cpuctx, task_ctx);
2489 }
2490
2491 /*
2492  * Cross CPU call to install and enable a performance event
2493  *
2494  * Very similar to remote_function() + event_function() but cannot assume that
2495  * things like ctx->is_active and cpuctx->task_ctx are set.
2496  */
2497 static int  __perf_install_in_context(void *info)
2498 {
2499         struct perf_event *event = info;
2500         struct perf_event_context *ctx = event->ctx;
2501         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2502         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2503         bool reprogram = true;
2504         int ret = 0;
2505
2506         raw_spin_lock(&cpuctx->ctx.lock);
2507         if (ctx->task) {
2508                 raw_spin_lock(&ctx->lock);
2509                 task_ctx = ctx;
2510
2511                 reprogram = (ctx->task == current);
2512
2513                 /*
2514                  * If the task is running, it must be running on this CPU,
2515                  * otherwise we cannot reprogram things.
2516                  *
2517                  * If its not running, we don't care, ctx->lock will
2518                  * serialize against it becoming runnable.
2519                  */
2520                 if (task_curr(ctx->task) && !reprogram) {
2521                         ret = -ESRCH;
2522                         goto unlock;
2523                 }
2524
2525                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2526         } else if (task_ctx) {
2527                 raw_spin_lock(&task_ctx->lock);
2528         }
2529
2530 #ifdef CONFIG_CGROUP_PERF
2531         if (is_cgroup_event(event)) {
2532                 /*
2533                  * If the current cgroup doesn't match the event's
2534                  * cgroup, we should not try to schedule it.
2535                  */
2536                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2537                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2538                                         event->cgrp->css.cgroup);
2539         }
2540 #endif
2541
2542         if (reprogram) {
2543                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2544                 add_event_to_ctx(event, ctx);
2545                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2546         } else {
2547                 add_event_to_ctx(event, ctx);
2548         }
2549
2550 unlock:
2551         perf_ctx_unlock(cpuctx, task_ctx);
2552
2553         return ret;
2554 }
2555
2556 static bool exclusive_event_installable(struct perf_event *event,
2557                                         struct perf_event_context *ctx);
2558
2559 /*
2560  * Attach a performance event to a context.
2561  *
2562  * Very similar to event_function_call, see comment there.
2563  */
2564 static void
2565 perf_install_in_context(struct perf_event_context *ctx,
2566                         struct perf_event *event,
2567                         int cpu)
2568 {
2569         struct task_struct *task = READ_ONCE(ctx->task);
2570
2571         lockdep_assert_held(&ctx->mutex);
2572
2573         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2574
2575         if (event->cpu != -1)
2576                 event->cpu = cpu;
2577
2578         /*
2579          * Ensures that if we can observe event->ctx, both the event and ctx
2580          * will be 'complete'. See perf_iterate_sb_cpu().
2581          */
2582         smp_store_release(&event->ctx, ctx);
2583
2584         if (!task) {
2585                 cpu_function_call(cpu, __perf_install_in_context, event);
2586                 return;
2587         }
2588
2589         /*
2590          * Should not happen, we validate the ctx is still alive before calling.
2591          */
2592         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2593                 return;
2594
2595         /*
2596          * Installing events is tricky because we cannot rely on ctx->is_active
2597          * to be set in case this is the nr_events 0 -> 1 transition.
2598          *
2599          * Instead we use task_curr(), which tells us if the task is running.
2600          * However, since we use task_curr() outside of rq::lock, we can race
2601          * against the actual state. This means the result can be wrong.
2602          *
2603          * If we get a false positive, we retry, this is harmless.
2604          *
2605          * If we get a false negative, things are complicated. If we are after
2606          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2607          * value must be correct. If we're before, it doesn't matter since
2608          * perf_event_context_sched_in() will program the counter.
2609          *
2610          * However, this hinges on the remote context switch having observed
2611          * our task->perf_event_ctxp[] store, such that it will in fact take
2612          * ctx::lock in perf_event_context_sched_in().
2613          *
2614          * We do this by task_function_call(), if the IPI fails to hit the task
2615          * we know any future context switch of task must see the
2616          * perf_event_ctpx[] store.
2617          */
2618
2619         /*
2620          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2621          * task_cpu() load, such that if the IPI then does not find the task
2622          * running, a future context switch of that task must observe the
2623          * store.
2624          */
2625         smp_mb();
2626 again:
2627         if (!task_function_call(task, __perf_install_in_context, event))
2628                 return;
2629
2630         raw_spin_lock_irq(&ctx->lock);
2631         task = ctx->task;
2632         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2633                 /*
2634                  * Cannot happen because we already checked above (which also
2635                  * cannot happen), and we hold ctx->mutex, which serializes us
2636                  * against perf_event_exit_task_context().
2637                  */
2638                 raw_spin_unlock_irq(&ctx->lock);
2639                 return;
2640         }
2641         /*
2642          * If the task is not running, ctx->lock will avoid it becoming so,
2643          * thus we can safely install the event.
2644          */
2645         if (task_curr(task)) {
2646                 raw_spin_unlock_irq(&ctx->lock);
2647                 goto again;
2648         }
2649         add_event_to_ctx(event, ctx);
2650         raw_spin_unlock_irq(&ctx->lock);
2651 }
2652
2653 /*
2654  * Cross CPU call to enable a performance event
2655  */
2656 static void __perf_event_enable(struct perf_event *event,
2657                                 struct perf_cpu_context *cpuctx,
2658                                 struct perf_event_context *ctx,
2659                                 void *info)
2660 {
2661         struct perf_event *leader = event->group_leader;
2662         struct perf_event_context *task_ctx;
2663
2664         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2665             event->state <= PERF_EVENT_STATE_ERROR)
2666                 return;
2667
2668         if (ctx->is_active)
2669                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2670
2671         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2672
2673         if (!ctx->is_active)
2674                 return;
2675
2676         if (!event_filter_match(event)) {
2677                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2678                 return;
2679         }
2680
2681         /*
2682          * If the event is in a group and isn't the group leader,
2683          * then don't put it on unless the group is on.
2684          */
2685         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2686                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2687                 return;
2688         }
2689
2690         task_ctx = cpuctx->task_ctx;
2691         if (ctx->task)
2692                 WARN_ON_ONCE(task_ctx != ctx);
2693
2694         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2695 }
2696
2697 /*
2698  * Enable an event.
2699  *
2700  * If event->ctx is a cloned context, callers must make sure that
2701  * every task struct that event->ctx->task could possibly point to
2702  * remains valid.  This condition is satisfied when called through
2703  * perf_event_for_each_child or perf_event_for_each as described
2704  * for perf_event_disable.
2705  */
2706 static void _perf_event_enable(struct perf_event *event)
2707 {
2708         struct perf_event_context *ctx = event->ctx;
2709
2710         raw_spin_lock_irq(&ctx->lock);
2711         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2712             event->state <  PERF_EVENT_STATE_ERROR) {
2713                 raw_spin_unlock_irq(&ctx->lock);
2714                 return;
2715         }
2716
2717         /*
2718          * If the event is in error state, clear that first.
2719          *
2720          * That way, if we see the event in error state below, we know that it
2721          * has gone back into error state, as distinct from the task having
2722          * been scheduled away before the cross-call arrived.
2723          */
2724         if (event->state == PERF_EVENT_STATE_ERROR)
2725                 event->state = PERF_EVENT_STATE_OFF;
2726         raw_spin_unlock_irq(&ctx->lock);
2727
2728         event_function_call(event, __perf_event_enable, NULL);
2729 }
2730
2731 /*
2732  * See perf_event_disable();
2733  */
2734 void perf_event_enable(struct perf_event *event)
2735 {
2736         struct perf_event_context *ctx;
2737
2738         ctx = perf_event_ctx_lock(event);
2739         _perf_event_enable(event);
2740         perf_event_ctx_unlock(event, ctx);
2741 }
2742 EXPORT_SYMBOL_GPL(perf_event_enable);
2743
2744 struct stop_event_data {
2745         struct perf_event       *event;
2746         unsigned int            restart;
2747 };
2748
2749 static int __perf_event_stop(void *info)
2750 {
2751         struct stop_event_data *sd = info;
2752         struct perf_event *event = sd->event;
2753
2754         /* if it's already INACTIVE, do nothing */
2755         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2756                 return 0;
2757
2758         /* matches smp_wmb() in event_sched_in() */
2759         smp_rmb();
2760
2761         /*
2762          * There is a window with interrupts enabled before we get here,
2763          * so we need to check again lest we try to stop another CPU's event.
2764          */
2765         if (READ_ONCE(event->oncpu) != smp_processor_id())
2766                 return -EAGAIN;
2767
2768         event->pmu->stop(event, PERF_EF_UPDATE);
2769
2770         /*
2771          * May race with the actual stop (through perf_pmu_output_stop()),
2772          * but it is only used for events with AUX ring buffer, and such
2773          * events will refuse to restart because of rb::aux_mmap_count==0,
2774          * see comments in perf_aux_output_begin().
2775          *
2776          * Since this is happening on an event-local CPU, no trace is lost
2777          * while restarting.
2778          */
2779         if (sd->restart)
2780                 event->pmu->start(event, 0);
2781
2782         return 0;
2783 }
2784
2785 static int perf_event_stop(struct perf_event *event, int restart)
2786 {
2787         struct stop_event_data sd = {
2788                 .event          = event,
2789                 .restart        = restart,
2790         };
2791         int ret = 0;
2792
2793         do {
2794                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2795                         return 0;
2796
2797                 /* matches smp_wmb() in event_sched_in() */
2798                 smp_rmb();
2799
2800                 /*
2801                  * We only want to restart ACTIVE events, so if the event goes
2802                  * inactive here (event->oncpu==-1), there's nothing more to do;
2803                  * fall through with ret==-ENXIO.
2804                  */
2805                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2806                                         __perf_event_stop, &sd);
2807         } while (ret == -EAGAIN);
2808
2809         return ret;
2810 }
2811
2812 /*
2813  * In order to contain the amount of racy and tricky in the address filter
2814  * configuration management, it is a two part process:
2815  *
2816  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2817  *      we update the addresses of corresponding vmas in
2818  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
2819  * (p2) when an event is scheduled in (pmu::add), it calls
2820  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2821  *      if the generation has changed since the previous call.
2822  *
2823  * If (p1) happens while the event is active, we restart it to force (p2).
2824  *
2825  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2826  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2827  *     ioctl;
2828  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2829  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2830  *     for reading;
2831  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2832  *     of exec.
2833  */
2834 void perf_event_addr_filters_sync(struct perf_event *event)
2835 {
2836         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2837
2838         if (!has_addr_filter(event))
2839                 return;
2840
2841         raw_spin_lock(&ifh->lock);
2842         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2843                 event->pmu->addr_filters_sync(event);
2844                 event->hw.addr_filters_gen = event->addr_filters_gen;
2845         }
2846         raw_spin_unlock(&ifh->lock);
2847 }
2848 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2849
2850 static int _perf_event_refresh(struct perf_event *event, int refresh)
2851 {
2852         /*
2853          * not supported on inherited events
2854          */
2855         if (event->attr.inherit || !is_sampling_event(event))
2856                 return -EINVAL;
2857
2858         atomic_add(refresh, &event->event_limit);
2859         _perf_event_enable(event);
2860
2861         return 0;
2862 }
2863
2864 /*
2865  * See perf_event_disable()
2866  */
2867 int perf_event_refresh(struct perf_event *event, int refresh)
2868 {
2869         struct perf_event_context *ctx;
2870         int ret;
2871
2872         ctx = perf_event_ctx_lock(event);
2873         ret = _perf_event_refresh(event, refresh);
2874         perf_event_ctx_unlock(event, ctx);
2875
2876         return ret;
2877 }
2878 EXPORT_SYMBOL_GPL(perf_event_refresh);
2879
2880 static int perf_event_modify_breakpoint(struct perf_event *bp,
2881                                          struct perf_event_attr *attr)
2882 {
2883         int err;
2884
2885         _perf_event_disable(bp);
2886
2887         err = modify_user_hw_breakpoint_check(bp, attr, true);
2888
2889         if (!bp->attr.disabled)
2890                 _perf_event_enable(bp);
2891
2892         return err;
2893 }
2894
2895 static int perf_event_modify_attr(struct perf_event *event,
2896                                   struct perf_event_attr *attr)
2897 {
2898         if (event->attr.type != attr->type)
2899                 return -EINVAL;
2900
2901         switch (event->attr.type) {
2902         case PERF_TYPE_BREAKPOINT:
2903                 return perf_event_modify_breakpoint(event, attr);
2904         default:
2905                 /* Place holder for future additions. */
2906                 return -EOPNOTSUPP;
2907         }
2908 }
2909
2910 static void ctx_sched_out(struct perf_event_context *ctx,
2911                           struct perf_cpu_context *cpuctx,
2912                           enum event_type_t event_type)
2913 {
2914         struct perf_event *event, *tmp;
2915         int is_active = ctx->is_active;
2916
2917         lockdep_assert_held(&ctx->lock);
2918
2919         if (likely(!ctx->nr_events)) {
2920                 /*
2921                  * See __perf_remove_from_context().
2922                  */
2923                 WARN_ON_ONCE(ctx->is_active);
2924                 if (ctx->task)
2925                         WARN_ON_ONCE(cpuctx->task_ctx);
2926                 return;
2927         }
2928
2929         ctx->is_active &= ~event_type;
2930         if (!(ctx->is_active & EVENT_ALL))
2931                 ctx->is_active = 0;
2932
2933         if (ctx->task) {
2934                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2935                 if (!ctx->is_active)
2936                         cpuctx->task_ctx = NULL;
2937         }
2938
2939         /*
2940          * Always update time if it was set; not only when it changes.
2941          * Otherwise we can 'forget' to update time for any but the last
2942          * context we sched out. For example:
2943          *
2944          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2945          *   ctx_sched_out(.event_type = EVENT_PINNED)
2946          *
2947          * would only update time for the pinned events.
2948          */
2949         if (is_active & EVENT_TIME) {
2950                 /* update (and stop) ctx time */
2951                 update_context_time(ctx);
2952                 update_cgrp_time_from_cpuctx(cpuctx);
2953         }
2954
2955         is_active ^= ctx->is_active; /* changed bits */
2956
2957         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2958                 return;
2959
2960         /*
2961          * If we had been multiplexing, no rotations are necessary, now no events
2962          * are active.
2963          */
2964         ctx->rotate_necessary = 0;
2965
2966         perf_pmu_disable(ctx->pmu);
2967         if (is_active & EVENT_PINNED) {
2968                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2969                         group_sched_out(event, cpuctx, ctx);
2970         }
2971
2972         if (is_active & EVENT_FLEXIBLE) {
2973                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2974                         group_sched_out(event, cpuctx, ctx);
2975         }
2976         perf_pmu_enable(ctx->pmu);
2977 }
2978
2979 /*
2980  * Test whether two contexts are equivalent, i.e. whether they have both been
2981  * cloned from the same version of the same context.
2982  *
2983  * Equivalence is measured using a generation number in the context that is
2984  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2985  * and list_del_event().
2986  */
2987 static int context_equiv(struct perf_event_context *ctx1,
2988                          struct perf_event_context *ctx2)
2989 {
2990         lockdep_assert_held(&ctx1->lock);
2991         lockdep_assert_held(&ctx2->lock);
2992
2993         /* Pinning disables the swap optimization */
2994         if (ctx1->pin_count || ctx2->pin_count)
2995                 return 0;
2996
2997         /* If ctx1 is the parent of ctx2 */
2998         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2999                 return 1;
3000
3001         /* If ctx2 is the parent of ctx1 */
3002         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3003                 return 1;
3004
3005         /*
3006          * If ctx1 and ctx2 have the same parent; we flatten the parent
3007          * hierarchy, see perf_event_init_context().
3008          */
3009         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3010                         ctx1->parent_gen == ctx2->parent_gen)
3011                 return 1;
3012
3013         /* Unmatched */
3014         return 0;
3015 }
3016
3017 static void __perf_event_sync_stat(struct perf_event *event,
3018                                      struct perf_event *next_event)
3019 {
3020         u64 value;
3021
3022         if (!event->attr.inherit_stat)
3023                 return;
3024
3025         /*
3026          * Update the event value, we cannot use perf_event_read()
3027          * because we're in the middle of a context switch and have IRQs
3028          * disabled, which upsets smp_call_function_single(), however
3029          * we know the event must be on the current CPU, therefore we
3030          * don't need to use it.
3031          */
3032         if (event->state == PERF_EVENT_STATE_ACTIVE)
3033                 event->pmu->read(event);
3034
3035         perf_event_update_time(event);
3036
3037         /*
3038          * In order to keep per-task stats reliable we need to flip the event
3039          * values when we flip the contexts.
3040          */
3041         value = local64_read(&next_event->count);
3042         value = local64_xchg(&event->count, value);
3043         local64_set(&next_event->count, value);
3044
3045         swap(event->total_time_enabled, next_event->total_time_enabled);
3046         swap(event->total_time_running, next_event->total_time_running);
3047
3048         /*
3049          * Since we swizzled the values, update the user visible data too.
3050          */
3051         perf_event_update_userpage(event);
3052         perf_event_update_userpage(next_event);
3053 }
3054
3055 static void perf_event_sync_stat(struct perf_event_context *ctx,
3056                                    struct perf_event_context *next_ctx)
3057 {
3058         struct perf_event *event, *next_event;
3059
3060         if (!ctx->nr_stat)
3061                 return;
3062
3063         update_context_time(ctx);
3064
3065         event = list_first_entry(&ctx->event_list,
3066                                    struct perf_event, event_entry);
3067
3068         next_event = list_first_entry(&next_ctx->event_list,
3069                                         struct perf_event, event_entry);
3070
3071         while (&event->event_entry != &ctx->event_list &&
3072                &next_event->event_entry != &next_ctx->event_list) {
3073
3074                 __perf_event_sync_stat(event, next_event);
3075
3076                 event = list_next_entry(event, event_entry);
3077                 next_event = list_next_entry(next_event, event_entry);
3078         }
3079 }
3080
3081 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3082                                          struct task_struct *next)
3083 {
3084         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3085         struct perf_event_context *next_ctx;
3086         struct perf_event_context *parent, *next_parent;
3087         struct perf_cpu_context *cpuctx;
3088         int do_switch = 1;
3089
3090         if (likely(!ctx))
3091                 return;
3092
3093         cpuctx = __get_cpu_context(ctx);
3094         if (!cpuctx->task_ctx)
3095                 return;
3096
3097         rcu_read_lock();
3098         next_ctx = next->perf_event_ctxp[ctxn];
3099         if (!next_ctx)
3100                 goto unlock;
3101
3102         parent = rcu_dereference(ctx->parent_ctx);
3103         next_parent = rcu_dereference(next_ctx->parent_ctx);
3104
3105         /* If neither context have a parent context; they cannot be clones. */
3106         if (!parent && !next_parent)
3107                 goto unlock;
3108
3109         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3110                 /*
3111                  * Looks like the two contexts are clones, so we might be
3112                  * able to optimize the context switch.  We lock both
3113                  * contexts and check that they are clones under the
3114                  * lock (including re-checking that neither has been
3115                  * uncloned in the meantime).  It doesn't matter which
3116                  * order we take the locks because no other cpu could
3117                  * be trying to lock both of these tasks.
3118                  */
3119                 raw_spin_lock(&ctx->lock);
3120                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3121                 if (context_equiv(ctx, next_ctx)) {
3122                         WRITE_ONCE(ctx->task, next);
3123                         WRITE_ONCE(next_ctx->task, task);
3124
3125                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3126
3127                         /*
3128                          * RCU_INIT_POINTER here is safe because we've not
3129                          * modified the ctx and the above modification of
3130                          * ctx->task and ctx->task_ctx_data are immaterial
3131                          * since those values are always verified under
3132                          * ctx->lock which we're now holding.
3133                          */
3134                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3135                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3136
3137                         do_switch = 0;
3138
3139                         perf_event_sync_stat(ctx, next_ctx);
3140                 }
3141                 raw_spin_unlock(&next_ctx->lock);
3142                 raw_spin_unlock(&ctx->lock);
3143         }
3144 unlock:
3145         rcu_read_unlock();
3146
3147         if (do_switch) {
3148                 raw_spin_lock(&ctx->lock);
3149                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3150                 raw_spin_unlock(&ctx->lock);
3151         }
3152 }
3153
3154 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3155
3156 void perf_sched_cb_dec(struct pmu *pmu)
3157 {
3158         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3159
3160         this_cpu_dec(perf_sched_cb_usages);
3161
3162         if (!--cpuctx->sched_cb_usage)
3163                 list_del(&cpuctx->sched_cb_entry);
3164 }
3165
3166
3167 void perf_sched_cb_inc(struct pmu *pmu)
3168 {
3169         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3170
3171         if (!cpuctx->sched_cb_usage++)
3172                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3173
3174         this_cpu_inc(perf_sched_cb_usages);
3175 }
3176
3177 /*
3178  * This function provides the context switch callback to the lower code
3179  * layer. It is invoked ONLY when the context switch callback is enabled.
3180  *
3181  * This callback is relevant even to per-cpu events; for example multi event
3182  * PEBS requires this to provide PID/TID information. This requires we flush
3183  * all queued PEBS records before we context switch to a new task.
3184  */
3185 static void perf_pmu_sched_task(struct task_struct *prev,
3186                                 struct task_struct *next,
3187                                 bool sched_in)
3188 {
3189         struct perf_cpu_context *cpuctx;
3190         struct pmu *pmu;
3191
3192         if (prev == next)
3193                 return;
3194
3195         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3196                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3197
3198                 if (WARN_ON_ONCE(!pmu->sched_task))
3199                         continue;
3200
3201                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3202                 perf_pmu_disable(pmu);
3203
3204                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3205
3206                 perf_pmu_enable(pmu);
3207                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3208         }
3209 }
3210
3211 static void perf_event_switch(struct task_struct *task,
3212                               struct task_struct *next_prev, bool sched_in);
3213
3214 #define for_each_task_context_nr(ctxn)                                  \
3215         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3216
3217 /*
3218  * Called from scheduler to remove the events of the current task,
3219  * with interrupts disabled.
3220  *
3221  * We stop each event and update the event value in event->count.
3222  *
3223  * This does not protect us against NMI, but disable()
3224  * sets the disabled bit in the control field of event _before_
3225  * accessing the event control register. If a NMI hits, then it will
3226  * not restart the event.
3227  */
3228 void __perf_event_task_sched_out(struct task_struct *task,
3229                                  struct task_struct *next)
3230 {
3231         int ctxn;
3232
3233         if (__this_cpu_read(perf_sched_cb_usages))
3234                 perf_pmu_sched_task(task, next, false);
3235
3236         if (atomic_read(&nr_switch_events))
3237                 perf_event_switch(task, next, false);
3238
3239         for_each_task_context_nr(ctxn)
3240                 perf_event_context_sched_out(task, ctxn, next);
3241
3242         /*
3243          * if cgroup events exist on this CPU, then we need
3244          * to check if we have to switch out PMU state.
3245          * cgroup event are system-wide mode only
3246          */
3247         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3248                 perf_cgroup_sched_out(task, next);
3249 }
3250
3251 /*
3252  * Called with IRQs disabled
3253  */
3254 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3255                               enum event_type_t event_type)
3256 {
3257         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3258 }
3259
3260 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3261                               int (*func)(struct perf_event *, void *), void *data)
3262 {
3263         struct perf_event **evt, *evt1, *evt2;
3264         int ret;
3265
3266         evt1 = perf_event_groups_first(groups, -1);
3267         evt2 = perf_event_groups_first(groups, cpu);
3268
3269         while (evt1 || evt2) {
3270                 if (evt1 && evt2) {
3271                         if (evt1->group_index < evt2->group_index)
3272                                 evt = &evt1;
3273                         else
3274                                 evt = &evt2;
3275                 } else if (evt1) {
3276                         evt = &evt1;
3277                 } else {
3278                         evt = &evt2;
3279                 }
3280
3281                 ret = func(*evt, data);
3282                 if (ret)
3283                         return ret;
3284
3285                 *evt = perf_event_groups_next(*evt);
3286         }
3287
3288         return 0;
3289 }
3290
3291 struct sched_in_data {
3292         struct perf_event_context *ctx;
3293         struct perf_cpu_context *cpuctx;
3294         int can_add_hw;
3295 };
3296
3297 static int pinned_sched_in(struct perf_event *event, void *data)
3298 {
3299         struct sched_in_data *sid = data;
3300
3301         if (event->state <= PERF_EVENT_STATE_OFF)
3302                 return 0;
3303
3304         if (!event_filter_match(event))
3305                 return 0;
3306
3307         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3308                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3309                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3310         }
3311
3312         /*
3313          * If this pinned group hasn't been scheduled,
3314          * put it in error state.
3315          */
3316         if (event->state == PERF_EVENT_STATE_INACTIVE)
3317                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3318
3319         return 0;
3320 }
3321
3322 static int flexible_sched_in(struct perf_event *event, void *data)
3323 {
3324         struct sched_in_data *sid = data;
3325
3326         if (event->state <= PERF_EVENT_STATE_OFF)
3327                 return 0;
3328
3329         if (!event_filter_match(event))
3330                 return 0;
3331
3332         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3333                 int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3334                 if (ret) {
3335                         sid->can_add_hw = 0;
3336                         sid->ctx->rotate_necessary = 1;
3337                         return 0;
3338                 }
3339                 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3340         }
3341
3342         return 0;
3343 }
3344
3345 static void
3346 ctx_pinned_sched_in(struct perf_event_context *ctx,
3347                     struct perf_cpu_context *cpuctx)
3348 {
3349         struct sched_in_data sid = {
3350                 .ctx = ctx,
3351                 .cpuctx = cpuctx,
3352                 .can_add_hw = 1,
3353         };
3354
3355         visit_groups_merge(&ctx->pinned_groups,
3356                            smp_processor_id(),
3357                            pinned_sched_in, &sid);
3358 }
3359
3360 static void
3361 ctx_flexible_sched_in(struct perf_event_context *ctx,
3362                       struct perf_cpu_context *cpuctx)
3363 {
3364         struct sched_in_data sid = {
3365                 .ctx = ctx,
3366                 .cpuctx = cpuctx,
3367                 .can_add_hw = 1,
3368         };
3369
3370         visit_groups_merge(&ctx->flexible_groups,
3371                            smp_processor_id(),
3372                            flexible_sched_in, &sid);
3373 }
3374
3375 static void
3376 ctx_sched_in(struct perf_event_context *ctx,
3377              struct perf_cpu_context *cpuctx,
3378              enum event_type_t event_type,
3379              struct task_struct *task)
3380 {
3381         int is_active = ctx->is_active;
3382         u64 now;
3383
3384         lockdep_assert_held(&ctx->lock);
3385
3386         if (likely(!ctx->nr_events))
3387                 return;
3388
3389         ctx->is_active |= (event_type | EVENT_TIME);
3390         if (ctx->task) {
3391                 if (!is_active)
3392                         cpuctx->task_ctx = ctx;
3393                 else
3394                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3395         }
3396
3397         is_active ^= ctx->is_active; /* changed bits */
3398
3399         if (is_active & EVENT_TIME) {
3400                 /* start ctx time */
3401                 now = perf_clock();
3402                 ctx->timestamp = now;
3403                 perf_cgroup_set_timestamp(task, ctx);
3404         }
3405
3406         /*
3407          * First go through the list and put on any pinned groups
3408          * in order to give them the best chance of going on.
3409          */
3410         if (is_active & EVENT_PINNED)
3411                 ctx_pinned_sched_in(ctx, cpuctx);
3412
3413         /* Then walk through the lower prio flexible groups */
3414         if (is_active & EVENT_FLEXIBLE)
3415                 ctx_flexible_sched_in(ctx, cpuctx);
3416 }
3417
3418 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3419                              enum event_type_t event_type,
3420                              struct task_struct *task)
3421 {
3422         struct perf_event_context *ctx = &cpuctx->ctx;
3423
3424         ctx_sched_in(ctx, cpuctx, event_type, task);
3425 }
3426
3427 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3428                                         struct task_struct *task)
3429 {
3430         struct perf_cpu_context *cpuctx;
3431
3432         cpuctx = __get_cpu_context(ctx);
3433         if (cpuctx->task_ctx == ctx)
3434                 return;
3435
3436         perf_ctx_lock(cpuctx, ctx);
3437         /*
3438          * We must check ctx->nr_events while holding ctx->lock, such
3439          * that we serialize against perf_install_in_context().
3440          */
3441         if (!ctx->nr_events)
3442                 goto unlock;
3443
3444         perf_pmu_disable(ctx->pmu);
3445         /*
3446          * We want to keep the following priority order:
3447          * cpu pinned (that don't need to move), task pinned,
3448          * cpu flexible, task flexible.
3449          *
3450          * However, if task's ctx is not carrying any pinned
3451          * events, no need to flip the cpuctx's events around.
3452          */
3453         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3454                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3455         perf_event_sched_in(cpuctx, ctx, task);
3456         perf_pmu_enable(ctx->pmu);
3457
3458 unlock:
3459         perf_ctx_unlock(cpuctx, ctx);
3460 }
3461
3462 /*
3463  * Called from scheduler to add the events of the current task
3464  * with interrupts disabled.
3465  *
3466  * We restore the event value and then enable it.
3467  *
3468  * This does not protect us against NMI, but enable()
3469  * sets the enabled bit in the control field of event _before_
3470  * accessing the event control register. If a NMI hits, then it will
3471  * keep the event running.
3472  */
3473 void __perf_event_task_sched_in(struct task_struct *prev,
3474                                 struct task_struct *task)
3475 {
3476         struct perf_event_context *ctx;
3477         int ctxn;
3478
3479         /*
3480          * If cgroup events exist on this CPU, then we need to check if we have
3481          * to switch in PMU state; cgroup event are system-wide mode only.
3482          *
3483          * Since cgroup events are CPU events, we must schedule these in before
3484          * we schedule in the task events.
3485          */
3486         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3487                 perf_cgroup_sched_in(prev, task);
3488
3489         for_each_task_context_nr(ctxn) {
3490                 ctx = task->perf_event_ctxp[ctxn];
3491                 if (likely(!ctx))
3492                         continue;
3493
3494                 perf_event_context_sched_in(ctx, task);
3495         }
3496
3497         if (atomic_read(&nr_switch_events))
3498                 perf_event_switch(task, prev, true);
3499
3500         if (__this_cpu_read(perf_sched_cb_usages))
3501                 perf_pmu_sched_task(prev, task, true);
3502 }
3503
3504 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3505 {
3506         u64 frequency = event->attr.sample_freq;
3507         u64 sec = NSEC_PER_SEC;
3508         u64 divisor, dividend;
3509
3510         int count_fls, nsec_fls, frequency_fls, sec_fls;
3511
3512         count_fls = fls64(count);
3513         nsec_fls = fls64(nsec);
3514         frequency_fls = fls64(frequency);
3515         sec_fls = 30;
3516
3517         /*
3518          * We got @count in @nsec, with a target of sample_freq HZ
3519          * the target period becomes:
3520          *
3521          *             @count * 10^9
3522          * period = -------------------
3523          *          @nsec * sample_freq
3524          *
3525          */
3526
3527         /*
3528          * Reduce accuracy by one bit such that @a and @b converge
3529          * to a similar magnitude.
3530          */
3531 #define REDUCE_FLS(a, b)                \
3532 do {                                    \
3533         if (a##_fls > b##_fls) {        \
3534                 a >>= 1;                \
3535                 a##_fls--;              \
3536         } else {                        \
3537                 b >>= 1;                \
3538                 b##_fls--;              \
3539         }                               \
3540 } while (0)
3541
3542         /*
3543          * Reduce accuracy until either term fits in a u64, then proceed with
3544          * the other, so that finally we can do a u64/u64 division.
3545          */
3546         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3547                 REDUCE_FLS(nsec, frequency);
3548                 REDUCE_FLS(sec, count);
3549         }
3550
3551         if (count_fls + sec_fls > 64) {
3552                 divisor = nsec * frequency;
3553
3554                 while (count_fls + sec_fls > 64) {
3555                         REDUCE_FLS(count, sec);
3556                         divisor >>= 1;
3557                 }
3558
3559                 dividend = count * sec;
3560         } else {
3561                 dividend = count * sec;
3562
3563                 while (nsec_fls + frequency_fls > 64) {
3564                         REDUCE_FLS(nsec, frequency);
3565                         dividend >>= 1;
3566                 }
3567
3568                 divisor = nsec * frequency;
3569         }
3570
3571         if (!divisor)
3572                 return dividend;
3573
3574         return div64_u64(dividend, divisor);
3575 }
3576
3577 static DEFINE_PER_CPU(int, perf_throttled_count);
3578 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3579
3580 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3581 {
3582         struct hw_perf_event *hwc = &event->hw;
3583         s64 period, sample_period;
3584         s64 delta;
3585
3586         period = perf_calculate_period(event, nsec, count);
3587
3588         delta = (s64)(period - hwc->sample_period);
3589         delta = (delta + 7) / 8; /* low pass filter */
3590
3591         sample_period = hwc->sample_period + delta;
3592
3593         if (!sample_period)
3594                 sample_period = 1;
3595
3596         hwc->sample_period = sample_period;
3597
3598         if (local64_read(&hwc->period_left) > 8*sample_period) {
3599                 if (disable)
3600                         event->pmu->stop(event, PERF_EF_UPDATE);
3601
3602                 local64_set(&hwc->period_left, 0);
3603
3604                 if (disable)
3605                         event->pmu->start(event, PERF_EF_RELOAD);
3606         }
3607 }
3608
3609 /*
3610  * combine freq adjustment with unthrottling to avoid two passes over the
3611  * events. At the same time, make sure, having freq events does not change
3612  * the rate of unthrottling as that would introduce bias.
3613  */
3614 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3615                                            int needs_unthr)
3616 {
3617         struct perf_event *event;
3618         struct hw_perf_event *hwc;
3619         u64 now, period = TICK_NSEC;
3620         s64 delta;
3621
3622         /*
3623          * only need to iterate over all events iff:
3624          * - context have events in frequency mode (needs freq adjust)
3625          * - there are events to unthrottle on this cpu
3626          */
3627         if (!(ctx->nr_freq || needs_unthr))
3628                 return;
3629
3630         raw_spin_lock(&ctx->lock);
3631         perf_pmu_disable(ctx->pmu);
3632
3633         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3634                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3635                         continue;
3636
3637                 if (!event_filter_match(event))
3638                         continue;
3639
3640                 perf_pmu_disable(event->pmu);
3641
3642                 hwc = &event->hw;
3643
3644                 if (hwc->interrupts == MAX_INTERRUPTS) {
3645                         hwc->interrupts = 0;
3646                         perf_log_throttle(event, 1);
3647                         event->pmu->start(event, 0);
3648                 }
3649
3650                 if (!event->attr.freq || !event->attr.sample_freq)
3651                         goto next;
3652
3653                 /*
3654                  * stop the event and update event->count
3655                  */
3656                 event->pmu->stop(event, PERF_EF_UPDATE);
3657
3658                 now = local64_read(&event->count);
3659                 delta = now - hwc->freq_count_stamp;
3660                 hwc->freq_count_stamp = now;
3661
3662                 /*
3663                  * restart the event
3664                  * reload only if value has changed
3665                  * we have stopped the event so tell that
3666                  * to perf_adjust_period() to avoid stopping it
3667                  * twice.
3668                  */
3669                 if (delta > 0)
3670                         perf_adjust_period(event, period, delta, false);
3671
3672                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3673         next:
3674                 perf_pmu_enable(event->pmu);
3675         }
3676
3677         perf_pmu_enable(ctx->pmu);
3678         raw_spin_unlock(&ctx->lock);
3679 }
3680
3681 /*
3682  * Move @event to the tail of the @ctx's elegible events.
3683  */
3684 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3685 {
3686         /*
3687          * Rotate the first entry last of non-pinned groups. Rotation might be
3688          * disabled by the inheritance code.
3689          */
3690         if (ctx->rotate_disable)
3691                 return;
3692
3693         perf_event_groups_delete(&ctx->flexible_groups, event);
3694         perf_event_groups_insert(&ctx->flexible_groups, event);
3695 }
3696
3697 static inline struct perf_event *
3698 ctx_first_active(struct perf_event_context *ctx)
3699 {
3700         return list_first_entry_or_null(&ctx->flexible_active,
3701                                         struct perf_event, active_list);
3702 }
3703
3704 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3705 {
3706         struct perf_event *cpu_event = NULL, *task_event = NULL;
3707         struct perf_event_context *task_ctx = NULL;
3708         int cpu_rotate, task_rotate;
3709
3710         /*
3711          * Since we run this from IRQ context, nobody can install new
3712          * events, thus the event count values are stable.
3713          */
3714
3715         cpu_rotate = cpuctx->ctx.rotate_necessary;
3716         task_ctx = cpuctx->task_ctx;
3717         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3718
3719         if (!(cpu_rotate || task_rotate))
3720                 return false;
3721
3722         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3723         perf_pmu_disable(cpuctx->ctx.pmu);
3724
3725         if (task_rotate)
3726                 task_event = ctx_first_active(task_ctx);
3727         if (cpu_rotate)
3728                 cpu_event = ctx_first_active(&cpuctx->ctx);
3729
3730         /*
3731          * As per the order given at ctx_resched() first 'pop' task flexible
3732          * and then, if needed CPU flexible.
3733          */
3734         if (task_event || (task_ctx && cpu_event))
3735                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3736         if (cpu_event)
3737                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3738
3739         if (task_event)
3740                 rotate_ctx(task_ctx, task_event);
3741         if (cpu_event)
3742                 rotate_ctx(&cpuctx->ctx, cpu_event);
3743
3744         perf_event_sched_in(cpuctx, task_ctx, current);
3745
3746         perf_pmu_enable(cpuctx->ctx.pmu);
3747         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3748
3749         return true;
3750 }
3751
3752 void perf_event_task_tick(void)
3753 {
3754         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3755         struct perf_event_context *ctx, *tmp;
3756         int throttled;
3757
3758         lockdep_assert_irqs_disabled();
3759
3760         __this_cpu_inc(perf_throttled_seq);
3761         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3762         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3763
3764         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3765                 perf_adjust_freq_unthr_context(ctx, throttled);
3766 }
3767
3768 static int event_enable_on_exec(struct perf_event *event,
3769                                 struct perf_event_context *ctx)
3770 {
3771         if (!event->attr.enable_on_exec)
3772                 return 0;
3773
3774         event->attr.enable_on_exec = 0;
3775         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3776                 return 0;
3777
3778         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3779
3780         return 1;
3781 }
3782
3783 /*
3784  * Enable all of a task's events that have been marked enable-on-exec.
3785  * This expects task == current.
3786  */
3787 static void perf_event_enable_on_exec(int ctxn)
3788 {
3789         struct perf_event_context *ctx, *clone_ctx = NULL;
3790         enum event_type_t event_type = 0;
3791         struct perf_cpu_context *cpuctx;
3792         struct perf_event *event;
3793         unsigned long flags;
3794         int enabled = 0;
3795
3796         local_irq_save(flags);
3797         ctx = current->perf_event_ctxp[ctxn];
3798         if (!ctx || !ctx->nr_events)
3799                 goto out;
3800
3801         cpuctx = __get_cpu_context(ctx);
3802         perf_ctx_lock(cpuctx, ctx);
3803         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3804         list_for_each_entry(event, &ctx->event_list, event_entry) {
3805                 enabled |= event_enable_on_exec(event, ctx);
3806                 event_type |= get_event_type(event);
3807         }
3808
3809         /*
3810          * Unclone and reschedule this context if we enabled any event.
3811          */
3812         if (enabled) {
3813                 clone_ctx = unclone_ctx(ctx);
3814                 ctx_resched(cpuctx, ctx, event_type);
3815         } else {
3816                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3817         }
3818         perf_ctx_unlock(cpuctx, ctx);
3819
3820 out:
3821         local_irq_restore(flags);
3822
3823         if (clone_ctx)
3824                 put_ctx(clone_ctx);
3825 }
3826
3827 struct perf_read_data {
3828         struct perf_event *event;
3829         bool group;
3830         int ret;
3831 };
3832
3833 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3834 {
3835         u16 local_pkg, event_pkg;
3836
3837         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3838                 int local_cpu = smp_processor_id();
3839
3840                 event_pkg = topology_physical_package_id(event_cpu);
3841                 local_pkg = topology_physical_package_id(local_cpu);
3842
3843                 if (event_pkg == local_pkg)
3844                         return local_cpu;
3845         }
3846
3847         return event_cpu;
3848 }
3849
3850 /*
3851  * Cross CPU call to read the hardware event
3852  */
3853 static void __perf_event_read(void *info)
3854 {
3855         struct perf_read_data *data = info;
3856         struct perf_event *sub, *event = data->event;
3857         struct perf_event_context *ctx = event->ctx;
3858         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3859         struct pmu *pmu = event->pmu;
3860
3861         /*
3862          * If this is a task context, we need to check whether it is
3863          * the current task context of this cpu.  If not it has been
3864          * scheduled out before the smp call arrived.  In that case
3865          * event->count would have been updated to a recent sample
3866          * when the event was scheduled out.
3867          */
3868         if (ctx->task && cpuctx->task_ctx != ctx)
3869                 return;
3870
3871         raw_spin_lock(&ctx->lock);
3872         if (ctx->is_active & EVENT_TIME) {
3873                 update_context_time(ctx);
3874                 update_cgrp_time_from_event(event);
3875         }
3876
3877         perf_event_update_time(event);
3878         if (data->group)
3879                 perf_event_update_sibling_time(event);
3880
3881         if (event->state != PERF_EVENT_STATE_ACTIVE)
3882                 goto unlock;
3883
3884         if (!data->group) {
3885                 pmu->read(event);
3886                 data->ret = 0;
3887                 goto unlock;
3888         }
3889
3890         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3891
3892         pmu->read(event);
3893
3894         for_each_sibling_event(sub, event) {
3895                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3896                         /*
3897                          * Use sibling's PMU rather than @event's since
3898                          * sibling could be on different (eg: software) PMU.
3899                          */
3900                         sub->pmu->read(sub);
3901                 }
3902         }
3903
3904         data->ret = pmu->commit_txn(pmu);
3905
3906 unlock:
3907         raw_spin_unlock(&ctx->lock);
3908 }
3909
3910 static inline u64 perf_event_count(struct perf_event *event)
3911 {
3912         return local64_read(&event->count) + atomic64_read(&event->child_count);
3913 }
3914
3915 /*
3916  * NMI-safe method to read a local event, that is an event that
3917  * is:
3918  *   - either for the current task, or for this CPU
3919  *   - does not have inherit set, for inherited task events
3920  *     will not be local and we cannot read them atomically
3921  *   - must not have a pmu::count method
3922  */
3923 int perf_event_read_local(struct perf_event *event, u64 *value,
3924                           u64 *enabled, u64 *running)
3925 {
3926         unsigned long flags;
3927         int ret = 0;
3928
3929         /*
3930          * Disabling interrupts avoids all counter scheduling (context
3931          * switches, timer based rotation and IPIs).
3932          */
3933         local_irq_save(flags);
3934
3935         /*
3936          * It must not be an event with inherit set, we cannot read
3937          * all child counters from atomic context.
3938          */
3939         if (event->attr.inherit) {
3940                 ret = -EOPNOTSUPP;
3941                 goto out;
3942         }
3943
3944         /* If this is a per-task event, it must be for current */
3945         if ((event->attach_state & PERF_ATTACH_TASK) &&
3946             event->hw.target != current) {
3947                 ret = -EINVAL;
3948                 goto out;
3949         }
3950
3951         /* If this is a per-CPU event, it must be for this CPU */
3952         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3953             event->cpu != smp_processor_id()) {
3954                 ret = -EINVAL;
3955                 goto out;
3956         }
3957
3958         /* If this is a pinned event it must be running on this CPU */
3959         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3960                 ret = -EBUSY;
3961                 goto out;
3962         }
3963
3964         /*
3965          * If the event is currently on this CPU, its either a per-task event,
3966          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3967          * oncpu == -1).
3968          */
3969         if (event->oncpu == smp_processor_id())
3970                 event->pmu->read(event);
3971
3972         *value = local64_read(&event->count);
3973         if (enabled || running) {
3974                 u64 now = event->shadow_ctx_time + perf_clock();
3975                 u64 __enabled, __running;
3976
3977                 __perf_update_times(event, now, &__enabled, &__running);
3978                 if (enabled)
3979                         *enabled = __enabled;
3980                 if (running)
3981                         *running = __running;
3982         }
3983 out:
3984         local_irq_restore(flags);
3985
3986         return ret;
3987 }
3988
3989 static int perf_event_read(struct perf_event *event, bool group)
3990 {
3991         enum perf_event_state state = READ_ONCE(event->state);
3992         int event_cpu, ret = 0;
3993
3994         /*
3995          * If event is enabled and currently active on a CPU, update the
3996          * value in the event structure:
3997          */
3998 again:
3999         if (state == PERF_EVENT_STATE_ACTIVE) {
4000                 struct perf_read_data data;
4001
4002                 /*
4003                  * Orders the ->state and ->oncpu loads such that if we see
4004                  * ACTIVE we must also see the right ->oncpu.
4005                  *
4006                  * Matches the smp_wmb() from event_sched_in().
4007                  */
4008                 smp_rmb();
4009
4010                 event_cpu = READ_ONCE(event->oncpu);
4011                 if ((unsigned)event_cpu >= nr_cpu_ids)
4012                         return 0;
4013
4014                 data = (struct perf_read_data){
4015                         .event = event,
4016                         .group = group,
4017                         .ret = 0,
4018                 };
4019
4020                 preempt_disable();
4021                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4022
4023                 /*
4024                  * Purposely ignore the smp_call_function_single() return
4025                  * value.
4026                  *
4027                  * If event_cpu isn't a valid CPU it means the event got
4028                  * scheduled out and that will have updated the event count.
4029                  *
4030                  * Therefore, either way, we'll have an up-to-date event count
4031                  * after this.
4032                  */
4033                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4034                 preempt_enable();
4035                 ret = data.ret;
4036
4037         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4038                 struct perf_event_context *ctx = event->ctx;
4039                 unsigned long flags;
4040
4041                 raw_spin_lock_irqsave(&ctx->lock, flags);
4042                 state = event->state;
4043                 if (state != PERF_EVENT_STATE_INACTIVE) {
4044                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4045                         goto again;
4046                 }
4047
4048                 /*
4049                  * May read while context is not active (e.g., thread is
4050                  * blocked), in that case we cannot update context time
4051                  */
4052                 if (ctx->is_active & EVENT_TIME) {
4053                         update_context_time(ctx);
4054                         update_cgrp_time_from_event(event);
4055                 }
4056
4057                 perf_event_update_time(event);
4058                 if (group)
4059                         perf_event_update_sibling_time(event);
4060                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4061         }
4062
4063         return ret;
4064 }
4065
4066 /*
4067  * Initialize the perf_event context in a task_struct:
4068  */
4069 static void __perf_event_init_context(struct perf_event_context *ctx)
4070 {
4071         raw_spin_lock_init(&ctx->lock);
4072         mutex_init(&ctx->mutex);
4073         INIT_LIST_HEAD(&ctx->active_ctx_list);
4074         perf_event_groups_init(&ctx->pinned_groups);
4075         perf_event_groups_init(&ctx->flexible_groups);
4076         INIT_LIST_HEAD(&ctx->event_list);
4077         INIT_LIST_HEAD(&ctx->pinned_active);
4078         INIT_LIST_HEAD(&ctx->flexible_active);
4079         refcount_set(&ctx->refcount, 1);
4080 }
4081
4082 static struct perf_event_context *
4083 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4084 {
4085         struct perf_event_context *ctx;
4086
4087         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4088         if (!ctx)
4089                 return NULL;
4090
4091         __perf_event_init_context(ctx);
4092         if (task) {
4093                 ctx->task = task;
4094                 get_task_struct(task);
4095         }
4096         ctx->pmu = pmu;
4097
4098         return ctx;
4099 }
4100
4101 static struct task_struct *
4102 find_lively_task_by_vpid(pid_t vpid)
4103 {
4104         struct task_struct *task;
4105
4106         rcu_read_lock();
4107         if (!vpid)
4108                 task = current;
4109         else
4110                 task = find_task_by_vpid(vpid);
4111         if (task)
4112                 get_task_struct(task);
4113         rcu_read_unlock();
4114
4115         if (!task)
4116                 return ERR_PTR(-ESRCH);
4117
4118         return task;
4119 }
4120
4121 /*
4122  * Returns a matching context with refcount and pincount.
4123  */
4124 static struct perf_event_context *
4125 find_get_context(struct pmu *pmu, struct task_struct *task,
4126                 struct perf_event *event)
4127 {
4128         struct perf_event_context *ctx, *clone_ctx = NULL;
4129         struct perf_cpu_context *cpuctx;
4130         void *task_ctx_data = NULL;
4131         unsigned long flags;
4132         int ctxn, err;
4133         int cpu = event->cpu;
4134
4135         if (!task) {
4136                 /* Must be root to operate on a CPU event: */
4137                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4138                         return ERR_PTR(-EACCES);
4139
4140                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4141                 ctx = &cpuctx->ctx;
4142                 get_ctx(ctx);
4143                 ++ctx->pin_count;
4144
4145                 return ctx;
4146         }
4147
4148         err = -EINVAL;
4149         ctxn = pmu->task_ctx_nr;
4150         if (ctxn < 0)
4151                 goto errout;
4152
4153         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4154                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4155                 if (!task_ctx_data) {
4156                         err = -ENOMEM;
4157                         goto errout;
4158                 }
4159         }
4160
4161 retry:
4162         ctx = perf_lock_task_context(task, ctxn, &flags);
4163         if (ctx) {
4164                 clone_ctx = unclone_ctx(ctx);
4165                 ++ctx->pin_count;
4166
4167                 if (task_ctx_data && !ctx->task_ctx_data) {
4168                         ctx->task_ctx_data = task_ctx_data;
4169                         task_ctx_data = NULL;
4170                 }
4171                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4172
4173                 if (clone_ctx)
4174                         put_ctx(clone_ctx);
4175         } else {
4176                 ctx = alloc_perf_context(pmu, task);
4177                 err = -ENOMEM;
4178                 if (!ctx)
4179                         goto errout;
4180
4181                 if (task_ctx_data) {
4182                         ctx->task_ctx_data = task_ctx_data;
4183                         task_ctx_data = NULL;
4184                 }
4185
4186                 err = 0;
4187                 mutex_lock(&task->perf_event_mutex);
4188                 /*
4189                  * If it has already passed perf_event_exit_task().
4190                  * we must see PF_EXITING, it takes this mutex too.
4191                  */
4192                 if (task->flags & PF_EXITING)
4193                         err = -ESRCH;
4194                 else if (task->perf_event_ctxp[ctxn])
4195                         err = -EAGAIN;
4196                 else {
4197                         get_ctx(ctx);
4198                         ++ctx->pin_count;
4199                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4200                 }
4201                 mutex_unlock(&task->perf_event_mutex);
4202
4203                 if (unlikely(err)) {
4204                         put_ctx(ctx);
4205
4206                         if (err == -EAGAIN)
4207                                 goto retry;
4208                         goto errout;
4209                 }
4210         }
4211
4212         kfree(task_ctx_data);
4213         return ctx;
4214
4215 errout:
4216         kfree(task_ctx_data);
4217         return ERR_PTR(err);
4218 }
4219
4220 static void perf_event_free_filter(struct perf_event *event);
4221 static void perf_event_free_bpf_prog(struct perf_event *event);
4222
4223 static void free_event_rcu(struct rcu_head *head)
4224 {
4225         struct perf_event *event;
4226
4227         event = container_of(head, struct perf_event, rcu_head);
4228         if (event->ns)
4229                 put_pid_ns(event->ns);
4230         perf_event_free_filter(event);
4231         kfree(event);
4232 }
4233
4234 static void ring_buffer_attach(struct perf_event *event,
4235                                struct ring_buffer *rb);
4236
4237 static void detach_sb_event(struct perf_event *event)
4238 {
4239         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4240
4241         raw_spin_lock(&pel->lock);
4242         list_del_rcu(&event->sb_list);
4243         raw_spin_unlock(&pel->lock);
4244 }
4245
4246 static bool is_sb_event(struct perf_event *event)
4247 {
4248         struct perf_event_attr *attr = &event->attr;
4249
4250         if (event->parent)
4251                 return false;
4252
4253         if (event->attach_state & PERF_ATTACH_TASK)
4254                 return false;
4255
4256         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4257             attr->comm || attr->comm_exec ||
4258             attr->task || attr->ksymbol ||
4259             attr->context_switch ||
4260             attr->bpf_event)
4261                 return true;
4262         return false;
4263 }
4264
4265 static void unaccount_pmu_sb_event(struct perf_event *event)
4266 {
4267         if (is_sb_event(event))
4268                 detach_sb_event(event);
4269 }
4270
4271 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4272 {
4273         if (event->parent)
4274                 return;
4275
4276         if (is_cgroup_event(event))
4277                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4278 }
4279
4280 #ifdef CONFIG_NO_HZ_FULL
4281 static DEFINE_SPINLOCK(nr_freq_lock);
4282 #endif
4283
4284 static void unaccount_freq_event_nohz(void)
4285 {
4286 #ifdef CONFIG_NO_HZ_FULL
4287         spin_lock(&nr_freq_lock);
4288         if (atomic_dec_and_test(&nr_freq_events))
4289                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4290         spin_unlock(&nr_freq_lock);
4291 #endif
4292 }
4293
4294 static void unaccount_freq_event(void)
4295 {
4296         if (tick_nohz_full_enabled())
4297                 unaccount_freq_event_nohz();
4298         else
4299                 atomic_dec(&nr_freq_events);
4300 }
4301
4302 static void unaccount_event(struct perf_event *event)
4303 {
4304         bool dec = false;
4305
4306         if (event->parent)
4307                 return;
4308
4309         if (event->attach_state & PERF_ATTACH_TASK)
4310                 dec = true;
4311         if (event->attr.mmap || event->attr.mmap_data)
4312                 atomic_dec(&nr_mmap_events);
4313         if (event->attr.comm)
4314                 atomic_dec(&nr_comm_events);
4315         if (event->attr.namespaces)
4316                 atomic_dec(&nr_namespaces_events);
4317         if (event->attr.task)
4318                 atomic_dec(&nr_task_events);
4319         if (event->attr.freq)
4320                 unaccount_freq_event();
4321         if (event->attr.context_switch) {
4322                 dec = true;
4323                 atomic_dec(&nr_switch_events);
4324         }
4325         if (is_cgroup_event(event))
4326                 dec = true;
4327         if (has_branch_stack(event))
4328                 dec = true;
4329         if (event->attr.ksymbol)
4330                 atomic_dec(&nr_ksymbol_events);
4331         if (event->attr.bpf_event)
4332                 atomic_dec(&nr_bpf_events);
4333
4334         if (dec) {
4335                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4336                         schedule_delayed_work(&perf_sched_work, HZ);
4337         }
4338
4339         unaccount_event_cpu(event, event->cpu);
4340
4341         unaccount_pmu_sb_event(event);
4342 }
4343
4344 static void perf_sched_delayed(struct work_struct *work)
4345 {
4346         mutex_lock(&perf_sched_mutex);
4347         if (atomic_dec_and_test(&perf_sched_count))
4348                 static_branch_disable(&perf_sched_events);
4349         mutex_unlock(&perf_sched_mutex);
4350 }
4351
4352 /*
4353  * The following implement mutual exclusion of events on "exclusive" pmus
4354  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4355  * at a time, so we disallow creating events that might conflict, namely:
4356  *
4357  *  1) cpu-wide events in the presence of per-task events,
4358  *  2) per-task events in the presence of cpu-wide events,
4359  *  3) two matching events on the same context.
4360  *
4361  * The former two cases are handled in the allocation path (perf_event_alloc(),
4362  * _free_event()), the latter -- before the first perf_install_in_context().
4363  */
4364 static int exclusive_event_init(struct perf_event *event)
4365 {
4366         struct pmu *pmu = event->pmu;
4367
4368         if (!is_exclusive_pmu(pmu))
4369                 return 0;
4370
4371         /*
4372          * Prevent co-existence of per-task and cpu-wide events on the
4373          * same exclusive pmu.
4374          *
4375          * Negative pmu::exclusive_cnt means there are cpu-wide
4376          * events on this "exclusive" pmu, positive means there are
4377          * per-task events.
4378          *
4379          * Since this is called in perf_event_alloc() path, event::ctx
4380          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4381          * to mean "per-task event", because unlike other attach states it
4382          * never gets cleared.
4383          */
4384         if (event->attach_state & PERF_ATTACH_TASK) {
4385                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4386                         return -EBUSY;
4387         } else {
4388                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4389                         return -EBUSY;
4390         }
4391
4392         return 0;
4393 }
4394
4395 static void exclusive_event_destroy(struct perf_event *event)
4396 {
4397         struct pmu *pmu = event->pmu;
4398
4399         if (!is_exclusive_pmu(pmu))
4400                 return;
4401
4402         /* see comment in exclusive_event_init() */
4403         if (event->attach_state & PERF_ATTACH_TASK)
4404                 atomic_dec(&pmu->exclusive_cnt);
4405         else
4406                 atomic_inc(&pmu->exclusive_cnt);
4407 }
4408
4409 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4410 {
4411         if ((e1->pmu == e2->pmu) &&
4412             (e1->cpu == e2->cpu ||
4413              e1->cpu == -1 ||
4414              e2->cpu == -1))
4415                 return true;
4416         return false;
4417 }
4418
4419 static bool exclusive_event_installable(struct perf_event *event,
4420                                         struct perf_event_context *ctx)
4421 {
4422         struct perf_event *iter_event;
4423         struct pmu *pmu = event->pmu;
4424
4425         lockdep_assert_held(&ctx->mutex);
4426
4427         if (!is_exclusive_pmu(pmu))
4428                 return true;
4429
4430         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4431                 if (exclusive_event_match(iter_event, event))
4432                         return false;
4433         }
4434
4435         return true;
4436 }
4437
4438 static void perf_addr_filters_splice(struct perf_event *event,
4439                                        struct list_head *head);
4440
4441 static void _free_event(struct perf_event *event)
4442 {
4443         irq_work_sync(&event->pending);
4444
4445         unaccount_event(event);
4446
4447         if (event->rb) {
4448                 /*
4449                  * Can happen when we close an event with re-directed output.
4450                  *
4451                  * Since we have a 0 refcount, perf_mmap_close() will skip
4452                  * over us; possibly making our ring_buffer_put() the last.
4453                  */
4454                 mutex_lock(&event->mmap_mutex);
4455                 ring_buffer_attach(event, NULL);
4456                 mutex_unlock(&event->mmap_mutex);
4457         }
4458
4459         if (is_cgroup_event(event))
4460                 perf_detach_cgroup(event);
4461
4462         if (!event->parent) {
4463                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4464                         put_callchain_buffers();
4465         }
4466
4467         perf_event_free_bpf_prog(event);
4468         perf_addr_filters_splice(event, NULL);
4469         kfree(event->addr_filter_ranges);
4470
4471         if (event->destroy)
4472                 event->destroy(event);
4473
4474         /*
4475          * Must be after ->destroy(), due to uprobe_perf_close() using
4476          * hw.target.
4477          */
4478         if (event->hw.target)
4479                 put_task_struct(event->hw.target);
4480
4481         /*
4482          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4483          * all task references must be cleaned up.
4484          */
4485         if (event->ctx)
4486                 put_ctx(event->ctx);
4487
4488         exclusive_event_destroy(event);
4489         module_put(event->pmu->module);
4490
4491         call_rcu(&event->rcu_head, free_event_rcu);
4492 }
4493
4494 /*
4495  * Used to free events which have a known refcount of 1, such as in error paths
4496  * where the event isn't exposed yet and inherited events.
4497  */
4498 static void free_event(struct perf_event *event)
4499 {
4500         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4501                                 "unexpected event refcount: %ld; ptr=%p\n",
4502                                 atomic_long_read(&event->refcount), event)) {
4503                 /* leak to avoid use-after-free */
4504                 return;
4505         }
4506
4507         _free_event(event);
4508 }
4509
4510 /*
4511  * Remove user event from the owner task.
4512  */
4513 static void perf_remove_from_owner(struct perf_event *event)
4514 {
4515         struct task_struct *owner;
4516
4517         rcu_read_lock();
4518         /*
4519          * Matches the smp_store_release() in perf_event_exit_task(). If we
4520          * observe !owner it means the list deletion is complete and we can
4521          * indeed free this event, otherwise we need to serialize on
4522          * owner->perf_event_mutex.
4523          */
4524         owner = READ_ONCE(event->owner);
4525         if (owner) {
4526                 /*
4527                  * Since delayed_put_task_struct() also drops the last
4528                  * task reference we can safely take a new reference
4529                  * while holding the rcu_read_lock().
4530                  */
4531                 get_task_struct(owner);
4532         }
4533         rcu_read_unlock();
4534
4535         if (owner) {
4536                 /*
4537                  * If we're here through perf_event_exit_task() we're already
4538                  * holding ctx->mutex which would be an inversion wrt. the
4539                  * normal lock order.
4540                  *
4541                  * However we can safely take this lock because its the child
4542                  * ctx->mutex.
4543                  */
4544                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4545
4546                 /*
4547                  * We have to re-check the event->owner field, if it is cleared
4548                  * we raced with perf_event_exit_task(), acquiring the mutex
4549                  * ensured they're done, and we can proceed with freeing the
4550                  * event.
4551                  */
4552                 if (event->owner) {
4553                         list_del_init(&event->owner_entry);
4554                         smp_store_release(&event->owner, NULL);
4555                 }
4556                 mutex_unlock(&owner->perf_event_mutex);
4557                 put_task_struct(owner);
4558         }
4559 }
4560
4561 static void put_event(struct perf_event *event)
4562 {
4563         if (!atomic_long_dec_and_test(&event->refcount))
4564                 return;
4565
4566         _free_event(event);
4567 }
4568
4569 /*
4570  * Kill an event dead; while event:refcount will preserve the event
4571  * object, it will not preserve its functionality. Once the last 'user'
4572  * gives up the object, we'll destroy the thing.
4573  */
4574 int perf_event_release_kernel(struct perf_event *event)
4575 {
4576         struct perf_event_context *ctx = event->ctx;
4577         struct perf_event *child, *tmp;
4578         LIST_HEAD(free_list);
4579
4580         /*
4581          * If we got here through err_file: fput(event_file); we will not have
4582          * attached to a context yet.
4583          */
4584         if (!ctx) {
4585                 WARN_ON_ONCE(event->attach_state &
4586                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4587                 goto no_ctx;
4588         }
4589
4590         if (!is_kernel_event(event))
4591                 perf_remove_from_owner(event);
4592
4593         ctx = perf_event_ctx_lock(event);
4594         WARN_ON_ONCE(ctx->parent_ctx);
4595         perf_remove_from_context(event, DETACH_GROUP);
4596
4597         raw_spin_lock_irq(&ctx->lock);
4598         /*
4599          * Mark this event as STATE_DEAD, there is no external reference to it
4600          * anymore.
4601          *
4602          * Anybody acquiring event->child_mutex after the below loop _must_
4603          * also see this, most importantly inherit_event() which will avoid
4604          * placing more children on the list.
4605          *
4606          * Thus this guarantees that we will in fact observe and kill _ALL_
4607          * child events.
4608          */
4609         event->state = PERF_EVENT_STATE_DEAD;
4610         raw_spin_unlock_irq(&ctx->lock);
4611
4612         perf_event_ctx_unlock(event, ctx);
4613
4614 again:
4615         mutex_lock(&event->child_mutex);
4616         list_for_each_entry(child, &event->child_list, child_list) {
4617
4618                 /*
4619                  * Cannot change, child events are not migrated, see the
4620                  * comment with perf_event_ctx_lock_nested().
4621                  */
4622                 ctx = READ_ONCE(child->ctx);
4623                 /*
4624                  * Since child_mutex nests inside ctx::mutex, we must jump
4625                  * through hoops. We start by grabbing a reference on the ctx.
4626                  *
4627                  * Since the event cannot get freed while we hold the
4628                  * child_mutex, the context must also exist and have a !0
4629                  * reference count.
4630                  */
4631                 get_ctx(ctx);
4632
4633                 /*
4634                  * Now that we have a ctx ref, we can drop child_mutex, and
4635                  * acquire ctx::mutex without fear of it going away. Then we
4636                  * can re-acquire child_mutex.
4637                  */
4638                 mutex_unlock(&event->child_mutex);
4639                 mutex_lock(&ctx->mutex);
4640                 mutex_lock(&event->child_mutex);
4641
4642                 /*
4643                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4644                  * state, if child is still the first entry, it didn't get freed
4645                  * and we can continue doing so.
4646                  */
4647                 tmp = list_first_entry_or_null(&event->child_list,
4648                                                struct perf_event, child_list);
4649                 if (tmp == child) {
4650                         perf_remove_from_context(child, DETACH_GROUP);
4651                         list_move(&child->child_list, &free_list);
4652                         /*
4653                          * This matches the refcount bump in inherit_event();
4654                          * this can't be the last reference.
4655                          */
4656                         put_event(event);
4657                 }
4658
4659                 mutex_unlock(&event->child_mutex);
4660                 mutex_unlock(&ctx->mutex);
4661                 put_ctx(ctx);
4662                 goto again;
4663         }
4664         mutex_unlock(&event->child_mutex);
4665
4666         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4667                 void *var = &child->ctx->refcount;
4668
4669                 list_del(&child->child_list);
4670                 free_event(child);
4671
4672                 /*
4673                  * Wake any perf_event_free_task() waiting for this event to be
4674                  * freed.
4675                  */
4676                 smp_mb(); /* pairs with wait_var_event() */
4677                 wake_up_var(var);
4678         }
4679
4680 no_ctx:
4681         put_event(event); /* Must be the 'last' reference */
4682         return 0;
4683 }
4684 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4685
4686 /*
4687  * Called when the last reference to the file is gone.
4688  */
4689 static int perf_release(struct inode *inode, struct file *file)
4690 {
4691         perf_event_release_kernel(file->private_data);
4692         return 0;
4693 }
4694
4695 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4696 {
4697         struct perf_event *child;
4698         u64 total = 0;
4699
4700         *enabled = 0;
4701         *running = 0;
4702
4703         mutex_lock(&event->child_mutex);
4704
4705         (void)perf_event_read(event, false);
4706         total += perf_event_count(event);
4707
4708         *enabled += event->total_time_enabled +
4709                         atomic64_read(&event->child_total_time_enabled);
4710         *running += event->total_time_running +
4711                         atomic64_read(&event->child_total_time_running);
4712
4713         list_for_each_entry(child, &event->child_list, child_list) {
4714                 (void)perf_event_read(child, false);
4715                 total += perf_event_count(child);
4716                 *enabled += child->total_time_enabled;
4717                 *running += child->total_time_running;
4718         }
4719         mutex_unlock(&event->child_mutex);
4720
4721         return total;
4722 }
4723
4724 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4725 {
4726         struct perf_event_context *ctx;
4727         u64 count;
4728
4729         ctx = perf_event_ctx_lock(event);
4730         count = __perf_event_read_value(event, enabled, running);
4731         perf_event_ctx_unlock(event, ctx);
4732
4733         return count;
4734 }
4735 EXPORT_SYMBOL_GPL(perf_event_read_value);
4736
4737 static int __perf_read_group_add(struct perf_event *leader,
4738                                         u64 read_format, u64 *values)
4739 {
4740         struct perf_event_context *ctx = leader->ctx;
4741         struct perf_event *sub;
4742         unsigned long flags;
4743         int n = 1; /* skip @nr */
4744         int ret;
4745
4746         ret = perf_event_read(leader, true);
4747         if (ret)
4748                 return ret;
4749
4750         raw_spin_lock_irqsave(&ctx->lock, flags);
4751
4752         /*
4753          * Since we co-schedule groups, {enabled,running} times of siblings
4754          * will be identical to those of the leader, so we only publish one
4755          * set.
4756          */
4757         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4758                 values[n++] += leader->total_time_enabled +
4759                         atomic64_read(&leader->child_total_time_enabled);
4760         }
4761
4762         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4763                 values[n++] += leader->total_time_running +
4764                         atomic64_read(&leader->child_total_time_running);
4765         }
4766
4767         /*
4768          * Write {count,id} tuples for every sibling.
4769          */
4770         values[n++] += perf_event_count(leader);
4771         if (read_format & PERF_FORMAT_ID)
4772                 values[n++] = primary_event_id(leader);
4773
4774         for_each_sibling_event(sub, leader) {
4775                 values[n++] += perf_event_count(sub);
4776                 if (read_format & PERF_FORMAT_ID)
4777                         values[n++] = primary_event_id(sub);
4778         }
4779
4780         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4781         return 0;
4782 }
4783
4784 static int perf_read_group(struct perf_event *event,
4785                                    u64 read_format, char __user *buf)
4786 {
4787         struct perf_event *leader = event->group_leader, *child;
4788         struct perf_event_context *ctx = leader->ctx;
4789         int ret;
4790         u64 *values;
4791
4792         lockdep_assert_held(&ctx->mutex);
4793
4794         values = kzalloc(event->read_size, GFP_KERNEL);
4795         if (!values)
4796                 return -ENOMEM;
4797
4798         values[0] = 1 + leader->nr_siblings;
4799
4800         /*
4801          * By locking the child_mutex of the leader we effectively
4802          * lock the child list of all siblings.. XXX explain how.
4803          */
4804         mutex_lock(&leader->child_mutex);
4805
4806         ret = __perf_read_group_add(leader, read_format, values);
4807         if (ret)
4808                 goto unlock;
4809
4810         list_for_each_entry(child, &leader->child_list, child_list) {
4811                 ret = __perf_read_group_add(child, read_format, values);
4812                 if (ret)
4813                         goto unlock;
4814         }
4815
4816         mutex_unlock(&leader->child_mutex);
4817
4818         ret = event->read_size;
4819         if (copy_to_user(buf, values, event->read_size))
4820                 ret = -EFAULT;
4821         goto out;
4822
4823 unlock:
4824         mutex_unlock(&leader->child_mutex);
4825 out:
4826         kfree(values);
4827         return ret;
4828 }
4829
4830 static int perf_read_one(struct perf_event *event,
4831                                  u64 read_format, char __user *buf)
4832 {
4833         u64 enabled, running;
4834         u64 values[4];
4835         int n = 0;
4836
4837         values[n++] = __perf_event_read_value(event, &enabled, &running);
4838         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4839                 values[n++] = enabled;
4840         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4841                 values[n++] = running;
4842         if (read_format & PERF_FORMAT_ID)
4843                 values[n++] = primary_event_id(event);
4844
4845         if (copy_to_user(buf, values, n * sizeof(u64)))
4846                 return -EFAULT;
4847
4848         return n * sizeof(u64);
4849 }
4850
4851 static bool is_event_hup(struct perf_event *event)
4852 {
4853         bool no_children;
4854
4855         if (event->state > PERF_EVENT_STATE_EXIT)
4856                 return false;
4857
4858         mutex_lock(&event->child_mutex);
4859         no_children = list_empty(&event->child_list);
4860         mutex_unlock(&event->child_mutex);
4861         return no_children;
4862 }
4863
4864 /*
4865  * Read the performance event - simple non blocking version for now
4866  */
4867 static ssize_t
4868 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4869 {
4870         u64 read_format = event->attr.read_format;
4871         int ret;
4872
4873         /*
4874          * Return end-of-file for a read on an event that is in
4875          * error state (i.e. because it was pinned but it couldn't be
4876          * scheduled on to the CPU at some point).
4877          */
4878         if (event->state == PERF_EVENT_STATE_ERROR)
4879                 return 0;
4880
4881         if (count < event->read_size)
4882                 return -ENOSPC;
4883
4884         WARN_ON_ONCE(event->ctx->parent_ctx);
4885         if (read_format & PERF_FORMAT_GROUP)
4886                 ret = perf_read_group(event, read_format, buf);
4887         else
4888                 ret = perf_read_one(event, read_format, buf);
4889
4890         return ret;
4891 }
4892
4893 static ssize_t
4894 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4895 {
4896         struct perf_event *event = file->private_data;
4897         struct perf_event_context *ctx;
4898         int ret;
4899
4900         ctx = perf_event_ctx_lock(event);
4901         ret = __perf_read(event, buf, count);
4902         perf_event_ctx_unlock(event, ctx);
4903
4904         return ret;
4905 }
4906
4907 static __poll_t perf_poll(struct file *file, poll_table *wait)
4908 {
4909         struct perf_event *event = file->private_data;
4910         struct ring_buffer *rb;
4911         __poll_t events = EPOLLHUP;
4912
4913         poll_wait(file, &event->waitq, wait);
4914
4915         if (is_event_hup(event))
4916                 return events;
4917
4918         /*
4919          * Pin the event->rb by taking event->mmap_mutex; otherwise
4920          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4921          */
4922         mutex_lock(&event->mmap_mutex);
4923         rb = event->rb;
4924         if (rb)
4925                 events = atomic_xchg(&rb->poll, 0);
4926         mutex_unlock(&event->mmap_mutex);
4927         return events;
4928 }
4929
4930 static void _perf_event_reset(struct perf_event *event)
4931 {
4932         (void)perf_event_read(event, false);
4933         local64_set(&event->count, 0);
4934         perf_event_update_userpage(event);
4935 }
4936
4937 /*
4938  * Holding the top-level event's child_mutex means that any
4939  * descendant process that has inherited this event will block
4940  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4941  * task existence requirements of perf_event_enable/disable.
4942  */
4943 static void perf_event_for_each_child(struct perf_event *event,
4944                                         void (*func)(struct perf_event *))
4945 {
4946         struct perf_event *child;
4947
4948         WARN_ON_ONCE(event->ctx->parent_ctx);
4949
4950         mutex_lock(&event->child_mutex);
4951         func(event);
4952         list_for_each_entry(child, &event->child_list, child_list)
4953                 func(child);
4954         mutex_unlock(&event->child_mutex);
4955 }
4956
4957 static void perf_event_for_each(struct perf_event *event,
4958                                   void (*func)(struct perf_event *))
4959 {
4960         struct perf_event_context *ctx = event->ctx;
4961         struct perf_event *sibling;
4962
4963         lockdep_assert_held(&ctx->mutex);
4964
4965         event = event->group_leader;
4966
4967         perf_event_for_each_child(event, func);
4968         for_each_sibling_event(sibling, event)
4969                 perf_event_for_each_child(sibling, func);
4970 }
4971
4972 static void __perf_event_period(struct perf_event *event,
4973                                 struct perf_cpu_context *cpuctx,
4974                                 struct perf_event_context *ctx,
4975                                 void *info)
4976 {
4977         u64 value = *((u64 *)info);
4978         bool active;
4979
4980         if (event->attr.freq) {
4981                 event->attr.sample_freq = value;
4982         } else {
4983                 event->attr.sample_period = value;
4984                 event->hw.sample_period = value;
4985         }
4986
4987         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4988         if (active) {
4989                 perf_pmu_disable(ctx->pmu);
4990                 /*
4991                  * We could be throttled; unthrottle now to avoid the tick
4992                  * trying to unthrottle while we already re-started the event.
4993                  */
4994                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4995                         event->hw.interrupts = 0;
4996                         perf_log_throttle(event, 1);
4997                 }
4998                 event->pmu->stop(event, PERF_EF_UPDATE);
4999         }
5000
5001         local64_set(&event->hw.period_left, 0);
5002
5003         if (active) {
5004                 event->pmu->start(event, PERF_EF_RELOAD);
5005                 perf_pmu_enable(ctx->pmu);
5006         }
5007 }
5008
5009 static int perf_event_check_period(struct perf_event *event, u64 value)
5010 {
5011         return event->pmu->check_period(event, value);
5012 }
5013
5014 static int perf_event_period(struct perf_event *event, u64 __user *arg)
5015 {
5016         u64 value;
5017
5018         if (!is_sampling_event(event))
5019                 return -EINVAL;
5020
5021         if (copy_from_user(&value, arg, sizeof(value)))
5022                 return -EFAULT;
5023
5024         if (!value)
5025                 return -EINVAL;
5026
5027         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5028                 return -EINVAL;
5029
5030         if (perf_event_check_period(event, value))
5031                 return -EINVAL;
5032
5033         if (!event->attr.freq && (value & (1ULL << 63)))
5034                 return -EINVAL;
5035
5036         event_function_call(event, __perf_event_period, &value);
5037
5038         return 0;
5039 }
5040
5041 static const struct file_operations perf_fops;
5042
5043 static inline int perf_fget_light(int fd, struct fd *p)
5044 {
5045         struct fd f = fdget(fd);
5046         if (!f.file)
5047                 return -EBADF;
5048
5049         if (f.file->f_op != &perf_fops) {
5050                 fdput(f);
5051                 return -EBADF;
5052         }
5053         *p = f;
5054         return 0;
5055 }
5056
5057 static int perf_event_set_output(struct perf_event *event,
5058                                  struct perf_event *output_event);
5059 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5060 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5061 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5062                           struct perf_event_attr *attr);
5063
5064 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5065 {
5066         void (*func)(struct perf_event *);
5067         u32 flags = arg;
5068
5069         switch (cmd) {
5070         case PERF_EVENT_IOC_ENABLE:
5071                 func = _perf_event_enable;
5072                 break;
5073         case PERF_EVENT_IOC_DISABLE:
5074                 func = _perf_event_disable;
5075                 break;
5076         case PERF_EVENT_IOC_RESET:
5077                 func = _perf_event_reset;
5078                 break;
5079
5080         case PERF_EVENT_IOC_REFRESH:
5081                 return _perf_event_refresh(event, arg);
5082
5083         case PERF_EVENT_IOC_PERIOD:
5084                 return perf_event_period(event, (u64 __user *)arg);
5085
5086         case PERF_EVENT_IOC_ID:
5087         {
5088                 u64 id = primary_event_id(event);
5089
5090                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5091                         return -EFAULT;
5092                 return 0;
5093         }
5094
5095         case PERF_EVENT_IOC_SET_OUTPUT:
5096         {
5097                 int ret;
5098                 if (arg != -1) {
5099                         struct perf_event *output_event;
5100                         struct fd output;
5101                         ret = perf_fget_light(arg, &output);
5102                         if (ret)
5103                                 return ret;
5104                         output_event = output.file->private_data;
5105                         ret = perf_event_set_output(event, output_event);
5106                         fdput(output);
5107                 } else {
5108                         ret = perf_event_set_output(event, NULL);
5109                 }
5110                 return ret;
5111         }
5112
5113         case PERF_EVENT_IOC_SET_FILTER:
5114                 return perf_event_set_filter(event, (void __user *)arg);
5115
5116         case PERF_EVENT_IOC_SET_BPF:
5117                 return perf_event_set_bpf_prog(event, arg);
5118
5119         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5120                 struct ring_buffer *rb;
5121
5122                 rcu_read_lock();
5123                 rb = rcu_dereference(event->rb);
5124                 if (!rb || !rb->nr_pages) {
5125                         rcu_read_unlock();
5126                         return -EINVAL;
5127                 }
5128                 rb_toggle_paused(rb, !!arg);
5129                 rcu_read_unlock();
5130                 return 0;
5131         }
5132
5133         case PERF_EVENT_IOC_QUERY_BPF:
5134                 return perf_event_query_prog_array(event, (void __user *)arg);
5135
5136         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5137                 struct perf_event_attr new_attr;
5138                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5139                                          &new_attr);
5140
5141                 if (err)
5142                         return err;
5143
5144                 return perf_event_modify_attr(event,  &new_attr);
5145         }
5146         default:
5147                 return -ENOTTY;
5148         }
5149
5150         if (flags & PERF_IOC_FLAG_GROUP)
5151                 perf_event_for_each(event, func);
5152         else
5153                 perf_event_for_each_child(event, func);
5154
5155         return 0;
5156 }
5157
5158 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5159 {
5160         struct perf_event *event = file->private_data;
5161         struct perf_event_context *ctx;
5162         long ret;
5163
5164         ctx = perf_event_ctx_lock(event);
5165         ret = _perf_ioctl(event, cmd, arg);
5166         perf_event_ctx_unlock(event, ctx);
5167
5168         return ret;
5169 }
5170
5171 #ifdef CONFIG_COMPAT
5172 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5173                                 unsigned long arg)
5174 {
5175         switch (_IOC_NR(cmd)) {
5176         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5177         case _IOC_NR(PERF_EVENT_IOC_ID):
5178         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5179         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5180                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5181                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5182                         cmd &= ~IOCSIZE_MASK;
5183                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5184                 }
5185                 break;
5186         }
5187         return perf_ioctl(file, cmd, arg);
5188 }
5189 #else
5190 # define perf_compat_ioctl NULL
5191 #endif
5192
5193 int perf_event_task_enable(void)
5194 {
5195         struct perf_event_context *ctx;
5196         struct perf_event *event;
5197
5198         mutex_lock(&current->perf_event_mutex);
5199         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5200                 ctx = perf_event_ctx_lock(event);
5201                 perf_event_for_each_child(event, _perf_event_enable);
5202                 perf_event_ctx_unlock(event, ctx);
5203         }
5204         mutex_unlock(&current->perf_event_mutex);
5205
5206         return 0;
5207 }
5208
5209 int perf_event_task_disable(void)
5210 {
5211         struct perf_event_context *ctx;
5212         struct perf_event *event;
5213
5214         mutex_lock(&current->perf_event_mutex);
5215         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5216                 ctx = perf_event_ctx_lock(event);
5217                 perf_event_for_each_child(event, _perf_event_disable);
5218                 perf_event_ctx_unlock(event, ctx);
5219         }
5220         mutex_unlock(&current->perf_event_mutex);
5221
5222         return 0;
5223 }
5224
5225 static int perf_event_index(struct perf_event *event)
5226 {
5227         if (event->hw.state & PERF_HES_STOPPED)
5228                 return 0;
5229
5230         if (event->state != PERF_EVENT_STATE_ACTIVE)
5231                 return 0;
5232
5233         return event->pmu->event_idx(event);
5234 }
5235
5236 static void calc_timer_values(struct perf_event *event,
5237                                 u64 *now,
5238                                 u64 *enabled,
5239                                 u64 *running)
5240 {
5241         u64 ctx_time;
5242
5243         *now = perf_clock();
5244         ctx_time = event->shadow_ctx_time + *now;
5245         __perf_update_times(event, ctx_time, enabled, running);
5246 }
5247
5248 static void perf_event_init_userpage(struct perf_event *event)
5249 {
5250         struct perf_event_mmap_page *userpg;
5251         struct ring_buffer *rb;
5252
5253         rcu_read_lock();
5254         rb = rcu_dereference(event->rb);
5255         if (!rb)
5256                 goto unlock;
5257
5258         userpg = rb->user_page;
5259
5260         /* Allow new userspace to detect that bit 0 is deprecated */
5261         userpg->cap_bit0_is_deprecated = 1;
5262         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5263         userpg->data_offset = PAGE_SIZE;
5264         userpg->data_size = perf_data_size(rb);
5265
5266 unlock:
5267         rcu_read_unlock();
5268 }
5269
5270 void __weak arch_perf_update_userpage(
5271         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5272 {
5273 }
5274
5275 /*
5276  * Callers need to ensure there can be no nesting of this function, otherwise
5277  * the seqlock logic goes bad. We can not serialize this because the arch
5278  * code calls this from NMI context.
5279  */
5280 void perf_event_update_userpage(struct perf_event *event)
5281 {
5282         struct perf_event_mmap_page *userpg;
5283         struct ring_buffer *rb;
5284         u64 enabled, running, now;
5285
5286         rcu_read_lock();
5287         rb = rcu_dereference(event->rb);
5288         if (!rb)
5289                 goto unlock;
5290
5291         /*
5292          * compute total_time_enabled, total_time_running
5293          * based on snapshot values taken when the event
5294          * was last scheduled in.
5295          *
5296          * we cannot simply called update_context_time()
5297          * because of locking issue as we can be called in
5298          * NMI context
5299          */
5300         calc_timer_values(event, &now, &enabled, &running);
5301
5302         userpg = rb->user_page;
5303         /*
5304          * Disable preemption to guarantee consistent time stamps are stored to
5305          * the user page.
5306          */
5307         preempt_disable();
5308         ++userpg->lock;
5309         barrier();
5310         userpg->index = perf_event_index(event);
5311         userpg->offset = perf_event_count(event);
5312         if (userpg->index)
5313                 userpg->offset -= local64_read(&event->hw.prev_count);
5314
5315         userpg->time_enabled = enabled +
5316                         atomic64_read(&event->child_total_time_enabled);
5317
5318         userpg->time_running = running +
5319                         atomic64_read(&event->child_total_time_running);
5320
5321         arch_perf_update_userpage(event, userpg, now);
5322
5323         barrier();
5324         ++userpg->lock;
5325         preempt_enable();
5326 unlock:
5327         rcu_read_unlock();
5328 }
5329 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5330
5331 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5332 {
5333         struct perf_event *event = vmf->vma->vm_file->private_data;
5334         struct ring_buffer *rb;
5335         vm_fault_t ret = VM_FAULT_SIGBUS;
5336
5337         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5338                 if (vmf->pgoff == 0)
5339                         ret = 0;
5340                 return ret;
5341         }
5342
5343         rcu_read_lock();
5344         rb = rcu_dereference(event->rb);
5345         if (!rb)
5346                 goto unlock;
5347
5348         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5349                 goto unlock;
5350
5351         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5352         if (!vmf->page)
5353                 goto unlock;
5354
5355         get_page(vmf->page);
5356         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5357         vmf->page->index   = vmf->pgoff;
5358
5359         ret = 0;
5360 unlock:
5361         rcu_read_unlock();
5362
5363         return ret;
5364 }
5365
5366 static void ring_buffer_attach(struct perf_event *event,
5367                                struct ring_buffer *rb)
5368 {
5369         struct ring_buffer *old_rb = NULL;
5370         unsigned long flags;
5371
5372         if (event->rb) {
5373                 /*
5374                  * Should be impossible, we set this when removing
5375                  * event->rb_entry and wait/clear when adding event->rb_entry.
5376                  */
5377                 WARN_ON_ONCE(event->rcu_pending);
5378
5379                 old_rb = event->rb;
5380                 spin_lock_irqsave(&old_rb->event_lock, flags);
5381                 list_del_rcu(&event->rb_entry);
5382                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5383
5384                 event->rcu_batches = get_state_synchronize_rcu();
5385                 event->rcu_pending = 1;
5386         }
5387
5388         if (rb) {
5389                 if (event->rcu_pending) {
5390                         cond_synchronize_rcu(event->rcu_batches);
5391                         event->rcu_pending = 0;
5392                 }
5393
5394                 spin_lock_irqsave(&rb->event_lock, flags);
5395                 list_add_rcu(&event->rb_entry, &rb->event_list);
5396                 spin_unlock_irqrestore(&rb->event_lock, flags);
5397         }
5398
5399         /*
5400          * Avoid racing with perf_mmap_close(AUX): stop the event
5401          * before swizzling the event::rb pointer; if it's getting
5402          * unmapped, its aux_mmap_count will be 0 and it won't
5403          * restart. See the comment in __perf_pmu_output_stop().
5404          *
5405          * Data will inevitably be lost when set_output is done in
5406          * mid-air, but then again, whoever does it like this is
5407          * not in for the data anyway.
5408          */
5409         if (has_aux(event))
5410                 perf_event_stop(event, 0);
5411
5412         rcu_assign_pointer(event->rb, rb);
5413
5414         if (old_rb) {
5415                 ring_buffer_put(old_rb);
5416                 /*
5417                  * Since we detached before setting the new rb, so that we
5418                  * could attach the new rb, we could have missed a wakeup.
5419                  * Provide it now.
5420                  */
5421                 wake_up_all(&event->waitq);
5422         }
5423 }
5424
5425 static void ring_buffer_wakeup(struct perf_event *event)
5426 {
5427         struct ring_buffer *rb;
5428
5429         rcu_read_lock();
5430         rb = rcu_dereference(event->rb);
5431         if (rb) {
5432                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5433                         wake_up_all(&event->waitq);
5434         }
5435         rcu_read_unlock();
5436 }
5437
5438 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5439 {
5440         struct ring_buffer *rb;
5441
5442         rcu_read_lock();
5443         rb = rcu_dereference(event->rb);
5444         if (rb) {
5445                 if (!refcount_inc_not_zero(&rb->refcount))
5446                         rb = NULL;
5447         }
5448         rcu_read_unlock();
5449
5450         return rb;
5451 }
5452
5453 void ring_buffer_put(struct ring_buffer *rb)
5454 {
5455         if (!refcount_dec_and_test(&rb->refcount))
5456                 return;
5457
5458         WARN_ON_ONCE(!list_empty(&rb->event_list));
5459
5460         call_rcu(&rb->rcu_head, rb_free_rcu);
5461 }
5462
5463 static void perf_mmap_open(struct vm_area_struct *vma)
5464 {
5465         struct perf_event *event = vma->vm_file->private_data;
5466
5467         atomic_inc(&event->mmap_count);
5468         atomic_inc(&event->rb->mmap_count);
5469
5470         if (vma->vm_pgoff)
5471                 atomic_inc(&event->rb->aux_mmap_count);
5472
5473         if (event->pmu->event_mapped)
5474                 event->pmu->event_mapped(event, vma->vm_mm);
5475 }
5476
5477 static void perf_pmu_output_stop(struct perf_event *event);
5478
5479 /*
5480  * A buffer can be mmap()ed multiple times; either directly through the same
5481  * event, or through other events by use of perf_event_set_output().
5482  *
5483  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5484  * the buffer here, where we still have a VM context. This means we need
5485  * to detach all events redirecting to us.
5486  */
5487 static void perf_mmap_close(struct vm_area_struct *vma)
5488 {
5489         struct perf_event *event = vma->vm_file->private_data;
5490
5491         struct ring_buffer *rb = ring_buffer_get(event);
5492         struct user_struct *mmap_user = rb->mmap_user;
5493         int mmap_locked = rb->mmap_locked;
5494         unsigned long size = perf_data_size(rb);
5495
5496         if (event->pmu->event_unmapped)
5497                 event->pmu->event_unmapped(event, vma->vm_mm);
5498
5499         /*
5500          * rb->aux_mmap_count will always drop before rb->mmap_count and
5501          * event->mmap_count, so it is ok to use event->mmap_mutex to
5502          * serialize with perf_mmap here.
5503          */
5504         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5505             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5506                 /*
5507                  * Stop all AUX events that are writing to this buffer,
5508                  * so that we can free its AUX pages and corresponding PMU
5509                  * data. Note that after rb::aux_mmap_count dropped to zero,
5510                  * they won't start any more (see perf_aux_output_begin()).
5511                  */
5512                 perf_pmu_output_stop(event);
5513
5514                 /* now it's safe to free the pages */
5515                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5516                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5517
5518                 /* this has to be the last one */
5519                 rb_free_aux(rb);
5520                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5521
5522                 mutex_unlock(&event->mmap_mutex);
5523         }
5524
5525         atomic_dec(&rb->mmap_count);
5526
5527         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5528                 goto out_put;
5529
5530         ring_buffer_attach(event, NULL);
5531         mutex_unlock(&event->mmap_mutex);
5532
5533         /* If there's still other mmap()s of this buffer, we're done. */
5534         if (atomic_read(&rb->mmap_count))
5535                 goto out_put;
5536
5537         /*
5538          * No other mmap()s, detach from all other events that might redirect
5539          * into the now unreachable buffer. Somewhat complicated by the
5540          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5541          */
5542 again:
5543         rcu_read_lock();
5544         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5545                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5546                         /*
5547                          * This event is en-route to free_event() which will
5548                          * detach it and remove it from the list.
5549                          */
5550                         continue;
5551                 }
5552                 rcu_read_unlock();
5553
5554                 mutex_lock(&event->mmap_mutex);
5555                 /*
5556                  * Check we didn't race with perf_event_set_output() which can
5557                  * swizzle the rb from under us while we were waiting to
5558                  * acquire mmap_mutex.
5559                  *
5560                  * If we find a different rb; ignore this event, a next
5561                  * iteration will no longer find it on the list. We have to
5562                  * still restart the iteration to make sure we're not now
5563                  * iterating the wrong list.
5564                  */
5565                 if (event->rb == rb)
5566                         ring_buffer_attach(event, NULL);
5567
5568                 mutex_unlock(&event->mmap_mutex);
5569                 put_event(event);
5570
5571                 /*
5572                  * Restart the iteration; either we're on the wrong list or
5573                  * destroyed its integrity by doing a deletion.
5574                  */
5575                 goto again;
5576         }
5577         rcu_read_unlock();
5578
5579         /*
5580          * It could be there's still a few 0-ref events on the list; they'll
5581          * get cleaned up by free_event() -- they'll also still have their
5582          * ref on the rb and will free it whenever they are done with it.
5583          *
5584          * Aside from that, this buffer is 'fully' detached and unmapped,
5585          * undo the VM accounting.
5586          */
5587
5588         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5589         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5590         free_uid(mmap_user);
5591
5592 out_put:
5593         ring_buffer_put(rb); /* could be last */
5594 }
5595
5596 static const struct vm_operations_struct perf_mmap_vmops = {
5597         .open           = perf_mmap_open,
5598         .close          = perf_mmap_close, /* non mergeable */
5599         .fault          = perf_mmap_fault,
5600         .page_mkwrite   = perf_mmap_fault,
5601 };
5602
5603 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5604 {
5605         struct perf_event *event = file->private_data;
5606         unsigned long user_locked, user_lock_limit;
5607         struct user_struct *user = current_user();
5608         unsigned long locked, lock_limit;
5609         struct ring_buffer *rb = NULL;
5610         unsigned long vma_size;
5611         unsigned long nr_pages;
5612         long user_extra = 0, extra = 0;
5613         int ret = 0, flags = 0;
5614
5615         /*
5616          * Don't allow mmap() of inherited per-task counters. This would
5617          * create a performance issue due to all children writing to the
5618          * same rb.
5619          */
5620         if (event->cpu == -1 && event->attr.inherit)
5621                 return -EINVAL;
5622
5623         if (!(vma->vm_flags & VM_SHARED))
5624                 return -EINVAL;
5625
5626         vma_size = vma->vm_end - vma->vm_start;
5627
5628         if (vma->vm_pgoff == 0) {
5629                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5630         } else {
5631                 /*
5632                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5633                  * mapped, all subsequent mappings should have the same size
5634                  * and offset. Must be above the normal perf buffer.
5635                  */
5636                 u64 aux_offset, aux_size;
5637
5638                 if (!event->rb)
5639                         return -EINVAL;
5640
5641                 nr_pages = vma_size / PAGE_SIZE;
5642
5643                 mutex_lock(&event->mmap_mutex);
5644                 ret = -EINVAL;
5645
5646                 rb = event->rb;
5647                 if (!rb)
5648                         goto aux_unlock;
5649
5650                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5651                 aux_size = READ_ONCE(rb->user_page->aux_size);
5652
5653                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5654                         goto aux_unlock;
5655
5656                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5657                         goto aux_unlock;
5658
5659                 /* already mapped with a different offset */
5660                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5661                         goto aux_unlock;
5662
5663                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5664                         goto aux_unlock;
5665
5666                 /* already mapped with a different size */
5667                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5668                         goto aux_unlock;
5669
5670                 if (!is_power_of_2(nr_pages))
5671                         goto aux_unlock;
5672
5673                 if (!atomic_inc_not_zero(&rb->mmap_count))
5674                         goto aux_unlock;
5675
5676                 if (rb_has_aux(rb)) {
5677                         atomic_inc(&rb->aux_mmap_count);
5678                         ret = 0;
5679                         goto unlock;
5680                 }
5681
5682                 atomic_set(&rb->aux_mmap_count, 1);
5683                 user_extra = nr_pages;
5684
5685                 goto accounting;
5686         }
5687
5688         /*
5689          * If we have rb pages ensure they're a power-of-two number, so we
5690          * can do bitmasks instead of modulo.
5691          */
5692         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5693                 return -EINVAL;
5694
5695         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5696                 return -EINVAL;
5697
5698         WARN_ON_ONCE(event->ctx->parent_ctx);
5699 again:
5700         mutex_lock(&event->mmap_mutex);
5701         if (event->rb) {
5702                 if (event->rb->nr_pages != nr_pages) {
5703                         ret = -EINVAL;
5704                         goto unlock;
5705                 }
5706
5707                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5708                         /*
5709                          * Raced against perf_mmap_close() through
5710                          * perf_event_set_output(). Try again, hope for better
5711                          * luck.
5712                          */
5713                         mutex_unlock(&event->mmap_mutex);
5714                         goto again;
5715                 }
5716
5717                 goto unlock;
5718         }
5719
5720         user_extra = nr_pages + 1;
5721
5722 accounting:
5723         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5724
5725         /*
5726          * Increase the limit linearly with more CPUs:
5727          */
5728         user_lock_limit *= num_online_cpus();
5729
5730         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5731
5732         if (user_locked > user_lock_limit)
5733                 extra = user_locked - user_lock_limit;
5734
5735         lock_limit = rlimit(RLIMIT_MEMLOCK);
5736         lock_limit >>= PAGE_SHIFT;
5737         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5738
5739         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5740                 !capable(CAP_IPC_LOCK)) {
5741                 ret = -EPERM;
5742                 goto unlock;
5743         }
5744
5745         WARN_ON(!rb && event->rb);
5746
5747         if (vma->vm_flags & VM_WRITE)
5748                 flags |= RING_BUFFER_WRITABLE;
5749
5750         if (!rb) {
5751                 rb = rb_alloc(nr_pages,
5752                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5753                               event->cpu, flags);
5754
5755                 if (!rb) {
5756                         ret = -ENOMEM;
5757                         goto unlock;
5758                 }
5759
5760                 atomic_set(&rb->mmap_count, 1);
5761                 rb->mmap_user = get_current_user();
5762                 rb->mmap_locked = extra;
5763
5764                 ring_buffer_attach(event, rb);
5765
5766                 perf_event_init_userpage(event);
5767                 perf_event_update_userpage(event);
5768         } else {
5769                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5770                                    event->attr.aux_watermark, flags);
5771                 if (!ret)
5772                         rb->aux_mmap_locked = extra;
5773         }
5774
5775 unlock:
5776         if (!ret) {
5777                 atomic_long_add(user_extra, &user->locked_vm);
5778                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
5779
5780                 atomic_inc(&event->mmap_count);
5781         } else if (rb) {
5782                 atomic_dec(&rb->mmap_count);
5783         }
5784 aux_unlock:
5785         mutex_unlock(&event->mmap_mutex);
5786
5787         /*
5788          * Since pinned accounting is per vm we cannot allow fork() to copy our
5789          * vma.
5790          */
5791         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5792         vma->vm_ops = &perf_mmap_vmops;
5793
5794         if (event->pmu->event_mapped)
5795                 event->pmu->event_mapped(event, vma->vm_mm);
5796
5797         return ret;
5798 }
5799
5800 static int perf_fasync(int fd, struct file *filp, int on)
5801 {
5802         struct inode *inode = file_inode(filp);
5803         struct perf_event *event = filp->private_data;
5804         int retval;
5805
5806         inode_lock(inode);
5807         retval = fasync_helper(fd, filp, on, &event->fasync);
5808         inode_unlock(inode);
5809
5810         if (retval < 0)
5811                 return retval;
5812
5813         return 0;
5814 }
5815
5816 static const struct file_operations perf_fops = {
5817         .llseek                 = no_llseek,
5818         .release                = perf_release,
5819         .read                   = perf_read,
5820         .poll                   = perf_poll,
5821         .unlocked_ioctl         = perf_ioctl,
5822         .compat_ioctl           = perf_compat_ioctl,
5823         .mmap                   = perf_mmap,
5824         .fasync                 = perf_fasync,
5825 };
5826
5827 /*
5828  * Perf event wakeup
5829  *
5830  * If there's data, ensure we set the poll() state and publish everything
5831  * to user-space before waking everybody up.
5832  */
5833
5834 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5835 {
5836         /* only the parent has fasync state */
5837         if (event->parent)
5838                 event = event->parent;
5839         return &event->fasync;
5840 }
5841
5842 void perf_event_wakeup(struct perf_event *event)
5843 {
5844         ring_buffer_wakeup(event);
5845
5846         if (event->pending_kill) {
5847                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5848                 event->pending_kill = 0;
5849         }
5850 }
5851
5852 static void perf_pending_event_disable(struct perf_event *event)
5853 {
5854         int cpu = READ_ONCE(event->pending_disable);
5855
5856         if (cpu < 0)
5857                 return;
5858
5859         if (cpu == smp_processor_id()) {
5860                 WRITE_ONCE(event->pending_disable, -1);
5861                 perf_event_disable_local(event);
5862                 return;
5863         }
5864
5865         /*
5866          *  CPU-A                       CPU-B
5867          *
5868          *  perf_event_disable_inatomic()
5869          *    @pending_disable = CPU-A;
5870          *    irq_work_queue();
5871          *
5872          *  sched-out
5873          *    @pending_disable = -1;
5874          *
5875          *                              sched-in
5876          *                              perf_event_disable_inatomic()
5877          *                                @pending_disable = CPU-B;
5878          *                                irq_work_queue(); // FAILS
5879          *
5880          *  irq_work_run()
5881          *    perf_pending_event()
5882          *
5883          * But the event runs on CPU-B and wants disabling there.
5884          */
5885         irq_work_queue_on(&event->pending, cpu);
5886 }
5887
5888 static void perf_pending_event(struct irq_work *entry)
5889 {
5890         struct perf_event *event = container_of(entry, struct perf_event, pending);
5891         int rctx;
5892
5893         rctx = perf_swevent_get_recursion_context();
5894         /*
5895          * If we 'fail' here, that's OK, it means recursion is already disabled
5896          * and we won't recurse 'further'.
5897          */
5898
5899         perf_pending_event_disable(event);
5900
5901         if (event->pending_wakeup) {
5902                 event->pending_wakeup = 0;
5903                 perf_event_wakeup(event);
5904         }
5905
5906         if (rctx >= 0)
5907                 perf_swevent_put_recursion_context(rctx);
5908 }
5909
5910 /*
5911  * We assume there is only KVM supporting the callbacks.
5912  * Later on, we might change it to a list if there is
5913  * another virtualization implementation supporting the callbacks.
5914  */
5915 struct perf_guest_info_callbacks *perf_guest_cbs;
5916
5917 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5918 {
5919         perf_guest_cbs = cbs;
5920         return 0;
5921 }
5922 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5923
5924 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5925 {
5926         perf_guest_cbs = NULL;
5927         return 0;
5928 }
5929 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5930
5931 static void
5932 perf_output_sample_regs(struct perf_output_handle *handle,
5933                         struct pt_regs *regs, u64 mask)
5934 {
5935         int bit;
5936         DECLARE_BITMAP(_mask, 64);
5937
5938         bitmap_from_u64(_mask, mask);
5939         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5940                 u64 val;
5941
5942                 val = perf_reg_value(regs, bit);
5943                 perf_output_put(handle, val);
5944         }
5945 }
5946
5947 static void perf_sample_regs_user(struct perf_regs *regs_user,
5948                                   struct pt_regs *regs,
5949                                   struct pt_regs *regs_user_copy)
5950 {
5951         if (user_mode(regs)) {
5952                 regs_user->abi = perf_reg_abi(current);
5953                 regs_user->regs = regs;
5954         } else if (!(current->flags & PF_KTHREAD)) {
5955                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5956         } else {
5957                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5958                 regs_user->regs = NULL;
5959         }
5960 }
5961
5962 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5963                                   struct pt_regs *regs)
5964 {
5965         regs_intr->regs = regs;
5966         regs_intr->abi  = perf_reg_abi(current);
5967 }
5968
5969
5970 /*
5971  * Get remaining task size from user stack pointer.
5972  *
5973  * It'd be better to take stack vma map and limit this more
5974  * precisly, but there's no way to get it safely under interrupt,
5975  * so using TASK_SIZE as limit.
5976  */
5977 static u64 perf_ustack_task_size(struct pt_regs *regs)
5978 {
5979         unsigned long addr = perf_user_stack_pointer(regs);
5980
5981         if (!addr || addr >= TASK_SIZE)
5982                 return 0;
5983
5984         return TASK_SIZE - addr;
5985 }
5986
5987 static u16
5988 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5989                         struct pt_regs *regs)
5990 {
5991         u64 task_size;
5992
5993         /* No regs, no stack pointer, no dump. */
5994         if (!regs)
5995                 return 0;
5996
5997         /*
5998          * Check if we fit in with the requested stack size into the:
5999          * - TASK_SIZE
6000          *   If we don't, we limit the size to the TASK_SIZE.
6001          *
6002          * - remaining sample size
6003          *   If we don't, we customize the stack size to
6004          *   fit in to the remaining sample size.
6005          */
6006
6007         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6008         stack_size = min(stack_size, (u16) task_size);
6009
6010         /* Current header size plus static size and dynamic size. */
6011         header_size += 2 * sizeof(u64);
6012
6013         /* Do we fit in with the current stack dump size? */
6014         if ((u16) (header_size + stack_size) < header_size) {
6015                 /*
6016                  * If we overflow the maximum size for the sample,
6017                  * we customize the stack dump size to fit in.
6018                  */
6019                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6020                 stack_size = round_up(stack_size, sizeof(u64));
6021         }
6022
6023         return stack_size;
6024 }
6025
6026 static void
6027 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6028                           struct pt_regs *regs)
6029 {
6030         /* Case of a kernel thread, nothing to dump */
6031         if (!regs) {
6032                 u64 size = 0;
6033                 perf_output_put(handle, size);
6034         } else {
6035                 unsigned long sp;
6036                 unsigned int rem;
6037                 u64 dyn_size;
6038                 mm_segment_t fs;
6039
6040                 /*
6041                  * We dump:
6042                  * static size
6043                  *   - the size requested by user or the best one we can fit
6044                  *     in to the sample max size
6045                  * data
6046                  *   - user stack dump data
6047                  * dynamic size
6048                  *   - the actual dumped size
6049                  */
6050
6051                 /* Static size. */
6052                 perf_output_put(handle, dump_size);
6053
6054                 /* Data. */
6055                 sp = perf_user_stack_pointer(regs);
6056                 fs = get_fs();
6057                 set_fs(USER_DS);
6058                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6059                 set_fs(fs);
6060                 dyn_size = dump_size - rem;
6061
6062                 perf_output_skip(handle, rem);
6063
6064                 /* Dynamic size. */
6065                 perf_output_put(handle, dyn_size);
6066         }
6067 }
6068
6069 static void __perf_event_header__init_id(struct perf_event_header *header,
6070                                          struct perf_sample_data *data,
6071                                          struct perf_event *event)
6072 {
6073         u64 sample_type = event->attr.sample_type;
6074
6075         data->type = sample_type;
6076         header->size += event->id_header_size;
6077
6078         if (sample_type & PERF_SAMPLE_TID) {
6079                 /* namespace issues */
6080                 data->tid_entry.pid = perf_event_pid(event, current);
6081                 data->tid_entry.tid = perf_event_tid(event, current);
6082         }
6083
6084         if (sample_type & PERF_SAMPLE_TIME)
6085                 data->time = perf_event_clock(event);
6086
6087         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6088                 data->id = primary_event_id(event);
6089
6090         if (sample_type & PERF_SAMPLE_STREAM_ID)
6091                 data->stream_id = event->id;
6092
6093         if (sample_type & PERF_SAMPLE_CPU) {
6094                 data->cpu_entry.cpu      = raw_smp_processor_id();
6095                 data->cpu_entry.reserved = 0;
6096         }
6097 }
6098
6099 void perf_event_header__init_id(struct perf_event_header *header,
6100                                 struct perf_sample_data *data,
6101                                 struct perf_event *event)
6102 {
6103         if (event->attr.sample_id_all)
6104                 __perf_event_header__init_id(header, data, event);
6105 }
6106
6107 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6108                                            struct perf_sample_data *data)
6109 {
6110         u64 sample_type = data->type;
6111
6112         if (sample_type & PERF_SAMPLE_TID)
6113                 perf_output_put(handle, data->tid_entry);
6114
6115         if (sample_type & PERF_SAMPLE_TIME)
6116                 perf_output_put(handle, data->time);
6117
6118         if (sample_type & PERF_SAMPLE_ID)
6119                 perf_output_put(handle, data->id);
6120
6121         if (sample_type & PERF_SAMPLE_STREAM_ID)
6122                 perf_output_put(handle, data->stream_id);
6123
6124         if (sample_type & PERF_SAMPLE_CPU)
6125                 perf_output_put(handle, data->cpu_entry);
6126
6127         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6128                 perf_output_put(handle, data->id);
6129 }
6130
6131 void perf_event__output_id_sample(struct perf_event *event,
6132                                   struct perf_output_handle *handle,
6133                                   struct perf_sample_data *sample)
6134 {
6135         if (event->attr.sample_id_all)
6136                 __perf_event__output_id_sample(handle, sample);
6137 }
6138
6139 static void perf_output_read_one(struct perf_output_handle *handle,
6140                                  struct perf_event *event,
6141                                  u64 enabled, u64 running)
6142 {
6143         u64 read_format = event->attr.read_format;
6144         u64 values[4];
6145         int n = 0;
6146
6147         values[n++] = perf_event_count(event);
6148         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6149                 values[n++] = enabled +
6150                         atomic64_read(&event->child_total_time_enabled);
6151         }
6152         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6153                 values[n++] = running +
6154                         atomic64_read(&event->child_total_time_running);
6155         }
6156         if (read_format & PERF_FORMAT_ID)
6157                 values[n++] = primary_event_id(event);
6158
6159         __output_copy(handle, values, n * sizeof(u64));
6160 }
6161
6162 static void perf_output_read_group(struct perf_output_handle *handle,
6163                             struct perf_event *event,
6164                             u64 enabled, u64 running)
6165 {
6166         struct perf_event *leader = event->group_leader, *sub;
6167         u64 read_format = event->attr.read_format;
6168         u64 values[5];
6169         int n = 0;
6170
6171         values[n++] = 1 + leader->nr_siblings;
6172
6173         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6174                 values[n++] = enabled;
6175
6176         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6177                 values[n++] = running;
6178
6179         if ((leader != event) &&
6180             (leader->state == PERF_EVENT_STATE_ACTIVE))
6181                 leader->pmu->read(leader);
6182
6183         values[n++] = perf_event_count(leader);
6184         if (read_format & PERF_FORMAT_ID)
6185                 values[n++] = primary_event_id(leader);
6186
6187         __output_copy(handle, values, n * sizeof(u64));
6188
6189         for_each_sibling_event(sub, leader) {
6190                 n = 0;
6191
6192                 if ((sub != event) &&
6193                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6194                         sub->pmu->read(sub);
6195
6196                 values[n++] = perf_event_count(sub);
6197                 if (read_format & PERF_FORMAT_ID)
6198                         values[n++] = primary_event_id(sub);
6199
6200                 __output_copy(handle, values, n * sizeof(u64));
6201         }
6202 }
6203
6204 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6205                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6206
6207 /*
6208  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6209  *
6210  * The problem is that its both hard and excessively expensive to iterate the
6211  * child list, not to mention that its impossible to IPI the children running
6212  * on another CPU, from interrupt/NMI context.
6213  */
6214 static void perf_output_read(struct perf_output_handle *handle,
6215                              struct perf_event *event)
6216 {
6217         u64 enabled = 0, running = 0, now;
6218         u64 read_format = event->attr.read_format;
6219
6220         /*
6221          * compute total_time_enabled, total_time_running
6222          * based on snapshot values taken when the event
6223          * was last scheduled in.
6224          *
6225          * we cannot simply called update_context_time()
6226          * because of locking issue as we are called in
6227          * NMI context
6228          */
6229         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6230                 calc_timer_values(event, &now, &enabled, &running);
6231
6232         if (event->attr.read_format & PERF_FORMAT_GROUP)
6233                 perf_output_read_group(handle, event, enabled, running);
6234         else
6235                 perf_output_read_one(handle, event, enabled, running);
6236 }
6237
6238 void perf_output_sample(struct perf_output_handle *handle,
6239                         struct perf_event_header *header,
6240                         struct perf_sample_data *data,
6241                         struct perf_event *event)
6242 {
6243         u64 sample_type = data->type;
6244
6245         perf_output_put(handle, *header);
6246
6247         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6248                 perf_output_put(handle, data->id);
6249
6250         if (sample_type & PERF_SAMPLE_IP)
6251                 perf_output_put(handle, data->ip);
6252
6253         if (sample_type & PERF_SAMPLE_TID)
6254                 perf_output_put(handle, data->tid_entry);
6255
6256         if (sample_type & PERF_SAMPLE_TIME)
6257                 perf_output_put(handle, data->time);
6258
6259         if (sample_type & PERF_SAMPLE_ADDR)
6260                 perf_output_put(handle, data->addr);
6261
6262         if (sample_type & PERF_SAMPLE_ID)
6263                 perf_output_put(handle, data->id);
6264
6265         if (sample_type & PERF_SAMPLE_STREAM_ID)
6266                 perf_output_put(handle, data->stream_id);
6267
6268         if (sample_type & PERF_SAMPLE_CPU)
6269                 perf_output_put(handle, data->cpu_entry);
6270
6271         if (sample_type & PERF_SAMPLE_PERIOD)
6272                 perf_output_put(handle, data->period);
6273
6274         if (sample_type & PERF_SAMPLE_READ)
6275                 perf_output_read(handle, event);
6276
6277         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6278                 int size = 1;
6279
6280                 size += data->callchain->nr;
6281                 size *= sizeof(u64);
6282                 __output_copy(handle, data->callchain, size);
6283         }
6284
6285         if (sample_type & PERF_SAMPLE_RAW) {
6286                 struct perf_raw_record *raw = data->raw;
6287
6288                 if (raw) {
6289                         struct perf_raw_frag *frag = &raw->frag;
6290
6291                         perf_output_put(handle, raw->size);
6292                         do {
6293                                 if (frag->copy) {
6294                                         __output_custom(handle, frag->copy,
6295                                                         frag->data, frag->size);
6296                                 } else {
6297                                         __output_copy(handle, frag->data,
6298                                                       frag->size);
6299                                 }
6300                                 if (perf_raw_frag_last(frag))
6301                                         break;
6302                                 frag = frag->next;
6303                         } while (1);
6304                         if (frag->pad)
6305                                 __output_skip(handle, NULL, frag->pad);
6306                 } else {
6307                         struct {
6308                                 u32     size;
6309                                 u32     data;
6310                         } raw = {
6311                                 .size = sizeof(u32),
6312                                 .data = 0,
6313                         };
6314                         perf_output_put(handle, raw);
6315                 }
6316         }
6317
6318         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6319                 if (data->br_stack) {
6320                         size_t size;
6321
6322                         size = data->br_stack->nr
6323                              * sizeof(struct perf_branch_entry);
6324
6325                         perf_output_put(handle, data->br_stack->nr);
6326                         perf_output_copy(handle, data->br_stack->entries, size);
6327                 } else {
6328                         /*
6329                          * we always store at least the value of nr
6330                          */
6331                         u64 nr = 0;
6332                         perf_output_put(handle, nr);
6333                 }
6334         }
6335
6336         if (sample_type & PERF_SAMPLE_REGS_USER) {
6337                 u64 abi = data->regs_user.abi;
6338
6339                 /*
6340                  * If there are no regs to dump, notice it through
6341                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6342                  */
6343                 perf_output_put(handle, abi);
6344
6345                 if (abi) {
6346                         u64 mask = event->attr.sample_regs_user;
6347                         perf_output_sample_regs(handle,
6348                                                 data->regs_user.regs,
6349                                                 mask);
6350                 }
6351         }
6352
6353         if (sample_type & PERF_SAMPLE_STACK_USER) {
6354                 perf_output_sample_ustack(handle,
6355                                           data->stack_user_size,
6356                                           data->regs_user.regs);
6357         }
6358
6359         if (sample_type & PERF_SAMPLE_WEIGHT)
6360                 perf_output_put(handle, data->weight);
6361
6362         if (sample_type & PERF_SAMPLE_DATA_SRC)
6363                 perf_output_put(handle, data->data_src.val);
6364
6365         if (sample_type & PERF_SAMPLE_TRANSACTION)
6366                 perf_output_put(handle, data->txn);
6367
6368         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6369                 u64 abi = data->regs_intr.abi;
6370                 /*
6371                  * If there are no regs to dump, notice it through
6372                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6373                  */
6374                 perf_output_put(handle, abi);
6375
6376                 if (abi) {
6377                         u64 mask = event->attr.sample_regs_intr;
6378
6379                         perf_output_sample_regs(handle,
6380                                                 data->regs_intr.regs,
6381                                                 mask);
6382                 }
6383         }
6384
6385         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6386                 perf_output_put(handle, data->phys_addr);
6387
6388         if (!event->attr.watermark) {
6389                 int wakeup_events = event->attr.wakeup_events;
6390
6391                 if (wakeup_events) {
6392                         struct ring_buffer *rb = handle->rb;
6393                         int events = local_inc_return(&rb->events);
6394
6395                         if (events >= wakeup_events) {
6396                                 local_sub(wakeup_events, &rb->events);
6397                                 local_inc(&rb->wakeup);
6398                         }
6399                 }
6400         }
6401 }
6402
6403 static u64 perf_virt_to_phys(u64 virt)
6404 {
6405         u64 phys_addr = 0;
6406         struct page *p = NULL;
6407
6408         if (!virt)
6409                 return 0;
6410
6411         if (virt >= TASK_SIZE) {
6412                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6413                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6414                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6415                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6416         } else {
6417                 /*
6418                  * Walking the pages tables for user address.
6419                  * Interrupts are disabled, so it prevents any tear down
6420                  * of the page tables.
6421                  * Try IRQ-safe __get_user_pages_fast first.
6422                  * If failed, leave phys_addr as 0.
6423                  */
6424                 if ((current->mm != NULL) &&
6425                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6426                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6427
6428                 if (p)
6429                         put_page(p);
6430         }
6431
6432         return phys_addr;
6433 }
6434
6435 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6436
6437 struct perf_callchain_entry *
6438 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6439 {
6440         bool kernel = !event->attr.exclude_callchain_kernel;
6441         bool user   = !event->attr.exclude_callchain_user;
6442         /* Disallow cross-task user callchains. */
6443         bool crosstask = event->ctx->task && event->ctx->task != current;
6444         const u32 max_stack = event->attr.sample_max_stack;
6445         struct perf_callchain_entry *callchain;
6446
6447         if (!kernel && !user)
6448                 return &__empty_callchain;
6449
6450         callchain = get_perf_callchain(regs, 0, kernel, user,
6451                                        max_stack, crosstask, true);
6452         return callchain ?: &__empty_callchain;
6453 }
6454
6455 void perf_prepare_sample(struct perf_event_header *header,
6456                          struct perf_sample_data *data,
6457                          struct perf_event *event,
6458                          struct pt_regs *regs)
6459 {
6460         u64 sample_type = event->attr.sample_type;
6461
6462         header->type = PERF_RECORD_SAMPLE;
6463         header->size = sizeof(*header) + event->header_size;
6464
6465         header->misc = 0;
6466         header->misc |= perf_misc_flags(regs);
6467
6468         __perf_event_header__init_id(header, data, event);
6469
6470         if (sample_type & PERF_SAMPLE_IP)
6471                 data->ip = perf_instruction_pointer(regs);
6472
6473         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6474                 int size = 1;
6475
6476                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6477                         data->callchain = perf_callchain(event, regs);
6478
6479                 size += data->callchain->nr;
6480
6481                 header->size += size * sizeof(u64);
6482         }
6483
6484         if (sample_type & PERF_SAMPLE_RAW) {
6485                 struct perf_raw_record *raw = data->raw;
6486                 int size;
6487
6488                 if (raw) {
6489                         struct perf_raw_frag *frag = &raw->frag;
6490                         u32 sum = 0;
6491
6492                         do {
6493                                 sum += frag->size;
6494                                 if (perf_raw_frag_last(frag))
6495                                         break;
6496                                 frag = frag->next;
6497                         } while (1);
6498
6499                         size = round_up(sum + sizeof(u32), sizeof(u64));
6500                         raw->size = size - sizeof(u32);
6501                         frag->pad = raw->size - sum;
6502                 } else {
6503                         size = sizeof(u64);
6504                 }
6505
6506                 header->size += size;
6507         }
6508
6509         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6510                 int size = sizeof(u64); /* nr */
6511                 if (data->br_stack) {
6512                         size += data->br_stack->nr
6513                               * sizeof(struct perf_branch_entry);
6514                 }
6515                 header->size += size;
6516         }
6517
6518         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6519                 perf_sample_regs_user(&data->regs_user, regs,
6520                                       &data->regs_user_copy);
6521
6522         if (sample_type & PERF_SAMPLE_REGS_USER) {
6523                 /* regs dump ABI info */
6524                 int size = sizeof(u64);
6525
6526                 if (data->regs_user.regs) {
6527                         u64 mask = event->attr.sample_regs_user;
6528                         size += hweight64(mask) * sizeof(u64);
6529                 }
6530
6531                 header->size += size;
6532         }
6533
6534         if (sample_type & PERF_SAMPLE_STACK_USER) {
6535                 /*
6536                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6537                  * processed as the last one or have additional check added
6538                  * in case new sample type is added, because we could eat
6539                  * up the rest of the sample size.
6540                  */
6541                 u16 stack_size = event->attr.sample_stack_user;
6542                 u16 size = sizeof(u64);
6543
6544                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6545                                                      data->regs_user.regs);
6546
6547                 /*
6548                  * If there is something to dump, add space for the dump
6549                  * itself and for the field that tells the dynamic size,
6550                  * which is how many have been actually dumped.
6551                  */
6552                 if (stack_size)
6553                         size += sizeof(u64) + stack_size;
6554
6555                 data->stack_user_size = stack_size;
6556                 header->size += size;
6557         }
6558
6559         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6560                 /* regs dump ABI info */
6561                 int size = sizeof(u64);
6562
6563                 perf_sample_regs_intr(&data->regs_intr, regs);
6564
6565                 if (data->regs_intr.regs) {
6566                         u64 mask = event->attr.sample_regs_intr;
6567
6568                         size += hweight64(mask) * sizeof(u64);
6569                 }
6570
6571                 header->size += size;
6572         }
6573
6574         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6575                 data->phys_addr = perf_virt_to_phys(data->addr);
6576 }
6577
6578 static __always_inline int
6579 __perf_event_output(struct perf_event *event,
6580                     struct perf_sample_data *data,
6581                     struct pt_regs *regs,
6582                     int (*output_begin)(struct perf_output_handle *,
6583                                         struct perf_event *,
6584                                         unsigned int))
6585 {
6586         struct perf_output_handle handle;
6587         struct perf_event_header header;
6588         int err;
6589
6590         /* protect the callchain buffers */
6591         rcu_read_lock();
6592
6593         perf_prepare_sample(&header, data, event, regs);
6594
6595         err = output_begin(&handle, event, header.size);
6596         if (err)
6597                 goto exit;
6598
6599         perf_output_sample(&handle, &header, data, event);
6600
6601         perf_output_end(&handle);
6602
6603 exit:
6604         rcu_read_unlock();
6605         return err;
6606 }
6607
6608 void
6609 perf_event_output_forward(struct perf_event *event,
6610                          struct perf_sample_data *data,
6611                          struct pt_regs *regs)
6612 {
6613         __perf_event_output(event, data, regs, perf_output_begin_forward);
6614 }
6615
6616 void
6617 perf_event_output_backward(struct perf_event *event,
6618                            struct perf_sample_data *data,
6619                            struct pt_regs *regs)
6620 {
6621         __perf_event_output(event, data, regs, perf_output_begin_backward);
6622 }
6623
6624 int
6625 perf_event_output(struct perf_event *event,
6626                   struct perf_sample_data *data,
6627                   struct pt_regs *regs)
6628 {
6629         return __perf_event_output(event, data, regs, perf_output_begin);
6630 }
6631
6632 /*
6633  * read event_id
6634  */
6635
6636 struct perf_read_event {
6637         struct perf_event_header        header;
6638
6639         u32                             pid;
6640         u32                             tid;
6641 };
6642
6643 static void
6644 perf_event_read_event(struct perf_event *event,
6645                         struct task_struct *task)
6646 {
6647         struct perf_output_handle handle;
6648         struct perf_sample_data sample;
6649         struct perf_read_event read_event = {
6650                 .header = {
6651                         .type = PERF_RECORD_READ,
6652                         .misc = 0,
6653                         .size = sizeof(read_event) + event->read_size,
6654                 },
6655                 .pid = perf_event_pid(event, task),
6656                 .tid = perf_event_tid(event, task),
6657         };
6658         int ret;
6659
6660         perf_event_header__init_id(&read_event.header, &sample, event);
6661         ret = perf_output_begin(&handle, event, read_event.header.size);
6662         if (ret)
6663                 return;
6664
6665         perf_output_put(&handle, read_event);
6666         perf_output_read(&handle, event);
6667         perf_event__output_id_sample(event, &handle, &sample);
6668
6669         perf_output_end(&handle);
6670 }
6671
6672 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6673
6674 static void
6675 perf_iterate_ctx(struct perf_event_context *ctx,
6676                    perf_iterate_f output,
6677                    void *data, bool all)
6678 {
6679         struct perf_event *event;
6680
6681         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6682                 if (!all) {
6683                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6684                                 continue;
6685                         if (!event_filter_match(event))
6686                                 continue;
6687                 }
6688
6689                 output(event, data);
6690         }
6691 }
6692
6693 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6694 {
6695         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6696         struct perf_event *event;
6697
6698         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6699                 /*
6700                  * Skip events that are not fully formed yet; ensure that
6701                  * if we observe event->ctx, both event and ctx will be
6702                  * complete enough. See perf_install_in_context().
6703                  */
6704                 if (!smp_load_acquire(&event->ctx))
6705                         continue;
6706
6707                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6708                         continue;
6709                 if (!event_filter_match(event))
6710                         continue;
6711                 output(event, data);
6712         }
6713 }
6714
6715 /*
6716  * Iterate all events that need to receive side-band events.
6717  *
6718  * For new callers; ensure that account_pmu_sb_event() includes
6719  * your event, otherwise it might not get delivered.
6720  */
6721 static void
6722 perf_iterate_sb(perf_iterate_f output, void *data,
6723                struct perf_event_context *task_ctx)
6724 {
6725         struct perf_event_context *ctx;
6726         int ctxn;
6727
6728         rcu_read_lock();
6729         preempt_disable();
6730
6731         /*
6732          * If we have task_ctx != NULL we only notify the task context itself.
6733          * The task_ctx is set only for EXIT events before releasing task
6734          * context.
6735          */
6736         if (task_ctx) {
6737                 perf_iterate_ctx(task_ctx, output, data, false);
6738                 goto done;
6739         }
6740
6741         perf_iterate_sb_cpu(output, data);
6742
6743         for_each_task_context_nr(ctxn) {
6744                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6745                 if (ctx)
6746                         perf_iterate_ctx(ctx, output, data, false);
6747         }
6748 done:
6749         preempt_enable();
6750         rcu_read_unlock();
6751 }
6752
6753 /*
6754  * Clear all file-based filters at exec, they'll have to be
6755  * re-instated when/if these objects are mmapped again.
6756  */
6757 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6758 {
6759         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6760         struct perf_addr_filter *filter;
6761         unsigned int restart = 0, count = 0;
6762         unsigned long flags;
6763
6764         if (!has_addr_filter(event))
6765                 return;
6766
6767         raw_spin_lock_irqsave(&ifh->lock, flags);
6768         list_for_each_entry(filter, &ifh->list, entry) {
6769                 if (filter->path.dentry) {
6770                         event->addr_filter_ranges[count].start = 0;
6771                         event->addr_filter_ranges[count].size = 0;
6772                         restart++;
6773                 }
6774
6775                 count++;
6776         }
6777
6778         if (restart)
6779                 event->addr_filters_gen++;
6780         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6781
6782         if (restart)
6783                 perf_event_stop(event, 1);
6784 }
6785
6786 void perf_event_exec(void)
6787 {
6788         struct perf_event_context *ctx;
6789         int ctxn;
6790
6791         rcu_read_lock();
6792         for_each_task_context_nr(ctxn) {
6793                 ctx = current->perf_event_ctxp[ctxn];
6794                 if (!ctx)
6795                         continue;
6796
6797                 perf_event_enable_on_exec(ctxn);
6798
6799                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6800                                    true);
6801         }
6802         rcu_read_unlock();
6803 }
6804
6805 struct remote_output {
6806         struct ring_buffer      *rb;
6807         int                     err;
6808 };
6809
6810 static void __perf_event_output_stop(struct perf_event *event, void *data)
6811 {
6812         struct perf_event *parent = event->parent;
6813         struct remote_output *ro = data;
6814         struct ring_buffer *rb = ro->rb;
6815         struct stop_event_data sd = {
6816                 .event  = event,
6817         };
6818
6819         if (!has_aux(event))
6820                 return;
6821
6822         if (!parent)
6823                 parent = event;
6824
6825         /*
6826          * In case of inheritance, it will be the parent that links to the
6827          * ring-buffer, but it will be the child that's actually using it.
6828          *
6829          * We are using event::rb to determine if the event should be stopped,
6830          * however this may race with ring_buffer_attach() (through set_output),
6831          * which will make us skip the event that actually needs to be stopped.
6832          * So ring_buffer_attach() has to stop an aux event before re-assigning
6833          * its rb pointer.
6834          */
6835         if (rcu_dereference(parent->rb) == rb)
6836                 ro->err = __perf_event_stop(&sd);
6837 }
6838
6839 static int __perf_pmu_output_stop(void *info)
6840 {
6841         struct perf_event *event = info;
6842         struct pmu *pmu = event->pmu;
6843         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6844         struct remote_output ro = {
6845                 .rb     = event->rb,
6846         };
6847
6848         rcu_read_lock();
6849         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6850         if (cpuctx->task_ctx)
6851                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6852                                    &ro, false);
6853         rcu_read_unlock();
6854
6855         return ro.err;
6856 }
6857
6858 static void perf_pmu_output_stop(struct perf_event *event)
6859 {
6860         struct perf_event *iter;
6861         int err, cpu;
6862
6863 restart:
6864         rcu_read_lock();
6865         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6866                 /*
6867                  * For per-CPU events, we need to make sure that neither they
6868                  * nor their children are running; for cpu==-1 events it's
6869                  * sufficient to stop the event itself if it's active, since
6870                  * it can't have children.
6871                  */
6872                 cpu = iter->cpu;
6873                 if (cpu == -1)
6874                         cpu = READ_ONCE(iter->oncpu);
6875
6876                 if (cpu == -1)
6877                         continue;
6878
6879                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6880                 if (err == -EAGAIN) {
6881                         rcu_read_unlock();
6882                         goto restart;
6883                 }
6884         }
6885         rcu_read_unlock();
6886 }
6887
6888 /*
6889  * task tracking -- fork/exit
6890  *
6891  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6892  */
6893
6894 struct perf_task_event {
6895         struct task_struct              *task;
6896         struct perf_event_context       *task_ctx;
6897
6898         struct {
6899                 struct perf_event_header        header;
6900
6901                 u32                             pid;
6902                 u32                             ppid;
6903                 u32                             tid;
6904                 u32                             ptid;
6905                 u64                             time;
6906         } event_id;
6907 };
6908
6909 static int perf_event_task_match(struct perf_event *event)
6910 {
6911         return event->attr.comm  || event->attr.mmap ||
6912                event->attr.mmap2 || event->attr.mmap_data ||
6913                event->attr.task;
6914 }
6915
6916 static void perf_event_task_output(struct perf_event *event,
6917                                    void *data)
6918 {
6919         struct perf_task_event *task_event = data;
6920         struct perf_output_handle handle;
6921         struct perf_sample_data sample;
6922         struct task_struct *task = task_event->task;
6923         int ret, size = task_event->event_id.header.size;
6924
6925         if (!perf_event_task_match(event))
6926                 return;
6927
6928         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6929
6930         ret = perf_output_begin(&handle, event,
6931                                 task_event->event_id.header.size);
6932         if (ret)
6933                 goto out;
6934
6935         task_event->event_id.pid = perf_event_pid(event, task);
6936         task_event->event_id.ppid = perf_event_pid(event, current);
6937
6938         task_event->event_id.tid = perf_event_tid(event, task);
6939         task_event->event_id.ptid = perf_event_tid(event, current);
6940
6941         task_event->event_id.time = perf_event_clock(event);
6942
6943         perf_output_put(&handle, task_event->event_id);
6944
6945         perf_event__output_id_sample(event, &handle, &sample);
6946
6947         perf_output_end(&handle);
6948 out:
6949         task_event->event_id.header.size = size;
6950 }
6951
6952 static void perf_event_task(struct task_struct *task,
6953                               struct perf_event_context *task_ctx,
6954                               int new)
6955 {
6956         struct perf_task_event task_event;
6957
6958         if (!atomic_read(&nr_comm_events) &&
6959             !atomic_read(&nr_mmap_events) &&
6960             !atomic_read(&nr_task_events))
6961                 return;
6962
6963         task_event = (struct perf_task_event){
6964                 .task     = task,
6965                 .task_ctx = task_ctx,
6966                 .event_id    = {
6967                         .header = {
6968                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6969                                 .misc = 0,
6970                                 .size = sizeof(task_event.event_id),
6971                         },
6972                         /* .pid  */
6973                         /* .ppid */
6974                         /* .tid  */
6975                         /* .ptid */
6976                         /* .time */
6977                 },
6978         };
6979
6980         perf_iterate_sb(perf_event_task_output,
6981                        &task_event,
6982                        task_ctx);
6983 }
6984
6985 void perf_event_fork(struct task_struct *task)
6986 {
6987         perf_event_task(task, NULL, 1);
6988         perf_event_namespaces(task);
6989 }
6990
6991 /*
6992  * comm tracking
6993  */
6994
6995 struct perf_comm_event {
6996         struct task_struct      *task;
6997         char                    *comm;
6998         int                     comm_size;
6999
7000         struct {
7001                 struct perf_event_header        header;
7002
7003                 u32                             pid;
7004                 u32                             tid;
7005         } event_id;
7006 };
7007
7008 static int perf_event_comm_match(struct perf_event *event)
7009 {
7010         return event->attr.comm;
7011 }
7012
7013 static void perf_event_comm_output(struct perf_event *event,
7014                                    void *data)
7015 {
7016         struct perf_comm_event *comm_event = data;
7017         struct perf_output_handle handle;
7018         struct perf_sample_data sample;
7019         int size = comm_event->event_id.header.size;
7020         int ret;
7021
7022         if (!perf_event_comm_match(event))
7023                 return;
7024
7025         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7026         ret = perf_output_begin(&handle, event,
7027                                 comm_event->event_id.header.size);
7028
7029         if (ret)
7030                 goto out;
7031
7032         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7033         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7034
7035         perf_output_put(&handle, comm_event->event_id);
7036         __output_copy(&handle, comm_event->comm,
7037                                    comm_event->comm_size);
7038
7039         perf_event__output_id_sample(event, &handle, &sample);
7040
7041         perf_output_end(&handle);
7042 out:
7043         comm_event->event_id.header.size = size;
7044 }
7045
7046 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7047 {
7048         char comm[TASK_COMM_LEN];
7049         unsigned int size;
7050
7051         memset(comm, 0, sizeof(comm));
7052         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7053         size = ALIGN(strlen(comm)+1, sizeof(u64));
7054
7055         comm_event->comm = comm;
7056         comm_event->comm_size = size;
7057
7058         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7059
7060         perf_iterate_sb(perf_event_comm_output,
7061                        comm_event,
7062                        NULL);
7063 }
7064
7065 void perf_event_comm(struct task_struct *task, bool exec)
7066 {
7067         struct perf_comm_event comm_event;
7068
7069         if (!atomic_read(&nr_comm_events))
7070                 return;
7071
7072         comm_event = (struct perf_comm_event){
7073                 .task   = task,
7074                 /* .comm      */
7075                 /* .comm_size */
7076                 .event_id  = {
7077                         .header = {
7078                                 .type = PERF_RECORD_COMM,
7079                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7080                                 /* .size */
7081                         },
7082                         /* .pid */
7083                         /* .tid */
7084                 },
7085         };
7086
7087         perf_event_comm_event(&comm_event);
7088 }
7089
7090 /*
7091  * namespaces tracking
7092  */
7093
7094 struct perf_namespaces_event {
7095         struct task_struct              *task;
7096
7097         struct {
7098                 struct perf_event_header        header;
7099
7100                 u32                             pid;
7101                 u32                             tid;
7102                 u64                             nr_namespaces;
7103                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7104         } event_id;
7105 };
7106
7107 static int perf_event_namespaces_match(struct perf_event *event)
7108 {
7109         return event->attr.namespaces;
7110 }
7111
7112 static void perf_event_namespaces_output(struct perf_event *event,
7113                                          void *data)
7114 {
7115         struct perf_namespaces_event *namespaces_event = data;
7116         struct perf_output_handle handle;
7117         struct perf_sample_data sample;
7118         u16 header_size = namespaces_event->event_id.header.size;
7119         int ret;
7120
7121         if (!perf_event_namespaces_match(event))
7122                 return;
7123
7124         perf_event_header__init_id(&namespaces_event->event_id.header,
7125                                    &sample, event);
7126         ret = perf_output_begin(&handle, event,
7127                                 namespaces_event->event_id.header.size);
7128         if (ret)
7129                 goto out;
7130
7131         namespaces_event->event_id.pid = perf_event_pid(event,
7132                                                         namespaces_event->task);
7133         namespaces_event->event_id.tid = perf_event_tid(event,
7134                                                         namespaces_event->task);
7135
7136         perf_output_put(&handle, namespaces_event->event_id);
7137
7138         perf_event__output_id_sample(event, &handle, &sample);
7139
7140         perf_output_end(&handle);
7141 out:
7142         namespaces_event->event_id.header.size = header_size;
7143 }
7144
7145 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7146                                    struct task_struct *task,
7147                                    const struct proc_ns_operations *ns_ops)
7148 {
7149         struct path ns_path;
7150         struct inode *ns_inode;
7151         void *error;
7152
7153         error = ns_get_path(&ns_path, task, ns_ops);
7154         if (!error) {
7155                 ns_inode = ns_path.dentry->d_inode;
7156                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7157                 ns_link_info->ino = ns_inode->i_ino;
7158                 path_put(&ns_path);
7159         }
7160 }
7161
7162 void perf_event_namespaces(struct task_struct *task)
7163 {
7164         struct perf_namespaces_event namespaces_event;
7165         struct perf_ns_link_info *ns_link_info;
7166
7167         if (!atomic_read(&nr_namespaces_events))
7168                 return;
7169
7170         namespaces_event = (struct perf_namespaces_event){
7171                 .task   = task,
7172                 .event_id  = {
7173                         .header = {
7174                                 .type = PERF_RECORD_NAMESPACES,
7175                                 .misc = 0,
7176                                 .size = sizeof(namespaces_event.event_id),
7177                         },
7178                         /* .pid */
7179                         /* .tid */
7180                         .nr_namespaces = NR_NAMESPACES,
7181                         /* .link_info[NR_NAMESPACES] */
7182                 },
7183         };
7184
7185         ns_link_info = namespaces_event.event_id.link_info;
7186
7187         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7188                                task, &mntns_operations);
7189
7190 #ifdef CONFIG_USER_NS
7191         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7192                                task, &userns_operations);
7193 #endif
7194 #ifdef CONFIG_NET_NS
7195         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7196                                task, &netns_operations);
7197 #endif
7198 #ifdef CONFIG_UTS_NS
7199         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7200                                task, &utsns_operations);
7201 #endif
7202 #ifdef CONFIG_IPC_NS
7203         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7204                                task, &ipcns_operations);
7205 #endif
7206 #ifdef CONFIG_PID_NS
7207         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7208                                task, &pidns_operations);
7209 #endif
7210 #ifdef CONFIG_CGROUPS
7211         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7212                                task, &cgroupns_operations);
7213 #endif
7214
7215         perf_iterate_sb(perf_event_namespaces_output,
7216                         &namespaces_event,
7217                         NULL);
7218 }
7219
7220 /*
7221  * mmap tracking
7222  */
7223
7224 struct perf_mmap_event {
7225         struct vm_area_struct   *vma;
7226
7227         const char              *file_name;
7228         int                     file_size;
7229         int                     maj, min;
7230         u64                     ino;
7231         u64                     ino_generation;
7232         u32                     prot, flags;
7233
7234         struct {
7235                 struct perf_event_header        header;
7236
7237                 u32                             pid;
7238                 u32                             tid;
7239                 u64                             start;
7240                 u64                             len;
7241                 u64                             pgoff;
7242         } event_id;
7243 };
7244
7245 static int perf_event_mmap_match(struct perf_event *event,
7246                                  void *data)
7247 {
7248         struct perf_mmap_event *mmap_event = data;
7249         struct vm_area_struct *vma = mmap_event->vma;
7250         int executable = vma->vm_flags & VM_EXEC;
7251
7252         return (!executable && event->attr.mmap_data) ||
7253                (executable && (event->attr.mmap || event->attr.mmap2));
7254 }
7255
7256 static void perf_event_mmap_output(struct perf_event *event,
7257                                    void *data)
7258 {
7259         struct perf_mmap_event *mmap_event = data;
7260         struct perf_output_handle handle;
7261         struct perf_sample_data sample;
7262         int size = mmap_event->event_id.header.size;
7263         u32 type = mmap_event->event_id.header.type;
7264         int ret;
7265
7266         if (!perf_event_mmap_match(event, data))
7267                 return;
7268
7269         if (event->attr.mmap2) {
7270                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7271                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7272                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7273                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7274                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7275                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7276                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7277         }
7278
7279         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7280         ret = perf_output_begin(&handle, event,
7281                                 mmap_event->event_id.header.size);
7282         if (ret)
7283                 goto out;
7284
7285         mmap_event->event_id.pid = perf_event_pid(event, current);
7286         mmap_event->event_id.tid = perf_event_tid(event, current);
7287
7288         perf_output_put(&handle, mmap_event->event_id);
7289
7290         if (event->attr.mmap2) {
7291                 perf_output_put(&handle, mmap_event->maj);
7292                 perf_output_put(&handle, mmap_event->min);
7293                 perf_output_put(&handle, mmap_event->ino);
7294                 perf_output_put(&handle, mmap_event->ino_generation);
7295                 perf_output_put(&handle, mmap_event->prot);
7296                 perf_output_put(&handle, mmap_event->flags);
7297         }
7298
7299         __output_copy(&handle, mmap_event->file_name,
7300                                    mmap_event->file_size);
7301
7302         perf_event__output_id_sample(event, &handle, &sample);
7303
7304         perf_output_end(&handle);
7305 out:
7306         mmap_event->event_id.header.size = size;
7307         mmap_event->event_id.header.type = type;
7308 }
7309
7310 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7311 {
7312         struct vm_area_struct *vma = mmap_event->vma;
7313         struct file *file = vma->vm_file;
7314         int maj = 0, min = 0;
7315         u64 ino = 0, gen = 0;
7316         u32 prot = 0, flags = 0;
7317         unsigned int size;
7318         char tmp[16];
7319         char *buf = NULL;
7320         char *name;
7321
7322         if (vma->vm_flags & VM_READ)
7323                 prot |= PROT_READ;
7324         if (vma->vm_flags & VM_WRITE)
7325                 prot |= PROT_WRITE;
7326         if (vma->vm_flags & VM_EXEC)
7327                 prot |= PROT_EXEC;
7328
7329         if (vma->vm_flags & VM_MAYSHARE)
7330                 flags = MAP_SHARED;
7331         else
7332                 flags = MAP_PRIVATE;
7333
7334         if (vma->vm_flags & VM_DENYWRITE)
7335                 flags |= MAP_DENYWRITE;
7336         if (vma->vm_flags & VM_MAYEXEC)
7337                 flags |= MAP_EXECUTABLE;
7338         if (vma->vm_flags & VM_LOCKED)
7339                 flags |= MAP_LOCKED;
7340         if (vma->vm_flags & VM_HUGETLB)
7341                 flags |= MAP_HUGETLB;
7342
7343         if (file) {
7344                 struct inode *inode;
7345                 dev_t dev;
7346
7347                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7348                 if (!buf) {
7349                         name = "//enomem";
7350                         goto cpy_name;
7351                 }
7352                 /*
7353                  * d_path() works from the end of the rb backwards, so we
7354                  * need to add enough zero bytes after the string to handle
7355                  * the 64bit alignment we do later.
7356                  */
7357                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7358                 if (IS_ERR(name)) {
7359                         name = "//toolong";
7360                         goto cpy_name;
7361                 }
7362                 inode = file_inode(vma->vm_file);
7363                 dev = inode->i_sb->s_dev;
7364                 ino = inode->i_ino;
7365                 gen = inode->i_generation;
7366                 maj = MAJOR(dev);
7367                 min = MINOR(dev);
7368
7369                 goto got_name;
7370         } else {
7371                 if (vma->vm_ops && vma->vm_ops->name) {
7372                         name = (char *) vma->vm_ops->name(vma);
7373                         if (name)
7374                                 goto cpy_name;
7375                 }
7376
7377                 name = (char *)arch_vma_name(vma);
7378                 if (name)
7379                         goto cpy_name;
7380
7381                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7382                                 vma->vm_end >= vma->vm_mm->brk) {
7383                         name = "[heap]";
7384                         goto cpy_name;
7385                 }
7386                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7387                                 vma->vm_end >= vma->vm_mm->start_stack) {
7388                         name = "[stack]";
7389                         goto cpy_name;
7390                 }
7391
7392                 name = "//anon";
7393                 goto cpy_name;
7394         }
7395
7396 cpy_name:
7397         strlcpy(tmp, name, sizeof(tmp));
7398         name = tmp;
7399 got_name:
7400         /*
7401          * Since our buffer works in 8 byte units we need to align our string
7402          * size to a multiple of 8. However, we must guarantee the tail end is
7403          * zero'd out to avoid leaking random bits to userspace.
7404          */
7405         size = strlen(name)+1;
7406         while (!IS_ALIGNED(size, sizeof(u64)))
7407                 name[size++] = '\0';
7408
7409         mmap_event->file_name = name;
7410         mmap_event->file_size = size;
7411         mmap_event->maj = maj;
7412         mmap_event->min = min;
7413         mmap_event->ino = ino;
7414         mmap_event->ino_generation = gen;
7415         mmap_event->prot = prot;
7416         mmap_event->flags = flags;
7417
7418         if (!(vma->vm_flags & VM_EXEC))
7419                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7420
7421         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7422
7423         perf_iterate_sb(perf_event_mmap_output,
7424                        mmap_event,
7425                        NULL);
7426
7427         kfree(buf);
7428 }
7429
7430 /*
7431  * Check whether inode and address range match filter criteria.
7432  */
7433 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7434                                      struct file *file, unsigned long offset,
7435                                      unsigned long size)
7436 {
7437         /* d_inode(NULL) won't be equal to any mapped user-space file */
7438         if (!filter->path.dentry)
7439                 return false;
7440
7441         if (d_inode(filter->path.dentry) != file_inode(file))
7442                 return false;
7443
7444         if (filter->offset > offset + size)
7445                 return false;
7446
7447         if (filter->offset + filter->size < offset)
7448                 return false;
7449
7450         return true;
7451 }
7452
7453 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7454                                         struct vm_area_struct *vma,
7455                                         struct perf_addr_filter_range *fr)
7456 {
7457         unsigned long vma_size = vma->vm_end - vma->vm_start;
7458         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7459         struct file *file = vma->vm_file;
7460
7461         if (!perf_addr_filter_match(filter, file, off, vma_size))
7462                 return false;
7463
7464         if (filter->offset < off) {
7465                 fr->start = vma->vm_start;
7466                 fr->size = min(vma_size, filter->size - (off - filter->offset));
7467         } else {
7468                 fr->start = vma->vm_start + filter->offset - off;
7469                 fr->size = min(vma->vm_end - fr->start, filter->size);
7470         }
7471
7472         return true;
7473 }
7474
7475 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7476 {
7477         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7478         struct vm_area_struct *vma = data;
7479         struct perf_addr_filter *filter;
7480         unsigned int restart = 0, count = 0;
7481         unsigned long flags;
7482
7483         if (!has_addr_filter(event))
7484                 return;
7485
7486         if (!vma->vm_file)
7487                 return;
7488
7489         raw_spin_lock_irqsave(&ifh->lock, flags);
7490         list_for_each_entry(filter, &ifh->list, entry) {
7491                 if (perf_addr_filter_vma_adjust(filter, vma,
7492                                                 &event->addr_filter_ranges[count]))
7493                         restart++;
7494
7495                 count++;
7496         }
7497
7498         if (restart)
7499                 event->addr_filters_gen++;
7500         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7501
7502         if (restart)
7503                 perf_event_stop(event, 1);
7504 }
7505
7506 /*
7507  * Adjust all task's events' filters to the new vma
7508  */
7509 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7510 {
7511         struct perf_event_context *ctx;
7512         int ctxn;
7513
7514         /*
7515          * Data tracing isn't supported yet and as such there is no need
7516          * to keep track of anything that isn't related to executable code:
7517          */
7518         if (!(vma->vm_flags & VM_EXEC))
7519                 return;
7520
7521         rcu_read_lock();
7522         for_each_task_context_nr(ctxn) {
7523                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7524                 if (!ctx)
7525                         continue;
7526
7527                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7528         }
7529         rcu_read_unlock();
7530 }
7531
7532 void perf_event_mmap(struct vm_area_struct *vma)
7533 {
7534         struct perf_mmap_event mmap_event;
7535
7536         if (!atomic_read(&nr_mmap_events))
7537                 return;
7538
7539         mmap_event = (struct perf_mmap_event){
7540                 .vma    = vma,
7541                 /* .file_name */
7542                 /* .file_size */
7543                 .event_id  = {
7544                         .header = {
7545                                 .type = PERF_RECORD_MMAP,
7546                                 .misc = PERF_RECORD_MISC_USER,
7547                                 /* .size */
7548                         },
7549                         /* .pid */
7550                         /* .tid */
7551                         .start  = vma->vm_start,
7552                         .len    = vma->vm_end - vma->vm_start,
7553                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7554                 },
7555                 /* .maj (attr_mmap2 only) */
7556                 /* .min (attr_mmap2 only) */
7557                 /* .ino (attr_mmap2 only) */
7558                 /* .ino_generation (attr_mmap2 only) */
7559                 /* .prot (attr_mmap2 only) */
7560                 /* .flags (attr_mmap2 only) */
7561         };
7562
7563         perf_addr_filters_adjust(vma);
7564         perf_event_mmap_event(&mmap_event);
7565 }
7566
7567 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7568                           unsigned long size, u64 flags)
7569 {
7570         struct perf_output_handle handle;
7571         struct perf_sample_data sample;
7572         struct perf_aux_event {
7573                 struct perf_event_header        header;
7574                 u64                             offset;
7575                 u64                             size;
7576                 u64                             flags;
7577         } rec = {
7578                 .header = {
7579                         .type = PERF_RECORD_AUX,
7580                         .misc = 0,
7581                         .size = sizeof(rec),
7582                 },
7583                 .offset         = head,
7584                 .size           = size,
7585                 .flags          = flags,
7586         };
7587         int ret;
7588
7589         perf_event_header__init_id(&rec.header, &sample, event);
7590         ret = perf_output_begin(&handle, event, rec.header.size);
7591
7592         if (ret)
7593                 return;
7594
7595         perf_output_put(&handle, rec);
7596         perf_event__output_id_sample(event, &handle, &sample);
7597
7598         perf_output_end(&handle);
7599 }
7600
7601 /*
7602  * Lost/dropped samples logging
7603  */
7604 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7605 {
7606         struct perf_output_handle handle;
7607         struct perf_sample_data sample;
7608         int ret;
7609
7610         struct {
7611                 struct perf_event_header        header;
7612                 u64                             lost;
7613         } lost_samples_event = {
7614                 .header = {
7615                         .type = PERF_RECORD_LOST_SAMPLES,
7616                         .misc = 0,
7617                         .size = sizeof(lost_samples_event),
7618                 },
7619                 .lost           = lost,
7620         };
7621
7622         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7623
7624         ret = perf_output_begin(&handle, event,
7625                                 lost_samples_event.header.size);
7626         if (ret)
7627                 return;
7628
7629         perf_output_put(&handle, lost_samples_event);
7630         perf_event__output_id_sample(event, &handle, &sample);
7631         perf_output_end(&handle);
7632 }
7633
7634 /*
7635  * context_switch tracking
7636  */
7637
7638 struct perf_switch_event {
7639         struct task_struct      *task;
7640         struct task_struct      *next_prev;
7641
7642         struct {
7643                 struct perf_event_header        header;
7644                 u32                             next_prev_pid;
7645                 u32                             next_prev_tid;
7646         } event_id;
7647 };
7648
7649 static int perf_event_switch_match(struct perf_event *event)
7650 {
7651         return event->attr.context_switch;
7652 }
7653
7654 static void perf_event_switch_output(struct perf_event *event, void *data)
7655 {
7656         struct perf_switch_event *se = data;
7657         struct perf_output_handle handle;
7658         struct perf_sample_data sample;
7659         int ret;
7660
7661         if (!perf_event_switch_match(event))
7662                 return;
7663
7664         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7665         if (event->ctx->task) {
7666                 se->event_id.header.type = PERF_RECORD_SWITCH;
7667                 se->event_id.header.size = sizeof(se->event_id.header);
7668         } else {
7669                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7670                 se->event_id.header.size = sizeof(se->event_id);
7671                 se->event_id.next_prev_pid =
7672                                         perf_event_pid(event, se->next_prev);
7673                 se->event_id.next_prev_tid =
7674                                         perf_event_tid(event, se->next_prev);
7675         }
7676
7677         perf_event_header__init_id(&se->event_id.header, &sample, event);
7678
7679         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7680         if (ret)
7681                 return;
7682
7683         if (event->ctx->task)
7684                 perf_output_put(&handle, se->event_id.header);
7685         else
7686                 perf_output_put(&handle, se->event_id);
7687
7688         perf_event__output_id_sample(event, &handle, &sample);
7689
7690         perf_output_end(&handle);
7691 }
7692
7693 static void perf_event_switch(struct task_struct *task,
7694                               struct task_struct *next_prev, bool sched_in)
7695 {
7696         struct perf_switch_event switch_event;
7697
7698         /* N.B. caller checks nr_switch_events != 0 */
7699
7700         switch_event = (struct perf_switch_event){
7701                 .task           = task,
7702                 .next_prev      = next_prev,
7703                 .event_id       = {
7704                         .header = {
7705                                 /* .type */
7706                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7707                                 /* .size */
7708                         },
7709                         /* .next_prev_pid */
7710                         /* .next_prev_tid */
7711                 },
7712         };
7713
7714         if (!sched_in && task->state == TASK_RUNNING)
7715                 switch_event.event_id.header.misc |=
7716                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7717
7718         perf_iterate_sb(perf_event_switch_output,
7719                        &switch_event,
7720                        NULL);
7721 }
7722
7723 /*
7724  * IRQ throttle logging
7725  */
7726
7727 static void perf_log_throttle(struct perf_event *event, int enable)
7728 {
7729         struct perf_output_handle handle;
7730         struct perf_sample_data sample;
7731         int ret;
7732
7733         struct {
7734                 struct perf_event_header        header;
7735                 u64                             time;
7736                 u64                             id;
7737                 u64                             stream_id;
7738         } throttle_event = {
7739                 .header = {
7740                         .type = PERF_RECORD_THROTTLE,
7741                         .misc = 0,
7742                         .size = sizeof(throttle_event),
7743                 },
7744                 .time           = perf_event_clock(event),
7745                 .id             = primary_event_id(event),
7746                 .stream_id      = event->id,
7747         };
7748
7749         if (enable)
7750                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7751
7752         perf_event_header__init_id(&throttle_event.header, &sample, event);
7753
7754         ret = perf_output_begin(&handle, event,
7755                                 throttle_event.header.size);
7756         if (ret)
7757                 return;
7758
7759         perf_output_put(&handle, throttle_event);
7760         perf_event__output_id_sample(event, &handle, &sample);
7761         perf_output_end(&handle);
7762 }
7763
7764 /*
7765  * ksymbol register/unregister tracking
7766  */
7767
7768 struct perf_ksymbol_event {
7769         const char      *name;
7770         int             name_len;
7771         struct {
7772                 struct perf_event_header        header;
7773                 u64                             addr;
7774                 u32                             len;
7775                 u16                             ksym_type;
7776                 u16                             flags;
7777         } event_id;
7778 };
7779
7780 static int perf_event_ksymbol_match(struct perf_event *event)
7781 {
7782         return event->attr.ksymbol;
7783 }
7784
7785 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7786 {
7787         struct perf_ksymbol_event *ksymbol_event = data;
7788         struct perf_output_handle handle;
7789         struct perf_sample_data sample;
7790         int ret;
7791
7792         if (!perf_event_ksymbol_match(event))
7793                 return;
7794
7795         perf_event_header__init_id(&ksymbol_event->event_id.header,
7796                                    &sample, event);
7797         ret = perf_output_begin(&handle, event,
7798                                 ksymbol_event->event_id.header.size);
7799         if (ret)
7800                 return;
7801
7802         perf_output_put(&handle, ksymbol_event->event_id);
7803         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7804         perf_event__output_id_sample(event, &handle, &sample);
7805
7806         perf_output_end(&handle);
7807 }
7808
7809 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7810                         const char *sym)
7811 {
7812         struct perf_ksymbol_event ksymbol_event;
7813         char name[KSYM_NAME_LEN];
7814         u16 flags = 0;
7815         int name_len;
7816
7817         if (!atomic_read(&nr_ksymbol_events))
7818                 return;
7819
7820         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7821             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7822                 goto err;
7823
7824         strlcpy(name, sym, KSYM_NAME_LEN);
7825         name_len = strlen(name) + 1;
7826         while (!IS_ALIGNED(name_len, sizeof(u64)))
7827                 name[name_len++] = '\0';
7828         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7829
7830         if (unregister)
7831                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7832
7833         ksymbol_event = (struct perf_ksymbol_event){
7834                 .name = name,
7835                 .name_len = name_len,
7836                 .event_id = {
7837                         .header = {
7838                                 .type = PERF_RECORD_KSYMBOL,
7839                                 .size = sizeof(ksymbol_event.event_id) +
7840                                         name_len,
7841                         },
7842                         .addr = addr,
7843                         .len = len,
7844                         .ksym_type = ksym_type,
7845                         .flags = flags,
7846                 },
7847         };
7848
7849         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7850         return;
7851 err:
7852         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7853 }
7854
7855 /*
7856  * bpf program load/unload tracking
7857  */
7858
7859 struct perf_bpf_event {
7860         struct bpf_prog *prog;
7861         struct {
7862                 struct perf_event_header        header;
7863                 u16                             type;
7864                 u16                             flags;
7865                 u32                             id;
7866                 u8                              tag[BPF_TAG_SIZE];
7867         } event_id;
7868 };
7869
7870 static int perf_event_bpf_match(struct perf_event *event)
7871 {
7872         return event->attr.bpf_event;
7873 }
7874
7875 static void perf_event_bpf_output(struct perf_event *event, void *data)
7876 {
7877         struct perf_bpf_event *bpf_event = data;
7878         struct perf_output_handle handle;
7879         struct perf_sample_data sample;
7880         int ret;
7881
7882         if (!perf_event_bpf_match(event))
7883                 return;
7884
7885         perf_event_header__init_id(&bpf_event->event_id.header,
7886                                    &sample, event);
7887         ret = perf_output_begin(&handle, event,
7888                                 bpf_event->event_id.header.size);
7889         if (ret)
7890                 return;
7891
7892         perf_output_put(&handle, bpf_event->event_id);
7893         perf_event__output_id_sample(event, &handle, &sample);
7894
7895         perf_output_end(&handle);
7896 }
7897
7898 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
7899                                          enum perf_bpf_event_type type)
7900 {
7901         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
7902         char sym[KSYM_NAME_LEN];
7903         int i;
7904
7905         if (prog->aux->func_cnt == 0) {
7906                 bpf_get_prog_name(prog, sym);
7907                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
7908                                    (u64)(unsigned long)prog->bpf_func,
7909                                    prog->jited_len, unregister, sym);
7910         } else {
7911                 for (i = 0; i < prog->aux->func_cnt; i++) {
7912                         struct bpf_prog *subprog = prog->aux->func[i];
7913
7914                         bpf_get_prog_name(subprog, sym);
7915                         perf_event_ksymbol(
7916                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
7917                                 (u64)(unsigned long)subprog->bpf_func,
7918                                 subprog->jited_len, unregister, sym);
7919                 }
7920         }
7921 }
7922
7923 void perf_event_bpf_event(struct bpf_prog *prog,
7924                           enum perf_bpf_event_type type,
7925                           u16 flags)
7926 {
7927         struct perf_bpf_event bpf_event;
7928
7929         if (type <= PERF_BPF_EVENT_UNKNOWN ||
7930             type >= PERF_BPF_EVENT_MAX)
7931                 return;
7932
7933         switch (type) {
7934         case PERF_BPF_EVENT_PROG_LOAD:
7935         case PERF_BPF_EVENT_PROG_UNLOAD:
7936                 if (atomic_read(&nr_ksymbol_events))
7937                         perf_event_bpf_emit_ksymbols(prog, type);
7938                 break;
7939         default:
7940                 break;
7941         }
7942
7943         if (!atomic_read(&nr_bpf_events))
7944                 return;
7945
7946         bpf_event = (struct perf_bpf_event){
7947                 .prog = prog,
7948                 .event_id = {
7949                         .header = {
7950                                 .type = PERF_RECORD_BPF_EVENT,
7951                                 .size = sizeof(bpf_event.event_id),
7952                         },
7953                         .type = type,
7954                         .flags = flags,
7955                         .id = prog->aux->id,
7956                 },
7957         };
7958
7959         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
7960
7961         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
7962         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
7963 }
7964
7965 void perf_event_itrace_started(struct perf_event *event)
7966 {
7967         event->attach_state |= PERF_ATTACH_ITRACE;
7968 }
7969
7970 static void perf_log_itrace_start(struct perf_event *event)
7971 {
7972         struct perf_output_handle handle;
7973         struct perf_sample_data sample;
7974         struct perf_aux_event {
7975                 struct perf_event_header        header;
7976                 u32                             pid;
7977                 u32                             tid;
7978         } rec;
7979         int ret;
7980
7981         if (event->parent)
7982                 event = event->parent;
7983
7984         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7985             event->attach_state & PERF_ATTACH_ITRACE)
7986                 return;
7987
7988         rec.header.type = PERF_RECORD_ITRACE_START;
7989         rec.header.misc = 0;
7990         rec.header.size = sizeof(rec);
7991         rec.pid = perf_event_pid(event, current);
7992         rec.tid = perf_event_tid(event, current);
7993
7994         perf_event_header__init_id(&rec.header, &sample, event);
7995         ret = perf_output_begin(&handle, event, rec.header.size);
7996
7997         if (ret)
7998                 return;
7999
8000         perf_output_put(&handle, rec);
8001         perf_event__output_id_sample(event, &handle, &sample);
8002
8003         perf_output_end(&handle);
8004 }
8005
8006 static int
8007 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8008 {
8009         struct hw_perf_event *hwc = &event->hw;
8010         int ret = 0;
8011         u64 seq;
8012
8013         seq = __this_cpu_read(perf_throttled_seq);
8014         if (seq != hwc->interrupts_seq) {
8015                 hwc->interrupts_seq = seq;
8016                 hwc->interrupts = 1;
8017         } else {
8018                 hwc->interrupts++;
8019                 if (unlikely(throttle
8020                              && hwc->interrupts >= max_samples_per_tick)) {
8021                         __this_cpu_inc(perf_throttled_count);
8022                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8023                         hwc->interrupts = MAX_INTERRUPTS;
8024                         perf_log_throttle(event, 0);
8025                         ret = 1;
8026                 }
8027         }
8028
8029         if (event->attr.freq) {
8030                 u64 now = perf_clock();
8031                 s64 delta = now - hwc->freq_time_stamp;
8032
8033                 hwc->freq_time_stamp = now;
8034
8035                 if (delta > 0 && delta < 2*TICK_NSEC)
8036                         perf_adjust_period(event, delta, hwc->last_period, true);
8037         }
8038
8039         return ret;
8040 }
8041
8042 int perf_event_account_interrupt(struct perf_event *event)
8043 {
8044         return __perf_event_account_interrupt(event, 1);
8045 }
8046
8047 /*
8048  * Generic event overflow handling, sampling.
8049  */
8050
8051 static int __perf_event_overflow(struct perf_event *event,
8052                                    int throttle, struct perf_sample_data *data,
8053                                    struct pt_regs *regs)
8054 {
8055         int events = atomic_read(&event->event_limit);
8056         int ret = 0;
8057
8058         /*
8059          * Non-sampling counters might still use the PMI to fold short
8060          * hardware counters, ignore those.
8061          */
8062         if (unlikely(!is_sampling_event(event)))
8063                 return 0;
8064
8065         ret = __perf_event_account_interrupt(event, throttle);
8066
8067         /*
8068          * XXX event_limit might not quite work as expected on inherited
8069          * events
8070          */
8071
8072         event->pending_kill = POLL_IN;
8073         if (events && atomic_dec_and_test(&event->event_limit)) {
8074                 ret = 1;
8075                 event->pending_kill = POLL_HUP;
8076
8077                 perf_event_disable_inatomic(event);
8078         }
8079
8080         READ_ONCE(event->overflow_handler)(event, data, regs);
8081
8082         if (*perf_event_fasync(event) && event->pending_kill) {
8083                 event->pending_wakeup = 1;
8084                 irq_work_queue(&event->pending);
8085         }
8086
8087         return ret;
8088 }
8089
8090 int perf_event_overflow(struct perf_event *event,
8091                           struct perf_sample_data *data,
8092                           struct pt_regs *regs)
8093 {
8094         return __perf_event_overflow(event, 1, data, regs);
8095 }
8096
8097 /*
8098  * Generic software event infrastructure
8099  */
8100
8101 struct swevent_htable {
8102         struct swevent_hlist            *swevent_hlist;
8103         struct mutex                    hlist_mutex;
8104         int                             hlist_refcount;
8105
8106         /* Recursion avoidance in each contexts */
8107         int                             recursion[PERF_NR_CONTEXTS];
8108 };
8109
8110 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8111
8112 /*
8113  * We directly increment event->count and keep a second value in
8114  * event->hw.period_left to count intervals. This period event
8115  * is kept in the range [-sample_period, 0] so that we can use the
8116  * sign as trigger.
8117  */
8118
8119 u64 perf_swevent_set_period(struct perf_event *event)
8120 {
8121         struct hw_perf_event *hwc = &event->hw;
8122         u64 period = hwc->last_period;
8123         u64 nr, offset;
8124         s64 old, val;
8125
8126         hwc->last_period = hwc->sample_period;
8127
8128 again:
8129         old = val = local64_read(&hwc->period_left);
8130         if (val < 0)
8131                 return 0;
8132
8133         nr = div64_u64(period + val, period);
8134         offset = nr * period;
8135         val -= offset;
8136         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8137                 goto again;
8138
8139         return nr;
8140 }
8141
8142 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8143                                     struct perf_sample_data *data,
8144                                     struct pt_regs *regs)
8145 {
8146         struct hw_perf_event *hwc = &event->hw;
8147         int throttle = 0;
8148
8149         if (!overflow)
8150                 overflow = perf_swevent_set_period(event);
8151
8152         if (hwc->interrupts == MAX_INTERRUPTS)
8153                 return;
8154
8155         for (; overflow; overflow--) {
8156                 if (__perf_event_overflow(event, throttle,
8157                                             data, regs)) {
8158                         /*
8159                          * We inhibit the overflow from happening when
8160                          * hwc->interrupts == MAX_INTERRUPTS.
8161                          */
8162                         break;
8163                 }
8164                 throttle = 1;
8165         }
8166 }
8167
8168 static void perf_swevent_event(struct perf_event *event, u64 nr,
8169                                struct perf_sample_data *data,
8170                                struct pt_regs *regs)
8171 {
8172         struct hw_perf_event *hwc = &event->hw;
8173
8174         local64_add(nr, &event->count);
8175
8176         if (!regs)
8177                 return;
8178
8179         if (!is_sampling_event(event))
8180                 return;
8181
8182         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8183                 data->period = nr;
8184                 return perf_swevent_overflow(event, 1, data, regs);
8185         } else
8186                 data->period = event->hw.last_period;
8187
8188         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8189                 return perf_swevent_overflow(event, 1, data, regs);
8190
8191         if (local64_add_negative(nr, &hwc->period_left))
8192                 return;
8193
8194         perf_swevent_overflow(event, 0, data, regs);
8195 }
8196
8197 static int perf_exclude_event(struct perf_event *event,
8198                               struct pt_regs *regs)
8199 {
8200         if (event->hw.state & PERF_HES_STOPPED)
8201                 return 1;
8202
8203         if (regs) {
8204                 if (event->attr.exclude_user && user_mode(regs))
8205                         return 1;
8206
8207                 if (event->attr.exclude_kernel && !user_mode(regs))
8208                         return 1;
8209         }
8210
8211         return 0;
8212 }
8213
8214 static int perf_swevent_match(struct perf_event *event,
8215                                 enum perf_type_id type,
8216                                 u32 event_id,
8217                                 struct perf_sample_data *data,
8218                                 struct pt_regs *regs)
8219 {
8220         if (event->attr.type != type)
8221                 return 0;
8222
8223         if (event->attr.config != event_id)
8224                 return 0;
8225
8226         if (perf_exclude_event(event, regs))
8227                 return 0;
8228
8229         return 1;
8230 }
8231
8232 static inline u64 swevent_hash(u64 type, u32 event_id)
8233 {
8234         u64 val = event_id | (type << 32);
8235
8236         return hash_64(val, SWEVENT_HLIST_BITS);
8237 }
8238
8239 static inline struct hlist_head *
8240 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8241 {
8242         u64 hash = swevent_hash(type, event_id);
8243
8244         return &hlist->heads[hash];
8245 }
8246
8247 /* For the read side: events when they trigger */
8248 static inline struct hlist_head *
8249 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8250 {
8251         struct swevent_hlist *hlist;
8252
8253         hlist = rcu_dereference(swhash->swevent_hlist);
8254         if (!hlist)
8255                 return NULL;
8256
8257         return __find_swevent_head(hlist, type, event_id);
8258 }
8259
8260 /* For the event head insertion and removal in the hlist */
8261 static inline struct hlist_head *
8262 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8263 {
8264         struct swevent_hlist *hlist;
8265         u32 event_id = event->attr.config;
8266         u64 type = event->attr.type;
8267
8268         /*
8269          * Event scheduling is always serialized against hlist allocation
8270          * and release. Which makes the protected version suitable here.
8271          * The context lock guarantees that.
8272          */
8273         hlist = rcu_dereference_protected(swhash->swevent_hlist,
8274                                           lockdep_is_held(&event->ctx->lock));
8275         if (!hlist)
8276                 return NULL;
8277
8278         return __find_swevent_head(hlist, type, event_id);
8279 }
8280
8281 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8282                                     u64 nr,
8283                                     struct perf_sample_data *data,
8284                                     struct pt_regs *regs)
8285 {
8286         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8287         struct perf_event *event;
8288         struct hlist_head *head;
8289
8290         rcu_read_lock();
8291         head = find_swevent_head_rcu(swhash, type, event_id);
8292         if (!head)
8293                 goto end;
8294
8295         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8296                 if (perf_swevent_match(event, type, event_id, data, regs))
8297                         perf_swevent_event(event, nr, data, regs);
8298         }
8299 end:
8300         rcu_read_unlock();
8301 }
8302
8303 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8304
8305 int perf_swevent_get_recursion_context(void)
8306 {
8307         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8308
8309         return get_recursion_context(swhash->recursion);
8310 }
8311 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8312
8313 void perf_swevent_put_recursion_context(int rctx)
8314 {
8315         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8316
8317         put_recursion_context(swhash->recursion, rctx);
8318 }
8319
8320 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8321 {
8322         struct perf_sample_data data;
8323
8324         if (WARN_ON_ONCE(!regs))
8325                 return;
8326
8327         perf_sample_data_init(&data, addr, 0);
8328         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8329 }
8330
8331 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8332 {
8333         int rctx;
8334
8335         preempt_disable_notrace();
8336         rctx = perf_swevent_get_recursion_context();
8337         if (unlikely(rctx < 0))
8338                 goto fail;
8339
8340         ___perf_sw_event(event_id, nr, regs, addr);
8341
8342         perf_swevent_put_recursion_context(rctx);
8343 fail:
8344         preempt_enable_notrace();
8345 }
8346
8347 static void perf_swevent_read(struct perf_event *event)
8348 {
8349 }
8350
8351 static int perf_swevent_add(struct perf_event *event, int flags)
8352 {
8353         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8354         struct hw_perf_event *hwc = &event->hw;
8355         struct hlist_head *head;
8356
8357         if (is_sampling_event(event)) {
8358                 hwc->last_period = hwc->sample_period;
8359                 perf_swevent_set_period(event);
8360         }
8361
8362         hwc->state = !(flags & PERF_EF_START);
8363
8364         head = find_swevent_head(swhash, event);
8365         if (WARN_ON_ONCE(!head))
8366                 return -EINVAL;
8367
8368         hlist_add_head_rcu(&event->hlist_entry, head);
8369         perf_event_update_userpage(event);
8370
8371         return 0;
8372 }
8373
8374 static void perf_swevent_del(struct perf_event *event, int flags)
8375 {
8376         hlist_del_rcu(&event->hlist_entry);
8377 }
8378
8379 static void perf_swevent_start(struct perf_event *event, int flags)
8380 {
8381         event->hw.state = 0;
8382 }
8383
8384 static void perf_swevent_stop(struct perf_event *event, int flags)
8385 {
8386         event->hw.state = PERF_HES_STOPPED;
8387 }
8388
8389 /* Deref the hlist from the update side */
8390 static inline struct swevent_hlist *
8391 swevent_hlist_deref(struct swevent_htable *swhash)
8392 {
8393         return rcu_dereference_protected(swhash->swevent_hlist,
8394                                          lockdep_is_held(&swhash->hlist_mutex));
8395 }
8396
8397 static void swevent_hlist_release(struct swevent_htable *swhash)
8398 {
8399         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8400
8401         if (!hlist)
8402                 return;
8403
8404         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8405         kfree_rcu(hlist, rcu_head);
8406 }
8407
8408 static void swevent_hlist_put_cpu(int cpu)
8409 {
8410         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8411
8412         mutex_lock(&swhash->hlist_mutex);
8413
8414         if (!--swhash->hlist_refcount)
8415                 swevent_hlist_release(swhash);
8416
8417         mutex_unlock(&swhash->hlist_mutex);
8418 }
8419
8420 static void swevent_hlist_put(void)
8421 {
8422         int cpu;
8423
8424         for_each_possible_cpu(cpu)
8425                 swevent_hlist_put_cpu(cpu);
8426 }
8427
8428 static int swevent_hlist_get_cpu(int cpu)
8429 {
8430         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8431         int err = 0;
8432
8433         mutex_lock(&swhash->hlist_mutex);
8434         if (!swevent_hlist_deref(swhash) &&
8435             cpumask_test_cpu(cpu, perf_online_mask)) {
8436                 struct swevent_hlist *hlist;
8437
8438                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8439                 if (!hlist) {
8440                         err = -ENOMEM;
8441                         goto exit;
8442                 }
8443                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8444         }
8445         swhash->hlist_refcount++;
8446 exit:
8447         mutex_unlock(&swhash->hlist_mutex);
8448
8449         return err;
8450 }
8451
8452 static int swevent_hlist_get(void)
8453 {
8454         int err, cpu, failed_cpu;
8455
8456         mutex_lock(&pmus_lock);
8457         for_each_possible_cpu(cpu) {
8458                 err = swevent_hlist_get_cpu(cpu);
8459                 if (err) {
8460                         failed_cpu = cpu;
8461                         goto fail;
8462                 }
8463         }
8464         mutex_unlock(&pmus_lock);
8465         return 0;
8466 fail:
8467         for_each_possible_cpu(cpu) {
8468                 if (cpu == failed_cpu)
8469                         break;
8470                 swevent_hlist_put_cpu(cpu);
8471         }
8472         mutex_unlock(&pmus_lock);
8473         return err;
8474 }
8475
8476 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8477
8478 static void sw_perf_event_destroy(struct perf_event *event)
8479 {
8480         u64 event_id = event->attr.config;
8481
8482         WARN_ON(event->parent);
8483
8484         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8485         swevent_hlist_put();
8486 }
8487
8488 static int perf_swevent_init(struct perf_event *event)
8489 {
8490         u64 event_id = event->attr.config;
8491
8492         if (event->attr.type != PERF_TYPE_SOFTWARE)
8493                 return -ENOENT;
8494
8495         /*
8496          * no branch sampling for software events
8497          */
8498         if (has_branch_stack(event))
8499                 return -EOPNOTSUPP;
8500
8501         switch (event_id) {
8502         case PERF_COUNT_SW_CPU_CLOCK:
8503         case PERF_COUNT_SW_TASK_CLOCK:
8504                 return -ENOENT;
8505
8506         default:
8507                 break;
8508         }
8509
8510         if (event_id >= PERF_COUNT_SW_MAX)
8511                 return -ENOENT;
8512
8513         if (!event->parent) {
8514                 int err;
8515
8516                 err = swevent_hlist_get();
8517                 if (err)
8518                         return err;
8519
8520                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8521                 event->destroy = sw_perf_event_destroy;
8522         }
8523
8524         return 0;
8525 }
8526
8527 static struct pmu perf_swevent = {
8528         .task_ctx_nr    = perf_sw_context,
8529
8530         .capabilities   = PERF_PMU_CAP_NO_NMI,
8531
8532         .event_init     = perf_swevent_init,
8533         .add            = perf_swevent_add,
8534         .del            = perf_swevent_del,
8535         .start          = perf_swevent_start,
8536         .stop           = perf_swevent_stop,
8537         .read           = perf_swevent_read,
8538 };
8539
8540 #ifdef CONFIG_EVENT_TRACING
8541
8542 static int perf_tp_filter_match(struct perf_event *event,
8543                                 struct perf_sample_data *data)
8544 {
8545         void *record = data->raw->frag.data;
8546
8547         /* only top level events have filters set */
8548         if (event->parent)
8549                 event = event->parent;
8550
8551         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8552                 return 1;
8553         return 0;
8554 }
8555
8556 static int perf_tp_event_match(struct perf_event *event,
8557                                 struct perf_sample_data *data,
8558                                 struct pt_regs *regs)
8559 {
8560         if (event->hw.state & PERF_HES_STOPPED)
8561                 return 0;
8562         /*
8563          * If exclude_kernel, only trace user-space tracepoints (uprobes)
8564          */
8565         if (event->attr.exclude_kernel && !user_mode(regs))
8566                 return 0;
8567
8568         if (!perf_tp_filter_match(event, data))
8569                 return 0;
8570
8571         return 1;
8572 }
8573
8574 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8575                                struct trace_event_call *call, u64 count,
8576                                struct pt_regs *regs, struct hlist_head *head,
8577                                struct task_struct *task)
8578 {
8579         if (bpf_prog_array_valid(call)) {
8580                 *(struct pt_regs **)raw_data = regs;
8581                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8582                         perf_swevent_put_recursion_context(rctx);
8583                         return;
8584                 }
8585         }
8586         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8587                       rctx, task);
8588 }
8589 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8590
8591 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8592                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8593                    struct task_struct *task)
8594 {
8595         struct perf_sample_data data;
8596         struct perf_event *event;
8597
8598         struct perf_raw_record raw = {
8599                 .frag = {
8600                         .size = entry_size,
8601                         .data = record,
8602                 },
8603         };
8604
8605         perf_sample_data_init(&data, 0, 0);
8606         data.raw = &raw;
8607
8608         perf_trace_buf_update(record, event_type);
8609
8610         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8611                 if (perf_tp_event_match(event, &data, regs))
8612                         perf_swevent_event(event, count, &data, regs);
8613         }
8614
8615         /*
8616          * If we got specified a target task, also iterate its context and
8617          * deliver this event there too.
8618          */
8619         if (task && task != current) {
8620                 struct perf_event_context *ctx;
8621                 struct trace_entry *entry = record;
8622
8623                 rcu_read_lock();
8624                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8625                 if (!ctx)
8626                         goto unlock;
8627
8628                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8629                         if (event->cpu != smp_processor_id())
8630                                 continue;
8631                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8632                                 continue;
8633                         if (event->attr.config != entry->type)
8634                                 continue;
8635                         if (perf_tp_event_match(event, &data, regs))
8636                                 perf_swevent_event(event, count, &data, regs);
8637                 }
8638 unlock:
8639                 rcu_read_unlock();
8640         }
8641
8642         perf_swevent_put_recursion_context(rctx);
8643 }
8644 EXPORT_SYMBOL_GPL(perf_tp_event);
8645
8646 static void tp_perf_event_destroy(struct perf_event *event)
8647 {
8648         perf_trace_destroy(event);
8649 }
8650
8651 static int perf_tp_event_init(struct perf_event *event)
8652 {
8653         int err;
8654
8655         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8656                 return -ENOENT;
8657
8658         /*
8659          * no branch sampling for tracepoint events
8660          */
8661         if (has_branch_stack(event))
8662                 return -EOPNOTSUPP;
8663
8664         err = perf_trace_init(event);
8665         if (err)
8666                 return err;
8667
8668         event->destroy = tp_perf_event_destroy;
8669
8670         return 0;
8671 }
8672
8673 static struct pmu perf_tracepoint = {
8674         .task_ctx_nr    = perf_sw_context,
8675
8676         .event_init     = perf_tp_event_init,
8677         .add            = perf_trace_add,
8678         .del            = perf_trace_del,
8679         .start          = perf_swevent_start,
8680         .stop           = perf_swevent_stop,
8681         .read           = perf_swevent_read,
8682 };
8683
8684 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8685 /*
8686  * Flags in config, used by dynamic PMU kprobe and uprobe
8687  * The flags should match following PMU_FORMAT_ATTR().
8688  *
8689  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8690  *                               if not set, create kprobe/uprobe
8691  *
8692  * The following values specify a reference counter (or semaphore in the
8693  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8694  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8695  *
8696  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
8697  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
8698  */
8699 enum perf_probe_config {
8700         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8701         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8702         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8703 };
8704
8705 PMU_FORMAT_ATTR(retprobe, "config:0");
8706 #endif
8707
8708 #ifdef CONFIG_KPROBE_EVENTS
8709 static struct attribute *kprobe_attrs[] = {
8710         &format_attr_retprobe.attr,
8711         NULL,
8712 };
8713
8714 static struct attribute_group kprobe_format_group = {
8715         .name = "format",
8716         .attrs = kprobe_attrs,
8717 };
8718
8719 static const struct attribute_group *kprobe_attr_groups[] = {
8720         &kprobe_format_group,
8721         NULL,
8722 };
8723
8724 static int perf_kprobe_event_init(struct perf_event *event);
8725 static struct pmu perf_kprobe = {
8726         .task_ctx_nr    = perf_sw_context,
8727         .event_init     = perf_kprobe_event_init,
8728         .add            = perf_trace_add,
8729         .del            = perf_trace_del,
8730         .start          = perf_swevent_start,
8731         .stop           = perf_swevent_stop,
8732         .read           = perf_swevent_read,
8733         .attr_groups    = kprobe_attr_groups,
8734 };
8735
8736 static int perf_kprobe_event_init(struct perf_event *event)
8737 {
8738         int err;
8739         bool is_retprobe;
8740
8741         if (event->attr.type != perf_kprobe.type)
8742                 return -ENOENT;
8743
8744         if (!capable(CAP_SYS_ADMIN))
8745                 return -EACCES;
8746
8747         /*
8748          * no branch sampling for probe events
8749          */
8750         if (has_branch_stack(event))
8751                 return -EOPNOTSUPP;
8752
8753         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8754         err = perf_kprobe_init(event, is_retprobe);
8755         if (err)
8756                 return err;
8757
8758         event->destroy = perf_kprobe_destroy;
8759
8760         return 0;
8761 }
8762 #endif /* CONFIG_KPROBE_EVENTS */
8763
8764 #ifdef CONFIG_UPROBE_EVENTS
8765 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8766
8767 static struct attribute *uprobe_attrs[] = {
8768         &format_attr_retprobe.attr,
8769         &format_attr_ref_ctr_offset.attr,
8770         NULL,
8771 };
8772
8773 static struct attribute_group uprobe_format_group = {
8774         .name = "format",
8775         .attrs = uprobe_attrs,
8776 };
8777
8778 static const struct attribute_group *uprobe_attr_groups[] = {
8779         &uprobe_format_group,
8780         NULL,
8781 };
8782
8783 static int perf_uprobe_event_init(struct perf_event *event);
8784 static struct pmu perf_uprobe = {
8785         .task_ctx_nr    = perf_sw_context,
8786         .event_init     = perf_uprobe_event_init,
8787         .add            = perf_trace_add,
8788         .del            = perf_trace_del,
8789         .start          = perf_swevent_start,
8790         .stop           = perf_swevent_stop,
8791         .read           = perf_swevent_read,
8792         .attr_groups    = uprobe_attr_groups,
8793 };
8794
8795 static int perf_uprobe_event_init(struct perf_event *event)
8796 {
8797         int err;
8798         unsigned long ref_ctr_offset;
8799         bool is_retprobe;
8800
8801         if (event->attr.type != perf_uprobe.type)
8802                 return -ENOENT;
8803
8804         if (!capable(CAP_SYS_ADMIN))
8805                 return -EACCES;
8806
8807         /*
8808          * no branch sampling for probe events
8809          */
8810         if (has_branch_stack(event))
8811                 return -EOPNOTSUPP;
8812
8813         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8814         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8815         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8816         if (err)
8817                 return err;
8818
8819         event->destroy = perf_uprobe_destroy;
8820
8821         return 0;
8822 }
8823 #endif /* CONFIG_UPROBE_EVENTS */
8824
8825 static inline void perf_tp_register(void)
8826 {
8827         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8828 #ifdef CONFIG_KPROBE_EVENTS
8829         perf_pmu_register(&perf_kprobe, "kprobe", -1);
8830 #endif
8831 #ifdef CONFIG_UPROBE_EVENTS
8832         perf_pmu_register(&perf_uprobe, "uprobe", -1);
8833 #endif
8834 }
8835
8836 static void perf_event_free_filter(struct perf_event *event)
8837 {
8838         ftrace_profile_free_filter(event);
8839 }
8840
8841 #ifdef CONFIG_BPF_SYSCALL
8842 static void bpf_overflow_handler(struct perf_event *event,
8843                                  struct perf_sample_data *data,
8844                                  struct pt_regs *regs)
8845 {
8846         struct bpf_perf_event_data_kern ctx = {
8847                 .data = data,
8848                 .event = event,
8849         };
8850         int ret = 0;
8851
8852         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8853         preempt_disable();
8854         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8855                 goto out;
8856         rcu_read_lock();
8857         ret = BPF_PROG_RUN(event->prog, &ctx);
8858         rcu_read_unlock();
8859 out:
8860         __this_cpu_dec(bpf_prog_active);
8861         preempt_enable();
8862         if (!ret)
8863                 return;
8864
8865         event->orig_overflow_handler(event, data, regs);
8866 }
8867
8868 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8869 {
8870         struct bpf_prog *prog;
8871
8872         if (event->overflow_handler_context)
8873                 /* hw breakpoint or kernel counter */
8874                 return -EINVAL;
8875
8876         if (event->prog)
8877                 return -EEXIST;
8878
8879         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8880         if (IS_ERR(prog))
8881                 return PTR_ERR(prog);
8882
8883         event->prog = prog;
8884         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8885         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8886         return 0;
8887 }
8888
8889 static void perf_event_free_bpf_handler(struct perf_event *event)
8890 {
8891         struct bpf_prog *prog = event->prog;
8892
8893         if (!prog)
8894                 return;
8895
8896         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8897         event->prog = NULL;
8898         bpf_prog_put(prog);
8899 }
8900 #else
8901 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8902 {
8903         return -EOPNOTSUPP;
8904 }
8905 static void perf_event_free_bpf_handler(struct perf_event *event)
8906 {
8907 }
8908 #endif
8909
8910 /*
8911  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8912  * with perf_event_open()
8913  */
8914 static inline bool perf_event_is_tracing(struct perf_event *event)
8915 {
8916         if (event->pmu == &perf_tracepoint)
8917                 return true;
8918 #ifdef CONFIG_KPROBE_EVENTS
8919         if (event->pmu == &perf_kprobe)
8920                 return true;
8921 #endif
8922 #ifdef CONFIG_UPROBE_EVENTS
8923         if (event->pmu == &perf_uprobe)
8924                 return true;
8925 #endif
8926         return false;
8927 }
8928
8929 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8930 {
8931         bool is_kprobe, is_tracepoint, is_syscall_tp;
8932         struct bpf_prog *prog;
8933         int ret;
8934
8935         if (!perf_event_is_tracing(event))
8936                 return perf_event_set_bpf_handler(event, prog_fd);
8937
8938         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8939         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8940         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8941         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8942                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8943                 return -EINVAL;
8944
8945         prog = bpf_prog_get(prog_fd);
8946         if (IS_ERR(prog))
8947                 return PTR_ERR(prog);
8948
8949         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8950             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8951             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8952                 /* valid fd, but invalid bpf program type */
8953                 bpf_prog_put(prog);
8954                 return -EINVAL;
8955         }
8956
8957         /* Kprobe override only works for kprobes, not uprobes. */
8958         if (prog->kprobe_override &&
8959             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8960                 bpf_prog_put(prog);
8961                 return -EINVAL;
8962         }
8963
8964         if (is_tracepoint || is_syscall_tp) {
8965                 int off = trace_event_get_offsets(event->tp_event);
8966
8967                 if (prog->aux->max_ctx_offset > off) {
8968                         bpf_prog_put(prog);
8969                         return -EACCES;
8970                 }
8971         }
8972
8973         ret = perf_event_attach_bpf_prog(event, prog);
8974         if (ret)
8975                 bpf_prog_put(prog);
8976         return ret;
8977 }
8978
8979 static void perf_event_free_bpf_prog(struct perf_event *event)
8980 {
8981         if (!perf_event_is_tracing(event)) {
8982                 perf_event_free_bpf_handler(event);
8983                 return;
8984         }
8985         perf_event_detach_bpf_prog(event);
8986 }
8987
8988 #else
8989
8990 static inline void perf_tp_register(void)
8991 {
8992 }
8993
8994 static void perf_event_free_filter(struct perf_event *event)
8995 {
8996 }
8997
8998 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8999 {
9000         return -ENOENT;
9001 }
9002
9003 static void perf_event_free_bpf_prog(struct perf_event *event)
9004 {
9005 }
9006 #endif /* CONFIG_EVENT_TRACING */
9007
9008 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9009 void perf_bp_event(struct perf_event *bp, void *data)
9010 {
9011         struct perf_sample_data sample;
9012         struct pt_regs *regs = data;
9013
9014         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9015
9016         if (!bp->hw.state && !perf_exclude_event(bp, regs))
9017                 perf_swevent_event(bp, 1, &sample, regs);
9018 }
9019 #endif
9020
9021 /*
9022  * Allocate a new address filter
9023  */
9024 static struct perf_addr_filter *
9025 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9026 {
9027         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9028         struct perf_addr_filter *filter;
9029
9030         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9031         if (!filter)
9032                 return NULL;
9033
9034         INIT_LIST_HEAD(&filter->entry);
9035         list_add_tail(&filter->entry, filters);
9036
9037         return filter;
9038 }
9039
9040 static void free_filters_list(struct list_head *filters)
9041 {
9042         struct perf_addr_filter *filter, *iter;
9043
9044         list_for_each_entry_safe(filter, iter, filters, entry) {
9045                 path_put(&filter->path);
9046                 list_del(&filter->entry);
9047                 kfree(filter);
9048         }
9049 }
9050
9051 /*
9052  * Free existing address filters and optionally install new ones
9053  */
9054 static void perf_addr_filters_splice(struct perf_event *event,
9055                                      struct list_head *head)
9056 {
9057         unsigned long flags;
9058         LIST_HEAD(list);
9059
9060         if (!has_addr_filter(event))
9061                 return;
9062
9063         /* don't bother with children, they don't have their own filters */
9064         if (event->parent)
9065                 return;
9066
9067         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9068
9069         list_splice_init(&event->addr_filters.list, &list);
9070         if (head)
9071                 list_splice(head, &event->addr_filters.list);
9072
9073         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9074
9075         free_filters_list(&list);
9076 }
9077
9078 /*
9079  * Scan through mm's vmas and see if one of them matches the
9080  * @filter; if so, adjust filter's address range.
9081  * Called with mm::mmap_sem down for reading.
9082  */
9083 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9084                                    struct mm_struct *mm,
9085                                    struct perf_addr_filter_range *fr)
9086 {
9087         struct vm_area_struct *vma;
9088
9089         for (vma = mm->mmap; vma; vma = vma->vm_next) {
9090                 if (!vma->vm_file)
9091                         continue;
9092
9093                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9094                         return;
9095         }
9096 }
9097
9098 /*
9099  * Update event's address range filters based on the
9100  * task's existing mappings, if any.
9101  */
9102 static void perf_event_addr_filters_apply(struct perf_event *event)
9103 {
9104         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9105         struct task_struct *task = READ_ONCE(event->ctx->task);
9106         struct perf_addr_filter *filter;
9107         struct mm_struct *mm = NULL;
9108         unsigned int count = 0;
9109         unsigned long flags;
9110
9111         /*
9112          * We may observe TASK_TOMBSTONE, which means that the event tear-down
9113          * will stop on the parent's child_mutex that our caller is also holding
9114          */
9115         if (task == TASK_TOMBSTONE)
9116                 return;
9117
9118         if (ifh->nr_file_filters) {
9119                 mm = get_task_mm(event->ctx->task);
9120                 if (!mm)
9121                         goto restart;
9122
9123                 down_read(&mm->mmap_sem);
9124         }
9125
9126         raw_spin_lock_irqsave(&ifh->lock, flags);
9127         list_for_each_entry(filter, &ifh->list, entry) {
9128                 if (filter->path.dentry) {
9129                         /*
9130                          * Adjust base offset if the filter is associated to a
9131                          * binary that needs to be mapped:
9132                          */
9133                         event->addr_filter_ranges[count].start = 0;
9134                         event->addr_filter_ranges[count].size = 0;
9135
9136                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9137                 } else {
9138                         event->addr_filter_ranges[count].start = filter->offset;
9139                         event->addr_filter_ranges[count].size  = filter->size;
9140                 }
9141
9142                 count++;
9143         }
9144
9145         event->addr_filters_gen++;
9146         raw_spin_unlock_irqrestore(&ifh->lock, flags);
9147
9148         if (ifh->nr_file_filters) {
9149                 up_read(&mm->mmap_sem);
9150
9151                 mmput(mm);
9152         }
9153
9154 restart:
9155         perf_event_stop(event, 1);
9156 }
9157
9158 /*
9159  * Address range filtering: limiting the data to certain
9160  * instruction address ranges. Filters are ioctl()ed to us from
9161  * userspace as ascii strings.
9162  *
9163  * Filter string format:
9164  *
9165  * ACTION RANGE_SPEC
9166  * where ACTION is one of the
9167  *  * "filter": limit the trace to this region
9168  *  * "start": start tracing from this address
9169  *  * "stop": stop tracing at this address/region;
9170  * RANGE_SPEC is
9171  *  * for kernel addresses: <start address>[/<size>]
9172  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9173  *
9174  * if <size> is not specified or is zero, the range is treated as a single
9175  * address; not valid for ACTION=="filter".
9176  */
9177 enum {
9178         IF_ACT_NONE = -1,
9179         IF_ACT_FILTER,
9180         IF_ACT_START,
9181         IF_ACT_STOP,
9182         IF_SRC_FILE,
9183         IF_SRC_KERNEL,
9184         IF_SRC_FILEADDR,
9185         IF_SRC_KERNELADDR,
9186 };
9187
9188 enum {
9189         IF_STATE_ACTION = 0,
9190         IF_STATE_SOURCE,
9191         IF_STATE_END,
9192 };
9193
9194 static const match_table_t if_tokens = {
9195         { IF_ACT_FILTER,        "filter" },
9196         { IF_ACT_START,         "start" },
9197         { IF_ACT_STOP,          "stop" },
9198         { IF_SRC_FILE,          "%u/%u@%s" },
9199         { IF_SRC_KERNEL,        "%u/%u" },
9200         { IF_SRC_FILEADDR,      "%u@%s" },
9201         { IF_SRC_KERNELADDR,    "%u" },
9202         { IF_ACT_NONE,          NULL },
9203 };
9204
9205 /*
9206  * Address filter string parser
9207  */
9208 static int
9209 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9210                              struct list_head *filters)
9211 {
9212         struct perf_addr_filter *filter = NULL;
9213         char *start, *orig, *filename = NULL;
9214         substring_t args[MAX_OPT_ARGS];
9215         int state = IF_STATE_ACTION, token;
9216         unsigned int kernel = 0;
9217         int ret = -EINVAL;
9218
9219         orig = fstr = kstrdup(fstr, GFP_KERNEL);
9220         if (!fstr)
9221                 return -ENOMEM;
9222
9223         while ((start = strsep(&fstr, " ,\n")) != NULL) {
9224                 static const enum perf_addr_filter_action_t actions[] = {
9225                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9226                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
9227                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
9228                 };
9229                 ret = -EINVAL;
9230
9231                 if (!*start)
9232                         continue;
9233
9234                 /* filter definition begins */
9235                 if (state == IF_STATE_ACTION) {
9236                         filter = perf_addr_filter_new(event, filters);
9237                         if (!filter)
9238                                 goto fail;
9239                 }
9240
9241                 token = match_token(start, if_tokens, args);
9242                 switch (token) {
9243                 case IF_ACT_FILTER:
9244                 case IF_ACT_START:
9245                 case IF_ACT_STOP:
9246                         if (state != IF_STATE_ACTION)
9247                                 goto fail;
9248
9249                         filter->action = actions[token];
9250                         state = IF_STATE_SOURCE;
9251                         break;
9252
9253                 case IF_SRC_KERNELADDR:
9254                 case IF_SRC_KERNEL:
9255                         kernel = 1;
9256                         /* fall through */
9257
9258                 case IF_SRC_FILEADDR:
9259                 case IF_SRC_FILE:
9260                         if (state != IF_STATE_SOURCE)
9261                                 goto fail;
9262
9263                         *args[0].to = 0;
9264                         ret = kstrtoul(args[0].from, 0, &filter->offset);
9265                         if (ret)
9266                                 goto fail;
9267
9268                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9269                                 *args[1].to = 0;
9270                                 ret = kstrtoul(args[1].from, 0, &filter->size);
9271                                 if (ret)
9272                                         goto fail;
9273                         }
9274
9275                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9276                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
9277
9278                                 filename = match_strdup(&args[fpos]);
9279                                 if (!filename) {
9280                                         ret = -ENOMEM;
9281                                         goto fail;
9282                                 }
9283                         }
9284
9285                         state = IF_STATE_END;
9286                         break;
9287
9288                 default:
9289                         goto fail;
9290                 }
9291
9292                 /*
9293                  * Filter definition is fully parsed, validate and install it.
9294                  * Make sure that it doesn't contradict itself or the event's
9295                  * attribute.
9296                  */
9297                 if (state == IF_STATE_END) {
9298                         ret = -EINVAL;
9299                         if (kernel && event->attr.exclude_kernel)
9300                                 goto fail;
9301
9302                         /*
9303                          * ACTION "filter" must have a non-zero length region
9304                          * specified.
9305                          */
9306                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9307                             !filter->size)
9308                                 goto fail;
9309
9310                         if (!kernel) {
9311                                 if (!filename)
9312                                         goto fail;
9313
9314                                 /*
9315                                  * For now, we only support file-based filters
9316                                  * in per-task events; doing so for CPU-wide
9317                                  * events requires additional context switching
9318                                  * trickery, since same object code will be
9319                                  * mapped at different virtual addresses in
9320                                  * different processes.
9321                                  */
9322                                 ret = -EOPNOTSUPP;
9323                                 if (!event->ctx->task)
9324                                         goto fail_free_name;
9325
9326                                 /* look up the path and grab its inode */
9327                                 ret = kern_path(filename, LOOKUP_FOLLOW,
9328                                                 &filter->path);
9329                                 if (ret)
9330                                         goto fail_free_name;
9331
9332                                 kfree(filename);
9333                                 filename = NULL;
9334
9335                                 ret = -EINVAL;
9336                                 if (!filter->path.dentry ||
9337                                     !S_ISREG(d_inode(filter->path.dentry)
9338                                              ->i_mode))
9339                                         goto fail;
9340
9341                                 event->addr_filters.nr_file_filters++;
9342                         }
9343
9344                         /* ready to consume more filters */
9345                         state = IF_STATE_ACTION;
9346                         filter = NULL;
9347                 }
9348         }
9349
9350         if (state != IF_STATE_ACTION)
9351                 goto fail;
9352
9353         kfree(orig);
9354
9355         return 0;
9356
9357 fail_free_name:
9358         kfree(filename);
9359 fail:
9360         free_filters_list(filters);
9361         kfree(orig);
9362
9363         return ret;
9364 }
9365
9366 static int
9367 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9368 {
9369         LIST_HEAD(filters);
9370         int ret;
9371
9372         /*
9373          * Since this is called in perf_ioctl() path, we're already holding
9374          * ctx::mutex.
9375          */
9376         lockdep_assert_held(&event->ctx->mutex);
9377
9378         if (WARN_ON_ONCE(event->parent))
9379                 return -EINVAL;
9380
9381         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9382         if (ret)
9383                 goto fail_clear_files;
9384
9385         ret = event->pmu->addr_filters_validate(&filters);
9386         if (ret)
9387                 goto fail_free_filters;
9388
9389         /* remove existing filters, if any */
9390         perf_addr_filters_splice(event, &filters);
9391
9392         /* install new filters */
9393         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9394
9395         return ret;
9396
9397 fail_free_filters:
9398         free_filters_list(&filters);
9399
9400 fail_clear_files:
9401         event->addr_filters.nr_file_filters = 0;
9402
9403         return ret;
9404 }
9405
9406 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9407 {
9408         int ret = -EINVAL;
9409         char *filter_str;
9410
9411         filter_str = strndup_user(arg, PAGE_SIZE);
9412         if (IS_ERR(filter_str))
9413                 return PTR_ERR(filter_str);
9414
9415 #ifdef CONFIG_EVENT_TRACING
9416         if (perf_event_is_tracing(event)) {
9417                 struct perf_event_context *ctx = event->ctx;
9418
9419                 /*
9420                  * Beware, here be dragons!!
9421                  *
9422                  * the tracepoint muck will deadlock against ctx->mutex, but
9423                  * the tracepoint stuff does not actually need it. So
9424                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9425                  * already have a reference on ctx.
9426                  *
9427                  * This can result in event getting moved to a different ctx,
9428                  * but that does not affect the tracepoint state.
9429                  */
9430                 mutex_unlock(&ctx->mutex);
9431                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9432                 mutex_lock(&ctx->mutex);
9433         } else
9434 #endif
9435         if (has_addr_filter(event))
9436                 ret = perf_event_set_addr_filter(event, filter_str);
9437
9438         kfree(filter_str);
9439         return ret;
9440 }
9441
9442 /*
9443  * hrtimer based swevent callback
9444  */
9445
9446 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9447 {
9448         enum hrtimer_restart ret = HRTIMER_RESTART;
9449         struct perf_sample_data data;
9450         struct pt_regs *regs;
9451         struct perf_event *event;
9452         u64 period;
9453
9454         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9455
9456         if (event->state != PERF_EVENT_STATE_ACTIVE)
9457                 return HRTIMER_NORESTART;
9458
9459         event->pmu->read(event);
9460
9461         perf_sample_data_init(&data, 0, event->hw.last_period);
9462         regs = get_irq_regs();
9463
9464         if (regs && !perf_exclude_event(event, regs)) {
9465                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9466                         if (__perf_event_overflow(event, 1, &data, regs))
9467                                 ret = HRTIMER_NORESTART;
9468         }
9469
9470         period = max_t(u64, 10000, event->hw.sample_period);
9471         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9472
9473         return ret;
9474 }
9475
9476 static void perf_swevent_start_hrtimer(struct perf_event *event)
9477 {
9478         struct hw_perf_event *hwc = &event->hw;
9479         s64 period;
9480
9481         if (!is_sampling_event(event))
9482                 return;
9483
9484         period = local64_read(&hwc->period_left);
9485         if (period) {
9486                 if (period < 0)
9487                         period = 10000;
9488
9489                 local64_set(&hwc->period_left, 0);
9490         } else {
9491                 period = max_t(u64, 10000, hwc->sample_period);
9492         }
9493         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9494                       HRTIMER_MODE_REL_PINNED);
9495 }
9496
9497 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9498 {
9499         struct hw_perf_event *hwc = &event->hw;
9500
9501         if (is_sampling_event(event)) {
9502                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9503                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9504
9505                 hrtimer_cancel(&hwc->hrtimer);
9506         }
9507 }
9508
9509 static void perf_swevent_init_hrtimer(struct perf_event *event)
9510 {
9511         struct hw_perf_event *hwc = &event->hw;
9512
9513         if (!is_sampling_event(event))
9514                 return;
9515
9516         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9517         hwc->hrtimer.function = perf_swevent_hrtimer;
9518
9519         /*
9520          * Since hrtimers have a fixed rate, we can do a static freq->period
9521          * mapping and avoid the whole period adjust feedback stuff.
9522          */
9523         if (event->attr.freq) {
9524                 long freq = event->attr.sample_freq;
9525
9526                 event->attr.sample_period = NSEC_PER_SEC / freq;
9527                 hwc->sample_period = event->attr.sample_period;
9528                 local64_set(&hwc->period_left, hwc->sample_period);
9529                 hwc->last_period = hwc->sample_period;
9530                 event->attr.freq = 0;
9531         }
9532 }
9533
9534 /*
9535  * Software event: cpu wall time clock
9536  */
9537
9538 static void cpu_clock_event_update(struct perf_event *event)
9539 {
9540         s64 prev;
9541         u64 now;
9542
9543         now = local_clock();
9544         prev = local64_xchg(&event->hw.prev_count, now);
9545         local64_add(now - prev, &event->count);
9546 }
9547
9548 static void cpu_clock_event_start(struct perf_event *event, int flags)
9549 {
9550         local64_set(&event->hw.prev_count, local_clock());
9551         perf_swevent_start_hrtimer(event);
9552 }
9553
9554 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9555 {
9556         perf_swevent_cancel_hrtimer(event);
9557         cpu_clock_event_update(event);
9558 }
9559
9560 static int cpu_clock_event_add(struct perf_event *event, int flags)
9561 {
9562         if (flags & PERF_EF_START)
9563                 cpu_clock_event_start(event, flags);
9564         perf_event_update_userpage(event);
9565
9566         return 0;
9567 }
9568
9569 static void cpu_clock_event_del(struct perf_event *event, int flags)
9570 {
9571         cpu_clock_event_stop(event, flags);
9572 }
9573
9574 static void cpu_clock_event_read(struct perf_event *event)
9575 {
9576         cpu_clock_event_update(event);
9577 }
9578
9579 static int cpu_clock_event_init(struct perf_event *event)
9580 {
9581         if (event->attr.type != PERF_TYPE_SOFTWARE)
9582                 return -ENOENT;
9583
9584         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9585                 return -ENOENT;
9586
9587         /*
9588          * no branch sampling for software events
9589          */
9590         if (has_branch_stack(event))
9591                 return -EOPNOTSUPP;
9592
9593         perf_swevent_init_hrtimer(event);
9594
9595         return 0;
9596 }
9597
9598 static struct pmu perf_cpu_clock = {
9599         .task_ctx_nr    = perf_sw_context,
9600
9601         .capabilities   = PERF_PMU_CAP_NO_NMI,
9602
9603         .event_init     = cpu_clock_event_init,
9604         .add            = cpu_clock_event_add,
9605         .del            = cpu_clock_event_del,
9606         .start          = cpu_clock_event_start,
9607         .stop           = cpu_clock_event_stop,
9608         .read           = cpu_clock_event_read,
9609 };
9610
9611 /*
9612  * Software event: task time clock
9613  */
9614
9615 static void task_clock_event_update(struct perf_event *event, u64 now)
9616 {
9617         u64 prev;
9618         s64 delta;
9619
9620         prev = local64_xchg(&event->hw.prev_count, now);
9621         delta = now - prev;
9622         local64_add(delta, &event->count);
9623 }
9624
9625 static void task_clock_event_start(struct perf_event *event, int flags)
9626 {
9627         local64_set(&event->hw.prev_count, event->ctx->time);
9628         perf_swevent_start_hrtimer(event);
9629 }
9630
9631 static void task_clock_event_stop(struct perf_event *event, int flags)
9632 {
9633         perf_swevent_cancel_hrtimer(event);
9634         task_clock_event_update(event, event->ctx->time);
9635 }
9636
9637 static int task_clock_event_add(struct perf_event *event, int flags)
9638 {
9639         if (flags & PERF_EF_START)
9640                 task_clock_event_start(event, flags);
9641         perf_event_update_userpage(event);
9642
9643         return 0;
9644 }
9645
9646 static void task_clock_event_del(struct perf_event *event, int flags)
9647 {
9648         task_clock_event_stop(event, PERF_EF_UPDATE);
9649 }
9650
9651 static void task_clock_event_read(struct perf_event *event)
9652 {
9653         u64 now = perf_clock();
9654         u64 delta = now - event->ctx->timestamp;
9655         u64 time = event->ctx->time + delta;
9656
9657         task_clock_event_update(event, time);
9658 }
9659
9660 static int task_clock_event_init(struct perf_event *event)
9661 {
9662         if (event->attr.type != PERF_TYPE_SOFTWARE)
9663                 return -ENOENT;
9664
9665         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9666                 return -ENOENT;
9667
9668         /*
9669          * no branch sampling for software events
9670          */
9671         if (has_branch_stack(event))
9672                 return -EOPNOTSUPP;
9673
9674         perf_swevent_init_hrtimer(event);
9675
9676         return 0;
9677 }
9678
9679 static struct pmu perf_task_clock = {
9680         .task_ctx_nr    = perf_sw_context,
9681
9682         .capabilities   = PERF_PMU_CAP_NO_NMI,
9683
9684         .event_init     = task_clock_event_init,
9685         .add            = task_clock_event_add,
9686         .del            = task_clock_event_del,
9687         .start          = task_clock_event_start,
9688         .stop           = task_clock_event_stop,
9689         .read           = task_clock_event_read,
9690 };
9691
9692 static void perf_pmu_nop_void(struct pmu *pmu)
9693 {
9694 }
9695
9696 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9697 {
9698 }
9699
9700 static int perf_pmu_nop_int(struct pmu *pmu)
9701 {
9702         return 0;
9703 }
9704
9705 static int perf_event_nop_int(struct perf_event *event, u64 value)
9706 {
9707         return 0;
9708 }
9709
9710 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9711
9712 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9713 {
9714         __this_cpu_write(nop_txn_flags, flags);
9715
9716         if (flags & ~PERF_PMU_TXN_ADD)
9717                 return;
9718
9719         perf_pmu_disable(pmu);
9720 }
9721
9722 static int perf_pmu_commit_txn(struct pmu *pmu)
9723 {
9724         unsigned int flags = __this_cpu_read(nop_txn_flags);
9725
9726         __this_cpu_write(nop_txn_flags, 0);
9727
9728         if (flags & ~PERF_PMU_TXN_ADD)
9729                 return 0;
9730
9731         perf_pmu_enable(pmu);
9732         return 0;
9733 }
9734
9735 static void perf_pmu_cancel_txn(struct pmu *pmu)
9736 {
9737         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9738
9739         __this_cpu_write(nop_txn_flags, 0);
9740
9741         if (flags & ~PERF_PMU_TXN_ADD)
9742                 return;
9743
9744         perf_pmu_enable(pmu);
9745 }
9746
9747 static int perf_event_idx_default(struct perf_event *event)
9748 {
9749         return 0;
9750 }
9751
9752 /*
9753  * Ensures all contexts with the same task_ctx_nr have the same
9754  * pmu_cpu_context too.
9755  */
9756 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9757 {
9758         struct pmu *pmu;
9759
9760         if (ctxn < 0)
9761                 return NULL;
9762
9763         list_for_each_entry(pmu, &pmus, entry) {
9764                 if (pmu->task_ctx_nr == ctxn)
9765                         return pmu->pmu_cpu_context;
9766         }
9767
9768         return NULL;
9769 }
9770
9771 static void free_pmu_context(struct pmu *pmu)
9772 {
9773         /*
9774          * Static contexts such as perf_sw_context have a global lifetime
9775          * and may be shared between different PMUs. Avoid freeing them
9776          * when a single PMU is going away.
9777          */
9778         if (pmu->task_ctx_nr > perf_invalid_context)
9779                 return;
9780
9781         free_percpu(pmu->pmu_cpu_context);
9782 }
9783
9784 /*
9785  * Let userspace know that this PMU supports address range filtering:
9786  */
9787 static ssize_t nr_addr_filters_show(struct device *dev,
9788                                     struct device_attribute *attr,
9789                                     char *page)
9790 {
9791         struct pmu *pmu = dev_get_drvdata(dev);
9792
9793         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9794 }
9795 DEVICE_ATTR_RO(nr_addr_filters);
9796
9797 static struct idr pmu_idr;
9798
9799 static ssize_t
9800 type_show(struct device *dev, struct device_attribute *attr, char *page)
9801 {
9802         struct pmu *pmu = dev_get_drvdata(dev);
9803
9804         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9805 }
9806 static DEVICE_ATTR_RO(type);
9807
9808 static ssize_t
9809 perf_event_mux_interval_ms_show(struct device *dev,
9810                                 struct device_attribute *attr,
9811                                 char *page)
9812 {
9813         struct pmu *pmu = dev_get_drvdata(dev);
9814
9815         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9816 }
9817
9818 static DEFINE_MUTEX(mux_interval_mutex);
9819
9820 static ssize_t
9821 perf_event_mux_interval_ms_store(struct device *dev,
9822                                  struct device_attribute *attr,
9823                                  const char *buf, size_t count)
9824 {
9825         struct pmu *pmu = dev_get_drvdata(dev);
9826         int timer, cpu, ret;
9827
9828         ret = kstrtoint(buf, 0, &timer);
9829         if (ret)
9830                 return ret;
9831
9832         if (timer < 1)
9833                 return -EINVAL;
9834
9835         /* same value, noting to do */
9836         if (timer == pmu->hrtimer_interval_ms)
9837                 return count;
9838
9839         mutex_lock(&mux_interval_mutex);
9840         pmu->hrtimer_interval_ms = timer;
9841
9842         /* update all cpuctx for this PMU */
9843         cpus_read_lock();
9844         for_each_online_cpu(cpu) {
9845                 struct perf_cpu_context *cpuctx;
9846                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9847                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9848
9849                 cpu_function_call(cpu,
9850                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9851         }
9852         cpus_read_unlock();
9853         mutex_unlock(&mux_interval_mutex);
9854
9855         return count;
9856 }
9857 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9858
9859 static struct attribute *pmu_dev_attrs[] = {
9860         &dev_attr_type.attr,
9861         &dev_attr_perf_event_mux_interval_ms.attr,
9862         NULL,
9863 };
9864 ATTRIBUTE_GROUPS(pmu_dev);
9865
9866 static int pmu_bus_running;
9867 static struct bus_type pmu_bus = {
9868         .name           = "event_source",
9869         .dev_groups     = pmu_dev_groups,
9870 };
9871
9872 static void pmu_dev_release(struct device *dev)
9873 {
9874         kfree(dev);
9875 }
9876
9877 static int pmu_dev_alloc(struct pmu *pmu)
9878 {
9879         int ret = -ENOMEM;
9880
9881         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9882         if (!pmu->dev)
9883                 goto out;
9884
9885         pmu->dev->groups = pmu->attr_groups;
9886         device_initialize(pmu->dev);
9887         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9888         if (ret)
9889                 goto free_dev;
9890
9891         dev_set_drvdata(pmu->dev, pmu);
9892         pmu->dev->bus = &pmu_bus;
9893         pmu->dev->release = pmu_dev_release;
9894         ret = device_add(pmu->dev);
9895         if (ret)
9896                 goto free_dev;
9897
9898         /* For PMUs with address filters, throw in an extra attribute: */
9899         if (pmu->nr_addr_filters)
9900                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9901
9902         if (ret)
9903                 goto del_dev;
9904
9905         if (pmu->attr_update)
9906                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
9907
9908         if (ret)
9909                 goto del_dev;
9910
9911 out:
9912         return ret;
9913
9914 del_dev:
9915         device_del(pmu->dev);
9916
9917 free_dev:
9918         put_device(pmu->dev);
9919         goto out;
9920 }
9921
9922 static struct lock_class_key cpuctx_mutex;
9923 static struct lock_class_key cpuctx_lock;
9924
9925 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9926 {
9927         int cpu, ret;
9928
9929         mutex_lock(&pmus_lock);
9930         ret = -ENOMEM;
9931         pmu->pmu_disable_count = alloc_percpu(int);
9932         if (!pmu->pmu_disable_count)
9933                 goto unlock;
9934
9935         pmu->type = -1;
9936         if (!name)
9937                 goto skip_type;
9938         pmu->name = name;
9939
9940         if (type < 0) {
9941                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9942                 if (type < 0) {
9943                         ret = type;
9944                         goto free_pdc;
9945                 }
9946         }
9947         pmu->type = type;
9948
9949         if (pmu_bus_running) {
9950                 ret = pmu_dev_alloc(pmu);
9951                 if (ret)
9952                         goto free_idr;
9953         }
9954
9955 skip_type:
9956         if (pmu->task_ctx_nr == perf_hw_context) {
9957                 static int hw_context_taken = 0;
9958
9959                 /*
9960                  * Other than systems with heterogeneous CPUs, it never makes
9961                  * sense for two PMUs to share perf_hw_context. PMUs which are
9962                  * uncore must use perf_invalid_context.
9963                  */
9964                 if (WARN_ON_ONCE(hw_context_taken &&
9965                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9966                         pmu->task_ctx_nr = perf_invalid_context;
9967
9968                 hw_context_taken = 1;
9969         }
9970
9971         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9972         if (pmu->pmu_cpu_context)
9973                 goto got_cpu_context;
9974
9975         ret = -ENOMEM;
9976         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9977         if (!pmu->pmu_cpu_context)
9978                 goto free_dev;
9979
9980         for_each_possible_cpu(cpu) {
9981                 struct perf_cpu_context *cpuctx;
9982
9983                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9984                 __perf_event_init_context(&cpuctx->ctx);
9985                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9986                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9987                 cpuctx->ctx.pmu = pmu;
9988                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9989
9990                 __perf_mux_hrtimer_init(cpuctx, cpu);
9991         }
9992
9993 got_cpu_context:
9994         if (!pmu->start_txn) {
9995                 if (pmu->pmu_enable) {
9996                         /*
9997                          * If we have pmu_enable/pmu_disable calls, install
9998                          * transaction stubs that use that to try and batch
9999                          * hardware accesses.
10000                          */
10001                         pmu->start_txn  = perf_pmu_start_txn;
10002                         pmu->commit_txn = perf_pmu_commit_txn;
10003                         pmu->cancel_txn = perf_pmu_cancel_txn;
10004                 } else {
10005                         pmu->start_txn  = perf_pmu_nop_txn;
10006                         pmu->commit_txn = perf_pmu_nop_int;
10007                         pmu->cancel_txn = perf_pmu_nop_void;
10008                 }
10009         }
10010
10011         if (!pmu->pmu_enable) {
10012                 pmu->pmu_enable  = perf_pmu_nop_void;
10013                 pmu->pmu_disable = perf_pmu_nop_void;
10014         }
10015
10016         if (!pmu->check_period)
10017                 pmu->check_period = perf_event_nop_int;
10018
10019         if (!pmu->event_idx)
10020                 pmu->event_idx = perf_event_idx_default;
10021
10022         list_add_rcu(&pmu->entry, &pmus);
10023         atomic_set(&pmu->exclusive_cnt, 0);
10024         ret = 0;
10025 unlock:
10026         mutex_unlock(&pmus_lock);
10027
10028         return ret;
10029
10030 free_dev:
10031         device_del(pmu->dev);
10032         put_device(pmu->dev);
10033
10034 free_idr:
10035         if (pmu->type >= PERF_TYPE_MAX)
10036                 idr_remove(&pmu_idr, pmu->type);
10037
10038 free_pdc:
10039         free_percpu(pmu->pmu_disable_count);
10040         goto unlock;
10041 }
10042 EXPORT_SYMBOL_GPL(perf_pmu_register);
10043
10044 void perf_pmu_unregister(struct pmu *pmu)
10045 {
10046         mutex_lock(&pmus_lock);
10047         list_del_rcu(&pmu->entry);
10048
10049         /*
10050          * We dereference the pmu list under both SRCU and regular RCU, so
10051          * synchronize against both of those.
10052          */
10053         synchronize_srcu(&pmus_srcu);
10054         synchronize_rcu();
10055
10056         free_percpu(pmu->pmu_disable_count);
10057         if (pmu->type >= PERF_TYPE_MAX)
10058                 idr_remove(&pmu_idr, pmu->type);
10059         if (pmu_bus_running) {
10060                 if (pmu->nr_addr_filters)
10061                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10062                 device_del(pmu->dev);
10063                 put_device(pmu->dev);
10064         }
10065         free_pmu_context(pmu);
10066         mutex_unlock(&pmus_lock);
10067 }
10068 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10069
10070 static inline bool has_extended_regs(struct perf_event *event)
10071 {
10072         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10073                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10074 }
10075
10076 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10077 {
10078         struct perf_event_context *ctx = NULL;
10079         int ret;
10080
10081         if (!try_module_get(pmu->module))
10082                 return -ENODEV;
10083
10084         /*
10085          * A number of pmu->event_init() methods iterate the sibling_list to,
10086          * for example, validate if the group fits on the PMU. Therefore,
10087          * if this is a sibling event, acquire the ctx->mutex to protect
10088          * the sibling_list.
10089          */
10090         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10091                 /*
10092                  * This ctx->mutex can nest when we're called through
10093                  * inheritance. See the perf_event_ctx_lock_nested() comment.
10094                  */
10095                 ctx = perf_event_ctx_lock_nested(event->group_leader,
10096                                                  SINGLE_DEPTH_NESTING);
10097                 BUG_ON(!ctx);
10098         }
10099
10100         event->pmu = pmu;
10101         ret = pmu->event_init(event);
10102
10103         if (ctx)
10104                 perf_event_ctx_unlock(event->group_leader, ctx);
10105
10106         if (!ret) {
10107                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10108                     has_extended_regs(event))
10109                         ret = -EOPNOTSUPP;
10110
10111                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10112                     event_has_any_exclude_flag(event))
10113                         ret = -EINVAL;
10114
10115                 if (ret && event->destroy)
10116                         event->destroy(event);
10117         }
10118
10119         if (ret)
10120                 module_put(pmu->module);
10121
10122         return ret;
10123 }
10124
10125 static struct pmu *perf_init_event(struct perf_event *event)
10126 {
10127         struct pmu *pmu;
10128         int idx;
10129         int ret;
10130
10131         idx = srcu_read_lock(&pmus_srcu);
10132
10133         /* Try parent's PMU first: */
10134         if (event->parent && event->parent->pmu) {
10135                 pmu = event->parent->pmu;
10136                 ret = perf_try_init_event(pmu, event);
10137                 if (!ret)
10138                         goto unlock;
10139         }
10140
10141         rcu_read_lock();
10142         pmu = idr_find(&pmu_idr, event->attr.type);
10143         rcu_read_unlock();
10144         if (pmu) {
10145                 ret = perf_try_init_event(pmu, event);
10146                 if (ret)
10147                         pmu = ERR_PTR(ret);
10148                 goto unlock;
10149         }
10150
10151         list_for_each_entry_rcu(pmu, &pmus, entry) {
10152                 ret = perf_try_init_event(pmu, event);
10153                 if (!ret)
10154                         goto unlock;
10155
10156                 if (ret != -ENOENT) {
10157                         pmu = ERR_PTR(ret);
10158                         goto unlock;
10159                 }
10160         }
10161         pmu = ERR_PTR(-ENOENT);
10162 unlock:
10163         srcu_read_unlock(&pmus_srcu, idx);
10164
10165         return pmu;
10166 }
10167
10168 static void attach_sb_event(struct perf_event *event)
10169 {
10170         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10171
10172         raw_spin_lock(&pel->lock);
10173         list_add_rcu(&event->sb_list, &pel->list);
10174         raw_spin_unlock(&pel->lock);
10175 }
10176
10177 /*
10178  * We keep a list of all !task (and therefore per-cpu) events
10179  * that need to receive side-band records.
10180  *
10181  * This avoids having to scan all the various PMU per-cpu contexts
10182  * looking for them.
10183  */
10184 static void account_pmu_sb_event(struct perf_event *event)
10185 {
10186         if (is_sb_event(event))
10187                 attach_sb_event(event);
10188 }
10189
10190 static void account_event_cpu(struct perf_event *event, int cpu)
10191 {
10192         if (event->parent)
10193                 return;
10194
10195         if (is_cgroup_event(event))
10196                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10197 }
10198
10199 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10200 static void account_freq_event_nohz(void)
10201 {
10202 #ifdef CONFIG_NO_HZ_FULL
10203         /* Lock so we don't race with concurrent unaccount */
10204         spin_lock(&nr_freq_lock);
10205         if (atomic_inc_return(&nr_freq_events) == 1)
10206                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10207         spin_unlock(&nr_freq_lock);
10208 #endif
10209 }
10210
10211 static void account_freq_event(void)
10212 {
10213         if (tick_nohz_full_enabled())
10214                 account_freq_event_nohz();
10215         else
10216                 atomic_inc(&nr_freq_events);
10217 }
10218
10219
10220 static void account_event(struct perf_event *event)
10221 {
10222         bool inc = false;
10223
10224         if (event->parent)
10225                 return;
10226
10227         if (event->attach_state & PERF_ATTACH_TASK)
10228                 inc = true;
10229         if (event->attr.mmap || event->attr.mmap_data)
10230                 atomic_inc(&nr_mmap_events);
10231         if (event->attr.comm)
10232                 atomic_inc(&nr_comm_events);
10233         if (event->attr.namespaces)
10234                 atomic_inc(&nr_namespaces_events);
10235         if (event->attr.task)
10236                 atomic_inc(&nr_task_events);
10237         if (event->attr.freq)
10238                 account_freq_event();
10239         if (event->attr.context_switch) {
10240                 atomic_inc(&nr_switch_events);
10241                 inc = true;
10242         }
10243         if (has_branch_stack(event))
10244                 inc = true;
10245         if (is_cgroup_event(event))
10246                 inc = true;
10247         if (event->attr.ksymbol)
10248                 atomic_inc(&nr_ksymbol_events);
10249         if (event->attr.bpf_event)
10250                 atomic_inc(&nr_bpf_events);
10251
10252         if (inc) {
10253                 /*
10254                  * We need the mutex here because static_branch_enable()
10255                  * must complete *before* the perf_sched_count increment
10256                  * becomes visible.
10257                  */
10258                 if (atomic_inc_not_zero(&perf_sched_count))
10259                         goto enabled;
10260
10261                 mutex_lock(&perf_sched_mutex);
10262                 if (!atomic_read(&perf_sched_count)) {
10263                         static_branch_enable(&perf_sched_events);
10264                         /*
10265                          * Guarantee that all CPUs observe they key change and
10266                          * call the perf scheduling hooks before proceeding to
10267                          * install events that need them.
10268                          */
10269                         synchronize_rcu();
10270                 }
10271                 /*
10272                  * Now that we have waited for the sync_sched(), allow further
10273                  * increments to by-pass the mutex.
10274                  */
10275                 atomic_inc(&perf_sched_count);
10276                 mutex_unlock(&perf_sched_mutex);
10277         }
10278 enabled:
10279
10280         account_event_cpu(event, event->cpu);
10281
10282         account_pmu_sb_event(event);
10283 }
10284
10285 /*
10286  * Allocate and initialize an event structure
10287  */
10288 static struct perf_event *
10289 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10290                  struct task_struct *task,
10291                  struct perf_event *group_leader,
10292                  struct perf_event *parent_event,
10293                  perf_overflow_handler_t overflow_handler,
10294                  void *context, int cgroup_fd)
10295 {
10296         struct pmu *pmu;
10297         struct perf_event *event;
10298         struct hw_perf_event *hwc;
10299         long err = -EINVAL;
10300
10301         if ((unsigned)cpu >= nr_cpu_ids) {
10302                 if (!task || cpu != -1)
10303                         return ERR_PTR(-EINVAL);
10304         }
10305
10306         event = kzalloc(sizeof(*event), GFP_KERNEL);
10307         if (!event)
10308                 return ERR_PTR(-ENOMEM);
10309
10310         /*
10311          * Single events are their own group leaders, with an
10312          * empty sibling list:
10313          */
10314         if (!group_leader)
10315                 group_leader = event;
10316
10317         mutex_init(&event->child_mutex);
10318         INIT_LIST_HEAD(&event->child_list);
10319
10320         INIT_LIST_HEAD(&event->event_entry);
10321         INIT_LIST_HEAD(&event->sibling_list);
10322         INIT_LIST_HEAD(&event->active_list);
10323         init_event_group(event);
10324         INIT_LIST_HEAD(&event->rb_entry);
10325         INIT_LIST_HEAD(&event->active_entry);
10326         INIT_LIST_HEAD(&event->addr_filters.list);
10327         INIT_HLIST_NODE(&event->hlist_entry);
10328
10329
10330         init_waitqueue_head(&event->waitq);
10331         event->pending_disable = -1;
10332         init_irq_work(&event->pending, perf_pending_event);
10333
10334         mutex_init(&event->mmap_mutex);
10335         raw_spin_lock_init(&event->addr_filters.lock);
10336
10337         atomic_long_set(&event->refcount, 1);
10338         event->cpu              = cpu;
10339         event->attr             = *attr;
10340         event->group_leader     = group_leader;
10341         event->pmu              = NULL;
10342         event->oncpu            = -1;
10343
10344         event->parent           = parent_event;
10345
10346         event->ns               = get_pid_ns(task_active_pid_ns(current));
10347         event->id               = atomic64_inc_return(&perf_event_id);
10348
10349         event->state            = PERF_EVENT_STATE_INACTIVE;
10350
10351         if (task) {
10352                 event->attach_state = PERF_ATTACH_TASK;
10353                 /*
10354                  * XXX pmu::event_init needs to know what task to account to
10355                  * and we cannot use the ctx information because we need the
10356                  * pmu before we get a ctx.
10357                  */
10358                 get_task_struct(task);
10359                 event->hw.target = task;
10360         }
10361
10362         event->clock = &local_clock;
10363         if (parent_event)
10364                 event->clock = parent_event->clock;
10365
10366         if (!overflow_handler && parent_event) {
10367                 overflow_handler = parent_event->overflow_handler;
10368                 context = parent_event->overflow_handler_context;
10369 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10370                 if (overflow_handler == bpf_overflow_handler) {
10371                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10372
10373                         if (IS_ERR(prog)) {
10374                                 err = PTR_ERR(prog);
10375                                 goto err_ns;
10376                         }
10377                         event->prog = prog;
10378                         event->orig_overflow_handler =
10379                                 parent_event->orig_overflow_handler;
10380                 }
10381 #endif
10382         }
10383
10384         if (overflow_handler) {
10385                 event->overflow_handler = overflow_handler;
10386                 event->overflow_handler_context = context;
10387         } else if (is_write_backward(event)){
10388                 event->overflow_handler = perf_event_output_backward;
10389                 event->overflow_handler_context = NULL;
10390         } else {
10391                 event->overflow_handler = perf_event_output_forward;
10392                 event->overflow_handler_context = NULL;
10393         }
10394
10395         perf_event__state_init(event);
10396
10397         pmu = NULL;
10398
10399         hwc = &event->hw;
10400         hwc->sample_period = attr->sample_period;
10401         if (attr->freq && attr->sample_freq)
10402                 hwc->sample_period = 1;
10403         hwc->last_period = hwc->sample_period;
10404
10405         local64_set(&hwc->period_left, hwc->sample_period);
10406
10407         /*
10408          * We currently do not support PERF_SAMPLE_READ on inherited events.
10409          * See perf_output_read().
10410          */
10411         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10412                 goto err_ns;
10413
10414         if (!has_branch_stack(event))
10415                 event->attr.branch_sample_type = 0;
10416
10417         if (cgroup_fd != -1) {
10418                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10419                 if (err)
10420                         goto err_ns;
10421         }
10422
10423         pmu = perf_init_event(event);
10424         if (IS_ERR(pmu)) {
10425                 err = PTR_ERR(pmu);
10426                 goto err_ns;
10427         }
10428
10429         err = exclusive_event_init(event);
10430         if (err)
10431                 goto err_pmu;
10432
10433         if (has_addr_filter(event)) {
10434                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10435                                                     sizeof(struct perf_addr_filter_range),
10436                                                     GFP_KERNEL);
10437                 if (!event->addr_filter_ranges) {
10438                         err = -ENOMEM;
10439                         goto err_per_task;
10440                 }
10441
10442                 /*
10443                  * Clone the parent's vma offsets: they are valid until exec()
10444                  * even if the mm is not shared with the parent.
10445                  */
10446                 if (event->parent) {
10447                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10448
10449                         raw_spin_lock_irq(&ifh->lock);
10450                         memcpy(event->addr_filter_ranges,
10451                                event->parent->addr_filter_ranges,
10452                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10453                         raw_spin_unlock_irq(&ifh->lock);
10454                 }
10455
10456                 /* force hw sync on the address filters */
10457                 event->addr_filters_gen = 1;
10458         }
10459
10460         if (!event->parent) {
10461                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10462                         err = get_callchain_buffers(attr->sample_max_stack);
10463                         if (err)
10464                                 goto err_addr_filters;
10465                 }
10466         }
10467
10468         /* symmetric to unaccount_event() in _free_event() */
10469         account_event(event);
10470
10471         return event;
10472
10473 err_addr_filters:
10474         kfree(event->addr_filter_ranges);
10475
10476 err_per_task:
10477         exclusive_event_destroy(event);
10478
10479 err_pmu:
10480         if (event->destroy)
10481                 event->destroy(event);
10482         module_put(pmu->module);
10483 err_ns:
10484         if (is_cgroup_event(event))
10485                 perf_detach_cgroup(event);
10486         if (event->ns)
10487                 put_pid_ns(event->ns);
10488         if (event->hw.target)
10489                 put_task_struct(event->hw.target);
10490         kfree(event);
10491
10492         return ERR_PTR(err);
10493 }
10494
10495 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10496                           struct perf_event_attr *attr)
10497 {
10498         u32 size;
10499         int ret;
10500
10501         if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
10502                 return -EFAULT;
10503
10504         /*
10505          * zero the full structure, so that a short copy will be nice.
10506          */
10507         memset(attr, 0, sizeof(*attr));
10508
10509         ret = get_user(size, &uattr->size);
10510         if (ret)
10511                 return ret;
10512
10513         if (size > PAGE_SIZE)   /* silly large */
10514                 goto err_size;
10515
10516         if (!size)              /* abi compat */
10517                 size = PERF_ATTR_SIZE_VER0;
10518
10519         if (size < PERF_ATTR_SIZE_VER0)
10520                 goto err_size;
10521
10522         /*
10523          * If we're handed a bigger struct than we know of,
10524          * ensure all the unknown bits are 0 - i.e. new
10525          * user-space does not rely on any kernel feature
10526          * extensions we dont know about yet.
10527          */
10528         if (size > sizeof(*attr)) {
10529                 unsigned char __user *addr;
10530                 unsigned char __user *end;
10531                 unsigned char val;
10532
10533                 addr = (void __user *)uattr + sizeof(*attr);
10534                 end  = (void __user *)uattr + size;
10535
10536                 for (; addr < end; addr++) {
10537                         ret = get_user(val, addr);
10538                         if (ret)
10539                                 return ret;
10540                         if (val)
10541                                 goto err_size;
10542                 }
10543                 size = sizeof(*attr);
10544         }
10545
10546         ret = copy_from_user(attr, uattr, size);
10547         if (ret)
10548                 return -EFAULT;
10549
10550         attr->size = size;
10551
10552         if (attr->__reserved_1)
10553                 return -EINVAL;
10554
10555         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10556                 return -EINVAL;
10557
10558         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10559                 return -EINVAL;
10560
10561         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10562                 u64 mask = attr->branch_sample_type;
10563
10564                 /* only using defined bits */
10565                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10566                         return -EINVAL;
10567
10568                 /* at least one branch bit must be set */
10569                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10570                         return -EINVAL;
10571
10572                 /* propagate priv level, when not set for branch */
10573                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10574
10575                         /* exclude_kernel checked on syscall entry */
10576                         if (!attr->exclude_kernel)
10577                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10578
10579                         if (!attr->exclude_user)
10580                                 mask |= PERF_SAMPLE_BRANCH_USER;
10581
10582                         if (!attr->exclude_hv)
10583                                 mask |= PERF_SAMPLE_BRANCH_HV;
10584                         /*
10585                          * adjust user setting (for HW filter setup)
10586                          */
10587                         attr->branch_sample_type = mask;
10588                 }
10589                 /* privileged levels capture (kernel, hv): check permissions */
10590                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10591                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10592                         return -EACCES;
10593         }
10594
10595         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10596                 ret = perf_reg_validate(attr->sample_regs_user);
10597                 if (ret)
10598                         return ret;
10599         }
10600
10601         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10602                 if (!arch_perf_have_user_stack_dump())
10603                         return -ENOSYS;
10604
10605                 /*
10606                  * We have __u32 type for the size, but so far
10607                  * we can only use __u16 as maximum due to the
10608                  * __u16 sample size limit.
10609                  */
10610                 if (attr->sample_stack_user >= USHRT_MAX)
10611                         return -EINVAL;
10612                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10613                         return -EINVAL;
10614         }
10615
10616         if (!attr->sample_max_stack)
10617                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10618
10619         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10620                 ret = perf_reg_validate(attr->sample_regs_intr);
10621 out:
10622         return ret;
10623
10624 err_size:
10625         put_user(sizeof(*attr), &uattr->size);
10626         ret = -E2BIG;
10627         goto out;
10628 }
10629
10630 static int
10631 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10632 {
10633         struct ring_buffer *rb = NULL;
10634         int ret = -EINVAL;
10635
10636         if (!output_event)
10637                 goto set;
10638
10639         /* don't allow circular references */
10640         if (event == output_event)
10641                 goto out;
10642
10643         /*
10644          * Don't allow cross-cpu buffers
10645          */
10646         if (output_event->cpu != event->cpu)
10647                 goto out;
10648
10649         /*
10650          * If its not a per-cpu rb, it must be the same task.
10651          */
10652         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10653                 goto out;
10654
10655         /*
10656          * Mixing clocks in the same buffer is trouble you don't need.
10657          */
10658         if (output_event->clock != event->clock)
10659                 goto out;
10660
10661         /*
10662          * Either writing ring buffer from beginning or from end.
10663          * Mixing is not allowed.
10664          */
10665         if (is_write_backward(output_event) != is_write_backward(event))
10666                 goto out;
10667
10668         /*
10669          * If both events generate aux data, they must be on the same PMU
10670          */
10671         if (has_aux(event) && has_aux(output_event) &&
10672             event->pmu != output_event->pmu)
10673                 goto out;
10674
10675 set:
10676         mutex_lock(&event->mmap_mutex);
10677         /* Can't redirect output if we've got an active mmap() */
10678         if (atomic_read(&event->mmap_count))
10679                 goto unlock;
10680
10681         if (output_event) {
10682                 /* get the rb we want to redirect to */
10683                 rb = ring_buffer_get(output_event);
10684                 if (!rb)
10685                         goto unlock;
10686         }
10687
10688         ring_buffer_attach(event, rb);
10689
10690         ret = 0;
10691 unlock:
10692         mutex_unlock(&event->mmap_mutex);
10693
10694 out:
10695         return ret;
10696 }
10697
10698 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10699 {
10700         if (b < a)
10701                 swap(a, b);
10702
10703         mutex_lock(a);
10704         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10705 }
10706
10707 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10708 {
10709         bool nmi_safe = false;
10710
10711         switch (clk_id) {
10712         case CLOCK_MONOTONIC:
10713                 event->clock = &ktime_get_mono_fast_ns;
10714                 nmi_safe = true;
10715                 break;
10716
10717         case CLOCK_MONOTONIC_RAW:
10718                 event->clock = &ktime_get_raw_fast_ns;
10719                 nmi_safe = true;
10720                 break;
10721
10722         case CLOCK_REALTIME:
10723                 event->clock = &ktime_get_real_ns;
10724                 break;
10725
10726         case CLOCK_BOOTTIME:
10727                 event->clock = &ktime_get_boottime_ns;
10728                 break;
10729
10730         case CLOCK_TAI:
10731                 event->clock = &ktime_get_clocktai_ns;
10732                 break;
10733
10734         default:
10735                 return -EINVAL;
10736         }
10737
10738         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10739                 return -EINVAL;
10740
10741         return 0;
10742 }
10743
10744 /*
10745  * Variation on perf_event_ctx_lock_nested(), except we take two context
10746  * mutexes.
10747  */
10748 static struct perf_event_context *
10749 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10750                              struct perf_event_context *ctx)
10751 {
10752         struct perf_event_context *gctx;
10753
10754 again:
10755         rcu_read_lock();
10756         gctx = READ_ONCE(group_leader->ctx);
10757         if (!refcount_inc_not_zero(&gctx->refcount)) {
10758                 rcu_read_unlock();
10759                 goto again;
10760         }
10761         rcu_read_unlock();
10762
10763         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10764
10765         if (group_leader->ctx != gctx) {
10766                 mutex_unlock(&ctx->mutex);
10767                 mutex_unlock(&gctx->mutex);
10768                 put_ctx(gctx);
10769                 goto again;
10770         }
10771
10772         return gctx;
10773 }
10774
10775 /**
10776  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10777  *
10778  * @attr_uptr:  event_id type attributes for monitoring/sampling
10779  * @pid:                target pid
10780  * @cpu:                target cpu
10781  * @group_fd:           group leader event fd
10782  */
10783 SYSCALL_DEFINE5(perf_event_open,
10784                 struct perf_event_attr __user *, attr_uptr,
10785                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10786 {
10787         struct perf_event *group_leader = NULL, *output_event = NULL;
10788         struct perf_event *event, *sibling;
10789         struct perf_event_attr attr;
10790         struct perf_event_context *ctx, *uninitialized_var(gctx);
10791         struct file *event_file = NULL;
10792         struct fd group = {NULL, 0};
10793         struct task_struct *task = NULL;
10794         struct pmu *pmu;
10795         int event_fd;
10796         int move_group = 0;
10797         int err;
10798         int f_flags = O_RDWR;
10799         int cgroup_fd = -1;
10800
10801         /* for future expandability... */
10802         if (flags & ~PERF_FLAG_ALL)
10803                 return -EINVAL;
10804
10805         err = perf_copy_attr(attr_uptr, &attr);
10806         if (err)
10807                 return err;
10808
10809         if (!attr.exclude_kernel) {
10810                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10811                         return -EACCES;
10812         }
10813
10814         if (attr.namespaces) {
10815                 if (!capable(CAP_SYS_ADMIN))
10816                         return -EACCES;
10817         }
10818
10819         if (attr.freq) {
10820                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10821                         return -EINVAL;
10822         } else {
10823                 if (attr.sample_period & (1ULL << 63))
10824                         return -EINVAL;
10825         }
10826
10827         /* Only privileged users can get physical addresses */
10828         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10829             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10830                 return -EACCES;
10831
10832         /*
10833          * In cgroup mode, the pid argument is used to pass the fd
10834          * opened to the cgroup directory in cgroupfs. The cpu argument
10835          * designates the cpu on which to monitor threads from that
10836          * cgroup.
10837          */
10838         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10839                 return -EINVAL;
10840
10841         if (flags & PERF_FLAG_FD_CLOEXEC)
10842                 f_flags |= O_CLOEXEC;
10843
10844         event_fd = get_unused_fd_flags(f_flags);
10845         if (event_fd < 0)
10846                 return event_fd;
10847
10848         if (group_fd != -1) {
10849                 err = perf_fget_light(group_fd, &group);
10850                 if (err)
10851                         goto err_fd;
10852                 group_leader = group.file->private_data;
10853                 if (flags & PERF_FLAG_FD_OUTPUT)
10854                         output_event = group_leader;
10855                 if (flags & PERF_FLAG_FD_NO_GROUP)
10856                         group_leader = NULL;
10857         }
10858
10859         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10860                 task = find_lively_task_by_vpid(pid);
10861                 if (IS_ERR(task)) {
10862                         err = PTR_ERR(task);
10863                         goto err_group_fd;
10864                 }
10865         }
10866
10867         if (task && group_leader &&
10868             group_leader->attr.inherit != attr.inherit) {
10869                 err = -EINVAL;
10870                 goto err_task;
10871         }
10872
10873         if (task) {
10874                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10875                 if (err)
10876                         goto err_task;
10877
10878                 /*
10879                  * Reuse ptrace permission checks for now.
10880                  *
10881                  * We must hold cred_guard_mutex across this and any potential
10882                  * perf_install_in_context() call for this new event to
10883                  * serialize against exec() altering our credentials (and the
10884                  * perf_event_exit_task() that could imply).
10885                  */
10886                 err = -EACCES;
10887                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10888                         goto err_cred;
10889         }
10890
10891         if (flags & PERF_FLAG_PID_CGROUP)
10892                 cgroup_fd = pid;
10893
10894         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10895                                  NULL, NULL, cgroup_fd);
10896         if (IS_ERR(event)) {
10897                 err = PTR_ERR(event);
10898                 goto err_cred;
10899         }
10900
10901         if (is_sampling_event(event)) {
10902                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10903                         err = -EOPNOTSUPP;
10904                         goto err_alloc;
10905                 }
10906         }
10907
10908         /*
10909          * Special case software events and allow them to be part of
10910          * any hardware group.
10911          */
10912         pmu = event->pmu;
10913
10914         if (attr.use_clockid) {
10915                 err = perf_event_set_clock(event, attr.clockid);
10916                 if (err)
10917                         goto err_alloc;
10918         }
10919
10920         if (pmu->task_ctx_nr == perf_sw_context)
10921                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10922
10923         if (group_leader) {
10924                 if (is_software_event(event) &&
10925                     !in_software_context(group_leader)) {
10926                         /*
10927                          * If the event is a sw event, but the group_leader
10928                          * is on hw context.
10929                          *
10930                          * Allow the addition of software events to hw
10931                          * groups, this is safe because software events
10932                          * never fail to schedule.
10933                          */
10934                         pmu = group_leader->ctx->pmu;
10935                 } else if (!is_software_event(event) &&
10936                            is_software_event(group_leader) &&
10937                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10938                         /*
10939                          * In case the group is a pure software group, and we
10940                          * try to add a hardware event, move the whole group to
10941                          * the hardware context.
10942                          */
10943                         move_group = 1;
10944                 }
10945         }
10946
10947         /*
10948          * Get the target context (task or percpu):
10949          */
10950         ctx = find_get_context(pmu, task, event);
10951         if (IS_ERR(ctx)) {
10952                 err = PTR_ERR(ctx);
10953                 goto err_alloc;
10954         }
10955
10956         /*
10957          * Look up the group leader (we will attach this event to it):
10958          */
10959         if (group_leader) {
10960                 err = -EINVAL;
10961
10962                 /*
10963                  * Do not allow a recursive hierarchy (this new sibling
10964                  * becoming part of another group-sibling):
10965                  */
10966                 if (group_leader->group_leader != group_leader)
10967                         goto err_context;
10968
10969                 /* All events in a group should have the same clock */
10970                 if (group_leader->clock != event->clock)
10971                         goto err_context;
10972
10973                 /*
10974                  * Make sure we're both events for the same CPU;
10975                  * grouping events for different CPUs is broken; since
10976                  * you can never concurrently schedule them anyhow.
10977                  */
10978                 if (group_leader->cpu != event->cpu)
10979                         goto err_context;
10980
10981                 /*
10982                  * Make sure we're both on the same task, or both
10983                  * per-CPU events.
10984                  */
10985                 if (group_leader->ctx->task != ctx->task)
10986                         goto err_context;
10987
10988                 /*
10989                  * Do not allow to attach to a group in a different task
10990                  * or CPU context. If we're moving SW events, we'll fix
10991                  * this up later, so allow that.
10992                  */
10993                 if (!move_group && group_leader->ctx != ctx)
10994                         goto err_context;
10995
10996                 /*
10997                  * Only a group leader can be exclusive or pinned
10998                  */
10999                 if (attr.exclusive || attr.pinned)
11000                         goto err_context;
11001         }
11002
11003         if (output_event) {
11004                 err = perf_event_set_output(event, output_event);
11005                 if (err)
11006                         goto err_context;
11007         }
11008
11009         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11010                                         f_flags);
11011         if (IS_ERR(event_file)) {
11012                 err = PTR_ERR(event_file);
11013                 event_file = NULL;
11014                 goto err_context;
11015         }
11016
11017         if (move_group) {
11018                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11019
11020                 if (gctx->task == TASK_TOMBSTONE) {
11021                         err = -ESRCH;
11022                         goto err_locked;
11023                 }
11024
11025                 /*
11026                  * Check if we raced against another sys_perf_event_open() call
11027                  * moving the software group underneath us.
11028                  */
11029                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11030                         /*
11031                          * If someone moved the group out from under us, check
11032                          * if this new event wound up on the same ctx, if so
11033                          * its the regular !move_group case, otherwise fail.
11034                          */
11035                         if (gctx != ctx) {
11036                                 err = -EINVAL;
11037                                 goto err_locked;
11038                         } else {
11039                                 perf_event_ctx_unlock(group_leader, gctx);
11040                                 move_group = 0;
11041                         }
11042                 }
11043
11044                 /*
11045                  * Failure to create exclusive events returns -EBUSY.
11046                  */
11047                 err = -EBUSY;
11048                 if (!exclusive_event_installable(group_leader, ctx))
11049                         goto err_locked;
11050
11051                 for_each_sibling_event(sibling, group_leader) {
11052                         if (!exclusive_event_installable(sibling, ctx))
11053                                 goto err_locked;
11054                 }
11055         } else {
11056                 mutex_lock(&ctx->mutex);
11057         }
11058
11059         if (ctx->task == TASK_TOMBSTONE) {
11060                 err = -ESRCH;
11061                 goto err_locked;
11062         }
11063
11064         if (!perf_event_validate_size(event)) {
11065                 err = -E2BIG;
11066                 goto err_locked;
11067         }
11068
11069         if (!task) {
11070                 /*
11071                  * Check if the @cpu we're creating an event for is online.
11072                  *
11073                  * We use the perf_cpu_context::ctx::mutex to serialize against
11074                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11075                  */
11076                 struct perf_cpu_context *cpuctx =
11077                         container_of(ctx, struct perf_cpu_context, ctx);
11078
11079                 if (!cpuctx->online) {
11080                         err = -ENODEV;
11081                         goto err_locked;
11082                 }
11083         }
11084
11085
11086         /*
11087          * Must be under the same ctx::mutex as perf_install_in_context(),
11088          * because we need to serialize with concurrent event creation.
11089          */
11090         if (!exclusive_event_installable(event, ctx)) {
11091                 err = -EBUSY;
11092                 goto err_locked;
11093         }
11094
11095         WARN_ON_ONCE(ctx->parent_ctx);
11096
11097         /*
11098          * This is the point on no return; we cannot fail hereafter. This is
11099          * where we start modifying current state.
11100          */
11101
11102         if (move_group) {
11103                 /*
11104                  * See perf_event_ctx_lock() for comments on the details
11105                  * of swizzling perf_event::ctx.
11106                  */
11107                 perf_remove_from_context(group_leader, 0);
11108                 put_ctx(gctx);
11109
11110                 for_each_sibling_event(sibling, group_leader) {
11111                         perf_remove_from_context(sibling, 0);
11112                         put_ctx(gctx);
11113                 }
11114
11115                 /*
11116                  * Wait for everybody to stop referencing the events through
11117                  * the old lists, before installing it on new lists.
11118                  */
11119                 synchronize_rcu();
11120
11121                 /*
11122                  * Install the group siblings before the group leader.
11123                  *
11124                  * Because a group leader will try and install the entire group
11125                  * (through the sibling list, which is still in-tact), we can
11126                  * end up with siblings installed in the wrong context.
11127                  *
11128                  * By installing siblings first we NO-OP because they're not
11129                  * reachable through the group lists.
11130                  */
11131                 for_each_sibling_event(sibling, group_leader) {
11132                         perf_event__state_init(sibling);
11133                         perf_install_in_context(ctx, sibling, sibling->cpu);
11134                         get_ctx(ctx);
11135                 }
11136
11137                 /*
11138                  * Removing from the context ends up with disabled
11139                  * event. What we want here is event in the initial
11140                  * startup state, ready to be add into new context.
11141                  */
11142                 perf_event__state_init(group_leader);
11143                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11144                 get_ctx(ctx);
11145         }
11146
11147         /*
11148          * Precalculate sample_data sizes; do while holding ctx::mutex such
11149          * that we're serialized against further additions and before
11150          * perf_install_in_context() which is the point the event is active and
11151          * can use these values.
11152          */
11153         perf_event__header_size(event);
11154         perf_event__id_header_size(event);
11155
11156         event->owner = current;
11157
11158         perf_install_in_context(ctx, event, event->cpu);
11159         perf_unpin_context(ctx);
11160
11161         if (move_group)
11162                 perf_event_ctx_unlock(group_leader, gctx);
11163         mutex_unlock(&ctx->mutex);
11164
11165         if (task) {
11166                 mutex_unlock(&task->signal->cred_guard_mutex);
11167                 put_task_struct(task);
11168         }
11169
11170         mutex_lock(&current->perf_event_mutex);
11171         list_add_tail(&event->owner_entry, &current->perf_event_list);
11172         mutex_unlock(&current->perf_event_mutex);
11173
11174         /*
11175          * Drop the reference on the group_event after placing the
11176          * new event on the sibling_list. This ensures destruction
11177          * of the group leader will find the pointer to itself in
11178          * perf_group_detach().
11179          */
11180         fdput(group);
11181         fd_install(event_fd, event_file);
11182         return event_fd;
11183
11184 err_locked:
11185         if (move_group)
11186                 perf_event_ctx_unlock(group_leader, gctx);
11187         mutex_unlock(&ctx->mutex);
11188 /* err_file: */
11189         fput(event_file);
11190 err_context:
11191         perf_unpin_context(ctx);
11192         put_ctx(ctx);
11193 err_alloc:
11194         /*
11195          * If event_file is set, the fput() above will have called ->release()
11196          * and that will take care of freeing the event.
11197          */
11198         if (!event_file)
11199                 free_event(event);
11200 err_cred:
11201         if (task)
11202                 mutex_unlock(&task->signal->cred_guard_mutex);
11203 err_task:
11204         if (task)
11205                 put_task_struct(task);
11206 err_group_fd:
11207         fdput(group);
11208 err_fd:
11209         put_unused_fd(event_fd);
11210         return err;
11211 }
11212
11213 /**
11214  * perf_event_create_kernel_counter
11215  *
11216  * @attr: attributes of the counter to create
11217  * @cpu: cpu in which the counter is bound
11218  * @task: task to profile (NULL for percpu)
11219  */
11220 struct perf_event *
11221 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11222                                  struct task_struct *task,
11223                                  perf_overflow_handler_t overflow_handler,
11224                                  void *context)
11225 {
11226         struct perf_event_context *ctx;
11227         struct perf_event *event;
11228         int err;
11229
11230         /*
11231          * Get the target context (task or percpu):
11232          */
11233
11234         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11235                                  overflow_handler, context, -1);
11236         if (IS_ERR(event)) {
11237                 err = PTR_ERR(event);
11238                 goto err;
11239         }
11240
11241         /* Mark owner so we could distinguish it from user events. */
11242         event->owner = TASK_TOMBSTONE;
11243
11244         ctx = find_get_context(event->pmu, task, event);
11245         if (IS_ERR(ctx)) {
11246                 err = PTR_ERR(ctx);
11247                 goto err_free;
11248         }
11249
11250         WARN_ON_ONCE(ctx->parent_ctx);
11251         mutex_lock(&ctx->mutex);
11252         if (ctx->task == TASK_TOMBSTONE) {
11253                 err = -ESRCH;
11254                 goto err_unlock;
11255         }
11256
11257         if (!task) {
11258                 /*
11259                  * Check if the @cpu we're creating an event for is online.
11260                  *
11261                  * We use the perf_cpu_context::ctx::mutex to serialize against
11262                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11263                  */
11264                 struct perf_cpu_context *cpuctx =
11265                         container_of(ctx, struct perf_cpu_context, ctx);
11266                 if (!cpuctx->online) {
11267                         err = -ENODEV;
11268                         goto err_unlock;
11269                 }
11270         }
11271
11272         if (!exclusive_event_installable(event, ctx)) {
11273                 err = -EBUSY;
11274                 goto err_unlock;
11275         }
11276
11277         perf_install_in_context(ctx, event, event->cpu);
11278         perf_unpin_context(ctx);
11279         mutex_unlock(&ctx->mutex);
11280
11281         return event;
11282
11283 err_unlock:
11284         mutex_unlock(&ctx->mutex);
11285         perf_unpin_context(ctx);
11286         put_ctx(ctx);
11287 err_free:
11288         free_event(event);
11289 err:
11290         return ERR_PTR(err);
11291 }
11292 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11293
11294 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11295 {
11296         struct perf_event_context *src_ctx;
11297         struct perf_event_context *dst_ctx;
11298         struct perf_event *event, *tmp;
11299         LIST_HEAD(events);
11300
11301         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11302         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11303
11304         /*
11305          * See perf_event_ctx_lock() for comments on the details
11306          * of swizzling perf_event::ctx.
11307          */
11308         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11309         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11310                                  event_entry) {
11311                 perf_remove_from_context(event, 0);
11312                 unaccount_event_cpu(event, src_cpu);
11313                 put_ctx(src_ctx);
11314                 list_add(&event->migrate_entry, &events);
11315         }
11316
11317         /*
11318          * Wait for the events to quiesce before re-instating them.
11319          */
11320         synchronize_rcu();
11321
11322         /*
11323          * Re-instate events in 2 passes.
11324          *
11325          * Skip over group leaders and only install siblings on this first
11326          * pass, siblings will not get enabled without a leader, however a
11327          * leader will enable its siblings, even if those are still on the old
11328          * context.
11329          */
11330         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11331                 if (event->group_leader == event)
11332                         continue;
11333
11334                 list_del(&event->migrate_entry);
11335                 if (event->state >= PERF_EVENT_STATE_OFF)
11336                         event->state = PERF_EVENT_STATE_INACTIVE;
11337                 account_event_cpu(event, dst_cpu);
11338                 perf_install_in_context(dst_ctx, event, dst_cpu);
11339                 get_ctx(dst_ctx);
11340         }
11341
11342         /*
11343          * Once all the siblings are setup properly, install the group leaders
11344          * to make it go.
11345          */
11346         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11347                 list_del(&event->migrate_entry);
11348                 if (event->state >= PERF_EVENT_STATE_OFF)
11349                         event->state = PERF_EVENT_STATE_INACTIVE;
11350                 account_event_cpu(event, dst_cpu);
11351                 perf_install_in_context(dst_ctx, event, dst_cpu);
11352                 get_ctx(dst_ctx);
11353         }
11354         mutex_unlock(&dst_ctx->mutex);
11355         mutex_unlock(&src_ctx->mutex);
11356 }
11357 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11358
11359 static void sync_child_event(struct perf_event *child_event,
11360                                struct task_struct *child)
11361 {
11362         struct perf_event *parent_event = child_event->parent;
11363         u64 child_val;
11364
11365         if (child_event->attr.inherit_stat)
11366                 perf_event_read_event(child_event, child);
11367
11368         child_val = perf_event_count(child_event);
11369
11370         /*
11371          * Add back the child's count to the parent's count:
11372          */
11373         atomic64_add(child_val, &parent_event->child_count);
11374         atomic64_add(child_event->total_time_enabled,
11375                      &parent_event->child_total_time_enabled);
11376         atomic64_add(child_event->total_time_running,
11377                      &parent_event->child_total_time_running);
11378 }
11379
11380 static void
11381 perf_event_exit_event(struct perf_event *child_event,
11382                       struct perf_event_context *child_ctx,
11383                       struct task_struct *child)
11384 {
11385         struct perf_event *parent_event = child_event->parent;
11386
11387         /*
11388          * Do not destroy the 'original' grouping; because of the context
11389          * switch optimization the original events could've ended up in a
11390          * random child task.
11391          *
11392          * If we were to destroy the original group, all group related
11393          * operations would cease to function properly after this random
11394          * child dies.
11395          *
11396          * Do destroy all inherited groups, we don't care about those
11397          * and being thorough is better.
11398          */
11399         raw_spin_lock_irq(&child_ctx->lock);
11400         WARN_ON_ONCE(child_ctx->is_active);
11401
11402         if (parent_event)
11403                 perf_group_detach(child_event);
11404         list_del_event(child_event, child_ctx);
11405         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11406         raw_spin_unlock_irq(&child_ctx->lock);
11407
11408         /*
11409          * Parent events are governed by their filedesc, retain them.
11410          */
11411         if (!parent_event) {
11412                 perf_event_wakeup(child_event);
11413                 return;
11414         }
11415         /*
11416          * Child events can be cleaned up.
11417          */
11418
11419         sync_child_event(child_event, child);
11420
11421         /*
11422          * Remove this event from the parent's list
11423          */
11424         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11425         mutex_lock(&parent_event->child_mutex);
11426         list_del_init(&child_event->child_list);
11427         mutex_unlock(&parent_event->child_mutex);
11428
11429         /*
11430          * Kick perf_poll() for is_event_hup().
11431          */
11432         perf_event_wakeup(parent_event);
11433         free_event(child_event);
11434         put_event(parent_event);
11435 }
11436
11437 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11438 {
11439         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11440         struct perf_event *child_event, *next;
11441
11442         WARN_ON_ONCE(child != current);
11443
11444         child_ctx = perf_pin_task_context(child, ctxn);
11445         if (!child_ctx)
11446                 return;
11447
11448         /*
11449          * In order to reduce the amount of tricky in ctx tear-down, we hold
11450          * ctx::mutex over the entire thing. This serializes against almost
11451          * everything that wants to access the ctx.
11452          *
11453          * The exception is sys_perf_event_open() /
11454          * perf_event_create_kernel_count() which does find_get_context()
11455          * without ctx::mutex (it cannot because of the move_group double mutex
11456          * lock thing). See the comments in perf_install_in_context().
11457          */
11458         mutex_lock(&child_ctx->mutex);
11459
11460         /*
11461          * In a single ctx::lock section, de-schedule the events and detach the
11462          * context from the task such that we cannot ever get it scheduled back
11463          * in.
11464          */
11465         raw_spin_lock_irq(&child_ctx->lock);
11466         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11467
11468         /*
11469          * Now that the context is inactive, destroy the task <-> ctx relation
11470          * and mark the context dead.
11471          */
11472         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11473         put_ctx(child_ctx); /* cannot be last */
11474         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11475         put_task_struct(current); /* cannot be last */
11476
11477         clone_ctx = unclone_ctx(child_ctx);
11478         raw_spin_unlock_irq(&child_ctx->lock);
11479
11480         if (clone_ctx)
11481                 put_ctx(clone_ctx);
11482
11483         /*
11484          * Report the task dead after unscheduling the events so that we
11485          * won't get any samples after PERF_RECORD_EXIT. We can however still
11486          * get a few PERF_RECORD_READ events.
11487          */
11488         perf_event_task(child, child_ctx, 0);
11489
11490         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11491                 perf_event_exit_event(child_event, child_ctx, child);
11492
11493         mutex_unlock(&child_ctx->mutex);
11494
11495         put_ctx(child_ctx);
11496 }
11497
11498 /*
11499  * When a child task exits, feed back event values to parent events.
11500  *
11501  * Can be called with cred_guard_mutex held when called from
11502  * install_exec_creds().
11503  */
11504 void perf_event_exit_task(struct task_struct *child)
11505 {
11506         struct perf_event *event, *tmp;
11507         int ctxn;
11508
11509         mutex_lock(&child->perf_event_mutex);
11510         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11511                                  owner_entry) {
11512                 list_del_init(&event->owner_entry);
11513
11514                 /*
11515                  * Ensure the list deletion is visible before we clear
11516                  * the owner, closes a race against perf_release() where
11517                  * we need to serialize on the owner->perf_event_mutex.
11518                  */
11519                 smp_store_release(&event->owner, NULL);
11520         }
11521         mutex_unlock(&child->perf_event_mutex);
11522
11523         for_each_task_context_nr(ctxn)
11524                 perf_event_exit_task_context(child, ctxn);
11525
11526         /*
11527          * The perf_event_exit_task_context calls perf_event_task
11528          * with child's task_ctx, which generates EXIT events for
11529          * child contexts and sets child->perf_event_ctxp[] to NULL.
11530          * At this point we need to send EXIT events to cpu contexts.
11531          */
11532         perf_event_task(child, NULL, 0);
11533 }
11534
11535 static void perf_free_event(struct perf_event *event,
11536                             struct perf_event_context *ctx)
11537 {
11538         struct perf_event *parent = event->parent;
11539
11540         if (WARN_ON_ONCE(!parent))
11541                 return;
11542
11543         mutex_lock(&parent->child_mutex);
11544         list_del_init(&event->child_list);
11545         mutex_unlock(&parent->child_mutex);
11546
11547         put_event(parent);
11548
11549         raw_spin_lock_irq(&ctx->lock);
11550         perf_group_detach(event);
11551         list_del_event(event, ctx);
11552         raw_spin_unlock_irq(&ctx->lock);
11553         free_event(event);
11554 }
11555
11556 /*
11557  * Free a context as created by inheritance by perf_event_init_task() below,
11558  * used by fork() in case of fail.
11559  *
11560  * Even though the task has never lived, the context and events have been
11561  * exposed through the child_list, so we must take care tearing it all down.
11562  */
11563 void perf_event_free_task(struct task_struct *task)
11564 {
11565         struct perf_event_context *ctx;
11566         struct perf_event *event, *tmp;
11567         int ctxn;
11568
11569         for_each_task_context_nr(ctxn) {
11570                 ctx = task->perf_event_ctxp[ctxn];
11571                 if (!ctx)
11572                         continue;
11573
11574                 mutex_lock(&ctx->mutex);
11575                 raw_spin_lock_irq(&ctx->lock);
11576                 /*
11577                  * Destroy the task <-> ctx relation and mark the context dead.
11578                  *
11579                  * This is important because even though the task hasn't been
11580                  * exposed yet the context has been (through child_list).
11581                  */
11582                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11583                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11584                 put_task_struct(task); /* cannot be last */
11585                 raw_spin_unlock_irq(&ctx->lock);
11586
11587                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11588                         perf_free_event(event, ctx);
11589
11590                 mutex_unlock(&ctx->mutex);
11591
11592                 /*
11593                  * perf_event_release_kernel() could've stolen some of our
11594                  * child events and still have them on its free_list. In that
11595                  * case we must wait for these events to have been freed (in
11596                  * particular all their references to this task must've been
11597                  * dropped).
11598                  *
11599                  * Without this copy_process() will unconditionally free this
11600                  * task (irrespective of its reference count) and
11601                  * _free_event()'s put_task_struct(event->hw.target) will be a
11602                  * use-after-free.
11603                  *
11604                  * Wait for all events to drop their context reference.
11605                  */
11606                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
11607                 put_ctx(ctx); /* must be last */
11608         }
11609 }
11610
11611 void perf_event_delayed_put(struct task_struct *task)
11612 {
11613         int ctxn;
11614
11615         for_each_task_context_nr(ctxn)
11616                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11617 }
11618
11619 struct file *perf_event_get(unsigned int fd)
11620 {
11621         struct file *file = fget(fd);
11622         if (!file)
11623                 return ERR_PTR(-EBADF);
11624
11625         if (file->f_op != &perf_fops) {
11626                 fput(file);
11627                 return ERR_PTR(-EBADF);
11628         }
11629
11630         return file;
11631 }
11632
11633 const struct perf_event *perf_get_event(struct file *file)
11634 {
11635         if (file->f_op != &perf_fops)
11636                 return ERR_PTR(-EINVAL);
11637
11638         return file->private_data;
11639 }
11640
11641 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11642 {
11643         if (!event)
11644                 return ERR_PTR(-EINVAL);
11645
11646         return &event->attr;
11647 }
11648
11649 /*
11650  * Inherit an event from parent task to child task.
11651  *
11652  * Returns:
11653  *  - valid pointer on success
11654  *  - NULL for orphaned events
11655  *  - IS_ERR() on error
11656  */
11657 static struct perf_event *
11658 inherit_event(struct perf_event *parent_event,
11659               struct task_struct *parent,
11660               struct perf_event_context *parent_ctx,
11661               struct task_struct *child,
11662               struct perf_event *group_leader,
11663               struct perf_event_context *child_ctx)
11664 {
11665         enum perf_event_state parent_state = parent_event->state;
11666         struct perf_event *child_event;
11667         unsigned long flags;
11668
11669         /*
11670          * Instead of creating recursive hierarchies of events,
11671          * we link inherited events back to the original parent,
11672          * which has a filp for sure, which we use as the reference
11673          * count:
11674          */
11675         if (parent_event->parent)
11676                 parent_event = parent_event->parent;
11677
11678         child_event = perf_event_alloc(&parent_event->attr,
11679                                            parent_event->cpu,
11680                                            child,
11681                                            group_leader, parent_event,
11682                                            NULL, NULL, -1);
11683         if (IS_ERR(child_event))
11684                 return child_event;
11685
11686
11687         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11688             !child_ctx->task_ctx_data) {
11689                 struct pmu *pmu = child_event->pmu;
11690
11691                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11692                                                    GFP_KERNEL);
11693                 if (!child_ctx->task_ctx_data) {
11694                         free_event(child_event);
11695                         return NULL;
11696                 }
11697         }
11698
11699         /*
11700          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11701          * must be under the same lock in order to serialize against
11702          * perf_event_release_kernel(), such that either we must observe
11703          * is_orphaned_event() or they will observe us on the child_list.
11704          */
11705         mutex_lock(&parent_event->child_mutex);
11706         if (is_orphaned_event(parent_event) ||
11707             !atomic_long_inc_not_zero(&parent_event->refcount)) {
11708                 mutex_unlock(&parent_event->child_mutex);
11709                 /* task_ctx_data is freed with child_ctx */
11710                 free_event(child_event);
11711                 return NULL;
11712         }
11713
11714         get_ctx(child_ctx);
11715
11716         /*
11717          * Make the child state follow the state of the parent event,
11718          * not its attr.disabled bit.  We hold the parent's mutex,
11719          * so we won't race with perf_event_{en, dis}able_family.
11720          */
11721         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11722                 child_event->state = PERF_EVENT_STATE_INACTIVE;
11723         else
11724                 child_event->state = PERF_EVENT_STATE_OFF;
11725
11726         if (parent_event->attr.freq) {
11727                 u64 sample_period = parent_event->hw.sample_period;
11728                 struct hw_perf_event *hwc = &child_event->hw;
11729
11730                 hwc->sample_period = sample_period;
11731                 hwc->last_period   = sample_period;
11732
11733                 local64_set(&hwc->period_left, sample_period);
11734         }
11735
11736         child_event->ctx = child_ctx;
11737         child_event->overflow_handler = parent_event->overflow_handler;
11738         child_event->overflow_handler_context
11739                 = parent_event->overflow_handler_context;
11740
11741         /*
11742          * Precalculate sample_data sizes
11743          */
11744         perf_event__header_size(child_event);
11745         perf_event__id_header_size(child_event);
11746
11747         /*
11748          * Link it up in the child's context:
11749          */
11750         raw_spin_lock_irqsave(&child_ctx->lock, flags);
11751         add_event_to_ctx(child_event, child_ctx);
11752         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11753
11754         /*
11755          * Link this into the parent event's child list
11756          */
11757         list_add_tail(&child_event->child_list, &parent_event->child_list);
11758         mutex_unlock(&parent_event->child_mutex);
11759
11760         return child_event;
11761 }
11762
11763 /*
11764  * Inherits an event group.
11765  *
11766  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11767  * This matches with perf_event_release_kernel() removing all child events.
11768  *
11769  * Returns:
11770  *  - 0 on success
11771  *  - <0 on error
11772  */
11773 static int inherit_group(struct perf_event *parent_event,
11774               struct task_struct *parent,
11775               struct perf_event_context *parent_ctx,
11776               struct task_struct *child,
11777               struct perf_event_context *child_ctx)
11778 {
11779         struct perf_event *leader;
11780         struct perf_event *sub;
11781         struct perf_event *child_ctr;
11782
11783         leader = inherit_event(parent_event, parent, parent_ctx,
11784                                  child, NULL, child_ctx);
11785         if (IS_ERR(leader))
11786                 return PTR_ERR(leader);
11787         /*
11788          * @leader can be NULL here because of is_orphaned_event(). In this
11789          * case inherit_event() will create individual events, similar to what
11790          * perf_group_detach() would do anyway.
11791          */
11792         for_each_sibling_event(sub, parent_event) {
11793                 child_ctr = inherit_event(sub, parent, parent_ctx,
11794                                             child, leader, child_ctx);
11795                 if (IS_ERR(child_ctr))
11796                         return PTR_ERR(child_ctr);
11797         }
11798         return 0;
11799 }
11800
11801 /*
11802  * Creates the child task context and tries to inherit the event-group.
11803  *
11804  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11805  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11806  * consistent with perf_event_release_kernel() removing all child events.
11807  *
11808  * Returns:
11809  *  - 0 on success
11810  *  - <0 on error
11811  */
11812 static int
11813 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11814                    struct perf_event_context *parent_ctx,
11815                    struct task_struct *child, int ctxn,
11816                    int *inherited_all)
11817 {
11818         int ret;
11819         struct perf_event_context *child_ctx;
11820
11821         if (!event->attr.inherit) {
11822                 *inherited_all = 0;
11823                 return 0;
11824         }
11825
11826         child_ctx = child->perf_event_ctxp[ctxn];
11827         if (!child_ctx) {
11828                 /*
11829                  * This is executed from the parent task context, so
11830                  * inherit events that have been marked for cloning.
11831                  * First allocate and initialize a context for the
11832                  * child.
11833                  */
11834                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11835                 if (!child_ctx)
11836                         return -ENOMEM;
11837
11838                 child->perf_event_ctxp[ctxn] = child_ctx;
11839         }
11840
11841         ret = inherit_group(event, parent, parent_ctx,
11842                             child, child_ctx);
11843
11844         if (ret)
11845                 *inherited_all = 0;
11846
11847         return ret;
11848 }
11849
11850 /*
11851  * Initialize the perf_event context in task_struct
11852  */
11853 static int perf_event_init_context(struct task_struct *child, int ctxn)
11854 {
11855         struct perf_event_context *child_ctx, *parent_ctx;
11856         struct perf_event_context *cloned_ctx;
11857         struct perf_event *event;
11858         struct task_struct *parent = current;
11859         int inherited_all = 1;
11860         unsigned long flags;
11861         int ret = 0;
11862
11863         if (likely(!parent->perf_event_ctxp[ctxn]))
11864                 return 0;
11865
11866         /*
11867          * If the parent's context is a clone, pin it so it won't get
11868          * swapped under us.
11869          */
11870         parent_ctx = perf_pin_task_context(parent, ctxn);
11871         if (!parent_ctx)
11872                 return 0;
11873
11874         /*
11875          * No need to check if parent_ctx != NULL here; since we saw
11876          * it non-NULL earlier, the only reason for it to become NULL
11877          * is if we exit, and since we're currently in the middle of
11878          * a fork we can't be exiting at the same time.
11879          */
11880
11881         /*
11882          * Lock the parent list. No need to lock the child - not PID
11883          * hashed yet and not running, so nobody can access it.
11884          */
11885         mutex_lock(&parent_ctx->mutex);
11886
11887         /*
11888          * We dont have to disable NMIs - we are only looking at
11889          * the list, not manipulating it:
11890          */
11891         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11892                 ret = inherit_task_group(event, parent, parent_ctx,
11893                                          child, ctxn, &inherited_all);
11894                 if (ret)
11895                         goto out_unlock;
11896         }
11897
11898         /*
11899          * We can't hold ctx->lock when iterating the ->flexible_group list due
11900          * to allocations, but we need to prevent rotation because
11901          * rotate_ctx() will change the list from interrupt context.
11902          */
11903         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11904         parent_ctx->rotate_disable = 1;
11905         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11906
11907         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11908                 ret = inherit_task_group(event, parent, parent_ctx,
11909                                          child, ctxn, &inherited_all);
11910                 if (ret)
11911                         goto out_unlock;
11912         }
11913
11914         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11915         parent_ctx->rotate_disable = 0;
11916
11917         child_ctx = child->perf_event_ctxp[ctxn];
11918
11919         if (child_ctx && inherited_all) {
11920                 /*
11921                  * Mark the child context as a clone of the parent
11922                  * context, or of whatever the parent is a clone of.
11923                  *
11924                  * Note that if the parent is a clone, the holding of
11925                  * parent_ctx->lock avoids it from being uncloned.
11926                  */
11927                 cloned_ctx = parent_ctx->parent_ctx;
11928                 if (cloned_ctx) {
11929                         child_ctx->parent_ctx = cloned_ctx;
11930                         child_ctx->parent_gen = parent_ctx->parent_gen;
11931                 } else {
11932                         child_ctx->parent_ctx = parent_ctx;
11933                         child_ctx->parent_gen = parent_ctx->generation;
11934                 }
11935                 get_ctx(child_ctx->parent_ctx);
11936         }
11937
11938         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11939 out_unlock:
11940         mutex_unlock(&parent_ctx->mutex);
11941
11942         perf_unpin_context(parent_ctx);
11943         put_ctx(parent_ctx);
11944
11945         return ret;
11946 }
11947
11948 /*
11949  * Initialize the perf_event context in task_struct
11950  */
11951 int perf_event_init_task(struct task_struct *child)
11952 {
11953         int ctxn, ret;
11954
11955         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11956         mutex_init(&child->perf_event_mutex);
11957         INIT_LIST_HEAD(&child->perf_event_list);
11958
11959         for_each_task_context_nr(ctxn) {
11960                 ret = perf_event_init_context(child, ctxn);
11961                 if (ret) {
11962                         perf_event_free_task(child);
11963                         return ret;
11964                 }
11965         }
11966
11967         return 0;
11968 }
11969
11970 static void __init perf_event_init_all_cpus(void)
11971 {
11972         struct swevent_htable *swhash;
11973         int cpu;
11974
11975         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11976
11977         for_each_possible_cpu(cpu) {
11978                 swhash = &per_cpu(swevent_htable, cpu);
11979                 mutex_init(&swhash->hlist_mutex);
11980                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11981
11982                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11983                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11984
11985 #ifdef CONFIG_CGROUP_PERF
11986                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11987 #endif
11988                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11989         }
11990 }
11991
11992 static void perf_swevent_init_cpu(unsigned int cpu)
11993 {
11994         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11995
11996         mutex_lock(&swhash->hlist_mutex);
11997         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11998                 struct swevent_hlist *hlist;
11999
12000                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12001                 WARN_ON(!hlist);
12002                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
12003         }
12004         mutex_unlock(&swhash->hlist_mutex);
12005 }
12006
12007 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12008 static void __perf_event_exit_context(void *__info)
12009 {
12010         struct perf_event_context *ctx = __info;
12011         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12012         struct perf_event *event;
12013
12014         raw_spin_lock(&ctx->lock);
12015         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12016         list_for_each_entry(event, &ctx->event_list, event_entry)
12017                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12018         raw_spin_unlock(&ctx->lock);
12019 }
12020
12021 static void perf_event_exit_cpu_context(int cpu)
12022 {
12023         struct perf_cpu_context *cpuctx;
12024         struct perf_event_context *ctx;
12025         struct pmu *pmu;
12026
12027         mutex_lock(&pmus_lock);
12028         list_for_each_entry(pmu, &pmus, entry) {
12029                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12030                 ctx = &cpuctx->ctx;
12031
12032                 mutex_lock(&ctx->mutex);
12033                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12034                 cpuctx->online = 0;
12035                 mutex_unlock(&ctx->mutex);
12036         }
12037         cpumask_clear_cpu(cpu, perf_online_mask);
12038         mutex_unlock(&pmus_lock);
12039 }
12040 #else
12041
12042 static void perf_event_exit_cpu_context(int cpu) { }
12043
12044 #endif
12045
12046 int perf_event_init_cpu(unsigned int cpu)
12047 {
12048         struct perf_cpu_context *cpuctx;
12049         struct perf_event_context *ctx;
12050         struct pmu *pmu;
12051
12052         perf_swevent_init_cpu(cpu);
12053
12054         mutex_lock(&pmus_lock);
12055         cpumask_set_cpu(cpu, perf_online_mask);
12056         list_for_each_entry(pmu, &pmus, entry) {
12057                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12058                 ctx = &cpuctx->ctx;
12059
12060                 mutex_lock(&ctx->mutex);
12061                 cpuctx->online = 1;
12062                 mutex_unlock(&ctx->mutex);
12063         }
12064         mutex_unlock(&pmus_lock);
12065
12066         return 0;
12067 }
12068
12069 int perf_event_exit_cpu(unsigned int cpu)
12070 {
12071         perf_event_exit_cpu_context(cpu);
12072         return 0;
12073 }
12074
12075 static int
12076 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12077 {
12078         int cpu;
12079
12080         for_each_online_cpu(cpu)
12081                 perf_event_exit_cpu(cpu);
12082
12083         return NOTIFY_OK;
12084 }
12085
12086 /*
12087  * Run the perf reboot notifier at the very last possible moment so that
12088  * the generic watchdog code runs as long as possible.
12089  */
12090 static struct notifier_block perf_reboot_notifier = {
12091         .notifier_call = perf_reboot,
12092         .priority = INT_MIN,
12093 };
12094
12095 void __init perf_event_init(void)
12096 {
12097         int ret;
12098
12099         idr_init(&pmu_idr);
12100
12101         perf_event_init_all_cpus();
12102         init_srcu_struct(&pmus_srcu);
12103         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12104         perf_pmu_register(&perf_cpu_clock, NULL, -1);
12105         perf_pmu_register(&perf_task_clock, NULL, -1);
12106         perf_tp_register();
12107         perf_event_init_cpu(smp_processor_id());
12108         register_reboot_notifier(&perf_reboot_notifier);
12109
12110         ret = init_hw_breakpoint();
12111         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12112
12113         /*
12114          * Build time assertion that we keep the data_head at the intended
12115          * location.  IOW, validation we got the __reserved[] size right.
12116          */
12117         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12118                      != 1024);
12119 }
12120
12121 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12122                               char *page)
12123 {
12124         struct perf_pmu_events_attr *pmu_attr =
12125                 container_of(attr, struct perf_pmu_events_attr, attr);
12126
12127         if (pmu_attr->event_str)
12128                 return sprintf(page, "%s\n", pmu_attr->event_str);
12129
12130         return 0;
12131 }
12132 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12133
12134 static int __init perf_event_sysfs_init(void)
12135 {
12136         struct pmu *pmu;
12137         int ret;
12138
12139         mutex_lock(&pmus_lock);
12140
12141         ret = bus_register(&pmu_bus);
12142         if (ret)
12143                 goto unlock;
12144
12145         list_for_each_entry(pmu, &pmus, entry) {
12146                 if (!pmu->name || pmu->type < 0)
12147                         continue;
12148
12149                 ret = pmu_dev_alloc(pmu);
12150                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12151         }
12152         pmu_bus_running = 1;
12153         ret = 0;
12154
12155 unlock:
12156         mutex_unlock(&pmus_lock);
12157
12158         return ret;
12159 }
12160 device_initcall(perf_event_sysfs_init);
12161
12162 #ifdef CONFIG_CGROUP_PERF
12163 static struct cgroup_subsys_state *
12164 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12165 {
12166         struct perf_cgroup *jc;
12167
12168         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12169         if (!jc)
12170                 return ERR_PTR(-ENOMEM);
12171
12172         jc->info = alloc_percpu(struct perf_cgroup_info);
12173         if (!jc->info) {
12174                 kfree(jc);
12175                 return ERR_PTR(-ENOMEM);
12176         }
12177
12178         return &jc->css;
12179 }
12180
12181 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12182 {
12183         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12184
12185         free_percpu(jc->info);
12186         kfree(jc);
12187 }
12188
12189 static int __perf_cgroup_move(void *info)
12190 {
12191         struct task_struct *task = info;
12192         rcu_read_lock();
12193         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12194         rcu_read_unlock();
12195         return 0;
12196 }
12197
12198 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12199 {
12200         struct task_struct *task;
12201         struct cgroup_subsys_state *css;
12202
12203         cgroup_taskset_for_each(task, css, tset)
12204                 task_function_call(task, __perf_cgroup_move, task);
12205 }
12206
12207 struct cgroup_subsys perf_event_cgrp_subsys = {
12208         .css_alloc      = perf_cgroup_css_alloc,
12209         .css_free       = perf_cgroup_css_free,
12210         .attach         = perf_cgroup_attach,
12211         /*
12212          * Implicitly enable on dfl hierarchy so that perf events can
12213          * always be filtered by cgroup2 path as long as perf_event
12214          * controller is not mounted on a legacy hierarchy.
12215          */
12216         .implicit_on_dfl = true,
12217         .threaded       = true,
12218 };
12219 #endif /* CONFIG_CGROUP_PERF */