Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51
52 #include "internal.h"
53
54 #include <asm/irq_regs.h>
55
56 typedef int (*remote_function_f)(void *);
57
58 struct remote_function_call {
59         struct task_struct      *p;
60         remote_function_f       func;
61         void                    *info;
62         int                     ret;
63 };
64
65 static void remote_function(void *data)
66 {
67         struct remote_function_call *tfc = data;
68         struct task_struct *p = tfc->p;
69
70         if (p) {
71                 /* -EAGAIN */
72                 if (task_cpu(p) != smp_processor_id())
73                         return;
74
75                 /*
76                  * Now that we're on right CPU with IRQs disabled, we can test
77                  * if we hit the right task without races.
78                  */
79
80                 tfc->ret = -ESRCH; /* No such (running) process */
81                 if (p != current)
82                         return;
83         }
84
85         tfc->ret = tfc->func(tfc->info);
86 }
87
88 /**
89  * task_function_call - call a function on the cpu on which a task runs
90  * @p:          the task to evaluate
91  * @func:       the function to be called
92  * @info:       the function call argument
93  *
94  * Calls the function @func when the task is currently running. This might
95  * be on the current CPU, which just calls the function directly
96  *
97  * returns: @func return value, or
98  *          -ESRCH  - when the process isn't running
99  *          -EAGAIN - when the process moved away
100  */
101 static int
102 task_function_call(struct task_struct *p, remote_function_f func, void *info)
103 {
104         struct remote_function_call data = {
105                 .p      = p,
106                 .func   = func,
107                 .info   = info,
108                 .ret    = -EAGAIN,
109         };
110         int ret;
111
112         do {
113                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
114                 if (!ret)
115                         ret = data.ret;
116         } while (ret == -EAGAIN);
117
118         return ret;
119 }
120
121 /**
122  * cpu_function_call - call a function on the cpu
123  * @func:       the function to be called
124  * @info:       the function call argument
125  *
126  * Calls the function @func on the remote cpu.
127  *
128  * returns: @func return value or -ENXIO when the cpu is offline
129  */
130 static int cpu_function_call(int cpu, remote_function_f func, void *info)
131 {
132         struct remote_function_call data = {
133                 .p      = NULL,
134                 .func   = func,
135                 .info   = info,
136                 .ret    = -ENXIO, /* No such CPU */
137         };
138
139         smp_call_function_single(cpu, remote_function, &data, 1);
140
141         return data.ret;
142 }
143
144 static inline struct perf_cpu_context *
145 __get_cpu_context(struct perf_event_context *ctx)
146 {
147         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
148 }
149
150 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
151                           struct perf_event_context *ctx)
152 {
153         raw_spin_lock(&cpuctx->ctx.lock);
154         if (ctx)
155                 raw_spin_lock(&ctx->lock);
156 }
157
158 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
159                             struct perf_event_context *ctx)
160 {
161         if (ctx)
162                 raw_spin_unlock(&ctx->lock);
163         raw_spin_unlock(&cpuctx->ctx.lock);
164 }
165
166 #define TASK_TOMBSTONE ((void *)-1L)
167
168 static bool is_kernel_event(struct perf_event *event)
169 {
170         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
171 }
172
173 /*
174  * On task ctx scheduling...
175  *
176  * When !ctx->nr_events a task context will not be scheduled. This means
177  * we can disable the scheduler hooks (for performance) without leaving
178  * pending task ctx state.
179  *
180  * This however results in two special cases:
181  *
182  *  - removing the last event from a task ctx; this is relatively straight
183  *    forward and is done in __perf_remove_from_context.
184  *
185  *  - adding the first event to a task ctx; this is tricky because we cannot
186  *    rely on ctx->is_active and therefore cannot use event_function_call().
187  *    See perf_install_in_context().
188  *
189  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
190  */
191
192 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
193                         struct perf_event_context *, void *);
194
195 struct event_function_struct {
196         struct perf_event *event;
197         event_f func;
198         void *data;
199 };
200
201 static int event_function(void *info)
202 {
203         struct event_function_struct *efs = info;
204         struct perf_event *event = efs->event;
205         struct perf_event_context *ctx = event->ctx;
206         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
207         struct perf_event_context *task_ctx = cpuctx->task_ctx;
208         int ret = 0;
209
210         WARN_ON_ONCE(!irqs_disabled());
211
212         perf_ctx_lock(cpuctx, task_ctx);
213         /*
214          * Since we do the IPI call without holding ctx->lock things can have
215          * changed, double check we hit the task we set out to hit.
216          */
217         if (ctx->task) {
218                 if (ctx->task != current) {
219                         ret = -ESRCH;
220                         goto unlock;
221                 }
222
223                 /*
224                  * We only use event_function_call() on established contexts,
225                  * and event_function() is only ever called when active (or
226                  * rather, we'll have bailed in task_function_call() or the
227                  * above ctx->task != current test), therefore we must have
228                  * ctx->is_active here.
229                  */
230                 WARN_ON_ONCE(!ctx->is_active);
231                 /*
232                  * And since we have ctx->is_active, cpuctx->task_ctx must
233                  * match.
234                  */
235                 WARN_ON_ONCE(task_ctx != ctx);
236         } else {
237                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
238         }
239
240         efs->func(event, cpuctx, ctx, efs->data);
241 unlock:
242         perf_ctx_unlock(cpuctx, task_ctx);
243
244         return ret;
245 }
246
247 static void event_function_call(struct perf_event *event, event_f func, void *data)
248 {
249         struct perf_event_context *ctx = event->ctx;
250         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
251         struct event_function_struct efs = {
252                 .event = event,
253                 .func = func,
254                 .data = data,
255         };
256
257         if (!event->parent) {
258                 /*
259                  * If this is a !child event, we must hold ctx::mutex to
260                  * stabilize the the event->ctx relation. See
261                  * perf_event_ctx_lock().
262                  */
263                 lockdep_assert_held(&ctx->mutex);
264         }
265
266         if (!task) {
267                 cpu_function_call(event->cpu, event_function, &efs);
268                 return;
269         }
270
271         if (task == TASK_TOMBSTONE)
272                 return;
273
274 again:
275         if (!task_function_call(task, event_function, &efs))
276                 return;
277
278         raw_spin_lock_irq(&ctx->lock);
279         /*
280          * Reload the task pointer, it might have been changed by
281          * a concurrent perf_event_context_sched_out().
282          */
283         task = ctx->task;
284         if (task == TASK_TOMBSTONE) {
285                 raw_spin_unlock_irq(&ctx->lock);
286                 return;
287         }
288         if (ctx->is_active) {
289                 raw_spin_unlock_irq(&ctx->lock);
290                 goto again;
291         }
292         func(event, NULL, ctx, data);
293         raw_spin_unlock_irq(&ctx->lock);
294 }
295
296 /*
297  * Similar to event_function_call() + event_function(), but hard assumes IRQs
298  * are already disabled and we're on the right CPU.
299  */
300 static void event_function_local(struct perf_event *event, event_f func, void *data)
301 {
302         struct perf_event_context *ctx = event->ctx;
303         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
304         struct task_struct *task = READ_ONCE(ctx->task);
305         struct perf_event_context *task_ctx = NULL;
306
307         WARN_ON_ONCE(!irqs_disabled());
308
309         if (task) {
310                 if (task == TASK_TOMBSTONE)
311                         return;
312
313                 task_ctx = ctx;
314         }
315
316         perf_ctx_lock(cpuctx, task_ctx);
317
318         task = ctx->task;
319         if (task == TASK_TOMBSTONE)
320                 goto unlock;
321
322         if (task) {
323                 /*
324                  * We must be either inactive or active and the right task,
325                  * otherwise we're screwed, since we cannot IPI to somewhere
326                  * else.
327                  */
328                 if (ctx->is_active) {
329                         if (WARN_ON_ONCE(task != current))
330                                 goto unlock;
331
332                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
333                                 goto unlock;
334                 }
335         } else {
336                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
337         }
338
339         func(event, cpuctx, ctx, data);
340 unlock:
341         perf_ctx_unlock(cpuctx, task_ctx);
342 }
343
344 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
345                        PERF_FLAG_FD_OUTPUT  |\
346                        PERF_FLAG_PID_CGROUP |\
347                        PERF_FLAG_FD_CLOEXEC)
348
349 /*
350  * branch priv levels that need permission checks
351  */
352 #define PERF_SAMPLE_BRANCH_PERM_PLM \
353         (PERF_SAMPLE_BRANCH_KERNEL |\
354          PERF_SAMPLE_BRANCH_HV)
355
356 enum event_type_t {
357         EVENT_FLEXIBLE = 0x1,
358         EVENT_PINNED = 0x2,
359         EVENT_TIME = 0x4,
360         /* see ctx_resched() for details */
361         EVENT_CPU = 0x8,
362         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
363 };
364
365 /*
366  * perf_sched_events : >0 events exist
367  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
368  */
369
370 static void perf_sched_delayed(struct work_struct *work);
371 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
372 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
373 static DEFINE_MUTEX(perf_sched_mutex);
374 static atomic_t perf_sched_count;
375
376 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
377 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
378 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
379
380 static atomic_t nr_mmap_events __read_mostly;
381 static atomic_t nr_comm_events __read_mostly;
382 static atomic_t nr_task_events __read_mostly;
383 static atomic_t nr_freq_events __read_mostly;
384 static atomic_t nr_switch_events __read_mostly;
385
386 static LIST_HEAD(pmus);
387 static DEFINE_MUTEX(pmus_lock);
388 static struct srcu_struct pmus_srcu;
389
390 /*
391  * perf event paranoia level:
392  *  -1 - not paranoid at all
393  *   0 - disallow raw tracepoint access for unpriv
394  *   1 - disallow cpu events for unpriv
395  *   2 - disallow kernel profiling for unpriv
396  */
397 int sysctl_perf_event_paranoid __read_mostly = 2;
398
399 /* Minimum for 512 kiB + 1 user control page */
400 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
401
402 /*
403  * max perf event sample rate
404  */
405 #define DEFAULT_MAX_SAMPLE_RATE         100000
406 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
407 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
408
409 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
410
411 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
412 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
413
414 static int perf_sample_allowed_ns __read_mostly =
415         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
416
417 static void update_perf_cpu_limits(void)
418 {
419         u64 tmp = perf_sample_period_ns;
420
421         tmp *= sysctl_perf_cpu_time_max_percent;
422         tmp = div_u64(tmp, 100);
423         if (!tmp)
424                 tmp = 1;
425
426         WRITE_ONCE(perf_sample_allowed_ns, tmp);
427 }
428
429 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
430
431 int perf_proc_update_handler(struct ctl_table *table, int write,
432                 void __user *buffer, size_t *lenp,
433                 loff_t *ppos)
434 {
435         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
436
437         if (ret || !write)
438                 return ret;
439
440         /*
441          * If throttling is disabled don't allow the write:
442          */
443         if (sysctl_perf_cpu_time_max_percent == 100 ||
444             sysctl_perf_cpu_time_max_percent == 0)
445                 return -EINVAL;
446
447         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
448         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
449         update_perf_cpu_limits();
450
451         return 0;
452 }
453
454 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
455
456 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
457                                 void __user *buffer, size_t *lenp,
458                                 loff_t *ppos)
459 {
460         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
461
462         if (ret || !write)
463                 return ret;
464
465         if (sysctl_perf_cpu_time_max_percent == 100 ||
466             sysctl_perf_cpu_time_max_percent == 0) {
467                 printk(KERN_WARNING
468                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
469                 WRITE_ONCE(perf_sample_allowed_ns, 0);
470         } else {
471                 update_perf_cpu_limits();
472         }
473
474         return 0;
475 }
476
477 /*
478  * perf samples are done in some very critical code paths (NMIs).
479  * If they take too much CPU time, the system can lock up and not
480  * get any real work done.  This will drop the sample rate when
481  * we detect that events are taking too long.
482  */
483 #define NR_ACCUMULATED_SAMPLES 128
484 static DEFINE_PER_CPU(u64, running_sample_length);
485
486 static u64 __report_avg;
487 static u64 __report_allowed;
488
489 static void perf_duration_warn(struct irq_work *w)
490 {
491         printk_ratelimited(KERN_INFO
492                 "perf: interrupt took too long (%lld > %lld), lowering "
493                 "kernel.perf_event_max_sample_rate to %d\n",
494                 __report_avg, __report_allowed,
495                 sysctl_perf_event_sample_rate);
496 }
497
498 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
499
500 void perf_sample_event_took(u64 sample_len_ns)
501 {
502         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
503         u64 running_len;
504         u64 avg_len;
505         u32 max;
506
507         if (max_len == 0)
508                 return;
509
510         /* Decay the counter by 1 average sample. */
511         running_len = __this_cpu_read(running_sample_length);
512         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
513         running_len += sample_len_ns;
514         __this_cpu_write(running_sample_length, running_len);
515
516         /*
517          * Note: this will be biased artifically low until we have
518          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
519          * from having to maintain a count.
520          */
521         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
522         if (avg_len <= max_len)
523                 return;
524
525         __report_avg = avg_len;
526         __report_allowed = max_len;
527
528         /*
529          * Compute a throttle threshold 25% below the current duration.
530          */
531         avg_len += avg_len / 4;
532         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
533         if (avg_len < max)
534                 max /= (u32)avg_len;
535         else
536                 max = 1;
537
538         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
539         WRITE_ONCE(max_samples_per_tick, max);
540
541         sysctl_perf_event_sample_rate = max * HZ;
542         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
543
544         if (!irq_work_queue(&perf_duration_work)) {
545                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
546                              "kernel.perf_event_max_sample_rate to %d\n",
547                              __report_avg, __report_allowed,
548                              sysctl_perf_event_sample_rate);
549         }
550 }
551
552 static atomic64_t perf_event_id;
553
554 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
555                               enum event_type_t event_type);
556
557 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
558                              enum event_type_t event_type,
559                              struct task_struct *task);
560
561 static void update_context_time(struct perf_event_context *ctx);
562 static u64 perf_event_time(struct perf_event *event);
563
564 void __weak perf_event_print_debug(void)        { }
565
566 extern __weak const char *perf_pmu_name(void)
567 {
568         return "pmu";
569 }
570
571 static inline u64 perf_clock(void)
572 {
573         return local_clock();
574 }
575
576 static inline u64 perf_event_clock(struct perf_event *event)
577 {
578         return event->clock();
579 }
580
581 #ifdef CONFIG_CGROUP_PERF
582
583 static inline bool
584 perf_cgroup_match(struct perf_event *event)
585 {
586         struct perf_event_context *ctx = event->ctx;
587         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
588
589         /* @event doesn't care about cgroup */
590         if (!event->cgrp)
591                 return true;
592
593         /* wants specific cgroup scope but @cpuctx isn't associated with any */
594         if (!cpuctx->cgrp)
595                 return false;
596
597         /*
598          * Cgroup scoping is recursive.  An event enabled for a cgroup is
599          * also enabled for all its descendant cgroups.  If @cpuctx's
600          * cgroup is a descendant of @event's (the test covers identity
601          * case), it's a match.
602          */
603         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
604                                     event->cgrp->css.cgroup);
605 }
606
607 static inline void perf_detach_cgroup(struct perf_event *event)
608 {
609         css_put(&event->cgrp->css);
610         event->cgrp = NULL;
611 }
612
613 static inline int is_cgroup_event(struct perf_event *event)
614 {
615         return event->cgrp != NULL;
616 }
617
618 static inline u64 perf_cgroup_event_time(struct perf_event *event)
619 {
620         struct perf_cgroup_info *t;
621
622         t = per_cpu_ptr(event->cgrp->info, event->cpu);
623         return t->time;
624 }
625
626 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
627 {
628         struct perf_cgroup_info *info;
629         u64 now;
630
631         now = perf_clock();
632
633         info = this_cpu_ptr(cgrp->info);
634
635         info->time += now - info->timestamp;
636         info->timestamp = now;
637 }
638
639 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
640 {
641         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
642         if (cgrp_out)
643                 __update_cgrp_time(cgrp_out);
644 }
645
646 static inline void update_cgrp_time_from_event(struct perf_event *event)
647 {
648         struct perf_cgroup *cgrp;
649
650         /*
651          * ensure we access cgroup data only when needed and
652          * when we know the cgroup is pinned (css_get)
653          */
654         if (!is_cgroup_event(event))
655                 return;
656
657         cgrp = perf_cgroup_from_task(current, event->ctx);
658         /*
659          * Do not update time when cgroup is not active
660          */
661         if (cgrp == event->cgrp)
662                 __update_cgrp_time(event->cgrp);
663 }
664
665 static inline void
666 perf_cgroup_set_timestamp(struct task_struct *task,
667                           struct perf_event_context *ctx)
668 {
669         struct perf_cgroup *cgrp;
670         struct perf_cgroup_info *info;
671
672         /*
673          * ctx->lock held by caller
674          * ensure we do not access cgroup data
675          * unless we have the cgroup pinned (css_get)
676          */
677         if (!task || !ctx->nr_cgroups)
678                 return;
679
680         cgrp = perf_cgroup_from_task(task, ctx);
681         info = this_cpu_ptr(cgrp->info);
682         info->timestamp = ctx->timestamp;
683 }
684
685 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
686
687 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
688 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
689
690 /*
691  * reschedule events based on the cgroup constraint of task.
692  *
693  * mode SWOUT : schedule out everything
694  * mode SWIN : schedule in based on cgroup for next
695  */
696 static void perf_cgroup_switch(struct task_struct *task, int mode)
697 {
698         struct perf_cpu_context *cpuctx;
699         struct list_head *list;
700         unsigned long flags;
701
702         /*
703          * Disable interrupts and preemption to avoid this CPU's
704          * cgrp_cpuctx_entry to change under us.
705          */
706         local_irq_save(flags);
707
708         list = this_cpu_ptr(&cgrp_cpuctx_list);
709         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
710                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
711
712                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
713                 perf_pmu_disable(cpuctx->ctx.pmu);
714
715                 if (mode & PERF_CGROUP_SWOUT) {
716                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
717                         /*
718                          * must not be done before ctxswout due
719                          * to event_filter_match() in event_sched_out()
720                          */
721                         cpuctx->cgrp = NULL;
722                 }
723
724                 if (mode & PERF_CGROUP_SWIN) {
725                         WARN_ON_ONCE(cpuctx->cgrp);
726                         /*
727                          * set cgrp before ctxsw in to allow
728                          * event_filter_match() to not have to pass
729                          * task around
730                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
731                          * because cgorup events are only per-cpu
732                          */
733                         cpuctx->cgrp = perf_cgroup_from_task(task,
734                                                              &cpuctx->ctx);
735                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
736                 }
737                 perf_pmu_enable(cpuctx->ctx.pmu);
738                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
739         }
740
741         local_irq_restore(flags);
742 }
743
744 static inline void perf_cgroup_sched_out(struct task_struct *task,
745                                          struct task_struct *next)
746 {
747         struct perf_cgroup *cgrp1;
748         struct perf_cgroup *cgrp2 = NULL;
749
750         rcu_read_lock();
751         /*
752          * we come here when we know perf_cgroup_events > 0
753          * we do not need to pass the ctx here because we know
754          * we are holding the rcu lock
755          */
756         cgrp1 = perf_cgroup_from_task(task, NULL);
757         cgrp2 = perf_cgroup_from_task(next, NULL);
758
759         /*
760          * only schedule out current cgroup events if we know
761          * that we are switching to a different cgroup. Otherwise,
762          * do no touch the cgroup events.
763          */
764         if (cgrp1 != cgrp2)
765                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
766
767         rcu_read_unlock();
768 }
769
770 static inline void perf_cgroup_sched_in(struct task_struct *prev,
771                                         struct task_struct *task)
772 {
773         struct perf_cgroup *cgrp1;
774         struct perf_cgroup *cgrp2 = NULL;
775
776         rcu_read_lock();
777         /*
778          * we come here when we know perf_cgroup_events > 0
779          * we do not need to pass the ctx here because we know
780          * we are holding the rcu lock
781          */
782         cgrp1 = perf_cgroup_from_task(task, NULL);
783         cgrp2 = perf_cgroup_from_task(prev, NULL);
784
785         /*
786          * only need to schedule in cgroup events if we are changing
787          * cgroup during ctxsw. Cgroup events were not scheduled
788          * out of ctxsw out if that was not the case.
789          */
790         if (cgrp1 != cgrp2)
791                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
792
793         rcu_read_unlock();
794 }
795
796 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
797                                       struct perf_event_attr *attr,
798                                       struct perf_event *group_leader)
799 {
800         struct perf_cgroup *cgrp;
801         struct cgroup_subsys_state *css;
802         struct fd f = fdget(fd);
803         int ret = 0;
804
805         if (!f.file)
806                 return -EBADF;
807
808         css = css_tryget_online_from_dir(f.file->f_path.dentry,
809                                          &perf_event_cgrp_subsys);
810         if (IS_ERR(css)) {
811                 ret = PTR_ERR(css);
812                 goto out;
813         }
814
815         cgrp = container_of(css, struct perf_cgroup, css);
816         event->cgrp = cgrp;
817
818         /*
819          * all events in a group must monitor
820          * the same cgroup because a task belongs
821          * to only one perf cgroup at a time
822          */
823         if (group_leader && group_leader->cgrp != cgrp) {
824                 perf_detach_cgroup(event);
825                 ret = -EINVAL;
826         }
827 out:
828         fdput(f);
829         return ret;
830 }
831
832 static inline void
833 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
834 {
835         struct perf_cgroup_info *t;
836         t = per_cpu_ptr(event->cgrp->info, event->cpu);
837         event->shadow_ctx_time = now - t->timestamp;
838 }
839
840 static inline void
841 perf_cgroup_defer_enabled(struct perf_event *event)
842 {
843         /*
844          * when the current task's perf cgroup does not match
845          * the event's, we need to remember to call the
846          * perf_mark_enable() function the first time a task with
847          * a matching perf cgroup is scheduled in.
848          */
849         if (is_cgroup_event(event) && !perf_cgroup_match(event))
850                 event->cgrp_defer_enabled = 1;
851 }
852
853 static inline void
854 perf_cgroup_mark_enabled(struct perf_event *event,
855                          struct perf_event_context *ctx)
856 {
857         struct perf_event *sub;
858         u64 tstamp = perf_event_time(event);
859
860         if (!event->cgrp_defer_enabled)
861                 return;
862
863         event->cgrp_defer_enabled = 0;
864
865         event->tstamp_enabled = tstamp - event->total_time_enabled;
866         list_for_each_entry(sub, &event->sibling_list, group_entry) {
867                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
868                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
869                         sub->cgrp_defer_enabled = 0;
870                 }
871         }
872 }
873
874 /*
875  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
876  * cleared when last cgroup event is removed.
877  */
878 static inline void
879 list_update_cgroup_event(struct perf_event *event,
880                          struct perf_event_context *ctx, bool add)
881 {
882         struct perf_cpu_context *cpuctx;
883         struct list_head *cpuctx_entry;
884
885         if (!is_cgroup_event(event))
886                 return;
887
888         if (add && ctx->nr_cgroups++)
889                 return;
890         else if (!add && --ctx->nr_cgroups)
891                 return;
892         /*
893          * Because cgroup events are always per-cpu events,
894          * this will always be called from the right CPU.
895          */
896         cpuctx = __get_cpu_context(ctx);
897         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
898         /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
899         if (add) {
900                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
901                 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
902                         cpuctx->cgrp = event->cgrp;
903         } else {
904                 list_del(cpuctx_entry);
905                 cpuctx->cgrp = NULL;
906         }
907 }
908
909 #else /* !CONFIG_CGROUP_PERF */
910
911 static inline bool
912 perf_cgroup_match(struct perf_event *event)
913 {
914         return true;
915 }
916
917 static inline void perf_detach_cgroup(struct perf_event *event)
918 {}
919
920 static inline int is_cgroup_event(struct perf_event *event)
921 {
922         return 0;
923 }
924
925 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
926 {
927         return 0;
928 }
929
930 static inline void update_cgrp_time_from_event(struct perf_event *event)
931 {
932 }
933
934 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
935 {
936 }
937
938 static inline void perf_cgroup_sched_out(struct task_struct *task,
939                                          struct task_struct *next)
940 {
941 }
942
943 static inline void perf_cgroup_sched_in(struct task_struct *prev,
944                                         struct task_struct *task)
945 {
946 }
947
948 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
949                                       struct perf_event_attr *attr,
950                                       struct perf_event *group_leader)
951 {
952         return -EINVAL;
953 }
954
955 static inline void
956 perf_cgroup_set_timestamp(struct task_struct *task,
957                           struct perf_event_context *ctx)
958 {
959 }
960
961 void
962 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
963 {
964 }
965
966 static inline void
967 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
968 {
969 }
970
971 static inline u64 perf_cgroup_event_time(struct perf_event *event)
972 {
973         return 0;
974 }
975
976 static inline void
977 perf_cgroup_defer_enabled(struct perf_event *event)
978 {
979 }
980
981 static inline void
982 perf_cgroup_mark_enabled(struct perf_event *event,
983                          struct perf_event_context *ctx)
984 {
985 }
986
987 static inline void
988 list_update_cgroup_event(struct perf_event *event,
989                          struct perf_event_context *ctx, bool add)
990 {
991 }
992
993 #endif
994
995 /*
996  * set default to be dependent on timer tick just
997  * like original code
998  */
999 #define PERF_CPU_HRTIMER (1000 / HZ)
1000 /*
1001  * function must be called with interrupts disabled
1002  */
1003 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1004 {
1005         struct perf_cpu_context *cpuctx;
1006         int rotations = 0;
1007
1008         WARN_ON(!irqs_disabled());
1009
1010         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1011         rotations = perf_rotate_context(cpuctx);
1012
1013         raw_spin_lock(&cpuctx->hrtimer_lock);
1014         if (rotations)
1015                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1016         else
1017                 cpuctx->hrtimer_active = 0;
1018         raw_spin_unlock(&cpuctx->hrtimer_lock);
1019
1020         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1021 }
1022
1023 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1024 {
1025         struct hrtimer *timer = &cpuctx->hrtimer;
1026         struct pmu *pmu = cpuctx->ctx.pmu;
1027         u64 interval;
1028
1029         /* no multiplexing needed for SW PMU */
1030         if (pmu->task_ctx_nr == perf_sw_context)
1031                 return;
1032
1033         /*
1034          * check default is sane, if not set then force to
1035          * default interval (1/tick)
1036          */
1037         interval = pmu->hrtimer_interval_ms;
1038         if (interval < 1)
1039                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1040
1041         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1042
1043         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1044         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1045         timer->function = perf_mux_hrtimer_handler;
1046 }
1047
1048 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1049 {
1050         struct hrtimer *timer = &cpuctx->hrtimer;
1051         struct pmu *pmu = cpuctx->ctx.pmu;
1052         unsigned long flags;
1053
1054         /* not for SW PMU */
1055         if (pmu->task_ctx_nr == perf_sw_context)
1056                 return 0;
1057
1058         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1059         if (!cpuctx->hrtimer_active) {
1060                 cpuctx->hrtimer_active = 1;
1061                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1062                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1063         }
1064         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1065
1066         return 0;
1067 }
1068
1069 void perf_pmu_disable(struct pmu *pmu)
1070 {
1071         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1072         if (!(*count)++)
1073                 pmu->pmu_disable(pmu);
1074 }
1075
1076 void perf_pmu_enable(struct pmu *pmu)
1077 {
1078         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1079         if (!--(*count))
1080                 pmu->pmu_enable(pmu);
1081 }
1082
1083 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1084
1085 /*
1086  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1087  * perf_event_task_tick() are fully serialized because they're strictly cpu
1088  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1089  * disabled, while perf_event_task_tick is called from IRQ context.
1090  */
1091 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1092 {
1093         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1094
1095         WARN_ON(!irqs_disabled());
1096
1097         WARN_ON(!list_empty(&ctx->active_ctx_list));
1098
1099         list_add(&ctx->active_ctx_list, head);
1100 }
1101
1102 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1103 {
1104         WARN_ON(!irqs_disabled());
1105
1106         WARN_ON(list_empty(&ctx->active_ctx_list));
1107
1108         list_del_init(&ctx->active_ctx_list);
1109 }
1110
1111 static void get_ctx(struct perf_event_context *ctx)
1112 {
1113         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1114 }
1115
1116 static void free_ctx(struct rcu_head *head)
1117 {
1118         struct perf_event_context *ctx;
1119
1120         ctx = container_of(head, struct perf_event_context, rcu_head);
1121         kfree(ctx->task_ctx_data);
1122         kfree(ctx);
1123 }
1124
1125 static void put_ctx(struct perf_event_context *ctx)
1126 {
1127         if (atomic_dec_and_test(&ctx->refcount)) {
1128                 if (ctx->parent_ctx)
1129                         put_ctx(ctx->parent_ctx);
1130                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1131                         put_task_struct(ctx->task);
1132                 call_rcu(&ctx->rcu_head, free_ctx);
1133         }
1134 }
1135
1136 /*
1137  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1138  * perf_pmu_migrate_context() we need some magic.
1139  *
1140  * Those places that change perf_event::ctx will hold both
1141  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1142  *
1143  * Lock ordering is by mutex address. There are two other sites where
1144  * perf_event_context::mutex nests and those are:
1145  *
1146  *  - perf_event_exit_task_context()    [ child , 0 ]
1147  *      perf_event_exit_event()
1148  *        put_event()                   [ parent, 1 ]
1149  *
1150  *  - perf_event_init_context()         [ parent, 0 ]
1151  *      inherit_task_group()
1152  *        inherit_group()
1153  *          inherit_event()
1154  *            perf_event_alloc()
1155  *              perf_init_event()
1156  *                perf_try_init_event() [ child , 1 ]
1157  *
1158  * While it appears there is an obvious deadlock here -- the parent and child
1159  * nesting levels are inverted between the two. This is in fact safe because
1160  * life-time rules separate them. That is an exiting task cannot fork, and a
1161  * spawning task cannot (yet) exit.
1162  *
1163  * But remember that that these are parent<->child context relations, and
1164  * migration does not affect children, therefore these two orderings should not
1165  * interact.
1166  *
1167  * The change in perf_event::ctx does not affect children (as claimed above)
1168  * because the sys_perf_event_open() case will install a new event and break
1169  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1170  * concerned with cpuctx and that doesn't have children.
1171  *
1172  * The places that change perf_event::ctx will issue:
1173  *
1174  *   perf_remove_from_context();
1175  *   synchronize_rcu();
1176  *   perf_install_in_context();
1177  *
1178  * to affect the change. The remove_from_context() + synchronize_rcu() should
1179  * quiesce the event, after which we can install it in the new location. This
1180  * means that only external vectors (perf_fops, prctl) can perturb the event
1181  * while in transit. Therefore all such accessors should also acquire
1182  * perf_event_context::mutex to serialize against this.
1183  *
1184  * However; because event->ctx can change while we're waiting to acquire
1185  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1186  * function.
1187  *
1188  * Lock order:
1189  *    cred_guard_mutex
1190  *      task_struct::perf_event_mutex
1191  *        perf_event_context::mutex
1192  *          perf_event::child_mutex;
1193  *            perf_event_context::lock
1194  *          perf_event::mmap_mutex
1195  *          mmap_sem
1196  */
1197 static struct perf_event_context *
1198 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1199 {
1200         struct perf_event_context *ctx;
1201
1202 again:
1203         rcu_read_lock();
1204         ctx = ACCESS_ONCE(event->ctx);
1205         if (!atomic_inc_not_zero(&ctx->refcount)) {
1206                 rcu_read_unlock();
1207                 goto again;
1208         }
1209         rcu_read_unlock();
1210
1211         mutex_lock_nested(&ctx->mutex, nesting);
1212         if (event->ctx != ctx) {
1213                 mutex_unlock(&ctx->mutex);
1214                 put_ctx(ctx);
1215                 goto again;
1216         }
1217
1218         return ctx;
1219 }
1220
1221 static inline struct perf_event_context *
1222 perf_event_ctx_lock(struct perf_event *event)
1223 {
1224         return perf_event_ctx_lock_nested(event, 0);
1225 }
1226
1227 static void perf_event_ctx_unlock(struct perf_event *event,
1228                                   struct perf_event_context *ctx)
1229 {
1230         mutex_unlock(&ctx->mutex);
1231         put_ctx(ctx);
1232 }
1233
1234 /*
1235  * This must be done under the ctx->lock, such as to serialize against
1236  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1237  * calling scheduler related locks and ctx->lock nests inside those.
1238  */
1239 static __must_check struct perf_event_context *
1240 unclone_ctx(struct perf_event_context *ctx)
1241 {
1242         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1243
1244         lockdep_assert_held(&ctx->lock);
1245
1246         if (parent_ctx)
1247                 ctx->parent_ctx = NULL;
1248         ctx->generation++;
1249
1250         return parent_ctx;
1251 }
1252
1253 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1254 {
1255         /*
1256          * only top level events have the pid namespace they were created in
1257          */
1258         if (event->parent)
1259                 event = event->parent;
1260
1261         return task_tgid_nr_ns(p, event->ns);
1262 }
1263
1264 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1265 {
1266         /*
1267          * only top level events have the pid namespace they were created in
1268          */
1269         if (event->parent)
1270                 event = event->parent;
1271
1272         return task_pid_nr_ns(p, event->ns);
1273 }
1274
1275 /*
1276  * If we inherit events we want to return the parent event id
1277  * to userspace.
1278  */
1279 static u64 primary_event_id(struct perf_event *event)
1280 {
1281         u64 id = event->id;
1282
1283         if (event->parent)
1284                 id = event->parent->id;
1285
1286         return id;
1287 }
1288
1289 /*
1290  * Get the perf_event_context for a task and lock it.
1291  *
1292  * This has to cope with with the fact that until it is locked,
1293  * the context could get moved to another task.
1294  */
1295 static struct perf_event_context *
1296 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1297 {
1298         struct perf_event_context *ctx;
1299
1300 retry:
1301         /*
1302          * One of the few rules of preemptible RCU is that one cannot do
1303          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1304          * part of the read side critical section was irqs-enabled -- see
1305          * rcu_read_unlock_special().
1306          *
1307          * Since ctx->lock nests under rq->lock we must ensure the entire read
1308          * side critical section has interrupts disabled.
1309          */
1310         local_irq_save(*flags);
1311         rcu_read_lock();
1312         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1313         if (ctx) {
1314                 /*
1315                  * If this context is a clone of another, it might
1316                  * get swapped for another underneath us by
1317                  * perf_event_task_sched_out, though the
1318                  * rcu_read_lock() protects us from any context
1319                  * getting freed.  Lock the context and check if it
1320                  * got swapped before we could get the lock, and retry
1321                  * if so.  If we locked the right context, then it
1322                  * can't get swapped on us any more.
1323                  */
1324                 raw_spin_lock(&ctx->lock);
1325                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1326                         raw_spin_unlock(&ctx->lock);
1327                         rcu_read_unlock();
1328                         local_irq_restore(*flags);
1329                         goto retry;
1330                 }
1331
1332                 if (ctx->task == TASK_TOMBSTONE ||
1333                     !atomic_inc_not_zero(&ctx->refcount)) {
1334                         raw_spin_unlock(&ctx->lock);
1335                         ctx = NULL;
1336                 } else {
1337                         WARN_ON_ONCE(ctx->task != task);
1338                 }
1339         }
1340         rcu_read_unlock();
1341         if (!ctx)
1342                 local_irq_restore(*flags);
1343         return ctx;
1344 }
1345
1346 /*
1347  * Get the context for a task and increment its pin_count so it
1348  * can't get swapped to another task.  This also increments its
1349  * reference count so that the context can't get freed.
1350  */
1351 static struct perf_event_context *
1352 perf_pin_task_context(struct task_struct *task, int ctxn)
1353 {
1354         struct perf_event_context *ctx;
1355         unsigned long flags;
1356
1357         ctx = perf_lock_task_context(task, ctxn, &flags);
1358         if (ctx) {
1359                 ++ctx->pin_count;
1360                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1361         }
1362         return ctx;
1363 }
1364
1365 static void perf_unpin_context(struct perf_event_context *ctx)
1366 {
1367         unsigned long flags;
1368
1369         raw_spin_lock_irqsave(&ctx->lock, flags);
1370         --ctx->pin_count;
1371         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1372 }
1373
1374 /*
1375  * Update the record of the current time in a context.
1376  */
1377 static void update_context_time(struct perf_event_context *ctx)
1378 {
1379         u64 now = perf_clock();
1380
1381         ctx->time += now - ctx->timestamp;
1382         ctx->timestamp = now;
1383 }
1384
1385 static u64 perf_event_time(struct perf_event *event)
1386 {
1387         struct perf_event_context *ctx = event->ctx;
1388
1389         if (is_cgroup_event(event))
1390                 return perf_cgroup_event_time(event);
1391
1392         return ctx ? ctx->time : 0;
1393 }
1394
1395 /*
1396  * Update the total_time_enabled and total_time_running fields for a event.
1397  */
1398 static void update_event_times(struct perf_event *event)
1399 {
1400         struct perf_event_context *ctx = event->ctx;
1401         u64 run_end;
1402
1403         lockdep_assert_held(&ctx->lock);
1404
1405         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1406             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1407                 return;
1408
1409         /*
1410          * in cgroup mode, time_enabled represents
1411          * the time the event was enabled AND active
1412          * tasks were in the monitored cgroup. This is
1413          * independent of the activity of the context as
1414          * there may be a mix of cgroup and non-cgroup events.
1415          *
1416          * That is why we treat cgroup events differently
1417          * here.
1418          */
1419         if (is_cgroup_event(event))
1420                 run_end = perf_cgroup_event_time(event);
1421         else if (ctx->is_active)
1422                 run_end = ctx->time;
1423         else
1424                 run_end = event->tstamp_stopped;
1425
1426         event->total_time_enabled = run_end - event->tstamp_enabled;
1427
1428         if (event->state == PERF_EVENT_STATE_INACTIVE)
1429                 run_end = event->tstamp_stopped;
1430         else
1431                 run_end = perf_event_time(event);
1432
1433         event->total_time_running = run_end - event->tstamp_running;
1434
1435 }
1436
1437 /*
1438  * Update total_time_enabled and total_time_running for all events in a group.
1439  */
1440 static void update_group_times(struct perf_event *leader)
1441 {
1442         struct perf_event *event;
1443
1444         update_event_times(leader);
1445         list_for_each_entry(event, &leader->sibling_list, group_entry)
1446                 update_event_times(event);
1447 }
1448
1449 static enum event_type_t get_event_type(struct perf_event *event)
1450 {
1451         struct perf_event_context *ctx = event->ctx;
1452         enum event_type_t event_type;
1453
1454         lockdep_assert_held(&ctx->lock);
1455
1456         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1457         if (!ctx->task)
1458                 event_type |= EVENT_CPU;
1459
1460         return event_type;
1461 }
1462
1463 static struct list_head *
1464 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1465 {
1466         if (event->attr.pinned)
1467                 return &ctx->pinned_groups;
1468         else
1469                 return &ctx->flexible_groups;
1470 }
1471
1472 /*
1473  * Add a event from the lists for its context.
1474  * Must be called with ctx->mutex and ctx->lock held.
1475  */
1476 static void
1477 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1478 {
1479         lockdep_assert_held(&ctx->lock);
1480
1481         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1482         event->attach_state |= PERF_ATTACH_CONTEXT;
1483
1484         /*
1485          * If we're a stand alone event or group leader, we go to the context
1486          * list, group events are kept attached to the group so that
1487          * perf_group_detach can, at all times, locate all siblings.
1488          */
1489         if (event->group_leader == event) {
1490                 struct list_head *list;
1491
1492                 event->group_caps = event->event_caps;
1493
1494                 list = ctx_group_list(event, ctx);
1495                 list_add_tail(&event->group_entry, list);
1496         }
1497
1498         list_update_cgroup_event(event, ctx, true);
1499
1500         list_add_rcu(&event->event_entry, &ctx->event_list);
1501         ctx->nr_events++;
1502         if (event->attr.inherit_stat)
1503                 ctx->nr_stat++;
1504
1505         ctx->generation++;
1506 }
1507
1508 /*
1509  * Initialize event state based on the perf_event_attr::disabled.
1510  */
1511 static inline void perf_event__state_init(struct perf_event *event)
1512 {
1513         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1514                                               PERF_EVENT_STATE_INACTIVE;
1515 }
1516
1517 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1518 {
1519         int entry = sizeof(u64); /* value */
1520         int size = 0;
1521         int nr = 1;
1522
1523         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1524                 size += sizeof(u64);
1525
1526         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1527                 size += sizeof(u64);
1528
1529         if (event->attr.read_format & PERF_FORMAT_ID)
1530                 entry += sizeof(u64);
1531
1532         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1533                 nr += nr_siblings;
1534                 size += sizeof(u64);
1535         }
1536
1537         size += entry * nr;
1538         event->read_size = size;
1539 }
1540
1541 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1542 {
1543         struct perf_sample_data *data;
1544         u16 size = 0;
1545
1546         if (sample_type & PERF_SAMPLE_IP)
1547                 size += sizeof(data->ip);
1548
1549         if (sample_type & PERF_SAMPLE_ADDR)
1550                 size += sizeof(data->addr);
1551
1552         if (sample_type & PERF_SAMPLE_PERIOD)
1553                 size += sizeof(data->period);
1554
1555         if (sample_type & PERF_SAMPLE_WEIGHT)
1556                 size += sizeof(data->weight);
1557
1558         if (sample_type & PERF_SAMPLE_READ)
1559                 size += event->read_size;
1560
1561         if (sample_type & PERF_SAMPLE_DATA_SRC)
1562                 size += sizeof(data->data_src.val);
1563
1564         if (sample_type & PERF_SAMPLE_TRANSACTION)
1565                 size += sizeof(data->txn);
1566
1567         event->header_size = size;
1568 }
1569
1570 /*
1571  * Called at perf_event creation and when events are attached/detached from a
1572  * group.
1573  */
1574 static void perf_event__header_size(struct perf_event *event)
1575 {
1576         __perf_event_read_size(event,
1577                                event->group_leader->nr_siblings);
1578         __perf_event_header_size(event, event->attr.sample_type);
1579 }
1580
1581 static void perf_event__id_header_size(struct perf_event *event)
1582 {
1583         struct perf_sample_data *data;
1584         u64 sample_type = event->attr.sample_type;
1585         u16 size = 0;
1586
1587         if (sample_type & PERF_SAMPLE_TID)
1588                 size += sizeof(data->tid_entry);
1589
1590         if (sample_type & PERF_SAMPLE_TIME)
1591                 size += sizeof(data->time);
1592
1593         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1594                 size += sizeof(data->id);
1595
1596         if (sample_type & PERF_SAMPLE_ID)
1597                 size += sizeof(data->id);
1598
1599         if (sample_type & PERF_SAMPLE_STREAM_ID)
1600                 size += sizeof(data->stream_id);
1601
1602         if (sample_type & PERF_SAMPLE_CPU)
1603                 size += sizeof(data->cpu_entry);
1604
1605         event->id_header_size = size;
1606 }
1607
1608 static bool perf_event_validate_size(struct perf_event *event)
1609 {
1610         /*
1611          * The values computed here will be over-written when we actually
1612          * attach the event.
1613          */
1614         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1615         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1616         perf_event__id_header_size(event);
1617
1618         /*
1619          * Sum the lot; should not exceed the 64k limit we have on records.
1620          * Conservative limit to allow for callchains and other variable fields.
1621          */
1622         if (event->read_size + event->header_size +
1623             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1624                 return false;
1625
1626         return true;
1627 }
1628
1629 static void perf_group_attach(struct perf_event *event)
1630 {
1631         struct perf_event *group_leader = event->group_leader, *pos;
1632
1633         lockdep_assert_held(&event->ctx->lock);
1634
1635         /*
1636          * We can have double attach due to group movement in perf_event_open.
1637          */
1638         if (event->attach_state & PERF_ATTACH_GROUP)
1639                 return;
1640
1641         event->attach_state |= PERF_ATTACH_GROUP;
1642
1643         if (group_leader == event)
1644                 return;
1645
1646         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1647
1648         group_leader->group_caps &= event->event_caps;
1649
1650         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1651         group_leader->nr_siblings++;
1652
1653         perf_event__header_size(group_leader);
1654
1655         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1656                 perf_event__header_size(pos);
1657 }
1658
1659 /*
1660  * Remove a event from the lists for its context.
1661  * Must be called with ctx->mutex and ctx->lock held.
1662  */
1663 static void
1664 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1665 {
1666         WARN_ON_ONCE(event->ctx != ctx);
1667         lockdep_assert_held(&ctx->lock);
1668
1669         /*
1670          * We can have double detach due to exit/hot-unplug + close.
1671          */
1672         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1673                 return;
1674
1675         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1676
1677         list_update_cgroup_event(event, ctx, false);
1678
1679         ctx->nr_events--;
1680         if (event->attr.inherit_stat)
1681                 ctx->nr_stat--;
1682
1683         list_del_rcu(&event->event_entry);
1684
1685         if (event->group_leader == event)
1686                 list_del_init(&event->group_entry);
1687
1688         update_group_times(event);
1689
1690         /*
1691          * If event was in error state, then keep it
1692          * that way, otherwise bogus counts will be
1693          * returned on read(). The only way to get out
1694          * of error state is by explicit re-enabling
1695          * of the event
1696          */
1697         if (event->state > PERF_EVENT_STATE_OFF)
1698                 event->state = PERF_EVENT_STATE_OFF;
1699
1700         ctx->generation++;
1701 }
1702
1703 static void perf_group_detach(struct perf_event *event)
1704 {
1705         struct perf_event *sibling, *tmp;
1706         struct list_head *list = NULL;
1707
1708         lockdep_assert_held(&event->ctx->lock);
1709
1710         /*
1711          * We can have double detach due to exit/hot-unplug + close.
1712          */
1713         if (!(event->attach_state & PERF_ATTACH_GROUP))
1714                 return;
1715
1716         event->attach_state &= ~PERF_ATTACH_GROUP;
1717
1718         /*
1719          * If this is a sibling, remove it from its group.
1720          */
1721         if (event->group_leader != event) {
1722                 list_del_init(&event->group_entry);
1723                 event->group_leader->nr_siblings--;
1724                 goto out;
1725         }
1726
1727         if (!list_empty(&event->group_entry))
1728                 list = &event->group_entry;
1729
1730         /*
1731          * If this was a group event with sibling events then
1732          * upgrade the siblings to singleton events by adding them
1733          * to whatever list we are on.
1734          */
1735         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1736                 if (list)
1737                         list_move_tail(&sibling->group_entry, list);
1738                 sibling->group_leader = sibling;
1739
1740                 /* Inherit group flags from the previous leader */
1741                 sibling->group_caps = event->group_caps;
1742
1743                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1744         }
1745
1746 out:
1747         perf_event__header_size(event->group_leader);
1748
1749         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1750                 perf_event__header_size(tmp);
1751 }
1752
1753 static bool is_orphaned_event(struct perf_event *event)
1754 {
1755         return event->state == PERF_EVENT_STATE_DEAD;
1756 }
1757
1758 static inline int __pmu_filter_match(struct perf_event *event)
1759 {
1760         struct pmu *pmu = event->pmu;
1761         return pmu->filter_match ? pmu->filter_match(event) : 1;
1762 }
1763
1764 /*
1765  * Check whether we should attempt to schedule an event group based on
1766  * PMU-specific filtering. An event group can consist of HW and SW events,
1767  * potentially with a SW leader, so we must check all the filters, to
1768  * determine whether a group is schedulable:
1769  */
1770 static inline int pmu_filter_match(struct perf_event *event)
1771 {
1772         struct perf_event *child;
1773
1774         if (!__pmu_filter_match(event))
1775                 return 0;
1776
1777         list_for_each_entry(child, &event->sibling_list, group_entry) {
1778                 if (!__pmu_filter_match(child))
1779                         return 0;
1780         }
1781
1782         return 1;
1783 }
1784
1785 static inline int
1786 event_filter_match(struct perf_event *event)
1787 {
1788         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1789                perf_cgroup_match(event) && pmu_filter_match(event);
1790 }
1791
1792 static void
1793 event_sched_out(struct perf_event *event,
1794                   struct perf_cpu_context *cpuctx,
1795                   struct perf_event_context *ctx)
1796 {
1797         u64 tstamp = perf_event_time(event);
1798         u64 delta;
1799
1800         WARN_ON_ONCE(event->ctx != ctx);
1801         lockdep_assert_held(&ctx->lock);
1802
1803         /*
1804          * An event which could not be activated because of
1805          * filter mismatch still needs to have its timings
1806          * maintained, otherwise bogus information is return
1807          * via read() for time_enabled, time_running:
1808          */
1809         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1810             !event_filter_match(event)) {
1811                 delta = tstamp - event->tstamp_stopped;
1812                 event->tstamp_running += delta;
1813                 event->tstamp_stopped = tstamp;
1814         }
1815
1816         if (event->state != PERF_EVENT_STATE_ACTIVE)
1817                 return;
1818
1819         perf_pmu_disable(event->pmu);
1820
1821         event->tstamp_stopped = tstamp;
1822         event->pmu->del(event, 0);
1823         event->oncpu = -1;
1824         event->state = PERF_EVENT_STATE_INACTIVE;
1825         if (event->pending_disable) {
1826                 event->pending_disable = 0;
1827                 event->state = PERF_EVENT_STATE_OFF;
1828         }
1829
1830         if (!is_software_event(event))
1831                 cpuctx->active_oncpu--;
1832         if (!--ctx->nr_active)
1833                 perf_event_ctx_deactivate(ctx);
1834         if (event->attr.freq && event->attr.sample_freq)
1835                 ctx->nr_freq--;
1836         if (event->attr.exclusive || !cpuctx->active_oncpu)
1837                 cpuctx->exclusive = 0;
1838
1839         perf_pmu_enable(event->pmu);
1840 }
1841
1842 static void
1843 group_sched_out(struct perf_event *group_event,
1844                 struct perf_cpu_context *cpuctx,
1845                 struct perf_event_context *ctx)
1846 {
1847         struct perf_event *event;
1848         int state = group_event->state;
1849
1850         perf_pmu_disable(ctx->pmu);
1851
1852         event_sched_out(group_event, cpuctx, ctx);
1853
1854         /*
1855          * Schedule out siblings (if any):
1856          */
1857         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1858                 event_sched_out(event, cpuctx, ctx);
1859
1860         perf_pmu_enable(ctx->pmu);
1861
1862         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1863                 cpuctx->exclusive = 0;
1864 }
1865
1866 #define DETACH_GROUP    0x01UL
1867
1868 /*
1869  * Cross CPU call to remove a performance event
1870  *
1871  * We disable the event on the hardware level first. After that we
1872  * remove it from the context list.
1873  */
1874 static void
1875 __perf_remove_from_context(struct perf_event *event,
1876                            struct perf_cpu_context *cpuctx,
1877                            struct perf_event_context *ctx,
1878                            void *info)
1879 {
1880         unsigned long flags = (unsigned long)info;
1881
1882         event_sched_out(event, cpuctx, ctx);
1883         if (flags & DETACH_GROUP)
1884                 perf_group_detach(event);
1885         list_del_event(event, ctx);
1886
1887         if (!ctx->nr_events && ctx->is_active) {
1888                 ctx->is_active = 0;
1889                 if (ctx->task) {
1890                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1891                         cpuctx->task_ctx = NULL;
1892                 }
1893         }
1894 }
1895
1896 /*
1897  * Remove the event from a task's (or a CPU's) list of events.
1898  *
1899  * If event->ctx is a cloned context, callers must make sure that
1900  * every task struct that event->ctx->task could possibly point to
1901  * remains valid.  This is OK when called from perf_release since
1902  * that only calls us on the top-level context, which can't be a clone.
1903  * When called from perf_event_exit_task, it's OK because the
1904  * context has been detached from its task.
1905  */
1906 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1907 {
1908         struct perf_event_context *ctx = event->ctx;
1909
1910         lockdep_assert_held(&ctx->mutex);
1911
1912         event_function_call(event, __perf_remove_from_context, (void *)flags);
1913
1914         /*
1915          * The above event_function_call() can NO-OP when it hits
1916          * TASK_TOMBSTONE. In that case we must already have been detached
1917          * from the context (by perf_event_exit_event()) but the grouping
1918          * might still be in-tact.
1919          */
1920         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1921         if ((flags & DETACH_GROUP) &&
1922             (event->attach_state & PERF_ATTACH_GROUP)) {
1923                 /*
1924                  * Since in that case we cannot possibly be scheduled, simply
1925                  * detach now.
1926                  */
1927                 raw_spin_lock_irq(&ctx->lock);
1928                 perf_group_detach(event);
1929                 raw_spin_unlock_irq(&ctx->lock);
1930         }
1931 }
1932
1933 /*
1934  * Cross CPU call to disable a performance event
1935  */
1936 static void __perf_event_disable(struct perf_event *event,
1937                                  struct perf_cpu_context *cpuctx,
1938                                  struct perf_event_context *ctx,
1939                                  void *info)
1940 {
1941         if (event->state < PERF_EVENT_STATE_INACTIVE)
1942                 return;
1943
1944         update_context_time(ctx);
1945         update_cgrp_time_from_event(event);
1946         update_group_times(event);
1947         if (event == event->group_leader)
1948                 group_sched_out(event, cpuctx, ctx);
1949         else
1950                 event_sched_out(event, cpuctx, ctx);
1951         event->state = PERF_EVENT_STATE_OFF;
1952 }
1953
1954 /*
1955  * Disable a event.
1956  *
1957  * If event->ctx is a cloned context, callers must make sure that
1958  * every task struct that event->ctx->task could possibly point to
1959  * remains valid.  This condition is satisifed when called through
1960  * perf_event_for_each_child or perf_event_for_each because they
1961  * hold the top-level event's child_mutex, so any descendant that
1962  * goes to exit will block in perf_event_exit_event().
1963  *
1964  * When called from perf_pending_event it's OK because event->ctx
1965  * is the current context on this CPU and preemption is disabled,
1966  * hence we can't get into perf_event_task_sched_out for this context.
1967  */
1968 static void _perf_event_disable(struct perf_event *event)
1969 {
1970         struct perf_event_context *ctx = event->ctx;
1971
1972         raw_spin_lock_irq(&ctx->lock);
1973         if (event->state <= PERF_EVENT_STATE_OFF) {
1974                 raw_spin_unlock_irq(&ctx->lock);
1975                 return;
1976         }
1977         raw_spin_unlock_irq(&ctx->lock);
1978
1979         event_function_call(event, __perf_event_disable, NULL);
1980 }
1981
1982 void perf_event_disable_local(struct perf_event *event)
1983 {
1984         event_function_local(event, __perf_event_disable, NULL);
1985 }
1986
1987 /*
1988  * Strictly speaking kernel users cannot create groups and therefore this
1989  * interface does not need the perf_event_ctx_lock() magic.
1990  */
1991 void perf_event_disable(struct perf_event *event)
1992 {
1993         struct perf_event_context *ctx;
1994
1995         ctx = perf_event_ctx_lock(event);
1996         _perf_event_disable(event);
1997         perf_event_ctx_unlock(event, ctx);
1998 }
1999 EXPORT_SYMBOL_GPL(perf_event_disable);
2000
2001 void perf_event_disable_inatomic(struct perf_event *event)
2002 {
2003         event->pending_disable = 1;
2004         irq_work_queue(&event->pending);
2005 }
2006
2007 static void perf_set_shadow_time(struct perf_event *event,
2008                                  struct perf_event_context *ctx,
2009                                  u64 tstamp)
2010 {
2011         /*
2012          * use the correct time source for the time snapshot
2013          *
2014          * We could get by without this by leveraging the
2015          * fact that to get to this function, the caller
2016          * has most likely already called update_context_time()
2017          * and update_cgrp_time_xx() and thus both timestamp
2018          * are identical (or very close). Given that tstamp is,
2019          * already adjusted for cgroup, we could say that:
2020          *    tstamp - ctx->timestamp
2021          * is equivalent to
2022          *    tstamp - cgrp->timestamp.
2023          *
2024          * Then, in perf_output_read(), the calculation would
2025          * work with no changes because:
2026          * - event is guaranteed scheduled in
2027          * - no scheduled out in between
2028          * - thus the timestamp would be the same
2029          *
2030          * But this is a bit hairy.
2031          *
2032          * So instead, we have an explicit cgroup call to remain
2033          * within the time time source all along. We believe it
2034          * is cleaner and simpler to understand.
2035          */
2036         if (is_cgroup_event(event))
2037                 perf_cgroup_set_shadow_time(event, tstamp);
2038         else
2039                 event->shadow_ctx_time = tstamp - ctx->timestamp;
2040 }
2041
2042 #define MAX_INTERRUPTS (~0ULL)
2043
2044 static void perf_log_throttle(struct perf_event *event, int enable);
2045 static void perf_log_itrace_start(struct perf_event *event);
2046
2047 static int
2048 event_sched_in(struct perf_event *event,
2049                  struct perf_cpu_context *cpuctx,
2050                  struct perf_event_context *ctx)
2051 {
2052         u64 tstamp = perf_event_time(event);
2053         int ret = 0;
2054
2055         lockdep_assert_held(&ctx->lock);
2056
2057         if (event->state <= PERF_EVENT_STATE_OFF)
2058                 return 0;
2059
2060         WRITE_ONCE(event->oncpu, smp_processor_id());
2061         /*
2062          * Order event::oncpu write to happen before the ACTIVE state
2063          * is visible.
2064          */
2065         smp_wmb();
2066         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2067
2068         /*
2069          * Unthrottle events, since we scheduled we might have missed several
2070          * ticks already, also for a heavily scheduling task there is little
2071          * guarantee it'll get a tick in a timely manner.
2072          */
2073         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2074                 perf_log_throttle(event, 1);
2075                 event->hw.interrupts = 0;
2076         }
2077
2078         /*
2079          * The new state must be visible before we turn it on in the hardware:
2080          */
2081         smp_wmb();
2082
2083         perf_pmu_disable(event->pmu);
2084
2085         perf_set_shadow_time(event, ctx, tstamp);
2086
2087         perf_log_itrace_start(event);
2088
2089         if (event->pmu->add(event, PERF_EF_START)) {
2090                 event->state = PERF_EVENT_STATE_INACTIVE;
2091                 event->oncpu = -1;
2092                 ret = -EAGAIN;
2093                 goto out;
2094         }
2095
2096         event->tstamp_running += tstamp - event->tstamp_stopped;
2097
2098         if (!is_software_event(event))
2099                 cpuctx->active_oncpu++;
2100         if (!ctx->nr_active++)
2101                 perf_event_ctx_activate(ctx);
2102         if (event->attr.freq && event->attr.sample_freq)
2103                 ctx->nr_freq++;
2104
2105         if (event->attr.exclusive)
2106                 cpuctx->exclusive = 1;
2107
2108 out:
2109         perf_pmu_enable(event->pmu);
2110
2111         return ret;
2112 }
2113
2114 static int
2115 group_sched_in(struct perf_event *group_event,
2116                struct perf_cpu_context *cpuctx,
2117                struct perf_event_context *ctx)
2118 {
2119         struct perf_event *event, *partial_group = NULL;
2120         struct pmu *pmu = ctx->pmu;
2121         u64 now = ctx->time;
2122         bool simulate = false;
2123
2124         if (group_event->state == PERF_EVENT_STATE_OFF)
2125                 return 0;
2126
2127         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2128
2129         if (event_sched_in(group_event, cpuctx, ctx)) {
2130                 pmu->cancel_txn(pmu);
2131                 perf_mux_hrtimer_restart(cpuctx);
2132                 return -EAGAIN;
2133         }
2134
2135         /*
2136          * Schedule in siblings as one group (if any):
2137          */
2138         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2139                 if (event_sched_in(event, cpuctx, ctx)) {
2140                         partial_group = event;
2141                         goto group_error;
2142                 }
2143         }
2144
2145         if (!pmu->commit_txn(pmu))
2146                 return 0;
2147
2148 group_error:
2149         /*
2150          * Groups can be scheduled in as one unit only, so undo any
2151          * partial group before returning:
2152          * The events up to the failed event are scheduled out normally,
2153          * tstamp_stopped will be updated.
2154          *
2155          * The failed events and the remaining siblings need to have
2156          * their timings updated as if they had gone thru event_sched_in()
2157          * and event_sched_out(). This is required to get consistent timings
2158          * across the group. This also takes care of the case where the group
2159          * could never be scheduled by ensuring tstamp_stopped is set to mark
2160          * the time the event was actually stopped, such that time delta
2161          * calculation in update_event_times() is correct.
2162          */
2163         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2164                 if (event == partial_group)
2165                         simulate = true;
2166
2167                 if (simulate) {
2168                         event->tstamp_running += now - event->tstamp_stopped;
2169                         event->tstamp_stopped = now;
2170                 } else {
2171                         event_sched_out(event, cpuctx, ctx);
2172                 }
2173         }
2174         event_sched_out(group_event, cpuctx, ctx);
2175
2176         pmu->cancel_txn(pmu);
2177
2178         perf_mux_hrtimer_restart(cpuctx);
2179
2180         return -EAGAIN;
2181 }
2182
2183 /*
2184  * Work out whether we can put this event group on the CPU now.
2185  */
2186 static int group_can_go_on(struct perf_event *event,
2187                            struct perf_cpu_context *cpuctx,
2188                            int can_add_hw)
2189 {
2190         /*
2191          * Groups consisting entirely of software events can always go on.
2192          */
2193         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2194                 return 1;
2195         /*
2196          * If an exclusive group is already on, no other hardware
2197          * events can go on.
2198          */
2199         if (cpuctx->exclusive)
2200                 return 0;
2201         /*
2202          * If this group is exclusive and there are already
2203          * events on the CPU, it can't go on.
2204          */
2205         if (event->attr.exclusive && cpuctx->active_oncpu)
2206                 return 0;
2207         /*
2208          * Otherwise, try to add it if all previous groups were able
2209          * to go on.
2210          */
2211         return can_add_hw;
2212 }
2213
2214 static void add_event_to_ctx(struct perf_event *event,
2215                                struct perf_event_context *ctx)
2216 {
2217         u64 tstamp = perf_event_time(event);
2218
2219         list_add_event(event, ctx);
2220         perf_group_attach(event);
2221         event->tstamp_enabled = tstamp;
2222         event->tstamp_running = tstamp;
2223         event->tstamp_stopped = tstamp;
2224 }
2225
2226 static void ctx_sched_out(struct perf_event_context *ctx,
2227                           struct perf_cpu_context *cpuctx,
2228                           enum event_type_t event_type);
2229 static void
2230 ctx_sched_in(struct perf_event_context *ctx,
2231              struct perf_cpu_context *cpuctx,
2232              enum event_type_t event_type,
2233              struct task_struct *task);
2234
2235 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2236                                struct perf_event_context *ctx,
2237                                enum event_type_t event_type)
2238 {
2239         if (!cpuctx->task_ctx)
2240                 return;
2241
2242         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2243                 return;
2244
2245         ctx_sched_out(ctx, cpuctx, event_type);
2246 }
2247
2248 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2249                                 struct perf_event_context *ctx,
2250                                 struct task_struct *task)
2251 {
2252         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2253         if (ctx)
2254                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2255         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2256         if (ctx)
2257                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2258 }
2259
2260 /*
2261  * We want to maintain the following priority of scheduling:
2262  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2263  *  - task pinned (EVENT_PINNED)
2264  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2265  *  - task flexible (EVENT_FLEXIBLE).
2266  *
2267  * In order to avoid unscheduling and scheduling back in everything every
2268  * time an event is added, only do it for the groups of equal priority and
2269  * below.
2270  *
2271  * This can be called after a batch operation on task events, in which case
2272  * event_type is a bit mask of the types of events involved. For CPU events,
2273  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2274  */
2275 static void ctx_resched(struct perf_cpu_context *cpuctx,
2276                         struct perf_event_context *task_ctx,
2277                         enum event_type_t event_type)
2278 {
2279         enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2280         bool cpu_event = !!(event_type & EVENT_CPU);
2281
2282         /*
2283          * If pinned groups are involved, flexible groups also need to be
2284          * scheduled out.
2285          */
2286         if (event_type & EVENT_PINNED)
2287                 event_type |= EVENT_FLEXIBLE;
2288
2289         perf_pmu_disable(cpuctx->ctx.pmu);
2290         if (task_ctx)
2291                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2292
2293         /*
2294          * Decide which cpu ctx groups to schedule out based on the types
2295          * of events that caused rescheduling:
2296          *  - EVENT_CPU: schedule out corresponding groups;
2297          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2298          *  - otherwise, do nothing more.
2299          */
2300         if (cpu_event)
2301                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2302         else if (ctx_event_type & EVENT_PINNED)
2303                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2304
2305         perf_event_sched_in(cpuctx, task_ctx, current);
2306         perf_pmu_enable(cpuctx->ctx.pmu);
2307 }
2308
2309 /*
2310  * Cross CPU call to install and enable a performance event
2311  *
2312  * Very similar to remote_function() + event_function() but cannot assume that
2313  * things like ctx->is_active and cpuctx->task_ctx are set.
2314  */
2315 static int  __perf_install_in_context(void *info)
2316 {
2317         struct perf_event *event = info;
2318         struct perf_event_context *ctx = event->ctx;
2319         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2320         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2321         bool reprogram = true;
2322         int ret = 0;
2323
2324         raw_spin_lock(&cpuctx->ctx.lock);
2325         if (ctx->task) {
2326                 raw_spin_lock(&ctx->lock);
2327                 task_ctx = ctx;
2328
2329                 reprogram = (ctx->task == current);
2330
2331                 /*
2332                  * If the task is running, it must be running on this CPU,
2333                  * otherwise we cannot reprogram things.
2334                  *
2335                  * If its not running, we don't care, ctx->lock will
2336                  * serialize against it becoming runnable.
2337                  */
2338                 if (task_curr(ctx->task) && !reprogram) {
2339                         ret = -ESRCH;
2340                         goto unlock;
2341                 }
2342
2343                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2344         } else if (task_ctx) {
2345                 raw_spin_lock(&task_ctx->lock);
2346         }
2347
2348         if (reprogram) {
2349                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2350                 add_event_to_ctx(event, ctx);
2351                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2352         } else {
2353                 add_event_to_ctx(event, ctx);
2354         }
2355
2356 unlock:
2357         perf_ctx_unlock(cpuctx, task_ctx);
2358
2359         return ret;
2360 }
2361
2362 /*
2363  * Attach a performance event to a context.
2364  *
2365  * Very similar to event_function_call, see comment there.
2366  */
2367 static void
2368 perf_install_in_context(struct perf_event_context *ctx,
2369                         struct perf_event *event,
2370                         int cpu)
2371 {
2372         struct task_struct *task = READ_ONCE(ctx->task);
2373
2374         lockdep_assert_held(&ctx->mutex);
2375
2376         if (event->cpu != -1)
2377                 event->cpu = cpu;
2378
2379         /*
2380          * Ensures that if we can observe event->ctx, both the event and ctx
2381          * will be 'complete'. See perf_iterate_sb_cpu().
2382          */
2383         smp_store_release(&event->ctx, ctx);
2384
2385         if (!task) {
2386                 cpu_function_call(cpu, __perf_install_in_context, event);
2387                 return;
2388         }
2389
2390         /*
2391          * Should not happen, we validate the ctx is still alive before calling.
2392          */
2393         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2394                 return;
2395
2396         /*
2397          * Installing events is tricky because we cannot rely on ctx->is_active
2398          * to be set in case this is the nr_events 0 -> 1 transition.
2399          *
2400          * Instead we use task_curr(), which tells us if the task is running.
2401          * However, since we use task_curr() outside of rq::lock, we can race
2402          * against the actual state. This means the result can be wrong.
2403          *
2404          * If we get a false positive, we retry, this is harmless.
2405          *
2406          * If we get a false negative, things are complicated. If we are after
2407          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2408          * value must be correct. If we're before, it doesn't matter since
2409          * perf_event_context_sched_in() will program the counter.
2410          *
2411          * However, this hinges on the remote context switch having observed
2412          * our task->perf_event_ctxp[] store, such that it will in fact take
2413          * ctx::lock in perf_event_context_sched_in().
2414          *
2415          * We do this by task_function_call(), if the IPI fails to hit the task
2416          * we know any future context switch of task must see the
2417          * perf_event_ctpx[] store.
2418          */
2419
2420         /*
2421          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2422          * task_cpu() load, such that if the IPI then does not find the task
2423          * running, a future context switch of that task must observe the
2424          * store.
2425          */
2426         smp_mb();
2427 again:
2428         if (!task_function_call(task, __perf_install_in_context, event))
2429                 return;
2430
2431         raw_spin_lock_irq(&ctx->lock);
2432         task = ctx->task;
2433         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2434                 /*
2435                  * Cannot happen because we already checked above (which also
2436                  * cannot happen), and we hold ctx->mutex, which serializes us
2437                  * against perf_event_exit_task_context().
2438                  */
2439                 raw_spin_unlock_irq(&ctx->lock);
2440                 return;
2441         }
2442         /*
2443          * If the task is not running, ctx->lock will avoid it becoming so,
2444          * thus we can safely install the event.
2445          */
2446         if (task_curr(task)) {
2447                 raw_spin_unlock_irq(&ctx->lock);
2448                 goto again;
2449         }
2450         add_event_to_ctx(event, ctx);
2451         raw_spin_unlock_irq(&ctx->lock);
2452 }
2453
2454 /*
2455  * Put a event into inactive state and update time fields.
2456  * Enabling the leader of a group effectively enables all
2457  * the group members that aren't explicitly disabled, so we
2458  * have to update their ->tstamp_enabled also.
2459  * Note: this works for group members as well as group leaders
2460  * since the non-leader members' sibling_lists will be empty.
2461  */
2462 static void __perf_event_mark_enabled(struct perf_event *event)
2463 {
2464         struct perf_event *sub;
2465         u64 tstamp = perf_event_time(event);
2466
2467         event->state = PERF_EVENT_STATE_INACTIVE;
2468         event->tstamp_enabled = tstamp - event->total_time_enabled;
2469         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2470                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2471                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2472         }
2473 }
2474
2475 /*
2476  * Cross CPU call to enable a performance event
2477  */
2478 static void __perf_event_enable(struct perf_event *event,
2479                                 struct perf_cpu_context *cpuctx,
2480                                 struct perf_event_context *ctx,
2481                                 void *info)
2482 {
2483         struct perf_event *leader = event->group_leader;
2484         struct perf_event_context *task_ctx;
2485
2486         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2487             event->state <= PERF_EVENT_STATE_ERROR)
2488                 return;
2489
2490         if (ctx->is_active)
2491                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2492
2493         __perf_event_mark_enabled(event);
2494
2495         if (!ctx->is_active)
2496                 return;
2497
2498         if (!event_filter_match(event)) {
2499                 if (is_cgroup_event(event))
2500                         perf_cgroup_defer_enabled(event);
2501                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2502                 return;
2503         }
2504
2505         /*
2506          * If the event is in a group and isn't the group leader,
2507          * then don't put it on unless the group is on.
2508          */
2509         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2510                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2511                 return;
2512         }
2513
2514         task_ctx = cpuctx->task_ctx;
2515         if (ctx->task)
2516                 WARN_ON_ONCE(task_ctx != ctx);
2517
2518         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2519 }
2520
2521 /*
2522  * Enable a event.
2523  *
2524  * If event->ctx is a cloned context, callers must make sure that
2525  * every task struct that event->ctx->task could possibly point to
2526  * remains valid.  This condition is satisfied when called through
2527  * perf_event_for_each_child or perf_event_for_each as described
2528  * for perf_event_disable.
2529  */
2530 static void _perf_event_enable(struct perf_event *event)
2531 {
2532         struct perf_event_context *ctx = event->ctx;
2533
2534         raw_spin_lock_irq(&ctx->lock);
2535         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2536             event->state <  PERF_EVENT_STATE_ERROR) {
2537                 raw_spin_unlock_irq(&ctx->lock);
2538                 return;
2539         }
2540
2541         /*
2542          * If the event is in error state, clear that first.
2543          *
2544          * That way, if we see the event in error state below, we know that it
2545          * has gone back into error state, as distinct from the task having
2546          * been scheduled away before the cross-call arrived.
2547          */
2548         if (event->state == PERF_EVENT_STATE_ERROR)
2549                 event->state = PERF_EVENT_STATE_OFF;
2550         raw_spin_unlock_irq(&ctx->lock);
2551
2552         event_function_call(event, __perf_event_enable, NULL);
2553 }
2554
2555 /*
2556  * See perf_event_disable();
2557  */
2558 void perf_event_enable(struct perf_event *event)
2559 {
2560         struct perf_event_context *ctx;
2561
2562         ctx = perf_event_ctx_lock(event);
2563         _perf_event_enable(event);
2564         perf_event_ctx_unlock(event, ctx);
2565 }
2566 EXPORT_SYMBOL_GPL(perf_event_enable);
2567
2568 struct stop_event_data {
2569         struct perf_event       *event;
2570         unsigned int            restart;
2571 };
2572
2573 static int __perf_event_stop(void *info)
2574 {
2575         struct stop_event_data *sd = info;
2576         struct perf_event *event = sd->event;
2577
2578         /* if it's already INACTIVE, do nothing */
2579         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2580                 return 0;
2581
2582         /* matches smp_wmb() in event_sched_in() */
2583         smp_rmb();
2584
2585         /*
2586          * There is a window with interrupts enabled before we get here,
2587          * so we need to check again lest we try to stop another CPU's event.
2588          */
2589         if (READ_ONCE(event->oncpu) != smp_processor_id())
2590                 return -EAGAIN;
2591
2592         event->pmu->stop(event, PERF_EF_UPDATE);
2593
2594         /*
2595          * May race with the actual stop (through perf_pmu_output_stop()),
2596          * but it is only used for events with AUX ring buffer, and such
2597          * events will refuse to restart because of rb::aux_mmap_count==0,
2598          * see comments in perf_aux_output_begin().
2599          *
2600          * Since this is happening on a event-local CPU, no trace is lost
2601          * while restarting.
2602          */
2603         if (sd->restart)
2604                 event->pmu->start(event, 0);
2605
2606         return 0;
2607 }
2608
2609 static int perf_event_stop(struct perf_event *event, int restart)
2610 {
2611         struct stop_event_data sd = {
2612                 .event          = event,
2613                 .restart        = restart,
2614         };
2615         int ret = 0;
2616
2617         do {
2618                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2619                         return 0;
2620
2621                 /* matches smp_wmb() in event_sched_in() */
2622                 smp_rmb();
2623
2624                 /*
2625                  * We only want to restart ACTIVE events, so if the event goes
2626                  * inactive here (event->oncpu==-1), there's nothing more to do;
2627                  * fall through with ret==-ENXIO.
2628                  */
2629                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2630                                         __perf_event_stop, &sd);
2631         } while (ret == -EAGAIN);
2632
2633         return ret;
2634 }
2635
2636 /*
2637  * In order to contain the amount of racy and tricky in the address filter
2638  * configuration management, it is a two part process:
2639  *
2640  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2641  *      we update the addresses of corresponding vmas in
2642  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2643  * (p2) when an event is scheduled in (pmu::add), it calls
2644  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2645  *      if the generation has changed since the previous call.
2646  *
2647  * If (p1) happens while the event is active, we restart it to force (p2).
2648  *
2649  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2650  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2651  *     ioctl;
2652  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2653  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2654  *     for reading;
2655  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2656  *     of exec.
2657  */
2658 void perf_event_addr_filters_sync(struct perf_event *event)
2659 {
2660         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2661
2662         if (!has_addr_filter(event))
2663                 return;
2664
2665         raw_spin_lock(&ifh->lock);
2666         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2667                 event->pmu->addr_filters_sync(event);
2668                 event->hw.addr_filters_gen = event->addr_filters_gen;
2669         }
2670         raw_spin_unlock(&ifh->lock);
2671 }
2672 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2673
2674 static int _perf_event_refresh(struct perf_event *event, int refresh)
2675 {
2676         /*
2677          * not supported on inherited events
2678          */
2679         if (event->attr.inherit || !is_sampling_event(event))
2680                 return -EINVAL;
2681
2682         atomic_add(refresh, &event->event_limit);
2683         _perf_event_enable(event);
2684
2685         return 0;
2686 }
2687
2688 /*
2689  * See perf_event_disable()
2690  */
2691 int perf_event_refresh(struct perf_event *event, int refresh)
2692 {
2693         struct perf_event_context *ctx;
2694         int ret;
2695
2696         ctx = perf_event_ctx_lock(event);
2697         ret = _perf_event_refresh(event, refresh);
2698         perf_event_ctx_unlock(event, ctx);
2699
2700         return ret;
2701 }
2702 EXPORT_SYMBOL_GPL(perf_event_refresh);
2703
2704 static void ctx_sched_out(struct perf_event_context *ctx,
2705                           struct perf_cpu_context *cpuctx,
2706                           enum event_type_t event_type)
2707 {
2708         int is_active = ctx->is_active;
2709         struct perf_event *event;
2710
2711         lockdep_assert_held(&ctx->lock);
2712
2713         if (likely(!ctx->nr_events)) {
2714                 /*
2715                  * See __perf_remove_from_context().
2716                  */
2717                 WARN_ON_ONCE(ctx->is_active);
2718                 if (ctx->task)
2719                         WARN_ON_ONCE(cpuctx->task_ctx);
2720                 return;
2721         }
2722
2723         ctx->is_active &= ~event_type;
2724         if (!(ctx->is_active & EVENT_ALL))
2725                 ctx->is_active = 0;
2726
2727         if (ctx->task) {
2728                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2729                 if (!ctx->is_active)
2730                         cpuctx->task_ctx = NULL;
2731         }
2732
2733         /*
2734          * Always update time if it was set; not only when it changes.
2735          * Otherwise we can 'forget' to update time for any but the last
2736          * context we sched out. For example:
2737          *
2738          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2739          *   ctx_sched_out(.event_type = EVENT_PINNED)
2740          *
2741          * would only update time for the pinned events.
2742          */
2743         if (is_active & EVENT_TIME) {
2744                 /* update (and stop) ctx time */
2745                 update_context_time(ctx);
2746                 update_cgrp_time_from_cpuctx(cpuctx);
2747         }
2748
2749         is_active ^= ctx->is_active; /* changed bits */
2750
2751         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2752                 return;
2753
2754         perf_pmu_disable(ctx->pmu);
2755         if (is_active & EVENT_PINNED) {
2756                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2757                         group_sched_out(event, cpuctx, ctx);
2758         }
2759
2760         if (is_active & EVENT_FLEXIBLE) {
2761                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2762                         group_sched_out(event, cpuctx, ctx);
2763         }
2764         perf_pmu_enable(ctx->pmu);
2765 }
2766
2767 /*
2768  * Test whether two contexts are equivalent, i.e. whether they have both been
2769  * cloned from the same version of the same context.
2770  *
2771  * Equivalence is measured using a generation number in the context that is
2772  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2773  * and list_del_event().
2774  */
2775 static int context_equiv(struct perf_event_context *ctx1,
2776                          struct perf_event_context *ctx2)
2777 {
2778         lockdep_assert_held(&ctx1->lock);
2779         lockdep_assert_held(&ctx2->lock);
2780
2781         /* Pinning disables the swap optimization */
2782         if (ctx1->pin_count || ctx2->pin_count)
2783                 return 0;
2784
2785         /* If ctx1 is the parent of ctx2 */
2786         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2787                 return 1;
2788
2789         /* If ctx2 is the parent of ctx1 */
2790         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2791                 return 1;
2792
2793         /*
2794          * If ctx1 and ctx2 have the same parent; we flatten the parent
2795          * hierarchy, see perf_event_init_context().
2796          */
2797         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2798                         ctx1->parent_gen == ctx2->parent_gen)
2799                 return 1;
2800
2801         /* Unmatched */
2802         return 0;
2803 }
2804
2805 static void __perf_event_sync_stat(struct perf_event *event,
2806                                      struct perf_event *next_event)
2807 {
2808         u64 value;
2809
2810         if (!event->attr.inherit_stat)
2811                 return;
2812
2813         /*
2814          * Update the event value, we cannot use perf_event_read()
2815          * because we're in the middle of a context switch and have IRQs
2816          * disabled, which upsets smp_call_function_single(), however
2817          * we know the event must be on the current CPU, therefore we
2818          * don't need to use it.
2819          */
2820         switch (event->state) {
2821         case PERF_EVENT_STATE_ACTIVE:
2822                 event->pmu->read(event);
2823                 /* fall-through */
2824
2825         case PERF_EVENT_STATE_INACTIVE:
2826                 update_event_times(event);
2827                 break;
2828
2829         default:
2830                 break;
2831         }
2832
2833         /*
2834          * In order to keep per-task stats reliable we need to flip the event
2835          * values when we flip the contexts.
2836          */
2837         value = local64_read(&next_event->count);
2838         value = local64_xchg(&event->count, value);
2839         local64_set(&next_event->count, value);
2840
2841         swap(event->total_time_enabled, next_event->total_time_enabled);
2842         swap(event->total_time_running, next_event->total_time_running);
2843
2844         /*
2845          * Since we swizzled the values, update the user visible data too.
2846          */
2847         perf_event_update_userpage(event);
2848         perf_event_update_userpage(next_event);
2849 }
2850
2851 static void perf_event_sync_stat(struct perf_event_context *ctx,
2852                                    struct perf_event_context *next_ctx)
2853 {
2854         struct perf_event *event, *next_event;
2855
2856         if (!ctx->nr_stat)
2857                 return;
2858
2859         update_context_time(ctx);
2860
2861         event = list_first_entry(&ctx->event_list,
2862                                    struct perf_event, event_entry);
2863
2864         next_event = list_first_entry(&next_ctx->event_list,
2865                                         struct perf_event, event_entry);
2866
2867         while (&event->event_entry != &ctx->event_list &&
2868                &next_event->event_entry != &next_ctx->event_list) {
2869
2870                 __perf_event_sync_stat(event, next_event);
2871
2872                 event = list_next_entry(event, event_entry);
2873                 next_event = list_next_entry(next_event, event_entry);
2874         }
2875 }
2876
2877 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2878                                          struct task_struct *next)
2879 {
2880         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2881         struct perf_event_context *next_ctx;
2882         struct perf_event_context *parent, *next_parent;
2883         struct perf_cpu_context *cpuctx;
2884         int do_switch = 1;
2885
2886         if (likely(!ctx))
2887                 return;
2888
2889         cpuctx = __get_cpu_context(ctx);
2890         if (!cpuctx->task_ctx)
2891                 return;
2892
2893         rcu_read_lock();
2894         next_ctx = next->perf_event_ctxp[ctxn];
2895         if (!next_ctx)
2896                 goto unlock;
2897
2898         parent = rcu_dereference(ctx->parent_ctx);
2899         next_parent = rcu_dereference(next_ctx->parent_ctx);
2900
2901         /* If neither context have a parent context; they cannot be clones. */
2902         if (!parent && !next_parent)
2903                 goto unlock;
2904
2905         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2906                 /*
2907                  * Looks like the two contexts are clones, so we might be
2908                  * able to optimize the context switch.  We lock both
2909                  * contexts and check that they are clones under the
2910                  * lock (including re-checking that neither has been
2911                  * uncloned in the meantime).  It doesn't matter which
2912                  * order we take the locks because no other cpu could
2913                  * be trying to lock both of these tasks.
2914                  */
2915                 raw_spin_lock(&ctx->lock);
2916                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2917                 if (context_equiv(ctx, next_ctx)) {
2918                         WRITE_ONCE(ctx->task, next);
2919                         WRITE_ONCE(next_ctx->task, task);
2920
2921                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2922
2923                         /*
2924                          * RCU_INIT_POINTER here is safe because we've not
2925                          * modified the ctx and the above modification of
2926                          * ctx->task and ctx->task_ctx_data are immaterial
2927                          * since those values are always verified under
2928                          * ctx->lock which we're now holding.
2929                          */
2930                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2931                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2932
2933                         do_switch = 0;
2934
2935                         perf_event_sync_stat(ctx, next_ctx);
2936                 }
2937                 raw_spin_unlock(&next_ctx->lock);
2938                 raw_spin_unlock(&ctx->lock);
2939         }
2940 unlock:
2941         rcu_read_unlock();
2942
2943         if (do_switch) {
2944                 raw_spin_lock(&ctx->lock);
2945                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2946                 raw_spin_unlock(&ctx->lock);
2947         }
2948 }
2949
2950 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2951
2952 void perf_sched_cb_dec(struct pmu *pmu)
2953 {
2954         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2955
2956         this_cpu_dec(perf_sched_cb_usages);
2957
2958         if (!--cpuctx->sched_cb_usage)
2959                 list_del(&cpuctx->sched_cb_entry);
2960 }
2961
2962
2963 void perf_sched_cb_inc(struct pmu *pmu)
2964 {
2965         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2966
2967         if (!cpuctx->sched_cb_usage++)
2968                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2969
2970         this_cpu_inc(perf_sched_cb_usages);
2971 }
2972
2973 /*
2974  * This function provides the context switch callback to the lower code
2975  * layer. It is invoked ONLY when the context switch callback is enabled.
2976  *
2977  * This callback is relevant even to per-cpu events; for example multi event
2978  * PEBS requires this to provide PID/TID information. This requires we flush
2979  * all queued PEBS records before we context switch to a new task.
2980  */
2981 static void perf_pmu_sched_task(struct task_struct *prev,
2982                                 struct task_struct *next,
2983                                 bool sched_in)
2984 {
2985         struct perf_cpu_context *cpuctx;
2986         struct pmu *pmu;
2987
2988         if (prev == next)
2989                 return;
2990
2991         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2992                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2993
2994                 if (WARN_ON_ONCE(!pmu->sched_task))
2995                         continue;
2996
2997                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2998                 perf_pmu_disable(pmu);
2999
3000                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3001
3002                 perf_pmu_enable(pmu);
3003                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3004         }
3005 }
3006
3007 static void perf_event_switch(struct task_struct *task,
3008                               struct task_struct *next_prev, bool sched_in);
3009
3010 #define for_each_task_context_nr(ctxn)                                  \
3011         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3012
3013 /*
3014  * Called from scheduler to remove the events of the current task,
3015  * with interrupts disabled.
3016  *
3017  * We stop each event and update the event value in event->count.
3018  *
3019  * This does not protect us against NMI, but disable()
3020  * sets the disabled bit in the control field of event _before_
3021  * accessing the event control register. If a NMI hits, then it will
3022  * not restart the event.
3023  */
3024 void __perf_event_task_sched_out(struct task_struct *task,
3025                                  struct task_struct *next)
3026 {
3027         int ctxn;
3028
3029         if (__this_cpu_read(perf_sched_cb_usages))
3030                 perf_pmu_sched_task(task, next, false);
3031
3032         if (atomic_read(&nr_switch_events))
3033                 perf_event_switch(task, next, false);
3034
3035         for_each_task_context_nr(ctxn)
3036                 perf_event_context_sched_out(task, ctxn, next);
3037
3038         /*
3039          * if cgroup events exist on this CPU, then we need
3040          * to check if we have to switch out PMU state.
3041          * cgroup event are system-wide mode only
3042          */
3043         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3044                 perf_cgroup_sched_out(task, next);
3045 }
3046
3047 /*
3048  * Called with IRQs disabled
3049  */
3050 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3051                               enum event_type_t event_type)
3052 {
3053         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3054 }
3055
3056 static void
3057 ctx_pinned_sched_in(struct perf_event_context *ctx,
3058                     struct perf_cpu_context *cpuctx)
3059 {
3060         struct perf_event *event;
3061
3062         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3063                 if (event->state <= PERF_EVENT_STATE_OFF)
3064                         continue;
3065                 if (!event_filter_match(event))
3066                         continue;
3067
3068                 /* may need to reset tstamp_enabled */
3069                 if (is_cgroup_event(event))
3070                         perf_cgroup_mark_enabled(event, ctx);
3071
3072                 if (group_can_go_on(event, cpuctx, 1))
3073                         group_sched_in(event, cpuctx, ctx);
3074
3075                 /*
3076                  * If this pinned group hasn't been scheduled,
3077                  * put it in error state.
3078                  */
3079                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3080                         update_group_times(event);
3081                         event->state = PERF_EVENT_STATE_ERROR;
3082                 }
3083         }
3084 }
3085
3086 static void
3087 ctx_flexible_sched_in(struct perf_event_context *ctx,
3088                       struct perf_cpu_context *cpuctx)
3089 {
3090         struct perf_event *event;
3091         int can_add_hw = 1;
3092
3093         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3094                 /* Ignore events in OFF or ERROR state */
3095                 if (event->state <= PERF_EVENT_STATE_OFF)
3096                         continue;
3097                 /*
3098                  * Listen to the 'cpu' scheduling filter constraint
3099                  * of events:
3100                  */
3101                 if (!event_filter_match(event))
3102                         continue;
3103
3104                 /* may need to reset tstamp_enabled */
3105                 if (is_cgroup_event(event))
3106                         perf_cgroup_mark_enabled(event, ctx);
3107
3108                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3109                         if (group_sched_in(event, cpuctx, ctx))
3110                                 can_add_hw = 0;
3111                 }
3112         }
3113 }
3114
3115 static void
3116 ctx_sched_in(struct perf_event_context *ctx,
3117              struct perf_cpu_context *cpuctx,
3118              enum event_type_t event_type,
3119              struct task_struct *task)
3120 {
3121         int is_active = ctx->is_active;
3122         u64 now;
3123
3124         lockdep_assert_held(&ctx->lock);
3125
3126         if (likely(!ctx->nr_events))
3127                 return;
3128
3129         ctx->is_active |= (event_type | EVENT_TIME);
3130         if (ctx->task) {
3131                 if (!is_active)
3132                         cpuctx->task_ctx = ctx;
3133                 else
3134                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3135         }
3136
3137         is_active ^= ctx->is_active; /* changed bits */
3138
3139         if (is_active & EVENT_TIME) {
3140                 /* start ctx time */
3141                 now = perf_clock();
3142                 ctx->timestamp = now;
3143                 perf_cgroup_set_timestamp(task, ctx);
3144         }
3145
3146         /*
3147          * First go through the list and put on any pinned groups
3148          * in order to give them the best chance of going on.
3149          */
3150         if (is_active & EVENT_PINNED)
3151                 ctx_pinned_sched_in(ctx, cpuctx);
3152
3153         /* Then walk through the lower prio flexible groups */
3154         if (is_active & EVENT_FLEXIBLE)
3155                 ctx_flexible_sched_in(ctx, cpuctx);
3156 }
3157
3158 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3159                              enum event_type_t event_type,
3160                              struct task_struct *task)
3161 {
3162         struct perf_event_context *ctx = &cpuctx->ctx;
3163
3164         ctx_sched_in(ctx, cpuctx, event_type, task);
3165 }
3166
3167 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3168                                         struct task_struct *task)
3169 {
3170         struct perf_cpu_context *cpuctx;
3171
3172         cpuctx = __get_cpu_context(ctx);
3173         if (cpuctx->task_ctx == ctx)
3174                 return;
3175
3176         perf_ctx_lock(cpuctx, ctx);
3177         perf_pmu_disable(ctx->pmu);
3178         /*
3179          * We want to keep the following priority order:
3180          * cpu pinned (that don't need to move), task pinned,
3181          * cpu flexible, task flexible.
3182          *
3183          * However, if task's ctx is not carrying any pinned
3184          * events, no need to flip the cpuctx's events around.
3185          */
3186         if (!list_empty(&ctx->pinned_groups))
3187                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3188         perf_event_sched_in(cpuctx, ctx, task);
3189         perf_pmu_enable(ctx->pmu);
3190         perf_ctx_unlock(cpuctx, ctx);
3191 }
3192
3193 /*
3194  * Called from scheduler to add the events of the current task
3195  * with interrupts disabled.
3196  *
3197  * We restore the event value and then enable it.
3198  *
3199  * This does not protect us against NMI, but enable()
3200  * sets the enabled bit in the control field of event _before_
3201  * accessing the event control register. If a NMI hits, then it will
3202  * keep the event running.
3203  */
3204 void __perf_event_task_sched_in(struct task_struct *prev,
3205                                 struct task_struct *task)
3206 {
3207         struct perf_event_context *ctx;
3208         int ctxn;
3209
3210         /*
3211          * If cgroup events exist on this CPU, then we need to check if we have
3212          * to switch in PMU state; cgroup event are system-wide mode only.
3213          *
3214          * Since cgroup events are CPU events, we must schedule these in before
3215          * we schedule in the task events.
3216          */
3217         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3218                 perf_cgroup_sched_in(prev, task);
3219
3220         for_each_task_context_nr(ctxn) {
3221                 ctx = task->perf_event_ctxp[ctxn];
3222                 if (likely(!ctx))
3223                         continue;
3224
3225                 perf_event_context_sched_in(ctx, task);
3226         }
3227
3228         if (atomic_read(&nr_switch_events))
3229                 perf_event_switch(task, prev, true);
3230
3231         if (__this_cpu_read(perf_sched_cb_usages))
3232                 perf_pmu_sched_task(prev, task, true);
3233 }
3234
3235 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3236 {
3237         u64 frequency = event->attr.sample_freq;
3238         u64 sec = NSEC_PER_SEC;
3239         u64 divisor, dividend;
3240
3241         int count_fls, nsec_fls, frequency_fls, sec_fls;
3242
3243         count_fls = fls64(count);
3244         nsec_fls = fls64(nsec);
3245         frequency_fls = fls64(frequency);
3246         sec_fls = 30;
3247
3248         /*
3249          * We got @count in @nsec, with a target of sample_freq HZ
3250          * the target period becomes:
3251          *
3252          *             @count * 10^9
3253          * period = -------------------
3254          *          @nsec * sample_freq
3255          *
3256          */
3257
3258         /*
3259          * Reduce accuracy by one bit such that @a and @b converge
3260          * to a similar magnitude.
3261          */
3262 #define REDUCE_FLS(a, b)                \
3263 do {                                    \
3264         if (a##_fls > b##_fls) {        \
3265                 a >>= 1;                \
3266                 a##_fls--;              \
3267         } else {                        \
3268                 b >>= 1;                \
3269                 b##_fls--;              \
3270         }                               \
3271 } while (0)
3272
3273         /*
3274          * Reduce accuracy until either term fits in a u64, then proceed with
3275          * the other, so that finally we can do a u64/u64 division.
3276          */
3277         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3278                 REDUCE_FLS(nsec, frequency);
3279                 REDUCE_FLS(sec, count);
3280         }
3281
3282         if (count_fls + sec_fls > 64) {
3283                 divisor = nsec * frequency;
3284
3285                 while (count_fls + sec_fls > 64) {
3286                         REDUCE_FLS(count, sec);
3287                         divisor >>= 1;
3288                 }
3289
3290                 dividend = count * sec;
3291         } else {
3292                 dividend = count * sec;
3293
3294                 while (nsec_fls + frequency_fls > 64) {
3295                         REDUCE_FLS(nsec, frequency);
3296                         dividend >>= 1;
3297                 }
3298
3299                 divisor = nsec * frequency;
3300         }
3301
3302         if (!divisor)
3303                 return dividend;
3304
3305         return div64_u64(dividend, divisor);
3306 }
3307
3308 static DEFINE_PER_CPU(int, perf_throttled_count);
3309 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3310
3311 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3312 {
3313         struct hw_perf_event *hwc = &event->hw;
3314         s64 period, sample_period;
3315         s64 delta;
3316
3317         period = perf_calculate_period(event, nsec, count);
3318
3319         delta = (s64)(period - hwc->sample_period);
3320         delta = (delta + 7) / 8; /* low pass filter */
3321
3322         sample_period = hwc->sample_period + delta;
3323
3324         if (!sample_period)
3325                 sample_period = 1;
3326
3327         hwc->sample_period = sample_period;
3328
3329         if (local64_read(&hwc->period_left) > 8*sample_period) {
3330                 if (disable)
3331                         event->pmu->stop(event, PERF_EF_UPDATE);
3332
3333                 local64_set(&hwc->period_left, 0);
3334
3335                 if (disable)
3336                         event->pmu->start(event, PERF_EF_RELOAD);
3337         }
3338 }
3339
3340 /*
3341  * combine freq adjustment with unthrottling to avoid two passes over the
3342  * events. At the same time, make sure, having freq events does not change
3343  * the rate of unthrottling as that would introduce bias.
3344  */
3345 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3346                                            int needs_unthr)
3347 {
3348         struct perf_event *event;
3349         struct hw_perf_event *hwc;
3350         u64 now, period = TICK_NSEC;
3351         s64 delta;
3352
3353         /*
3354          * only need to iterate over all events iff:
3355          * - context have events in frequency mode (needs freq adjust)
3356          * - there are events to unthrottle on this cpu
3357          */
3358         if (!(ctx->nr_freq || needs_unthr))
3359                 return;
3360
3361         raw_spin_lock(&ctx->lock);
3362         perf_pmu_disable(ctx->pmu);
3363
3364         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3365                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3366                         continue;
3367
3368                 if (!event_filter_match(event))
3369                         continue;
3370
3371                 perf_pmu_disable(event->pmu);
3372
3373                 hwc = &event->hw;
3374
3375                 if (hwc->interrupts == MAX_INTERRUPTS) {
3376                         hwc->interrupts = 0;
3377                         perf_log_throttle(event, 1);
3378                         event->pmu->start(event, 0);
3379                 }
3380
3381                 if (!event->attr.freq || !event->attr.sample_freq)
3382                         goto next;
3383
3384                 /*
3385                  * stop the event and update event->count
3386                  */
3387                 event->pmu->stop(event, PERF_EF_UPDATE);
3388
3389                 now = local64_read(&event->count);
3390                 delta = now - hwc->freq_count_stamp;
3391                 hwc->freq_count_stamp = now;
3392
3393                 /*
3394                  * restart the event
3395                  * reload only if value has changed
3396                  * we have stopped the event so tell that
3397                  * to perf_adjust_period() to avoid stopping it
3398                  * twice.
3399                  */
3400                 if (delta > 0)
3401                         perf_adjust_period(event, period, delta, false);
3402
3403                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3404         next:
3405                 perf_pmu_enable(event->pmu);
3406         }
3407
3408         perf_pmu_enable(ctx->pmu);
3409         raw_spin_unlock(&ctx->lock);
3410 }
3411
3412 /*
3413  * Round-robin a context's events:
3414  */
3415 static void rotate_ctx(struct perf_event_context *ctx)
3416 {
3417         /*
3418          * Rotate the first entry last of non-pinned groups. Rotation might be
3419          * disabled by the inheritance code.
3420          */
3421         if (!ctx->rotate_disable)
3422                 list_rotate_left(&ctx->flexible_groups);
3423 }
3424
3425 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3426 {
3427         struct perf_event_context *ctx = NULL;
3428         int rotate = 0;
3429
3430         if (cpuctx->ctx.nr_events) {
3431                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3432                         rotate = 1;
3433         }
3434
3435         ctx = cpuctx->task_ctx;
3436         if (ctx && ctx->nr_events) {
3437                 if (ctx->nr_events != ctx->nr_active)
3438                         rotate = 1;
3439         }
3440
3441         if (!rotate)
3442                 goto done;
3443
3444         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3445         perf_pmu_disable(cpuctx->ctx.pmu);
3446
3447         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3448         if (ctx)
3449                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3450
3451         rotate_ctx(&cpuctx->ctx);
3452         if (ctx)
3453                 rotate_ctx(ctx);
3454
3455         perf_event_sched_in(cpuctx, ctx, current);
3456
3457         perf_pmu_enable(cpuctx->ctx.pmu);
3458         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3459 done:
3460
3461         return rotate;
3462 }
3463
3464 void perf_event_task_tick(void)
3465 {
3466         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3467         struct perf_event_context *ctx, *tmp;
3468         int throttled;
3469
3470         WARN_ON(!irqs_disabled());
3471
3472         __this_cpu_inc(perf_throttled_seq);
3473         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3474         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3475
3476         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3477                 perf_adjust_freq_unthr_context(ctx, throttled);
3478 }
3479
3480 static int event_enable_on_exec(struct perf_event *event,
3481                                 struct perf_event_context *ctx)
3482 {
3483         if (!event->attr.enable_on_exec)
3484                 return 0;
3485
3486         event->attr.enable_on_exec = 0;
3487         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3488                 return 0;
3489
3490         __perf_event_mark_enabled(event);
3491
3492         return 1;
3493 }
3494
3495 /*
3496  * Enable all of a task's events that have been marked enable-on-exec.
3497  * This expects task == current.
3498  */
3499 static void perf_event_enable_on_exec(int ctxn)
3500 {
3501         struct perf_event_context *ctx, *clone_ctx = NULL;
3502         enum event_type_t event_type = 0;
3503         struct perf_cpu_context *cpuctx;
3504         struct perf_event *event;
3505         unsigned long flags;
3506         int enabled = 0;
3507
3508         local_irq_save(flags);
3509         ctx = current->perf_event_ctxp[ctxn];
3510         if (!ctx || !ctx->nr_events)
3511                 goto out;
3512
3513         cpuctx = __get_cpu_context(ctx);
3514         perf_ctx_lock(cpuctx, ctx);
3515         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3516         list_for_each_entry(event, &ctx->event_list, event_entry) {
3517                 enabled |= event_enable_on_exec(event, ctx);
3518                 event_type |= get_event_type(event);
3519         }
3520
3521         /*
3522          * Unclone and reschedule this context if we enabled any event.
3523          */
3524         if (enabled) {
3525                 clone_ctx = unclone_ctx(ctx);
3526                 ctx_resched(cpuctx, ctx, event_type);
3527         } else {
3528                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3529         }
3530         perf_ctx_unlock(cpuctx, ctx);
3531
3532 out:
3533         local_irq_restore(flags);
3534
3535         if (clone_ctx)
3536                 put_ctx(clone_ctx);
3537 }
3538
3539 struct perf_read_data {
3540         struct perf_event *event;
3541         bool group;
3542         int ret;
3543 };
3544
3545 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3546 {
3547         u16 local_pkg, event_pkg;
3548
3549         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3550                 int local_cpu = smp_processor_id();
3551
3552                 event_pkg = topology_physical_package_id(event_cpu);
3553                 local_pkg = topology_physical_package_id(local_cpu);
3554
3555                 if (event_pkg == local_pkg)
3556                         return local_cpu;
3557         }
3558
3559         return event_cpu;
3560 }
3561
3562 /*
3563  * Cross CPU call to read the hardware event
3564  */
3565 static void __perf_event_read(void *info)
3566 {
3567         struct perf_read_data *data = info;
3568         struct perf_event *sub, *event = data->event;
3569         struct perf_event_context *ctx = event->ctx;
3570         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3571         struct pmu *pmu = event->pmu;
3572
3573         /*
3574          * If this is a task context, we need to check whether it is
3575          * the current task context of this cpu.  If not it has been
3576          * scheduled out before the smp call arrived.  In that case
3577          * event->count would have been updated to a recent sample
3578          * when the event was scheduled out.
3579          */
3580         if (ctx->task && cpuctx->task_ctx != ctx)
3581                 return;
3582
3583         raw_spin_lock(&ctx->lock);
3584         if (ctx->is_active) {
3585                 update_context_time(ctx);
3586                 update_cgrp_time_from_event(event);
3587         }
3588
3589         update_event_times(event);
3590         if (event->state != PERF_EVENT_STATE_ACTIVE)
3591                 goto unlock;
3592
3593         if (!data->group) {
3594                 pmu->read(event);
3595                 data->ret = 0;
3596                 goto unlock;
3597         }
3598
3599         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3600
3601         pmu->read(event);
3602
3603         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3604                 update_event_times(sub);
3605                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3606                         /*
3607                          * Use sibling's PMU rather than @event's since
3608                          * sibling could be on different (eg: software) PMU.
3609                          */
3610                         sub->pmu->read(sub);
3611                 }
3612         }
3613
3614         data->ret = pmu->commit_txn(pmu);
3615
3616 unlock:
3617         raw_spin_unlock(&ctx->lock);
3618 }
3619
3620 static inline u64 perf_event_count(struct perf_event *event)
3621 {
3622         if (event->pmu->count)
3623                 return event->pmu->count(event);
3624
3625         return __perf_event_count(event);
3626 }
3627
3628 /*
3629  * NMI-safe method to read a local event, that is an event that
3630  * is:
3631  *   - either for the current task, or for this CPU
3632  *   - does not have inherit set, for inherited task events
3633  *     will not be local and we cannot read them atomically
3634  *   - must not have a pmu::count method
3635  */
3636 u64 perf_event_read_local(struct perf_event *event)
3637 {
3638         unsigned long flags;
3639         u64 val;
3640
3641         /*
3642          * Disabling interrupts avoids all counter scheduling (context
3643          * switches, timer based rotation and IPIs).
3644          */
3645         local_irq_save(flags);
3646
3647         /* If this is a per-task event, it must be for current */
3648         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3649                      event->hw.target != current);
3650
3651         /* If this is a per-CPU event, it must be for this CPU */
3652         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3653                      event->cpu != smp_processor_id());
3654
3655         /*
3656          * It must not be an event with inherit set, we cannot read
3657          * all child counters from atomic context.
3658          */
3659         WARN_ON_ONCE(event->attr.inherit);
3660
3661         /*
3662          * It must not have a pmu::count method, those are not
3663          * NMI safe.
3664          */
3665         WARN_ON_ONCE(event->pmu->count);
3666
3667         /*
3668          * If the event is currently on this CPU, its either a per-task event,
3669          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3670          * oncpu == -1).
3671          */
3672         if (event->oncpu == smp_processor_id())
3673                 event->pmu->read(event);
3674
3675         val = local64_read(&event->count);
3676         local_irq_restore(flags);
3677
3678         return val;
3679 }
3680
3681 static int perf_event_read(struct perf_event *event, bool group)
3682 {
3683         int event_cpu, ret = 0;
3684
3685         /*
3686          * If event is enabled and currently active on a CPU, update the
3687          * value in the event structure:
3688          */
3689         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3690                 struct perf_read_data data = {
3691                         .event = event,
3692                         .group = group,
3693                         .ret = 0,
3694                 };
3695
3696                 event_cpu = READ_ONCE(event->oncpu);
3697                 if ((unsigned)event_cpu >= nr_cpu_ids)
3698                         return 0;
3699
3700                 preempt_disable();
3701                 event_cpu = __perf_event_read_cpu(event, event_cpu);
3702
3703                 /*
3704                  * Purposely ignore the smp_call_function_single() return
3705                  * value.
3706                  *
3707                  * If event_cpu isn't a valid CPU it means the event got
3708                  * scheduled out and that will have updated the event count.
3709                  *
3710                  * Therefore, either way, we'll have an up-to-date event count
3711                  * after this.
3712                  */
3713                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3714                 preempt_enable();
3715                 ret = data.ret;
3716         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3717                 struct perf_event_context *ctx = event->ctx;
3718                 unsigned long flags;
3719
3720                 raw_spin_lock_irqsave(&ctx->lock, flags);
3721                 /*
3722                  * may read while context is not active
3723                  * (e.g., thread is blocked), in that case
3724                  * we cannot update context time
3725                  */
3726                 if (ctx->is_active) {
3727                         update_context_time(ctx);
3728                         update_cgrp_time_from_event(event);
3729                 }
3730                 if (group)
3731                         update_group_times(event);
3732                 else
3733                         update_event_times(event);
3734                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3735         }
3736
3737         return ret;
3738 }
3739
3740 /*
3741  * Initialize the perf_event context in a task_struct:
3742  */
3743 static void __perf_event_init_context(struct perf_event_context *ctx)
3744 {
3745         raw_spin_lock_init(&ctx->lock);
3746         mutex_init(&ctx->mutex);
3747         INIT_LIST_HEAD(&ctx->active_ctx_list);
3748         INIT_LIST_HEAD(&ctx->pinned_groups);
3749         INIT_LIST_HEAD(&ctx->flexible_groups);
3750         INIT_LIST_HEAD(&ctx->event_list);
3751         atomic_set(&ctx->refcount, 1);
3752 }
3753
3754 static struct perf_event_context *
3755 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3756 {
3757         struct perf_event_context *ctx;
3758
3759         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3760         if (!ctx)
3761                 return NULL;
3762
3763         __perf_event_init_context(ctx);
3764         if (task) {
3765                 ctx->task = task;
3766                 get_task_struct(task);
3767         }
3768         ctx->pmu = pmu;
3769
3770         return ctx;
3771 }
3772
3773 static struct task_struct *
3774 find_lively_task_by_vpid(pid_t vpid)
3775 {
3776         struct task_struct *task;
3777
3778         rcu_read_lock();
3779         if (!vpid)
3780                 task = current;
3781         else
3782                 task = find_task_by_vpid(vpid);
3783         if (task)
3784                 get_task_struct(task);
3785         rcu_read_unlock();
3786
3787         if (!task)
3788                 return ERR_PTR(-ESRCH);
3789
3790         return task;
3791 }
3792
3793 /*
3794  * Returns a matching context with refcount and pincount.
3795  */
3796 static struct perf_event_context *
3797 find_get_context(struct pmu *pmu, struct task_struct *task,
3798                 struct perf_event *event)
3799 {
3800         struct perf_event_context *ctx, *clone_ctx = NULL;
3801         struct perf_cpu_context *cpuctx;
3802         void *task_ctx_data = NULL;
3803         unsigned long flags;
3804         int ctxn, err;
3805         int cpu = event->cpu;
3806
3807         if (!task) {
3808                 /* Must be root to operate on a CPU event: */
3809                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3810                         return ERR_PTR(-EACCES);
3811
3812                 /*
3813                  * We could be clever and allow to attach a event to an
3814                  * offline CPU and activate it when the CPU comes up, but
3815                  * that's for later.
3816                  */
3817                 if (!cpu_online(cpu))
3818                         return ERR_PTR(-ENODEV);
3819
3820                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3821                 ctx = &cpuctx->ctx;
3822                 get_ctx(ctx);
3823                 ++ctx->pin_count;
3824
3825                 return ctx;
3826         }
3827
3828         err = -EINVAL;
3829         ctxn = pmu->task_ctx_nr;
3830         if (ctxn < 0)
3831                 goto errout;
3832
3833         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3834                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3835                 if (!task_ctx_data) {
3836                         err = -ENOMEM;
3837                         goto errout;
3838                 }
3839         }
3840
3841 retry:
3842         ctx = perf_lock_task_context(task, ctxn, &flags);
3843         if (ctx) {
3844                 clone_ctx = unclone_ctx(ctx);
3845                 ++ctx->pin_count;
3846
3847                 if (task_ctx_data && !ctx->task_ctx_data) {
3848                         ctx->task_ctx_data = task_ctx_data;
3849                         task_ctx_data = NULL;
3850                 }
3851                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3852
3853                 if (clone_ctx)
3854                         put_ctx(clone_ctx);
3855         } else {
3856                 ctx = alloc_perf_context(pmu, task);
3857                 err = -ENOMEM;
3858                 if (!ctx)
3859                         goto errout;
3860
3861                 if (task_ctx_data) {
3862                         ctx->task_ctx_data = task_ctx_data;
3863                         task_ctx_data = NULL;
3864                 }
3865
3866                 err = 0;
3867                 mutex_lock(&task->perf_event_mutex);
3868                 /*
3869                  * If it has already passed perf_event_exit_task().
3870                  * we must see PF_EXITING, it takes this mutex too.
3871                  */
3872                 if (task->flags & PF_EXITING)
3873                         err = -ESRCH;
3874                 else if (task->perf_event_ctxp[ctxn])
3875                         err = -EAGAIN;
3876                 else {
3877                         get_ctx(ctx);
3878                         ++ctx->pin_count;
3879                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3880                 }
3881                 mutex_unlock(&task->perf_event_mutex);
3882
3883                 if (unlikely(err)) {
3884                         put_ctx(ctx);
3885
3886                         if (err == -EAGAIN)
3887                                 goto retry;
3888                         goto errout;
3889                 }
3890         }
3891
3892         kfree(task_ctx_data);
3893         return ctx;
3894
3895 errout:
3896         kfree(task_ctx_data);
3897         return ERR_PTR(err);
3898 }
3899
3900 static void perf_event_free_filter(struct perf_event *event);
3901 static void perf_event_free_bpf_prog(struct perf_event *event);
3902
3903 static void free_event_rcu(struct rcu_head *head)
3904 {
3905         struct perf_event *event;
3906
3907         event = container_of(head, struct perf_event, rcu_head);
3908         if (event->ns)
3909                 put_pid_ns(event->ns);
3910         perf_event_free_filter(event);
3911         kfree(event);
3912 }
3913
3914 static void ring_buffer_attach(struct perf_event *event,
3915                                struct ring_buffer *rb);
3916
3917 static void detach_sb_event(struct perf_event *event)
3918 {
3919         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3920
3921         raw_spin_lock(&pel->lock);
3922         list_del_rcu(&event->sb_list);
3923         raw_spin_unlock(&pel->lock);
3924 }
3925
3926 static bool is_sb_event(struct perf_event *event)
3927 {
3928         struct perf_event_attr *attr = &event->attr;
3929
3930         if (event->parent)
3931                 return false;
3932
3933         if (event->attach_state & PERF_ATTACH_TASK)
3934                 return false;
3935
3936         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3937             attr->comm || attr->comm_exec ||
3938             attr->task ||
3939             attr->context_switch)
3940                 return true;
3941         return false;
3942 }
3943
3944 static void unaccount_pmu_sb_event(struct perf_event *event)
3945 {
3946         if (is_sb_event(event))
3947                 detach_sb_event(event);
3948 }
3949
3950 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3951 {
3952         if (event->parent)
3953                 return;
3954
3955         if (is_cgroup_event(event))
3956                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3957 }
3958
3959 #ifdef CONFIG_NO_HZ_FULL
3960 static DEFINE_SPINLOCK(nr_freq_lock);
3961 #endif
3962
3963 static void unaccount_freq_event_nohz(void)
3964 {
3965 #ifdef CONFIG_NO_HZ_FULL
3966         spin_lock(&nr_freq_lock);
3967         if (atomic_dec_and_test(&nr_freq_events))
3968                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3969         spin_unlock(&nr_freq_lock);
3970 #endif
3971 }
3972
3973 static void unaccount_freq_event(void)
3974 {
3975         if (tick_nohz_full_enabled())
3976                 unaccount_freq_event_nohz();
3977         else
3978                 atomic_dec(&nr_freq_events);
3979 }
3980
3981 static void unaccount_event(struct perf_event *event)
3982 {
3983         bool dec = false;
3984
3985         if (event->parent)
3986                 return;
3987
3988         if (event->attach_state & PERF_ATTACH_TASK)
3989                 dec = true;
3990         if (event->attr.mmap || event->attr.mmap_data)
3991                 atomic_dec(&nr_mmap_events);
3992         if (event->attr.comm)
3993                 atomic_dec(&nr_comm_events);
3994         if (event->attr.task)
3995                 atomic_dec(&nr_task_events);
3996         if (event->attr.freq)
3997                 unaccount_freq_event();
3998         if (event->attr.context_switch) {
3999                 dec = true;
4000                 atomic_dec(&nr_switch_events);
4001         }
4002         if (is_cgroup_event(event))
4003                 dec = true;
4004         if (has_branch_stack(event))
4005                 dec = true;
4006
4007         if (dec) {
4008                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4009                         schedule_delayed_work(&perf_sched_work, HZ);
4010         }
4011
4012         unaccount_event_cpu(event, event->cpu);
4013
4014         unaccount_pmu_sb_event(event);
4015 }
4016
4017 static void perf_sched_delayed(struct work_struct *work)
4018 {
4019         mutex_lock(&perf_sched_mutex);
4020         if (atomic_dec_and_test(&perf_sched_count))
4021                 static_branch_disable(&perf_sched_events);
4022         mutex_unlock(&perf_sched_mutex);
4023 }
4024
4025 /*
4026  * The following implement mutual exclusion of events on "exclusive" pmus
4027  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4028  * at a time, so we disallow creating events that might conflict, namely:
4029  *
4030  *  1) cpu-wide events in the presence of per-task events,
4031  *  2) per-task events in the presence of cpu-wide events,
4032  *  3) two matching events on the same context.
4033  *
4034  * The former two cases are handled in the allocation path (perf_event_alloc(),
4035  * _free_event()), the latter -- before the first perf_install_in_context().
4036  */
4037 static int exclusive_event_init(struct perf_event *event)
4038 {
4039         struct pmu *pmu = event->pmu;
4040
4041         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4042                 return 0;
4043
4044         /*
4045          * Prevent co-existence of per-task and cpu-wide events on the
4046          * same exclusive pmu.
4047          *
4048          * Negative pmu::exclusive_cnt means there are cpu-wide
4049          * events on this "exclusive" pmu, positive means there are
4050          * per-task events.
4051          *
4052          * Since this is called in perf_event_alloc() path, event::ctx
4053          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4054          * to mean "per-task event", because unlike other attach states it
4055          * never gets cleared.
4056          */
4057         if (event->attach_state & PERF_ATTACH_TASK) {
4058                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4059                         return -EBUSY;
4060         } else {
4061                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4062                         return -EBUSY;
4063         }
4064
4065         return 0;
4066 }
4067
4068 static void exclusive_event_destroy(struct perf_event *event)
4069 {
4070         struct pmu *pmu = event->pmu;
4071
4072         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4073                 return;
4074
4075         /* see comment in exclusive_event_init() */
4076         if (event->attach_state & PERF_ATTACH_TASK)
4077                 atomic_dec(&pmu->exclusive_cnt);
4078         else
4079                 atomic_inc(&pmu->exclusive_cnt);
4080 }
4081
4082 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4083 {
4084         if ((e1->pmu == e2->pmu) &&
4085             (e1->cpu == e2->cpu ||
4086              e1->cpu == -1 ||
4087              e2->cpu == -1))
4088                 return true;
4089         return false;
4090 }
4091
4092 /* Called under the same ctx::mutex as perf_install_in_context() */
4093 static bool exclusive_event_installable(struct perf_event *event,
4094                                         struct perf_event_context *ctx)
4095 {
4096         struct perf_event *iter_event;
4097         struct pmu *pmu = event->pmu;
4098
4099         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4100                 return true;
4101
4102         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4103                 if (exclusive_event_match(iter_event, event))
4104                         return false;
4105         }
4106
4107         return true;
4108 }
4109
4110 static void perf_addr_filters_splice(struct perf_event *event,
4111                                        struct list_head *head);
4112
4113 static void _free_event(struct perf_event *event)
4114 {
4115         irq_work_sync(&event->pending);
4116
4117         unaccount_event(event);
4118
4119         if (event->rb) {
4120                 /*
4121                  * Can happen when we close an event with re-directed output.
4122                  *
4123                  * Since we have a 0 refcount, perf_mmap_close() will skip
4124                  * over us; possibly making our ring_buffer_put() the last.
4125                  */
4126                 mutex_lock(&event->mmap_mutex);
4127                 ring_buffer_attach(event, NULL);
4128                 mutex_unlock(&event->mmap_mutex);
4129         }
4130
4131         if (is_cgroup_event(event))
4132                 perf_detach_cgroup(event);
4133
4134         if (!event->parent) {
4135                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4136                         put_callchain_buffers();
4137         }
4138
4139         perf_event_free_bpf_prog(event);
4140         perf_addr_filters_splice(event, NULL);
4141         kfree(event->addr_filters_offs);
4142
4143         if (event->destroy)
4144                 event->destroy(event);
4145
4146         if (event->ctx)
4147                 put_ctx(event->ctx);
4148
4149         exclusive_event_destroy(event);
4150         module_put(event->pmu->module);
4151
4152         call_rcu(&event->rcu_head, free_event_rcu);
4153 }
4154
4155 /*
4156  * Used to free events which have a known refcount of 1, such as in error paths
4157  * where the event isn't exposed yet and inherited events.
4158  */
4159 static void free_event(struct perf_event *event)
4160 {
4161         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4162                                 "unexpected event refcount: %ld; ptr=%p\n",
4163                                 atomic_long_read(&event->refcount), event)) {
4164                 /* leak to avoid use-after-free */
4165                 return;
4166         }
4167
4168         _free_event(event);
4169 }
4170
4171 /*
4172  * Remove user event from the owner task.
4173  */
4174 static void perf_remove_from_owner(struct perf_event *event)
4175 {
4176         struct task_struct *owner;
4177
4178         rcu_read_lock();
4179         /*
4180          * Matches the smp_store_release() in perf_event_exit_task(). If we
4181          * observe !owner it means the list deletion is complete and we can
4182          * indeed free this event, otherwise we need to serialize on
4183          * owner->perf_event_mutex.
4184          */
4185         owner = lockless_dereference(event->owner);
4186         if (owner) {
4187                 /*
4188                  * Since delayed_put_task_struct() also drops the last
4189                  * task reference we can safely take a new reference
4190                  * while holding the rcu_read_lock().
4191                  */
4192                 get_task_struct(owner);
4193         }
4194         rcu_read_unlock();
4195
4196         if (owner) {
4197                 /*
4198                  * If we're here through perf_event_exit_task() we're already
4199                  * holding ctx->mutex which would be an inversion wrt. the
4200                  * normal lock order.
4201                  *
4202                  * However we can safely take this lock because its the child
4203                  * ctx->mutex.
4204                  */
4205                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4206
4207                 /*
4208                  * We have to re-check the event->owner field, if it is cleared
4209                  * we raced with perf_event_exit_task(), acquiring the mutex
4210                  * ensured they're done, and we can proceed with freeing the
4211                  * event.
4212                  */
4213                 if (event->owner) {
4214                         list_del_init(&event->owner_entry);
4215                         smp_store_release(&event->owner, NULL);
4216                 }
4217                 mutex_unlock(&owner->perf_event_mutex);
4218                 put_task_struct(owner);
4219         }
4220 }
4221
4222 static void put_event(struct perf_event *event)
4223 {
4224         if (!atomic_long_dec_and_test(&event->refcount))
4225                 return;
4226
4227         _free_event(event);
4228 }
4229
4230 /*
4231  * Kill an event dead; while event:refcount will preserve the event
4232  * object, it will not preserve its functionality. Once the last 'user'
4233  * gives up the object, we'll destroy the thing.
4234  */
4235 int perf_event_release_kernel(struct perf_event *event)
4236 {
4237         struct perf_event_context *ctx = event->ctx;
4238         struct perf_event *child, *tmp;
4239
4240         /*
4241          * If we got here through err_file: fput(event_file); we will not have
4242          * attached to a context yet.
4243          */
4244         if (!ctx) {
4245                 WARN_ON_ONCE(event->attach_state &
4246                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4247                 goto no_ctx;
4248         }
4249
4250         if (!is_kernel_event(event))
4251                 perf_remove_from_owner(event);
4252
4253         ctx = perf_event_ctx_lock(event);
4254         WARN_ON_ONCE(ctx->parent_ctx);
4255         perf_remove_from_context(event, DETACH_GROUP);
4256
4257         raw_spin_lock_irq(&ctx->lock);
4258         /*
4259          * Mark this event as STATE_DEAD, there is no external reference to it
4260          * anymore.
4261          *
4262          * Anybody acquiring event->child_mutex after the below loop _must_
4263          * also see this, most importantly inherit_event() which will avoid
4264          * placing more children on the list.
4265          *
4266          * Thus this guarantees that we will in fact observe and kill _ALL_
4267          * child events.
4268          */
4269         event->state = PERF_EVENT_STATE_DEAD;
4270         raw_spin_unlock_irq(&ctx->lock);
4271
4272         perf_event_ctx_unlock(event, ctx);
4273
4274 again:
4275         mutex_lock(&event->child_mutex);
4276         list_for_each_entry(child, &event->child_list, child_list) {
4277
4278                 /*
4279                  * Cannot change, child events are not migrated, see the
4280                  * comment with perf_event_ctx_lock_nested().
4281                  */
4282                 ctx = lockless_dereference(child->ctx);
4283                 /*
4284                  * Since child_mutex nests inside ctx::mutex, we must jump
4285                  * through hoops. We start by grabbing a reference on the ctx.
4286                  *
4287                  * Since the event cannot get freed while we hold the
4288                  * child_mutex, the context must also exist and have a !0
4289                  * reference count.
4290                  */
4291                 get_ctx(ctx);
4292
4293                 /*
4294                  * Now that we have a ctx ref, we can drop child_mutex, and
4295                  * acquire ctx::mutex without fear of it going away. Then we
4296                  * can re-acquire child_mutex.
4297                  */
4298                 mutex_unlock(&event->child_mutex);
4299                 mutex_lock(&ctx->mutex);
4300                 mutex_lock(&event->child_mutex);
4301
4302                 /*
4303                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4304                  * state, if child is still the first entry, it didn't get freed
4305                  * and we can continue doing so.
4306                  */
4307                 tmp = list_first_entry_or_null(&event->child_list,
4308                                                struct perf_event, child_list);
4309                 if (tmp == child) {
4310                         perf_remove_from_context(child, DETACH_GROUP);
4311                         list_del(&child->child_list);
4312                         free_event(child);
4313                         /*
4314                          * This matches the refcount bump in inherit_event();
4315                          * this can't be the last reference.
4316                          */
4317                         put_event(event);
4318                 }
4319
4320                 mutex_unlock(&event->child_mutex);
4321                 mutex_unlock(&ctx->mutex);
4322                 put_ctx(ctx);
4323                 goto again;
4324         }
4325         mutex_unlock(&event->child_mutex);
4326
4327 no_ctx:
4328         put_event(event); /* Must be the 'last' reference */
4329         return 0;
4330 }
4331 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4332
4333 /*
4334  * Called when the last reference to the file is gone.
4335  */
4336 static int perf_release(struct inode *inode, struct file *file)
4337 {
4338         perf_event_release_kernel(file->private_data);
4339         return 0;
4340 }
4341
4342 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4343 {
4344         struct perf_event *child;
4345         u64 total = 0;
4346
4347         *enabled = 0;
4348         *running = 0;
4349
4350         mutex_lock(&event->child_mutex);
4351
4352         (void)perf_event_read(event, false);
4353         total += perf_event_count(event);
4354
4355         *enabled += event->total_time_enabled +
4356                         atomic64_read(&event->child_total_time_enabled);
4357         *running += event->total_time_running +
4358                         atomic64_read(&event->child_total_time_running);
4359
4360         list_for_each_entry(child, &event->child_list, child_list) {
4361                 (void)perf_event_read(child, false);
4362                 total += perf_event_count(child);
4363                 *enabled += child->total_time_enabled;
4364                 *running += child->total_time_running;
4365         }
4366         mutex_unlock(&event->child_mutex);
4367
4368         return total;
4369 }
4370 EXPORT_SYMBOL_GPL(perf_event_read_value);
4371
4372 static int __perf_read_group_add(struct perf_event *leader,
4373                                         u64 read_format, u64 *values)
4374 {
4375         struct perf_event *sub;
4376         int n = 1; /* skip @nr */
4377         int ret;
4378
4379         ret = perf_event_read(leader, true);
4380         if (ret)
4381                 return ret;
4382
4383         /*
4384          * Since we co-schedule groups, {enabled,running} times of siblings
4385          * will be identical to those of the leader, so we only publish one
4386          * set.
4387          */
4388         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4389                 values[n++] += leader->total_time_enabled +
4390                         atomic64_read(&leader->child_total_time_enabled);
4391         }
4392
4393         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4394                 values[n++] += leader->total_time_running +
4395                         atomic64_read(&leader->child_total_time_running);
4396         }
4397
4398         /*
4399          * Write {count,id} tuples for every sibling.
4400          */
4401         values[n++] += perf_event_count(leader);
4402         if (read_format & PERF_FORMAT_ID)
4403                 values[n++] = primary_event_id(leader);
4404
4405         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4406                 values[n++] += perf_event_count(sub);
4407                 if (read_format & PERF_FORMAT_ID)
4408                         values[n++] = primary_event_id(sub);
4409         }
4410
4411         return 0;
4412 }
4413
4414 static int perf_read_group(struct perf_event *event,
4415                                    u64 read_format, char __user *buf)
4416 {
4417         struct perf_event *leader = event->group_leader, *child;
4418         struct perf_event_context *ctx = leader->ctx;
4419         int ret;
4420         u64 *values;
4421
4422         lockdep_assert_held(&ctx->mutex);
4423
4424         values = kzalloc(event->read_size, GFP_KERNEL);
4425         if (!values)
4426                 return -ENOMEM;
4427
4428         values[0] = 1 + leader->nr_siblings;
4429
4430         /*
4431          * By locking the child_mutex of the leader we effectively
4432          * lock the child list of all siblings.. XXX explain how.
4433          */
4434         mutex_lock(&leader->child_mutex);
4435
4436         ret = __perf_read_group_add(leader, read_format, values);
4437         if (ret)
4438                 goto unlock;
4439
4440         list_for_each_entry(child, &leader->child_list, child_list) {
4441                 ret = __perf_read_group_add(child, read_format, values);
4442                 if (ret)
4443                         goto unlock;
4444         }
4445
4446         mutex_unlock(&leader->child_mutex);
4447
4448         ret = event->read_size;
4449         if (copy_to_user(buf, values, event->read_size))
4450                 ret = -EFAULT;
4451         goto out;
4452
4453 unlock:
4454         mutex_unlock(&leader->child_mutex);
4455 out:
4456         kfree(values);
4457         return ret;
4458 }
4459
4460 static int perf_read_one(struct perf_event *event,
4461                                  u64 read_format, char __user *buf)
4462 {
4463         u64 enabled, running;
4464         u64 values[4];
4465         int n = 0;
4466
4467         values[n++] = perf_event_read_value(event, &enabled, &running);
4468         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4469                 values[n++] = enabled;
4470         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4471                 values[n++] = running;
4472         if (read_format & PERF_FORMAT_ID)
4473                 values[n++] = primary_event_id(event);
4474
4475         if (copy_to_user(buf, values, n * sizeof(u64)))
4476                 return -EFAULT;
4477
4478         return n * sizeof(u64);
4479 }
4480
4481 static bool is_event_hup(struct perf_event *event)
4482 {
4483         bool no_children;
4484
4485         if (event->state > PERF_EVENT_STATE_EXIT)
4486                 return false;
4487
4488         mutex_lock(&event->child_mutex);
4489         no_children = list_empty(&event->child_list);
4490         mutex_unlock(&event->child_mutex);
4491         return no_children;
4492 }
4493
4494 /*
4495  * Read the performance event - simple non blocking version for now
4496  */
4497 static ssize_t
4498 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4499 {
4500         u64 read_format = event->attr.read_format;
4501         int ret;
4502
4503         /*
4504          * Return end-of-file for a read on a event that is in
4505          * error state (i.e. because it was pinned but it couldn't be
4506          * scheduled on to the CPU at some point).
4507          */
4508         if (event->state == PERF_EVENT_STATE_ERROR)
4509                 return 0;
4510
4511         if (count < event->read_size)
4512                 return -ENOSPC;
4513
4514         WARN_ON_ONCE(event->ctx->parent_ctx);
4515         if (read_format & PERF_FORMAT_GROUP)
4516                 ret = perf_read_group(event, read_format, buf);
4517         else
4518                 ret = perf_read_one(event, read_format, buf);
4519
4520         return ret;
4521 }
4522
4523 static ssize_t
4524 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4525 {
4526         struct perf_event *event = file->private_data;
4527         struct perf_event_context *ctx;
4528         int ret;
4529
4530         ctx = perf_event_ctx_lock(event);
4531         ret = __perf_read(event, buf, count);
4532         perf_event_ctx_unlock(event, ctx);
4533
4534         return ret;
4535 }
4536
4537 static unsigned int perf_poll(struct file *file, poll_table *wait)
4538 {
4539         struct perf_event *event = file->private_data;
4540         struct ring_buffer *rb;
4541         unsigned int events = POLLHUP;
4542
4543         poll_wait(file, &event->waitq, wait);
4544
4545         if (is_event_hup(event))
4546                 return events;
4547
4548         /*
4549          * Pin the event->rb by taking event->mmap_mutex; otherwise
4550          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4551          */
4552         mutex_lock(&event->mmap_mutex);
4553         rb = event->rb;
4554         if (rb)
4555                 events = atomic_xchg(&rb->poll, 0);
4556         mutex_unlock(&event->mmap_mutex);
4557         return events;
4558 }
4559
4560 static void _perf_event_reset(struct perf_event *event)
4561 {
4562         (void)perf_event_read(event, false);
4563         local64_set(&event->count, 0);
4564         perf_event_update_userpage(event);
4565 }
4566
4567 /*
4568  * Holding the top-level event's child_mutex means that any
4569  * descendant process that has inherited this event will block
4570  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4571  * task existence requirements of perf_event_enable/disable.
4572  */
4573 static void perf_event_for_each_child(struct perf_event *event,
4574                                         void (*func)(struct perf_event *))
4575 {
4576         struct perf_event *child;
4577
4578         WARN_ON_ONCE(event->ctx->parent_ctx);
4579
4580         mutex_lock(&event->child_mutex);
4581         func(event);
4582         list_for_each_entry(child, &event->child_list, child_list)
4583                 func(child);
4584         mutex_unlock(&event->child_mutex);
4585 }
4586
4587 static void perf_event_for_each(struct perf_event *event,
4588                                   void (*func)(struct perf_event *))
4589 {
4590         struct perf_event_context *ctx = event->ctx;
4591         struct perf_event *sibling;
4592
4593         lockdep_assert_held(&ctx->mutex);
4594
4595         event = event->group_leader;
4596
4597         perf_event_for_each_child(event, func);
4598         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4599                 perf_event_for_each_child(sibling, func);
4600 }
4601
4602 static void __perf_event_period(struct perf_event *event,
4603                                 struct perf_cpu_context *cpuctx,
4604                                 struct perf_event_context *ctx,
4605                                 void *info)
4606 {
4607         u64 value = *((u64 *)info);
4608         bool active;
4609
4610         if (event->attr.freq) {
4611                 event->attr.sample_freq = value;
4612         } else {
4613                 event->attr.sample_period = value;
4614                 event->hw.sample_period = value;
4615         }
4616
4617         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4618         if (active) {
4619                 perf_pmu_disable(ctx->pmu);
4620                 /*
4621                  * We could be throttled; unthrottle now to avoid the tick
4622                  * trying to unthrottle while we already re-started the event.
4623                  */
4624                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4625                         event->hw.interrupts = 0;
4626                         perf_log_throttle(event, 1);
4627                 }
4628                 event->pmu->stop(event, PERF_EF_UPDATE);
4629         }
4630
4631         local64_set(&event->hw.period_left, 0);
4632
4633         if (active) {
4634                 event->pmu->start(event, PERF_EF_RELOAD);
4635                 perf_pmu_enable(ctx->pmu);
4636         }
4637 }
4638
4639 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4640 {
4641         u64 value;
4642
4643         if (!is_sampling_event(event))
4644                 return -EINVAL;
4645
4646         if (copy_from_user(&value, arg, sizeof(value)))
4647                 return -EFAULT;
4648
4649         if (!value)
4650                 return -EINVAL;
4651
4652         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4653                 return -EINVAL;
4654
4655         event_function_call(event, __perf_event_period, &value);
4656
4657         return 0;
4658 }
4659
4660 static const struct file_operations perf_fops;
4661
4662 static inline int perf_fget_light(int fd, struct fd *p)
4663 {
4664         struct fd f = fdget(fd);
4665         if (!f.file)
4666                 return -EBADF;
4667
4668         if (f.file->f_op != &perf_fops) {
4669                 fdput(f);
4670                 return -EBADF;
4671         }
4672         *p = f;
4673         return 0;
4674 }
4675
4676 static int perf_event_set_output(struct perf_event *event,
4677                                  struct perf_event *output_event);
4678 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4679 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4680
4681 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4682 {
4683         void (*func)(struct perf_event *);
4684         u32 flags = arg;
4685
4686         switch (cmd) {
4687         case PERF_EVENT_IOC_ENABLE:
4688                 func = _perf_event_enable;
4689                 break;
4690         case PERF_EVENT_IOC_DISABLE:
4691                 func = _perf_event_disable;
4692                 break;
4693         case PERF_EVENT_IOC_RESET:
4694                 func = _perf_event_reset;
4695                 break;
4696
4697         case PERF_EVENT_IOC_REFRESH:
4698                 return _perf_event_refresh(event, arg);
4699
4700         case PERF_EVENT_IOC_PERIOD:
4701                 return perf_event_period(event, (u64 __user *)arg);
4702
4703         case PERF_EVENT_IOC_ID:
4704         {
4705                 u64 id = primary_event_id(event);
4706
4707                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4708                         return -EFAULT;
4709                 return 0;
4710         }
4711
4712         case PERF_EVENT_IOC_SET_OUTPUT:
4713         {
4714                 int ret;
4715                 if (arg != -1) {
4716                         struct perf_event *output_event;
4717                         struct fd output;
4718                         ret = perf_fget_light(arg, &output);
4719                         if (ret)
4720                                 return ret;
4721                         output_event = output.file->private_data;
4722                         ret = perf_event_set_output(event, output_event);
4723                         fdput(output);
4724                 } else {
4725                         ret = perf_event_set_output(event, NULL);
4726                 }
4727                 return ret;
4728         }
4729
4730         case PERF_EVENT_IOC_SET_FILTER:
4731                 return perf_event_set_filter(event, (void __user *)arg);
4732
4733         case PERF_EVENT_IOC_SET_BPF:
4734                 return perf_event_set_bpf_prog(event, arg);
4735
4736         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4737                 struct ring_buffer *rb;
4738
4739                 rcu_read_lock();
4740                 rb = rcu_dereference(event->rb);
4741                 if (!rb || !rb->nr_pages) {
4742                         rcu_read_unlock();
4743                         return -EINVAL;
4744                 }
4745                 rb_toggle_paused(rb, !!arg);
4746                 rcu_read_unlock();
4747                 return 0;
4748         }
4749         default:
4750                 return -ENOTTY;
4751         }
4752
4753         if (flags & PERF_IOC_FLAG_GROUP)
4754                 perf_event_for_each(event, func);
4755         else
4756                 perf_event_for_each_child(event, func);
4757
4758         return 0;
4759 }
4760
4761 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4762 {
4763         struct perf_event *event = file->private_data;
4764         struct perf_event_context *ctx;
4765         long ret;
4766
4767         ctx = perf_event_ctx_lock(event);
4768         ret = _perf_ioctl(event, cmd, arg);
4769         perf_event_ctx_unlock(event, ctx);
4770
4771         return ret;
4772 }
4773
4774 #ifdef CONFIG_COMPAT
4775 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4776                                 unsigned long arg)
4777 {
4778         switch (_IOC_NR(cmd)) {
4779         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4780         case _IOC_NR(PERF_EVENT_IOC_ID):
4781                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4782                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4783                         cmd &= ~IOCSIZE_MASK;
4784                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4785                 }
4786                 break;
4787         }
4788         return perf_ioctl(file, cmd, arg);
4789 }
4790 #else
4791 # define perf_compat_ioctl NULL
4792 #endif
4793
4794 int perf_event_task_enable(void)
4795 {
4796         struct perf_event_context *ctx;
4797         struct perf_event *event;
4798
4799         mutex_lock(&current->perf_event_mutex);
4800         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4801                 ctx = perf_event_ctx_lock(event);
4802                 perf_event_for_each_child(event, _perf_event_enable);
4803                 perf_event_ctx_unlock(event, ctx);
4804         }
4805         mutex_unlock(&current->perf_event_mutex);
4806
4807         return 0;
4808 }
4809
4810 int perf_event_task_disable(void)
4811 {
4812         struct perf_event_context *ctx;
4813         struct perf_event *event;
4814
4815         mutex_lock(&current->perf_event_mutex);
4816         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4817                 ctx = perf_event_ctx_lock(event);
4818                 perf_event_for_each_child(event, _perf_event_disable);
4819                 perf_event_ctx_unlock(event, ctx);
4820         }
4821         mutex_unlock(&current->perf_event_mutex);
4822
4823         return 0;
4824 }
4825
4826 static int perf_event_index(struct perf_event *event)
4827 {
4828         if (event->hw.state & PERF_HES_STOPPED)
4829                 return 0;
4830
4831         if (event->state != PERF_EVENT_STATE_ACTIVE)
4832                 return 0;
4833
4834         return event->pmu->event_idx(event);
4835 }
4836
4837 static void calc_timer_values(struct perf_event *event,
4838                                 u64 *now,
4839                                 u64 *enabled,
4840                                 u64 *running)
4841 {
4842         u64 ctx_time;
4843
4844         *now = perf_clock();
4845         ctx_time = event->shadow_ctx_time + *now;
4846         *enabled = ctx_time - event->tstamp_enabled;
4847         *running = ctx_time - event->tstamp_running;
4848 }
4849
4850 static void perf_event_init_userpage(struct perf_event *event)
4851 {
4852         struct perf_event_mmap_page *userpg;
4853         struct ring_buffer *rb;
4854
4855         rcu_read_lock();
4856         rb = rcu_dereference(event->rb);
4857         if (!rb)
4858                 goto unlock;
4859
4860         userpg = rb->user_page;
4861
4862         /* Allow new userspace to detect that bit 0 is deprecated */
4863         userpg->cap_bit0_is_deprecated = 1;
4864         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4865         userpg->data_offset = PAGE_SIZE;
4866         userpg->data_size = perf_data_size(rb);
4867
4868 unlock:
4869         rcu_read_unlock();
4870 }
4871
4872 void __weak arch_perf_update_userpage(
4873         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4874 {
4875 }
4876
4877 /*
4878  * Callers need to ensure there can be no nesting of this function, otherwise
4879  * the seqlock logic goes bad. We can not serialize this because the arch
4880  * code calls this from NMI context.
4881  */
4882 void perf_event_update_userpage(struct perf_event *event)
4883 {
4884         struct perf_event_mmap_page *userpg;
4885         struct ring_buffer *rb;
4886         u64 enabled, running, now;
4887
4888         rcu_read_lock();
4889         rb = rcu_dereference(event->rb);
4890         if (!rb)
4891                 goto unlock;
4892
4893         /*
4894          * compute total_time_enabled, total_time_running
4895          * based on snapshot values taken when the event
4896          * was last scheduled in.
4897          *
4898          * we cannot simply called update_context_time()
4899          * because of locking issue as we can be called in
4900          * NMI context
4901          */
4902         calc_timer_values(event, &now, &enabled, &running);
4903
4904         userpg = rb->user_page;
4905         /*
4906          * Disable preemption so as to not let the corresponding user-space
4907          * spin too long if we get preempted.
4908          */
4909         preempt_disable();
4910         ++userpg->lock;
4911         barrier();
4912         userpg->index = perf_event_index(event);
4913         userpg->offset = perf_event_count(event);
4914         if (userpg->index)
4915                 userpg->offset -= local64_read(&event->hw.prev_count);
4916
4917         userpg->time_enabled = enabled +
4918                         atomic64_read(&event->child_total_time_enabled);
4919
4920         userpg->time_running = running +
4921                         atomic64_read(&event->child_total_time_running);
4922
4923         arch_perf_update_userpage(event, userpg, now);
4924
4925         barrier();
4926         ++userpg->lock;
4927         preempt_enable();
4928 unlock:
4929         rcu_read_unlock();
4930 }
4931
4932 static int perf_mmap_fault(struct vm_fault *vmf)
4933 {
4934         struct perf_event *event = vmf->vma->vm_file->private_data;
4935         struct ring_buffer *rb;
4936         int ret = VM_FAULT_SIGBUS;
4937
4938         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4939                 if (vmf->pgoff == 0)
4940                         ret = 0;
4941                 return ret;
4942         }
4943
4944         rcu_read_lock();
4945         rb = rcu_dereference(event->rb);
4946         if (!rb)
4947                 goto unlock;
4948
4949         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4950                 goto unlock;
4951
4952         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4953         if (!vmf->page)
4954                 goto unlock;
4955
4956         get_page(vmf->page);
4957         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4958         vmf->page->index   = vmf->pgoff;
4959
4960         ret = 0;
4961 unlock:
4962         rcu_read_unlock();
4963
4964         return ret;
4965 }
4966
4967 static void ring_buffer_attach(struct perf_event *event,
4968                                struct ring_buffer *rb)
4969 {
4970         struct ring_buffer *old_rb = NULL;
4971         unsigned long flags;
4972
4973         if (event->rb) {
4974                 /*
4975                  * Should be impossible, we set this when removing
4976                  * event->rb_entry and wait/clear when adding event->rb_entry.
4977                  */
4978                 WARN_ON_ONCE(event->rcu_pending);
4979
4980                 old_rb = event->rb;
4981                 spin_lock_irqsave(&old_rb->event_lock, flags);
4982                 list_del_rcu(&event->rb_entry);
4983                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4984
4985                 event->rcu_batches = get_state_synchronize_rcu();
4986                 event->rcu_pending = 1;
4987         }
4988
4989         if (rb) {
4990                 if (event->rcu_pending) {
4991                         cond_synchronize_rcu(event->rcu_batches);
4992                         event->rcu_pending = 0;
4993                 }
4994
4995                 spin_lock_irqsave(&rb->event_lock, flags);
4996                 list_add_rcu(&event->rb_entry, &rb->event_list);
4997                 spin_unlock_irqrestore(&rb->event_lock, flags);
4998         }
4999
5000         /*
5001          * Avoid racing with perf_mmap_close(AUX): stop the event
5002          * before swizzling the event::rb pointer; if it's getting
5003          * unmapped, its aux_mmap_count will be 0 and it won't
5004          * restart. See the comment in __perf_pmu_output_stop().
5005          *
5006          * Data will inevitably be lost when set_output is done in
5007          * mid-air, but then again, whoever does it like this is
5008          * not in for the data anyway.
5009          */
5010         if (has_aux(event))
5011                 perf_event_stop(event, 0);
5012
5013         rcu_assign_pointer(event->rb, rb);
5014
5015         if (old_rb) {
5016                 ring_buffer_put(old_rb);
5017                 /*
5018                  * Since we detached before setting the new rb, so that we
5019                  * could attach the new rb, we could have missed a wakeup.
5020                  * Provide it now.
5021                  */
5022                 wake_up_all(&event->waitq);
5023         }
5024 }
5025
5026 static void ring_buffer_wakeup(struct perf_event *event)
5027 {
5028         struct ring_buffer *rb;
5029
5030         rcu_read_lock();
5031         rb = rcu_dereference(event->rb);
5032         if (rb) {
5033                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5034                         wake_up_all(&event->waitq);
5035         }
5036         rcu_read_unlock();
5037 }
5038
5039 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5040 {
5041         struct ring_buffer *rb;
5042
5043         rcu_read_lock();
5044         rb = rcu_dereference(event->rb);
5045         if (rb) {
5046                 if (!atomic_inc_not_zero(&rb->refcount))
5047                         rb = NULL;
5048         }
5049         rcu_read_unlock();
5050
5051         return rb;
5052 }
5053
5054 void ring_buffer_put(struct ring_buffer *rb)
5055 {
5056         if (!atomic_dec_and_test(&rb->refcount))
5057                 return;
5058
5059         WARN_ON_ONCE(!list_empty(&rb->event_list));
5060
5061         call_rcu(&rb->rcu_head, rb_free_rcu);
5062 }
5063
5064 static void perf_mmap_open(struct vm_area_struct *vma)
5065 {
5066         struct perf_event *event = vma->vm_file->private_data;
5067
5068         atomic_inc(&event->mmap_count);
5069         atomic_inc(&event->rb->mmap_count);
5070
5071         if (vma->vm_pgoff)
5072                 atomic_inc(&event->rb->aux_mmap_count);
5073
5074         if (event->pmu->event_mapped)
5075                 event->pmu->event_mapped(event);
5076 }
5077
5078 static void perf_pmu_output_stop(struct perf_event *event);
5079
5080 /*
5081  * A buffer can be mmap()ed multiple times; either directly through the same
5082  * event, or through other events by use of perf_event_set_output().
5083  *
5084  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5085  * the buffer here, where we still have a VM context. This means we need
5086  * to detach all events redirecting to us.
5087  */
5088 static void perf_mmap_close(struct vm_area_struct *vma)
5089 {
5090         struct perf_event *event = vma->vm_file->private_data;
5091
5092         struct ring_buffer *rb = ring_buffer_get(event);
5093         struct user_struct *mmap_user = rb->mmap_user;
5094         int mmap_locked = rb->mmap_locked;
5095         unsigned long size = perf_data_size(rb);
5096
5097         if (event->pmu->event_unmapped)
5098                 event->pmu->event_unmapped(event);
5099
5100         /*
5101          * rb->aux_mmap_count will always drop before rb->mmap_count and
5102          * event->mmap_count, so it is ok to use event->mmap_mutex to
5103          * serialize with perf_mmap here.
5104          */
5105         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5106             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5107                 /*
5108                  * Stop all AUX events that are writing to this buffer,
5109                  * so that we can free its AUX pages and corresponding PMU
5110                  * data. Note that after rb::aux_mmap_count dropped to zero,
5111                  * they won't start any more (see perf_aux_output_begin()).
5112                  */
5113                 perf_pmu_output_stop(event);
5114
5115                 /* now it's safe to free the pages */
5116                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5117                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5118
5119                 /* this has to be the last one */
5120                 rb_free_aux(rb);
5121                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5122
5123                 mutex_unlock(&event->mmap_mutex);
5124         }
5125
5126         atomic_dec(&rb->mmap_count);
5127
5128         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5129                 goto out_put;
5130
5131         ring_buffer_attach(event, NULL);
5132         mutex_unlock(&event->mmap_mutex);
5133
5134         /* If there's still other mmap()s of this buffer, we're done. */
5135         if (atomic_read(&rb->mmap_count))
5136                 goto out_put;
5137
5138         /*
5139          * No other mmap()s, detach from all other events that might redirect
5140          * into the now unreachable buffer. Somewhat complicated by the
5141          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5142          */
5143 again:
5144         rcu_read_lock();
5145         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5146                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5147                         /*
5148                          * This event is en-route to free_event() which will
5149                          * detach it and remove it from the list.
5150                          */
5151                         continue;
5152                 }
5153                 rcu_read_unlock();
5154
5155                 mutex_lock(&event->mmap_mutex);
5156                 /*
5157                  * Check we didn't race with perf_event_set_output() which can
5158                  * swizzle the rb from under us while we were waiting to
5159                  * acquire mmap_mutex.
5160                  *
5161                  * If we find a different rb; ignore this event, a next
5162                  * iteration will no longer find it on the list. We have to
5163                  * still restart the iteration to make sure we're not now
5164                  * iterating the wrong list.
5165                  */
5166                 if (event->rb == rb)
5167                         ring_buffer_attach(event, NULL);
5168
5169                 mutex_unlock(&event->mmap_mutex);
5170                 put_event(event);
5171
5172                 /*
5173                  * Restart the iteration; either we're on the wrong list or
5174                  * destroyed its integrity by doing a deletion.
5175                  */
5176                 goto again;
5177         }
5178         rcu_read_unlock();
5179
5180         /*
5181          * It could be there's still a few 0-ref events on the list; they'll
5182          * get cleaned up by free_event() -- they'll also still have their
5183          * ref on the rb and will free it whenever they are done with it.
5184          *
5185          * Aside from that, this buffer is 'fully' detached and unmapped,
5186          * undo the VM accounting.
5187          */
5188
5189         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5190         vma->vm_mm->pinned_vm -= mmap_locked;
5191         free_uid(mmap_user);
5192
5193 out_put:
5194         ring_buffer_put(rb); /* could be last */
5195 }
5196
5197 static const struct vm_operations_struct perf_mmap_vmops = {
5198         .open           = perf_mmap_open,
5199         .close          = perf_mmap_close, /* non mergable */
5200         .fault          = perf_mmap_fault,
5201         .page_mkwrite   = perf_mmap_fault,
5202 };
5203
5204 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5205 {
5206         struct perf_event *event = file->private_data;
5207         unsigned long user_locked, user_lock_limit;
5208         struct user_struct *user = current_user();
5209         unsigned long locked, lock_limit;
5210         struct ring_buffer *rb = NULL;
5211         unsigned long vma_size;
5212         unsigned long nr_pages;
5213         long user_extra = 0, extra = 0;
5214         int ret = 0, flags = 0;
5215
5216         /*
5217          * Don't allow mmap() of inherited per-task counters. This would
5218          * create a performance issue due to all children writing to the
5219          * same rb.
5220          */
5221         if (event->cpu == -1 && event->attr.inherit)
5222                 return -EINVAL;
5223
5224         if (!(vma->vm_flags & VM_SHARED))
5225                 return -EINVAL;
5226
5227         vma_size = vma->vm_end - vma->vm_start;
5228
5229         if (vma->vm_pgoff == 0) {
5230                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5231         } else {
5232                 /*
5233                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5234                  * mapped, all subsequent mappings should have the same size
5235                  * and offset. Must be above the normal perf buffer.
5236                  */
5237                 u64 aux_offset, aux_size;
5238
5239                 if (!event->rb)
5240                         return -EINVAL;
5241
5242                 nr_pages = vma_size / PAGE_SIZE;
5243
5244                 mutex_lock(&event->mmap_mutex);
5245                 ret = -EINVAL;
5246
5247                 rb = event->rb;
5248                 if (!rb)
5249                         goto aux_unlock;
5250
5251                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5252                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5253
5254                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5255                         goto aux_unlock;
5256
5257                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5258                         goto aux_unlock;
5259
5260                 /* already mapped with a different offset */
5261                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5262                         goto aux_unlock;
5263
5264                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5265                         goto aux_unlock;
5266
5267                 /* already mapped with a different size */
5268                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5269                         goto aux_unlock;
5270
5271                 if (!is_power_of_2(nr_pages))
5272                         goto aux_unlock;
5273
5274                 if (!atomic_inc_not_zero(&rb->mmap_count))
5275                         goto aux_unlock;
5276
5277                 if (rb_has_aux(rb)) {
5278                         atomic_inc(&rb->aux_mmap_count);
5279                         ret = 0;
5280                         goto unlock;
5281                 }
5282
5283                 atomic_set(&rb->aux_mmap_count, 1);
5284                 user_extra = nr_pages;
5285
5286                 goto accounting;
5287         }
5288
5289         /*
5290          * If we have rb pages ensure they're a power-of-two number, so we
5291          * can do bitmasks instead of modulo.
5292          */
5293         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5294                 return -EINVAL;
5295
5296         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5297                 return -EINVAL;
5298
5299         WARN_ON_ONCE(event->ctx->parent_ctx);
5300 again:
5301         mutex_lock(&event->mmap_mutex);
5302         if (event->rb) {
5303                 if (event->rb->nr_pages != nr_pages) {
5304                         ret = -EINVAL;
5305                         goto unlock;
5306                 }
5307
5308                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5309                         /*
5310                          * Raced against perf_mmap_close() through
5311                          * perf_event_set_output(). Try again, hope for better
5312                          * luck.
5313                          */
5314                         mutex_unlock(&event->mmap_mutex);
5315                         goto again;
5316                 }
5317
5318                 goto unlock;
5319         }
5320
5321         user_extra = nr_pages + 1;
5322
5323 accounting:
5324         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5325
5326         /*
5327          * Increase the limit linearly with more CPUs:
5328          */
5329         user_lock_limit *= num_online_cpus();
5330
5331         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5332
5333         if (user_locked > user_lock_limit)
5334                 extra = user_locked - user_lock_limit;
5335
5336         lock_limit = rlimit(RLIMIT_MEMLOCK);
5337         lock_limit >>= PAGE_SHIFT;
5338         locked = vma->vm_mm->pinned_vm + extra;
5339
5340         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5341                 !capable(CAP_IPC_LOCK)) {
5342                 ret = -EPERM;
5343                 goto unlock;
5344         }
5345
5346         WARN_ON(!rb && event->rb);
5347
5348         if (vma->vm_flags & VM_WRITE)
5349                 flags |= RING_BUFFER_WRITABLE;
5350
5351         if (!rb) {
5352                 rb = rb_alloc(nr_pages,
5353                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5354                               event->cpu, flags);
5355
5356                 if (!rb) {
5357                         ret = -ENOMEM;
5358                         goto unlock;
5359                 }
5360
5361                 atomic_set(&rb->mmap_count, 1);
5362                 rb->mmap_user = get_current_user();
5363                 rb->mmap_locked = extra;
5364
5365                 ring_buffer_attach(event, rb);
5366
5367                 perf_event_init_userpage(event);
5368                 perf_event_update_userpage(event);
5369         } else {
5370                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5371                                    event->attr.aux_watermark, flags);
5372                 if (!ret)
5373                         rb->aux_mmap_locked = extra;
5374         }
5375
5376 unlock:
5377         if (!ret) {
5378                 atomic_long_add(user_extra, &user->locked_vm);
5379                 vma->vm_mm->pinned_vm += extra;
5380
5381                 atomic_inc(&event->mmap_count);
5382         } else if (rb) {
5383                 atomic_dec(&rb->mmap_count);
5384         }
5385 aux_unlock:
5386         mutex_unlock(&event->mmap_mutex);
5387
5388         /*
5389          * Since pinned accounting is per vm we cannot allow fork() to copy our
5390          * vma.
5391          */
5392         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5393         vma->vm_ops = &perf_mmap_vmops;
5394
5395         if (event->pmu->event_mapped)
5396                 event->pmu->event_mapped(event);
5397
5398         return ret;
5399 }
5400
5401 static int perf_fasync(int fd, struct file *filp, int on)
5402 {
5403         struct inode *inode = file_inode(filp);
5404         struct perf_event *event = filp->private_data;
5405         int retval;
5406
5407         inode_lock(inode);
5408         retval = fasync_helper(fd, filp, on, &event->fasync);
5409         inode_unlock(inode);
5410
5411         if (retval < 0)
5412                 return retval;
5413
5414         return 0;
5415 }
5416
5417 static const struct file_operations perf_fops = {
5418         .llseek                 = no_llseek,
5419         .release                = perf_release,
5420         .read                   = perf_read,
5421         .poll                   = perf_poll,
5422         .unlocked_ioctl         = perf_ioctl,
5423         .compat_ioctl           = perf_compat_ioctl,
5424         .mmap                   = perf_mmap,
5425         .fasync                 = perf_fasync,
5426 };
5427
5428 /*
5429  * Perf event wakeup
5430  *
5431  * If there's data, ensure we set the poll() state and publish everything
5432  * to user-space before waking everybody up.
5433  */
5434
5435 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5436 {
5437         /* only the parent has fasync state */
5438         if (event->parent)
5439                 event = event->parent;
5440         return &event->fasync;
5441 }
5442
5443 void perf_event_wakeup(struct perf_event *event)
5444 {
5445         ring_buffer_wakeup(event);
5446
5447         if (event->pending_kill) {
5448                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5449                 event->pending_kill = 0;
5450         }
5451 }
5452
5453 static void perf_pending_event(struct irq_work *entry)
5454 {
5455         struct perf_event *event = container_of(entry,
5456                         struct perf_event, pending);
5457         int rctx;
5458
5459         rctx = perf_swevent_get_recursion_context();
5460         /*
5461          * If we 'fail' here, that's OK, it means recursion is already disabled
5462          * and we won't recurse 'further'.
5463          */
5464
5465         if (event->pending_disable) {
5466                 event->pending_disable = 0;
5467                 perf_event_disable_local(event);
5468         }
5469
5470         if (event->pending_wakeup) {
5471                 event->pending_wakeup = 0;
5472                 perf_event_wakeup(event);
5473         }
5474
5475         if (rctx >= 0)
5476                 perf_swevent_put_recursion_context(rctx);
5477 }
5478
5479 /*
5480  * We assume there is only KVM supporting the callbacks.
5481  * Later on, we might change it to a list if there is
5482  * another virtualization implementation supporting the callbacks.
5483  */
5484 struct perf_guest_info_callbacks *perf_guest_cbs;
5485
5486 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5487 {
5488         perf_guest_cbs = cbs;
5489         return 0;
5490 }
5491 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5492
5493 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5494 {
5495         perf_guest_cbs = NULL;
5496         return 0;
5497 }
5498 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5499
5500 static void
5501 perf_output_sample_regs(struct perf_output_handle *handle,
5502                         struct pt_regs *regs, u64 mask)
5503 {
5504         int bit;
5505         DECLARE_BITMAP(_mask, 64);
5506
5507         bitmap_from_u64(_mask, mask);
5508         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5509                 u64 val;
5510
5511                 val = perf_reg_value(regs, bit);
5512                 perf_output_put(handle, val);
5513         }
5514 }
5515
5516 static void perf_sample_regs_user(struct perf_regs *regs_user,
5517                                   struct pt_regs *regs,
5518                                   struct pt_regs *regs_user_copy)
5519 {
5520         if (user_mode(regs)) {
5521                 regs_user->abi = perf_reg_abi(current);
5522                 regs_user->regs = regs;
5523         } else if (current->mm) {
5524                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5525         } else {
5526                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5527                 regs_user->regs = NULL;
5528         }
5529 }
5530
5531 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5532                                   struct pt_regs *regs)
5533 {
5534         regs_intr->regs = regs;
5535         regs_intr->abi  = perf_reg_abi(current);
5536 }
5537
5538
5539 /*
5540  * Get remaining task size from user stack pointer.
5541  *
5542  * It'd be better to take stack vma map and limit this more
5543  * precisly, but there's no way to get it safely under interrupt,
5544  * so using TASK_SIZE as limit.
5545  */
5546 static u64 perf_ustack_task_size(struct pt_regs *regs)
5547 {
5548         unsigned long addr = perf_user_stack_pointer(regs);
5549
5550         if (!addr || addr >= TASK_SIZE)
5551                 return 0;
5552
5553         return TASK_SIZE - addr;
5554 }
5555
5556 static u16
5557 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5558                         struct pt_regs *regs)
5559 {
5560         u64 task_size;
5561
5562         /* No regs, no stack pointer, no dump. */
5563         if (!regs)
5564                 return 0;
5565
5566         /*
5567          * Check if we fit in with the requested stack size into the:
5568          * - TASK_SIZE
5569          *   If we don't, we limit the size to the TASK_SIZE.
5570          *
5571          * - remaining sample size
5572          *   If we don't, we customize the stack size to
5573          *   fit in to the remaining sample size.
5574          */
5575
5576         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5577         stack_size = min(stack_size, (u16) task_size);
5578
5579         /* Current header size plus static size and dynamic size. */
5580         header_size += 2 * sizeof(u64);
5581
5582         /* Do we fit in with the current stack dump size? */
5583         if ((u16) (header_size + stack_size) < header_size) {
5584                 /*
5585                  * If we overflow the maximum size for the sample,
5586                  * we customize the stack dump size to fit in.
5587                  */
5588                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5589                 stack_size = round_up(stack_size, sizeof(u64));
5590         }
5591
5592         return stack_size;
5593 }
5594
5595 static void
5596 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5597                           struct pt_regs *regs)
5598 {
5599         /* Case of a kernel thread, nothing to dump */
5600         if (!regs) {
5601                 u64 size = 0;
5602                 perf_output_put(handle, size);
5603         } else {
5604                 unsigned long sp;
5605                 unsigned int rem;
5606                 u64 dyn_size;
5607
5608                 /*
5609                  * We dump:
5610                  * static size
5611                  *   - the size requested by user or the best one we can fit
5612                  *     in to the sample max size
5613                  * data
5614                  *   - user stack dump data
5615                  * dynamic size
5616                  *   - the actual dumped size
5617                  */
5618
5619                 /* Static size. */
5620                 perf_output_put(handle, dump_size);
5621
5622                 /* Data. */
5623                 sp = perf_user_stack_pointer(regs);
5624                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5625                 dyn_size = dump_size - rem;
5626
5627                 perf_output_skip(handle, rem);
5628
5629                 /* Dynamic size. */
5630                 perf_output_put(handle, dyn_size);
5631         }
5632 }
5633
5634 static void __perf_event_header__init_id(struct perf_event_header *header,
5635                                          struct perf_sample_data *data,
5636                                          struct perf_event *event)
5637 {
5638         u64 sample_type = event->attr.sample_type;
5639
5640         data->type = sample_type;
5641         header->size += event->id_header_size;
5642
5643         if (sample_type & PERF_SAMPLE_TID) {
5644                 /* namespace issues */
5645                 data->tid_entry.pid = perf_event_pid(event, current);
5646                 data->tid_entry.tid = perf_event_tid(event, current);
5647         }
5648
5649         if (sample_type & PERF_SAMPLE_TIME)
5650                 data->time = perf_event_clock(event);
5651
5652         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5653                 data->id = primary_event_id(event);
5654
5655         if (sample_type & PERF_SAMPLE_STREAM_ID)
5656                 data->stream_id = event->id;
5657
5658         if (sample_type & PERF_SAMPLE_CPU) {
5659                 data->cpu_entry.cpu      = raw_smp_processor_id();
5660                 data->cpu_entry.reserved = 0;
5661         }
5662 }
5663
5664 void perf_event_header__init_id(struct perf_event_header *header,
5665                                 struct perf_sample_data *data,
5666                                 struct perf_event *event)
5667 {
5668         if (event->attr.sample_id_all)
5669                 __perf_event_header__init_id(header, data, event);
5670 }
5671
5672 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5673                                            struct perf_sample_data *data)
5674 {
5675         u64 sample_type = data->type;
5676
5677         if (sample_type & PERF_SAMPLE_TID)
5678                 perf_output_put(handle, data->tid_entry);
5679
5680         if (sample_type & PERF_SAMPLE_TIME)
5681                 perf_output_put(handle, data->time);
5682
5683         if (sample_type & PERF_SAMPLE_ID)
5684                 perf_output_put(handle, data->id);
5685
5686         if (sample_type & PERF_SAMPLE_STREAM_ID)
5687                 perf_output_put(handle, data->stream_id);
5688
5689         if (sample_type & PERF_SAMPLE_CPU)
5690                 perf_output_put(handle, data->cpu_entry);
5691
5692         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5693                 perf_output_put(handle, data->id);
5694 }
5695
5696 void perf_event__output_id_sample(struct perf_event *event,
5697                                   struct perf_output_handle *handle,
5698                                   struct perf_sample_data *sample)
5699 {
5700         if (event->attr.sample_id_all)
5701                 __perf_event__output_id_sample(handle, sample);
5702 }
5703
5704 static void perf_output_read_one(struct perf_output_handle *handle,
5705                                  struct perf_event *event,
5706                                  u64 enabled, u64 running)
5707 {
5708         u64 read_format = event->attr.read_format;
5709         u64 values[4];
5710         int n = 0;
5711
5712         values[n++] = perf_event_count(event);
5713         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5714                 values[n++] = enabled +
5715                         atomic64_read(&event->child_total_time_enabled);
5716         }
5717         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5718                 values[n++] = running +
5719                         atomic64_read(&event->child_total_time_running);
5720         }
5721         if (read_format & PERF_FORMAT_ID)
5722                 values[n++] = primary_event_id(event);
5723
5724         __output_copy(handle, values, n * sizeof(u64));
5725 }
5726
5727 /*
5728  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5729  */
5730 static void perf_output_read_group(struct perf_output_handle *handle,
5731                             struct perf_event *event,
5732                             u64 enabled, u64 running)
5733 {
5734         struct perf_event *leader = event->group_leader, *sub;
5735         u64 read_format = event->attr.read_format;
5736         u64 values[5];
5737         int n = 0;
5738
5739         values[n++] = 1 + leader->nr_siblings;
5740
5741         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5742                 values[n++] = enabled;
5743
5744         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5745                 values[n++] = running;
5746
5747         if (leader != event)
5748                 leader->pmu->read(leader);
5749
5750         values[n++] = perf_event_count(leader);
5751         if (read_format & PERF_FORMAT_ID)
5752                 values[n++] = primary_event_id(leader);
5753
5754         __output_copy(handle, values, n * sizeof(u64));
5755
5756         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5757                 n = 0;
5758
5759                 if ((sub != event) &&
5760                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5761                         sub->pmu->read(sub);
5762
5763                 values[n++] = perf_event_count(sub);
5764                 if (read_format & PERF_FORMAT_ID)
5765                         values[n++] = primary_event_id(sub);
5766
5767                 __output_copy(handle, values, n * sizeof(u64));
5768         }
5769 }
5770
5771 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5772                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5773
5774 static void perf_output_read(struct perf_output_handle *handle,
5775                              struct perf_event *event)
5776 {
5777         u64 enabled = 0, running = 0, now;
5778         u64 read_format = event->attr.read_format;
5779
5780         /*
5781          * compute total_time_enabled, total_time_running
5782          * based on snapshot values taken when the event
5783          * was last scheduled in.
5784          *
5785          * we cannot simply called update_context_time()
5786          * because of locking issue as we are called in
5787          * NMI context
5788          */
5789         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5790                 calc_timer_values(event, &now, &enabled, &running);
5791
5792         if (event->attr.read_format & PERF_FORMAT_GROUP)
5793                 perf_output_read_group(handle, event, enabled, running);
5794         else
5795                 perf_output_read_one(handle, event, enabled, running);
5796 }
5797
5798 void perf_output_sample(struct perf_output_handle *handle,
5799                         struct perf_event_header *header,
5800                         struct perf_sample_data *data,
5801                         struct perf_event *event)
5802 {
5803         u64 sample_type = data->type;
5804
5805         perf_output_put(handle, *header);
5806
5807         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5808                 perf_output_put(handle, data->id);
5809
5810         if (sample_type & PERF_SAMPLE_IP)
5811                 perf_output_put(handle, data->ip);
5812
5813         if (sample_type & PERF_SAMPLE_TID)
5814                 perf_output_put(handle, data->tid_entry);
5815
5816         if (sample_type & PERF_SAMPLE_TIME)
5817                 perf_output_put(handle, data->time);
5818
5819         if (sample_type & PERF_SAMPLE_ADDR)
5820                 perf_output_put(handle, data->addr);
5821
5822         if (sample_type & PERF_SAMPLE_ID)
5823                 perf_output_put(handle, data->id);
5824
5825         if (sample_type & PERF_SAMPLE_STREAM_ID)
5826                 perf_output_put(handle, data->stream_id);
5827
5828         if (sample_type & PERF_SAMPLE_CPU)
5829                 perf_output_put(handle, data->cpu_entry);
5830
5831         if (sample_type & PERF_SAMPLE_PERIOD)
5832                 perf_output_put(handle, data->period);
5833
5834         if (sample_type & PERF_SAMPLE_READ)
5835                 perf_output_read(handle, event);
5836
5837         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5838                 if (data->callchain) {
5839                         int size = 1;
5840
5841                         if (data->callchain)
5842                                 size += data->callchain->nr;
5843
5844                         size *= sizeof(u64);
5845
5846                         __output_copy(handle, data->callchain, size);
5847                 } else {
5848                         u64 nr = 0;
5849                         perf_output_put(handle, nr);
5850                 }
5851         }
5852
5853         if (sample_type & PERF_SAMPLE_RAW) {
5854                 struct perf_raw_record *raw = data->raw;
5855
5856                 if (raw) {
5857                         struct perf_raw_frag *frag = &raw->frag;
5858
5859                         perf_output_put(handle, raw->size);
5860                         do {
5861                                 if (frag->copy) {
5862                                         __output_custom(handle, frag->copy,
5863                                                         frag->data, frag->size);
5864                                 } else {
5865                                         __output_copy(handle, frag->data,
5866                                                       frag->size);
5867                                 }
5868                                 if (perf_raw_frag_last(frag))
5869                                         break;
5870                                 frag = frag->next;
5871                         } while (1);
5872                         if (frag->pad)
5873                                 __output_skip(handle, NULL, frag->pad);
5874                 } else {
5875                         struct {
5876                                 u32     size;
5877                                 u32     data;
5878                         } raw = {
5879                                 .size = sizeof(u32),
5880                                 .data = 0,
5881                         };
5882                         perf_output_put(handle, raw);
5883                 }
5884         }
5885
5886         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5887                 if (data->br_stack) {
5888                         size_t size;
5889
5890                         size = data->br_stack->nr
5891                              * sizeof(struct perf_branch_entry);
5892
5893                         perf_output_put(handle, data->br_stack->nr);
5894                         perf_output_copy(handle, data->br_stack->entries, size);
5895                 } else {
5896                         /*
5897                          * we always store at least the value of nr
5898                          */
5899                         u64 nr = 0;
5900                         perf_output_put(handle, nr);
5901                 }
5902         }
5903
5904         if (sample_type & PERF_SAMPLE_REGS_USER) {
5905                 u64 abi = data->regs_user.abi;
5906
5907                 /*
5908                  * If there are no regs to dump, notice it through
5909                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5910                  */
5911                 perf_output_put(handle, abi);
5912
5913                 if (abi) {
5914                         u64 mask = event->attr.sample_regs_user;
5915                         perf_output_sample_regs(handle,
5916                                                 data->regs_user.regs,
5917                                                 mask);
5918                 }
5919         }
5920
5921         if (sample_type & PERF_SAMPLE_STACK_USER) {
5922                 perf_output_sample_ustack(handle,
5923                                           data->stack_user_size,
5924                                           data->regs_user.regs);
5925         }
5926
5927         if (sample_type & PERF_SAMPLE_WEIGHT)
5928                 perf_output_put(handle, data->weight);
5929
5930         if (sample_type & PERF_SAMPLE_DATA_SRC)
5931                 perf_output_put(handle, data->data_src.val);
5932
5933         if (sample_type & PERF_SAMPLE_TRANSACTION)
5934                 perf_output_put(handle, data->txn);
5935
5936         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5937                 u64 abi = data->regs_intr.abi;
5938                 /*
5939                  * If there are no regs to dump, notice it through
5940                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5941                  */
5942                 perf_output_put(handle, abi);
5943
5944                 if (abi) {
5945                         u64 mask = event->attr.sample_regs_intr;
5946
5947                         perf_output_sample_regs(handle,
5948                                                 data->regs_intr.regs,
5949                                                 mask);
5950                 }
5951         }
5952
5953         if (!event->attr.watermark) {
5954                 int wakeup_events = event->attr.wakeup_events;
5955
5956                 if (wakeup_events) {
5957                         struct ring_buffer *rb = handle->rb;
5958                         int events = local_inc_return(&rb->events);
5959
5960                         if (events >= wakeup_events) {
5961                                 local_sub(wakeup_events, &rb->events);
5962                                 local_inc(&rb->wakeup);
5963                         }
5964                 }
5965         }
5966 }
5967
5968 void perf_prepare_sample(struct perf_event_header *header,
5969                          struct perf_sample_data *data,
5970                          struct perf_event *event,
5971                          struct pt_regs *regs)
5972 {
5973         u64 sample_type = event->attr.sample_type;
5974
5975         header->type = PERF_RECORD_SAMPLE;
5976         header->size = sizeof(*header) + event->header_size;
5977
5978         header->misc = 0;
5979         header->misc |= perf_misc_flags(regs);
5980
5981         __perf_event_header__init_id(header, data, event);
5982
5983         if (sample_type & PERF_SAMPLE_IP)
5984                 data->ip = perf_instruction_pointer(regs);
5985
5986         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5987                 int size = 1;
5988
5989                 data->callchain = perf_callchain(event, regs);
5990
5991                 if (data->callchain)
5992                         size += data->callchain->nr;
5993
5994                 header->size += size * sizeof(u64);
5995         }
5996
5997         if (sample_type & PERF_SAMPLE_RAW) {
5998                 struct perf_raw_record *raw = data->raw;
5999                 int size;
6000
6001                 if (raw) {
6002                         struct perf_raw_frag *frag = &raw->frag;
6003                         u32 sum = 0;
6004
6005                         do {
6006                                 sum += frag->size;
6007                                 if (perf_raw_frag_last(frag))
6008                                         break;
6009                                 frag = frag->next;
6010                         } while (1);
6011
6012                         size = round_up(sum + sizeof(u32), sizeof(u64));
6013                         raw->size = size - sizeof(u32);
6014                         frag->pad = raw->size - sum;
6015                 } else {
6016                         size = sizeof(u64);
6017                 }
6018
6019                 header->size += size;
6020         }
6021
6022         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6023                 int size = sizeof(u64); /* nr */
6024                 if (data->br_stack) {
6025                         size += data->br_stack->nr
6026                               * sizeof(struct perf_branch_entry);
6027                 }
6028                 header->size += size;
6029         }
6030
6031         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6032                 perf_sample_regs_user(&data->regs_user, regs,
6033                                       &data->regs_user_copy);
6034
6035         if (sample_type & PERF_SAMPLE_REGS_USER) {
6036                 /* regs dump ABI info */
6037                 int size = sizeof(u64);
6038
6039                 if (data->regs_user.regs) {
6040                         u64 mask = event->attr.sample_regs_user;
6041                         size += hweight64(mask) * sizeof(u64);
6042                 }
6043
6044                 header->size += size;
6045         }
6046
6047         if (sample_type & PERF_SAMPLE_STACK_USER) {
6048                 /*
6049                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6050                  * processed as the last one or have additional check added
6051                  * in case new sample type is added, because we could eat
6052                  * up the rest of the sample size.
6053                  */
6054                 u16 stack_size = event->attr.sample_stack_user;
6055                 u16 size = sizeof(u64);
6056
6057                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6058                                                      data->regs_user.regs);
6059
6060                 /*
6061                  * If there is something to dump, add space for the dump
6062                  * itself and for the field that tells the dynamic size,
6063                  * which is how many have been actually dumped.
6064                  */
6065                 if (stack_size)
6066                         size += sizeof(u64) + stack_size;
6067
6068                 data->stack_user_size = stack_size;
6069                 header->size += size;
6070         }
6071
6072         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6073                 /* regs dump ABI info */
6074                 int size = sizeof(u64);
6075
6076                 perf_sample_regs_intr(&data->regs_intr, regs);
6077
6078                 if (data->regs_intr.regs) {
6079                         u64 mask = event->attr.sample_regs_intr;
6080
6081                         size += hweight64(mask) * sizeof(u64);
6082                 }
6083
6084                 header->size += size;
6085         }
6086 }
6087
6088 static void __always_inline
6089 __perf_event_output(struct perf_event *event,
6090                     struct perf_sample_data *data,
6091                     struct pt_regs *regs,
6092                     int (*output_begin)(struct perf_output_handle *,
6093                                         struct perf_event *,
6094                                         unsigned int))
6095 {
6096         struct perf_output_handle handle;
6097         struct perf_event_header header;
6098
6099         /* protect the callchain buffers */
6100         rcu_read_lock();
6101
6102         perf_prepare_sample(&header, data, event, regs);
6103
6104         if (output_begin(&handle, event, header.size))
6105                 goto exit;
6106
6107         perf_output_sample(&handle, &header, data, event);
6108
6109         perf_output_end(&handle);
6110
6111 exit:
6112         rcu_read_unlock();
6113 }
6114
6115 void
6116 perf_event_output_forward(struct perf_event *event,
6117                          struct perf_sample_data *data,
6118                          struct pt_regs *regs)
6119 {
6120         __perf_event_output(event, data, regs, perf_output_begin_forward);
6121 }
6122
6123 void
6124 perf_event_output_backward(struct perf_event *event,
6125                            struct perf_sample_data *data,
6126                            struct pt_regs *regs)
6127 {
6128         __perf_event_output(event, data, regs, perf_output_begin_backward);
6129 }
6130
6131 void
6132 perf_event_output(struct perf_event *event,
6133                   struct perf_sample_data *data,
6134                   struct pt_regs *regs)
6135 {
6136         __perf_event_output(event, data, regs, perf_output_begin);
6137 }
6138
6139 /*
6140  * read event_id
6141  */
6142
6143 struct perf_read_event {
6144         struct perf_event_header        header;
6145
6146         u32                             pid;
6147         u32                             tid;
6148 };
6149
6150 static void
6151 perf_event_read_event(struct perf_event *event,
6152                         struct task_struct *task)
6153 {
6154         struct perf_output_handle handle;
6155         struct perf_sample_data sample;
6156         struct perf_read_event read_event = {
6157                 .header = {
6158                         .type = PERF_RECORD_READ,
6159                         .misc = 0,
6160                         .size = sizeof(read_event) + event->read_size,
6161                 },
6162                 .pid = perf_event_pid(event, task),
6163                 .tid = perf_event_tid(event, task),
6164         };
6165         int ret;
6166
6167         perf_event_header__init_id(&read_event.header, &sample, event);
6168         ret = perf_output_begin(&handle, event, read_event.header.size);
6169         if (ret)
6170                 return;
6171
6172         perf_output_put(&handle, read_event);
6173         perf_output_read(&handle, event);
6174         perf_event__output_id_sample(event, &handle, &sample);
6175
6176         perf_output_end(&handle);
6177 }
6178
6179 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6180
6181 static void
6182 perf_iterate_ctx(struct perf_event_context *ctx,
6183                    perf_iterate_f output,
6184                    void *data, bool all)
6185 {
6186         struct perf_event *event;
6187
6188         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6189                 if (!all) {
6190                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6191                                 continue;
6192                         if (!event_filter_match(event))
6193                                 continue;
6194                 }
6195
6196                 output(event, data);
6197         }
6198 }
6199
6200 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6201 {
6202         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6203         struct perf_event *event;
6204
6205         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6206                 /*
6207                  * Skip events that are not fully formed yet; ensure that
6208                  * if we observe event->ctx, both event and ctx will be
6209                  * complete enough. See perf_install_in_context().
6210                  */
6211                 if (!smp_load_acquire(&event->ctx))
6212                         continue;
6213
6214                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6215                         continue;
6216                 if (!event_filter_match(event))
6217                         continue;
6218                 output(event, data);
6219         }
6220 }
6221
6222 /*
6223  * Iterate all events that need to receive side-band events.
6224  *
6225  * For new callers; ensure that account_pmu_sb_event() includes
6226  * your event, otherwise it might not get delivered.
6227  */
6228 static void
6229 perf_iterate_sb(perf_iterate_f output, void *data,
6230                struct perf_event_context *task_ctx)
6231 {
6232         struct perf_event_context *ctx;
6233         int ctxn;
6234
6235         rcu_read_lock();
6236         preempt_disable();
6237
6238         /*
6239          * If we have task_ctx != NULL we only notify the task context itself.
6240          * The task_ctx is set only for EXIT events before releasing task
6241          * context.
6242          */
6243         if (task_ctx) {
6244                 perf_iterate_ctx(task_ctx, output, data, false);
6245                 goto done;
6246         }
6247
6248         perf_iterate_sb_cpu(output, data);
6249
6250         for_each_task_context_nr(ctxn) {
6251                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6252                 if (ctx)
6253                         perf_iterate_ctx(ctx, output, data, false);
6254         }
6255 done:
6256         preempt_enable();
6257         rcu_read_unlock();
6258 }
6259
6260 /*
6261  * Clear all file-based filters at exec, they'll have to be
6262  * re-instated when/if these objects are mmapped again.
6263  */
6264 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6265 {
6266         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6267         struct perf_addr_filter *filter;
6268         unsigned int restart = 0, count = 0;
6269         unsigned long flags;
6270
6271         if (!has_addr_filter(event))
6272                 return;
6273
6274         raw_spin_lock_irqsave(&ifh->lock, flags);
6275         list_for_each_entry(filter, &ifh->list, entry) {
6276                 if (filter->inode) {
6277                         event->addr_filters_offs[count] = 0;
6278                         restart++;
6279                 }
6280
6281                 count++;
6282         }
6283
6284         if (restart)
6285                 event->addr_filters_gen++;
6286         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6287
6288         if (restart)
6289                 perf_event_stop(event, 1);
6290 }
6291
6292 void perf_event_exec(void)
6293 {
6294         struct perf_event_context *ctx;
6295         int ctxn;
6296
6297         rcu_read_lock();
6298         for_each_task_context_nr(ctxn) {
6299                 ctx = current->perf_event_ctxp[ctxn];
6300                 if (!ctx)
6301                         continue;
6302
6303                 perf_event_enable_on_exec(ctxn);
6304
6305                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6306                                    true);
6307         }
6308         rcu_read_unlock();
6309 }
6310
6311 struct remote_output {
6312         struct ring_buffer      *rb;
6313         int                     err;
6314 };
6315
6316 static void __perf_event_output_stop(struct perf_event *event, void *data)
6317 {
6318         struct perf_event *parent = event->parent;
6319         struct remote_output *ro = data;
6320         struct ring_buffer *rb = ro->rb;
6321         struct stop_event_data sd = {
6322                 .event  = event,
6323         };
6324
6325         if (!has_aux(event))
6326                 return;
6327
6328         if (!parent)
6329                 parent = event;
6330
6331         /*
6332          * In case of inheritance, it will be the parent that links to the
6333          * ring-buffer, but it will be the child that's actually using it.
6334          *
6335          * We are using event::rb to determine if the event should be stopped,
6336          * however this may race with ring_buffer_attach() (through set_output),
6337          * which will make us skip the event that actually needs to be stopped.
6338          * So ring_buffer_attach() has to stop an aux event before re-assigning
6339          * its rb pointer.
6340          */
6341         if (rcu_dereference(parent->rb) == rb)
6342                 ro->err = __perf_event_stop(&sd);
6343 }
6344
6345 static int __perf_pmu_output_stop(void *info)
6346 {
6347         struct perf_event *event = info;
6348         struct pmu *pmu = event->pmu;
6349         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6350         struct remote_output ro = {
6351                 .rb     = event->rb,
6352         };
6353
6354         rcu_read_lock();
6355         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6356         if (cpuctx->task_ctx)
6357                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6358                                    &ro, false);
6359         rcu_read_unlock();
6360
6361         return ro.err;
6362 }
6363
6364 static void perf_pmu_output_stop(struct perf_event *event)
6365 {
6366         struct perf_event *iter;
6367         int err, cpu;
6368
6369 restart:
6370         rcu_read_lock();
6371         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6372                 /*
6373                  * For per-CPU events, we need to make sure that neither they
6374                  * nor their children are running; for cpu==-1 events it's
6375                  * sufficient to stop the event itself if it's active, since
6376                  * it can't have children.
6377                  */
6378                 cpu = iter->cpu;
6379                 if (cpu == -1)
6380                         cpu = READ_ONCE(iter->oncpu);
6381
6382                 if (cpu == -1)
6383                         continue;
6384
6385                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6386                 if (err == -EAGAIN) {
6387                         rcu_read_unlock();
6388                         goto restart;
6389                 }
6390         }
6391         rcu_read_unlock();
6392 }
6393
6394 /*
6395  * task tracking -- fork/exit
6396  *
6397  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6398  */
6399
6400 struct perf_task_event {
6401         struct task_struct              *task;
6402         struct perf_event_context       *task_ctx;
6403
6404         struct {
6405                 struct perf_event_header        header;
6406
6407                 u32                             pid;
6408                 u32                             ppid;
6409                 u32                             tid;
6410                 u32                             ptid;
6411                 u64                             time;
6412         } event_id;
6413 };
6414
6415 static int perf_event_task_match(struct perf_event *event)
6416 {
6417         return event->attr.comm  || event->attr.mmap ||
6418                event->attr.mmap2 || event->attr.mmap_data ||
6419                event->attr.task;
6420 }
6421
6422 static void perf_event_task_output(struct perf_event *event,
6423                                    void *data)
6424 {
6425         struct perf_task_event *task_event = data;
6426         struct perf_output_handle handle;
6427         struct perf_sample_data sample;
6428         struct task_struct *task = task_event->task;
6429         int ret, size = task_event->event_id.header.size;
6430
6431         if (!perf_event_task_match(event))
6432                 return;
6433
6434         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6435
6436         ret = perf_output_begin(&handle, event,
6437                                 task_event->event_id.header.size);
6438         if (ret)
6439                 goto out;
6440
6441         task_event->event_id.pid = perf_event_pid(event, task);
6442         task_event->event_id.ppid = perf_event_pid(event, current);
6443
6444         task_event->event_id.tid = perf_event_tid(event, task);
6445         task_event->event_id.ptid = perf_event_tid(event, current);
6446
6447         task_event->event_id.time = perf_event_clock(event);
6448
6449         perf_output_put(&handle, task_event->event_id);
6450
6451         perf_event__output_id_sample(event, &handle, &sample);
6452
6453         perf_output_end(&handle);
6454 out:
6455         task_event->event_id.header.size = size;
6456 }
6457
6458 static void perf_event_task(struct task_struct *task,
6459                               struct perf_event_context *task_ctx,
6460                               int new)
6461 {
6462         struct perf_task_event task_event;
6463
6464         if (!atomic_read(&nr_comm_events) &&
6465             !atomic_read(&nr_mmap_events) &&
6466             !atomic_read(&nr_task_events))
6467                 return;
6468
6469         task_event = (struct perf_task_event){
6470                 .task     = task,
6471                 .task_ctx = task_ctx,
6472                 .event_id    = {
6473                         .header = {
6474                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6475                                 .misc = 0,
6476                                 .size = sizeof(task_event.event_id),
6477                         },
6478                         /* .pid  */
6479                         /* .ppid */
6480                         /* .tid  */
6481                         /* .ptid */
6482                         /* .time */
6483                 },
6484         };
6485
6486         perf_iterate_sb(perf_event_task_output,
6487                        &task_event,
6488                        task_ctx);
6489 }
6490
6491 void perf_event_fork(struct task_struct *task)
6492 {
6493         perf_event_task(task, NULL, 1);
6494 }
6495
6496 /*
6497  * comm tracking
6498  */
6499
6500 struct perf_comm_event {
6501         struct task_struct      *task;
6502         char                    *comm;
6503         int                     comm_size;
6504
6505         struct {
6506                 struct perf_event_header        header;
6507
6508                 u32                             pid;
6509                 u32                             tid;
6510         } event_id;
6511 };
6512
6513 static int perf_event_comm_match(struct perf_event *event)
6514 {
6515         return event->attr.comm;
6516 }
6517
6518 static void perf_event_comm_output(struct perf_event *event,
6519                                    void *data)
6520 {
6521         struct perf_comm_event *comm_event = data;
6522         struct perf_output_handle handle;
6523         struct perf_sample_data sample;
6524         int size = comm_event->event_id.header.size;
6525         int ret;
6526
6527         if (!perf_event_comm_match(event))
6528                 return;
6529
6530         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6531         ret = perf_output_begin(&handle, event,
6532                                 comm_event->event_id.header.size);
6533
6534         if (ret)
6535                 goto out;
6536
6537         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6538         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6539
6540         perf_output_put(&handle, comm_event->event_id);
6541         __output_copy(&handle, comm_event->comm,
6542                                    comm_event->comm_size);
6543
6544         perf_event__output_id_sample(event, &handle, &sample);
6545
6546         perf_output_end(&handle);
6547 out:
6548         comm_event->event_id.header.size = size;
6549 }
6550
6551 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6552 {
6553         char comm[TASK_COMM_LEN];
6554         unsigned int size;
6555
6556         memset(comm, 0, sizeof(comm));
6557         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6558         size = ALIGN(strlen(comm)+1, sizeof(u64));
6559
6560         comm_event->comm = comm;
6561         comm_event->comm_size = size;
6562
6563         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6564
6565         perf_iterate_sb(perf_event_comm_output,
6566                        comm_event,
6567                        NULL);
6568 }
6569
6570 void perf_event_comm(struct task_struct *task, bool exec)
6571 {
6572         struct perf_comm_event comm_event;
6573
6574         if (!atomic_read(&nr_comm_events))
6575                 return;
6576
6577         comm_event = (struct perf_comm_event){
6578                 .task   = task,
6579                 /* .comm      */
6580                 /* .comm_size */
6581                 .event_id  = {
6582                         .header = {
6583                                 .type = PERF_RECORD_COMM,
6584                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6585                                 /* .size */
6586                         },
6587                         /* .pid */
6588                         /* .tid */
6589                 },
6590         };
6591
6592         perf_event_comm_event(&comm_event);
6593 }
6594
6595 /*
6596  * mmap tracking
6597  */
6598
6599 struct perf_mmap_event {
6600         struct vm_area_struct   *vma;
6601
6602         const char              *file_name;
6603         int                     file_size;
6604         int                     maj, min;
6605         u64                     ino;
6606         u64                     ino_generation;
6607         u32                     prot, flags;
6608
6609         struct {
6610                 struct perf_event_header        header;
6611
6612                 u32                             pid;
6613                 u32                             tid;
6614                 u64                             start;
6615                 u64                             len;
6616                 u64                             pgoff;
6617         } event_id;
6618 };
6619
6620 static int perf_event_mmap_match(struct perf_event *event,
6621                                  void *data)
6622 {
6623         struct perf_mmap_event *mmap_event = data;
6624         struct vm_area_struct *vma = mmap_event->vma;
6625         int executable = vma->vm_flags & VM_EXEC;
6626
6627         return (!executable && event->attr.mmap_data) ||
6628                (executable && (event->attr.mmap || event->attr.mmap2));
6629 }
6630
6631 static void perf_event_mmap_output(struct perf_event *event,
6632                                    void *data)
6633 {
6634         struct perf_mmap_event *mmap_event = data;
6635         struct perf_output_handle handle;
6636         struct perf_sample_data sample;
6637         int size = mmap_event->event_id.header.size;
6638         int ret;
6639
6640         if (!perf_event_mmap_match(event, data))
6641                 return;
6642
6643         if (event->attr.mmap2) {
6644                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6645                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6646                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6647                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6648                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6649                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6650                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6651         }
6652
6653         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6654         ret = perf_output_begin(&handle, event,
6655                                 mmap_event->event_id.header.size);
6656         if (ret)
6657                 goto out;
6658
6659         mmap_event->event_id.pid = perf_event_pid(event, current);
6660         mmap_event->event_id.tid = perf_event_tid(event, current);
6661
6662         perf_output_put(&handle, mmap_event->event_id);
6663
6664         if (event->attr.mmap2) {
6665                 perf_output_put(&handle, mmap_event->maj);
6666                 perf_output_put(&handle, mmap_event->min);
6667                 perf_output_put(&handle, mmap_event->ino);
6668                 perf_output_put(&handle, mmap_event->ino_generation);
6669                 perf_output_put(&handle, mmap_event->prot);
6670                 perf_output_put(&handle, mmap_event->flags);
6671         }
6672
6673         __output_copy(&handle, mmap_event->file_name,
6674                                    mmap_event->file_size);
6675
6676         perf_event__output_id_sample(event, &handle, &sample);
6677
6678         perf_output_end(&handle);
6679 out:
6680         mmap_event->event_id.header.size = size;
6681 }
6682
6683 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6684 {
6685         struct vm_area_struct *vma = mmap_event->vma;
6686         struct file *file = vma->vm_file;
6687         int maj = 0, min = 0;
6688         u64 ino = 0, gen = 0;
6689         u32 prot = 0, flags = 0;
6690         unsigned int size;
6691         char tmp[16];
6692         char *buf = NULL;
6693         char *name;
6694
6695         if (vma->vm_flags & VM_READ)
6696                 prot |= PROT_READ;
6697         if (vma->vm_flags & VM_WRITE)
6698                 prot |= PROT_WRITE;
6699         if (vma->vm_flags & VM_EXEC)
6700                 prot |= PROT_EXEC;
6701
6702         if (vma->vm_flags & VM_MAYSHARE)
6703                 flags = MAP_SHARED;
6704         else
6705                 flags = MAP_PRIVATE;
6706
6707         if (vma->vm_flags & VM_DENYWRITE)
6708                 flags |= MAP_DENYWRITE;
6709         if (vma->vm_flags & VM_MAYEXEC)
6710                 flags |= MAP_EXECUTABLE;
6711         if (vma->vm_flags & VM_LOCKED)
6712                 flags |= MAP_LOCKED;
6713         if (vma->vm_flags & VM_HUGETLB)
6714                 flags |= MAP_HUGETLB;
6715
6716         if (file) {
6717                 struct inode *inode;
6718                 dev_t dev;
6719
6720                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6721                 if (!buf) {
6722                         name = "//enomem";
6723                         goto cpy_name;
6724                 }
6725                 /*
6726                  * d_path() works from the end of the rb backwards, so we
6727                  * need to add enough zero bytes after the string to handle
6728                  * the 64bit alignment we do later.
6729                  */
6730                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6731                 if (IS_ERR(name)) {
6732                         name = "//toolong";
6733                         goto cpy_name;
6734                 }
6735                 inode = file_inode(vma->vm_file);
6736                 dev = inode->i_sb->s_dev;
6737                 ino = inode->i_ino;
6738                 gen = inode->i_generation;
6739                 maj = MAJOR(dev);
6740                 min = MINOR(dev);
6741
6742                 goto got_name;
6743         } else {
6744                 if (vma->vm_ops && vma->vm_ops->name) {
6745                         name = (char *) vma->vm_ops->name(vma);
6746                         if (name)
6747                                 goto cpy_name;
6748                 }
6749
6750                 name = (char *)arch_vma_name(vma);
6751                 if (name)
6752                         goto cpy_name;
6753
6754                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6755                                 vma->vm_end >= vma->vm_mm->brk) {
6756                         name = "[heap]";
6757                         goto cpy_name;
6758                 }
6759                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6760                                 vma->vm_end >= vma->vm_mm->start_stack) {
6761                         name = "[stack]";
6762                         goto cpy_name;
6763                 }
6764
6765                 name = "//anon";
6766                 goto cpy_name;
6767         }
6768
6769 cpy_name:
6770         strlcpy(tmp, name, sizeof(tmp));
6771         name = tmp;
6772 got_name:
6773         /*
6774          * Since our buffer works in 8 byte units we need to align our string
6775          * size to a multiple of 8. However, we must guarantee the tail end is
6776          * zero'd out to avoid leaking random bits to userspace.
6777          */
6778         size = strlen(name)+1;
6779         while (!IS_ALIGNED(size, sizeof(u64)))
6780                 name[size++] = '\0';
6781
6782         mmap_event->file_name = name;
6783         mmap_event->file_size = size;
6784         mmap_event->maj = maj;
6785         mmap_event->min = min;
6786         mmap_event->ino = ino;
6787         mmap_event->ino_generation = gen;
6788         mmap_event->prot = prot;
6789         mmap_event->flags = flags;
6790
6791         if (!(vma->vm_flags & VM_EXEC))
6792                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6793
6794         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6795
6796         perf_iterate_sb(perf_event_mmap_output,
6797                        mmap_event,
6798                        NULL);
6799
6800         kfree(buf);
6801 }
6802
6803 /*
6804  * Check whether inode and address range match filter criteria.
6805  */
6806 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6807                                      struct file *file, unsigned long offset,
6808                                      unsigned long size)
6809 {
6810         if (filter->inode != file_inode(file))
6811                 return false;
6812
6813         if (filter->offset > offset + size)
6814                 return false;
6815
6816         if (filter->offset + filter->size < offset)
6817                 return false;
6818
6819         return true;
6820 }
6821
6822 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6823 {
6824         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6825         struct vm_area_struct *vma = data;
6826         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6827         struct file *file = vma->vm_file;
6828         struct perf_addr_filter *filter;
6829         unsigned int restart = 0, count = 0;
6830
6831         if (!has_addr_filter(event))
6832                 return;
6833
6834         if (!file)
6835                 return;
6836
6837         raw_spin_lock_irqsave(&ifh->lock, flags);
6838         list_for_each_entry(filter, &ifh->list, entry) {
6839                 if (perf_addr_filter_match(filter, file, off,
6840                                              vma->vm_end - vma->vm_start)) {
6841                         event->addr_filters_offs[count] = vma->vm_start;
6842                         restart++;
6843                 }
6844
6845                 count++;
6846         }
6847
6848         if (restart)
6849                 event->addr_filters_gen++;
6850         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6851
6852         if (restart)
6853                 perf_event_stop(event, 1);
6854 }
6855
6856 /*
6857  * Adjust all task's events' filters to the new vma
6858  */
6859 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6860 {
6861         struct perf_event_context *ctx;
6862         int ctxn;
6863
6864         /*
6865          * Data tracing isn't supported yet and as such there is no need
6866          * to keep track of anything that isn't related to executable code:
6867          */
6868         if (!(vma->vm_flags & VM_EXEC))
6869                 return;
6870
6871         rcu_read_lock();
6872         for_each_task_context_nr(ctxn) {
6873                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6874                 if (!ctx)
6875                         continue;
6876
6877                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6878         }
6879         rcu_read_unlock();
6880 }
6881
6882 void perf_event_mmap(struct vm_area_struct *vma)
6883 {
6884         struct perf_mmap_event mmap_event;
6885
6886         if (!atomic_read(&nr_mmap_events))
6887                 return;
6888
6889         mmap_event = (struct perf_mmap_event){
6890                 .vma    = vma,
6891                 /* .file_name */
6892                 /* .file_size */
6893                 .event_id  = {
6894                         .header = {
6895                                 .type = PERF_RECORD_MMAP,
6896                                 .misc = PERF_RECORD_MISC_USER,
6897                                 /* .size */
6898                         },
6899                         /* .pid */
6900                         /* .tid */
6901                         .start  = vma->vm_start,
6902                         .len    = vma->vm_end - vma->vm_start,
6903                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6904                 },
6905                 /* .maj (attr_mmap2 only) */
6906                 /* .min (attr_mmap2 only) */
6907                 /* .ino (attr_mmap2 only) */
6908                 /* .ino_generation (attr_mmap2 only) */
6909                 /* .prot (attr_mmap2 only) */
6910                 /* .flags (attr_mmap2 only) */
6911         };
6912
6913         perf_addr_filters_adjust(vma);
6914         perf_event_mmap_event(&mmap_event);
6915 }
6916
6917 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6918                           unsigned long size, u64 flags)
6919 {
6920         struct perf_output_handle handle;
6921         struct perf_sample_data sample;
6922         struct perf_aux_event {
6923                 struct perf_event_header        header;
6924                 u64                             offset;
6925                 u64                             size;
6926                 u64                             flags;
6927         } rec = {
6928                 .header = {
6929                         .type = PERF_RECORD_AUX,
6930                         .misc = 0,
6931                         .size = sizeof(rec),
6932                 },
6933                 .offset         = head,
6934                 .size           = size,
6935                 .flags          = flags,
6936         };
6937         int ret;
6938
6939         perf_event_header__init_id(&rec.header, &sample, event);
6940         ret = perf_output_begin(&handle, event, rec.header.size);
6941
6942         if (ret)
6943                 return;
6944
6945         perf_output_put(&handle, rec);
6946         perf_event__output_id_sample(event, &handle, &sample);
6947
6948         perf_output_end(&handle);
6949 }
6950
6951 /*
6952  * Lost/dropped samples logging
6953  */
6954 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6955 {
6956         struct perf_output_handle handle;
6957         struct perf_sample_data sample;
6958         int ret;
6959
6960         struct {
6961                 struct perf_event_header        header;
6962                 u64                             lost;
6963         } lost_samples_event = {
6964                 .header = {
6965                         .type = PERF_RECORD_LOST_SAMPLES,
6966                         .misc = 0,
6967                         .size = sizeof(lost_samples_event),
6968                 },
6969                 .lost           = lost,
6970         };
6971
6972         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6973
6974         ret = perf_output_begin(&handle, event,
6975                                 lost_samples_event.header.size);
6976         if (ret)
6977                 return;
6978
6979         perf_output_put(&handle, lost_samples_event);
6980         perf_event__output_id_sample(event, &handle, &sample);
6981         perf_output_end(&handle);
6982 }
6983
6984 /*
6985  * context_switch tracking
6986  */
6987
6988 struct perf_switch_event {
6989         struct task_struct      *task;
6990         struct task_struct      *next_prev;
6991
6992         struct {
6993                 struct perf_event_header        header;
6994                 u32                             next_prev_pid;
6995                 u32                             next_prev_tid;
6996         } event_id;
6997 };
6998
6999 static int perf_event_switch_match(struct perf_event *event)
7000 {
7001         return event->attr.context_switch;
7002 }
7003
7004 static void perf_event_switch_output(struct perf_event *event, void *data)
7005 {
7006         struct perf_switch_event *se = data;
7007         struct perf_output_handle handle;
7008         struct perf_sample_data sample;
7009         int ret;
7010
7011         if (!perf_event_switch_match(event))
7012                 return;
7013
7014         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7015         if (event->ctx->task) {
7016                 se->event_id.header.type = PERF_RECORD_SWITCH;
7017                 se->event_id.header.size = sizeof(se->event_id.header);
7018         } else {
7019                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7020                 se->event_id.header.size = sizeof(se->event_id);
7021                 se->event_id.next_prev_pid =
7022                                         perf_event_pid(event, se->next_prev);
7023                 se->event_id.next_prev_tid =
7024                                         perf_event_tid(event, se->next_prev);
7025         }
7026
7027         perf_event_header__init_id(&se->event_id.header, &sample, event);
7028
7029         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7030         if (ret)
7031                 return;
7032
7033         if (event->ctx->task)
7034                 perf_output_put(&handle, se->event_id.header);
7035         else
7036                 perf_output_put(&handle, se->event_id);
7037
7038         perf_event__output_id_sample(event, &handle, &sample);
7039
7040         perf_output_end(&handle);
7041 }
7042
7043 static void perf_event_switch(struct task_struct *task,
7044                               struct task_struct *next_prev, bool sched_in)
7045 {
7046         struct perf_switch_event switch_event;
7047
7048         /* N.B. caller checks nr_switch_events != 0 */
7049
7050         switch_event = (struct perf_switch_event){
7051                 .task           = task,
7052                 .next_prev      = next_prev,
7053                 .event_id       = {
7054                         .header = {
7055                                 /* .type */
7056                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7057                                 /* .size */
7058                         },
7059                         /* .next_prev_pid */
7060                         /* .next_prev_tid */
7061                 },
7062         };
7063
7064         perf_iterate_sb(perf_event_switch_output,
7065                        &switch_event,
7066                        NULL);
7067 }
7068
7069 /*
7070  * IRQ throttle logging
7071  */
7072
7073 static void perf_log_throttle(struct perf_event *event, int enable)
7074 {
7075         struct perf_output_handle handle;
7076         struct perf_sample_data sample;
7077         int ret;
7078
7079         struct {
7080                 struct perf_event_header        header;
7081                 u64                             time;
7082                 u64                             id;
7083                 u64                             stream_id;
7084         } throttle_event = {
7085                 .header = {
7086                         .type = PERF_RECORD_THROTTLE,
7087                         .misc = 0,
7088                         .size = sizeof(throttle_event),
7089                 },
7090                 .time           = perf_event_clock(event),
7091                 .id             = primary_event_id(event),
7092                 .stream_id      = event->id,
7093         };
7094
7095         if (enable)
7096                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7097
7098         perf_event_header__init_id(&throttle_event.header, &sample, event);
7099
7100         ret = perf_output_begin(&handle, event,
7101                                 throttle_event.header.size);
7102         if (ret)
7103                 return;
7104
7105         perf_output_put(&handle, throttle_event);
7106         perf_event__output_id_sample(event, &handle, &sample);
7107         perf_output_end(&handle);
7108 }
7109
7110 static void perf_log_itrace_start(struct perf_event *event)
7111 {
7112         struct perf_output_handle handle;
7113         struct perf_sample_data sample;
7114         struct perf_aux_event {
7115                 struct perf_event_header        header;
7116                 u32                             pid;
7117                 u32                             tid;
7118         } rec;
7119         int ret;
7120
7121         if (event->parent)
7122                 event = event->parent;
7123
7124         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7125             event->hw.itrace_started)
7126                 return;
7127
7128         rec.header.type = PERF_RECORD_ITRACE_START;
7129         rec.header.misc = 0;
7130         rec.header.size = sizeof(rec);
7131         rec.pid = perf_event_pid(event, current);
7132         rec.tid = perf_event_tid(event, current);
7133
7134         perf_event_header__init_id(&rec.header, &sample, event);
7135         ret = perf_output_begin(&handle, event, rec.header.size);
7136
7137         if (ret)
7138                 return;
7139
7140         perf_output_put(&handle, rec);
7141         perf_event__output_id_sample(event, &handle, &sample);
7142
7143         perf_output_end(&handle);
7144 }
7145
7146 static int
7147 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7148 {
7149         struct hw_perf_event *hwc = &event->hw;
7150         int ret = 0;
7151         u64 seq;
7152
7153         seq = __this_cpu_read(perf_throttled_seq);
7154         if (seq != hwc->interrupts_seq) {
7155                 hwc->interrupts_seq = seq;
7156                 hwc->interrupts = 1;
7157         } else {
7158                 hwc->interrupts++;
7159                 if (unlikely(throttle
7160                              && hwc->interrupts >= max_samples_per_tick)) {
7161                         __this_cpu_inc(perf_throttled_count);
7162                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7163                         hwc->interrupts = MAX_INTERRUPTS;
7164                         perf_log_throttle(event, 0);
7165                         ret = 1;
7166                 }
7167         }
7168
7169         if (event->attr.freq) {
7170                 u64 now = perf_clock();
7171                 s64 delta = now - hwc->freq_time_stamp;
7172
7173                 hwc->freq_time_stamp = now;
7174
7175                 if (delta > 0 && delta < 2*TICK_NSEC)
7176                         perf_adjust_period(event, delta, hwc->last_period, true);
7177         }
7178
7179         return ret;
7180 }
7181
7182 int perf_event_account_interrupt(struct perf_event *event)
7183 {
7184         return __perf_event_account_interrupt(event, 1);
7185 }
7186
7187 /*
7188  * Generic event overflow handling, sampling.
7189  */
7190
7191 static int __perf_event_overflow(struct perf_event *event,
7192                                    int throttle, struct perf_sample_data *data,
7193                                    struct pt_regs *regs)
7194 {
7195         int events = atomic_read(&event->event_limit);
7196         int ret = 0;
7197
7198         /*
7199          * Non-sampling counters might still use the PMI to fold short
7200          * hardware counters, ignore those.
7201          */
7202         if (unlikely(!is_sampling_event(event)))
7203                 return 0;
7204
7205         ret = __perf_event_account_interrupt(event, throttle);
7206
7207         /*
7208          * XXX event_limit might not quite work as expected on inherited
7209          * events
7210          */
7211
7212         event->pending_kill = POLL_IN;
7213         if (events && atomic_dec_and_test(&event->event_limit)) {
7214                 ret = 1;
7215                 event->pending_kill = POLL_HUP;
7216
7217                 perf_event_disable_inatomic(event);
7218         }
7219
7220         READ_ONCE(event->overflow_handler)(event, data, regs);
7221
7222         if (*perf_event_fasync(event) && event->pending_kill) {
7223                 event->pending_wakeup = 1;
7224                 irq_work_queue(&event->pending);
7225         }
7226
7227         return ret;
7228 }
7229
7230 int perf_event_overflow(struct perf_event *event,
7231                           struct perf_sample_data *data,
7232                           struct pt_regs *regs)
7233 {
7234         return __perf_event_overflow(event, 1, data, regs);
7235 }
7236
7237 /*
7238  * Generic software event infrastructure
7239  */
7240
7241 struct swevent_htable {
7242         struct swevent_hlist            *swevent_hlist;
7243         struct mutex                    hlist_mutex;
7244         int                             hlist_refcount;
7245
7246         /* Recursion avoidance in each contexts */
7247         int                             recursion[PERF_NR_CONTEXTS];
7248 };
7249
7250 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7251
7252 /*
7253  * We directly increment event->count and keep a second value in
7254  * event->hw.period_left to count intervals. This period event
7255  * is kept in the range [-sample_period, 0] so that we can use the
7256  * sign as trigger.
7257  */
7258
7259 u64 perf_swevent_set_period(struct perf_event *event)
7260 {
7261         struct hw_perf_event *hwc = &event->hw;
7262         u64 period = hwc->last_period;
7263         u64 nr, offset;
7264         s64 old, val;
7265
7266         hwc->last_period = hwc->sample_period;
7267
7268 again:
7269         old = val = local64_read(&hwc->period_left);
7270         if (val < 0)
7271                 return 0;
7272
7273         nr = div64_u64(period + val, period);
7274         offset = nr * period;
7275         val -= offset;
7276         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7277                 goto again;
7278
7279         return nr;
7280 }
7281
7282 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7283                                     struct perf_sample_data *data,
7284                                     struct pt_regs *regs)
7285 {
7286         struct hw_perf_event *hwc = &event->hw;
7287         int throttle = 0;
7288
7289         if (!overflow)
7290                 overflow = perf_swevent_set_period(event);
7291
7292         if (hwc->interrupts == MAX_INTERRUPTS)
7293                 return;
7294
7295         for (; overflow; overflow--) {
7296                 if (__perf_event_overflow(event, throttle,
7297                                             data, regs)) {
7298                         /*
7299                          * We inhibit the overflow from happening when
7300                          * hwc->interrupts == MAX_INTERRUPTS.
7301                          */
7302                         break;
7303                 }
7304                 throttle = 1;
7305         }
7306 }
7307
7308 static void perf_swevent_event(struct perf_event *event, u64 nr,
7309                                struct perf_sample_data *data,
7310                                struct pt_regs *regs)
7311 {
7312         struct hw_perf_event *hwc = &event->hw;
7313
7314         local64_add(nr, &event->count);
7315
7316         if (!regs)
7317                 return;
7318
7319         if (!is_sampling_event(event))
7320                 return;
7321
7322         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7323                 data->period = nr;
7324                 return perf_swevent_overflow(event, 1, data, regs);
7325         } else
7326                 data->period = event->hw.last_period;
7327
7328         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7329                 return perf_swevent_overflow(event, 1, data, regs);
7330
7331         if (local64_add_negative(nr, &hwc->period_left))
7332                 return;
7333
7334         perf_swevent_overflow(event, 0, data, regs);
7335 }
7336
7337 static int perf_exclude_event(struct perf_event *event,
7338                               struct pt_regs *regs)
7339 {
7340         if (event->hw.state & PERF_HES_STOPPED)
7341                 return 1;
7342
7343         if (regs) {
7344                 if (event->attr.exclude_user && user_mode(regs))
7345                         return 1;
7346
7347                 if (event->attr.exclude_kernel && !user_mode(regs))
7348                         return 1;
7349         }
7350
7351         return 0;
7352 }
7353
7354 static int perf_swevent_match(struct perf_event *event,
7355                                 enum perf_type_id type,
7356                                 u32 event_id,
7357                                 struct perf_sample_data *data,
7358                                 struct pt_regs *regs)
7359 {
7360         if (event->attr.type != type)
7361                 return 0;
7362
7363         if (event->attr.config != event_id)
7364                 return 0;
7365
7366         if (perf_exclude_event(event, regs))
7367                 return 0;
7368
7369         return 1;
7370 }
7371
7372 static inline u64 swevent_hash(u64 type, u32 event_id)
7373 {
7374         u64 val = event_id | (type << 32);
7375
7376         return hash_64(val, SWEVENT_HLIST_BITS);
7377 }
7378
7379 static inline struct hlist_head *
7380 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7381 {
7382         u64 hash = swevent_hash(type, event_id);
7383
7384         return &hlist->heads[hash];
7385 }
7386
7387 /* For the read side: events when they trigger */
7388 static inline struct hlist_head *
7389 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7390 {
7391         struct swevent_hlist *hlist;
7392
7393         hlist = rcu_dereference(swhash->swevent_hlist);
7394         if (!hlist)
7395                 return NULL;
7396
7397         return __find_swevent_head(hlist, type, event_id);
7398 }
7399
7400 /* For the event head insertion and removal in the hlist */
7401 static inline struct hlist_head *
7402 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7403 {
7404         struct swevent_hlist *hlist;
7405         u32 event_id = event->attr.config;
7406         u64 type = event->attr.type;
7407
7408         /*
7409          * Event scheduling is always serialized against hlist allocation
7410          * and release. Which makes the protected version suitable here.
7411          * The context lock guarantees that.
7412          */
7413         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7414                                           lockdep_is_held(&event->ctx->lock));
7415         if (!hlist)
7416                 return NULL;
7417
7418         return __find_swevent_head(hlist, type, event_id);
7419 }
7420
7421 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7422                                     u64 nr,
7423                                     struct perf_sample_data *data,
7424                                     struct pt_regs *regs)
7425 {
7426         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7427         struct perf_event *event;
7428         struct hlist_head *head;
7429
7430         rcu_read_lock();
7431         head = find_swevent_head_rcu(swhash, type, event_id);
7432         if (!head)
7433                 goto end;
7434
7435         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7436                 if (perf_swevent_match(event, type, event_id, data, regs))
7437                         perf_swevent_event(event, nr, data, regs);
7438         }
7439 end:
7440         rcu_read_unlock();
7441 }
7442
7443 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7444
7445 int perf_swevent_get_recursion_context(void)
7446 {
7447         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7448
7449         return get_recursion_context(swhash->recursion);
7450 }
7451 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7452
7453 void perf_swevent_put_recursion_context(int rctx)
7454 {
7455         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7456
7457         put_recursion_context(swhash->recursion, rctx);
7458 }
7459
7460 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7461 {
7462         struct perf_sample_data data;
7463
7464         if (WARN_ON_ONCE(!regs))
7465                 return;
7466
7467         perf_sample_data_init(&data, addr, 0);
7468         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7469 }
7470
7471 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7472 {
7473         int rctx;
7474
7475         preempt_disable_notrace();
7476         rctx = perf_swevent_get_recursion_context();
7477         if (unlikely(rctx < 0))
7478                 goto fail;
7479
7480         ___perf_sw_event(event_id, nr, regs, addr);
7481
7482         perf_swevent_put_recursion_context(rctx);
7483 fail:
7484         preempt_enable_notrace();
7485 }
7486
7487 static void perf_swevent_read(struct perf_event *event)
7488 {
7489 }
7490
7491 static int perf_swevent_add(struct perf_event *event, int flags)
7492 {
7493         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7494         struct hw_perf_event *hwc = &event->hw;
7495         struct hlist_head *head;
7496
7497         if (is_sampling_event(event)) {
7498                 hwc->last_period = hwc->sample_period;
7499                 perf_swevent_set_period(event);
7500         }
7501
7502         hwc->state = !(flags & PERF_EF_START);
7503
7504         head = find_swevent_head(swhash, event);
7505         if (WARN_ON_ONCE(!head))
7506                 return -EINVAL;
7507
7508         hlist_add_head_rcu(&event->hlist_entry, head);
7509         perf_event_update_userpage(event);
7510
7511         return 0;
7512 }
7513
7514 static void perf_swevent_del(struct perf_event *event, int flags)
7515 {
7516         hlist_del_rcu(&event->hlist_entry);
7517 }
7518
7519 static void perf_swevent_start(struct perf_event *event, int flags)
7520 {
7521         event->hw.state = 0;
7522 }
7523
7524 static void perf_swevent_stop(struct perf_event *event, int flags)
7525 {
7526         event->hw.state = PERF_HES_STOPPED;
7527 }
7528
7529 /* Deref the hlist from the update side */
7530 static inline struct swevent_hlist *
7531 swevent_hlist_deref(struct swevent_htable *swhash)
7532 {
7533         return rcu_dereference_protected(swhash->swevent_hlist,
7534                                          lockdep_is_held(&swhash->hlist_mutex));
7535 }
7536
7537 static void swevent_hlist_release(struct swevent_htable *swhash)
7538 {
7539         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7540
7541         if (!hlist)
7542                 return;
7543
7544         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7545         kfree_rcu(hlist, rcu_head);
7546 }
7547
7548 static void swevent_hlist_put_cpu(int cpu)
7549 {
7550         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7551
7552         mutex_lock(&swhash->hlist_mutex);
7553
7554         if (!--swhash->hlist_refcount)
7555                 swevent_hlist_release(swhash);
7556
7557         mutex_unlock(&swhash->hlist_mutex);
7558 }
7559
7560 static void swevent_hlist_put(void)
7561 {
7562         int cpu;
7563
7564         for_each_possible_cpu(cpu)
7565                 swevent_hlist_put_cpu(cpu);
7566 }
7567
7568 static int swevent_hlist_get_cpu(int cpu)
7569 {
7570         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7571         int err = 0;
7572
7573         mutex_lock(&swhash->hlist_mutex);
7574         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7575                 struct swevent_hlist *hlist;
7576
7577                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7578                 if (!hlist) {
7579                         err = -ENOMEM;
7580                         goto exit;
7581                 }
7582                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7583         }
7584         swhash->hlist_refcount++;
7585 exit:
7586         mutex_unlock(&swhash->hlist_mutex);
7587
7588         return err;
7589 }
7590
7591 static int swevent_hlist_get(void)
7592 {
7593         int err, cpu, failed_cpu;
7594
7595         get_online_cpus();
7596         for_each_possible_cpu(cpu) {
7597                 err = swevent_hlist_get_cpu(cpu);
7598                 if (err) {
7599                         failed_cpu = cpu;
7600                         goto fail;
7601                 }
7602         }
7603         put_online_cpus();
7604
7605         return 0;
7606 fail:
7607         for_each_possible_cpu(cpu) {
7608                 if (cpu == failed_cpu)
7609                         break;
7610                 swevent_hlist_put_cpu(cpu);
7611         }
7612
7613         put_online_cpus();
7614         return err;
7615 }
7616
7617 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7618
7619 static void sw_perf_event_destroy(struct perf_event *event)
7620 {
7621         u64 event_id = event->attr.config;
7622
7623         WARN_ON(event->parent);
7624
7625         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7626         swevent_hlist_put();
7627 }
7628
7629 static int perf_swevent_init(struct perf_event *event)
7630 {
7631         u64 event_id = event->attr.config;
7632
7633         if (event->attr.type != PERF_TYPE_SOFTWARE)
7634                 return -ENOENT;
7635
7636         /*
7637          * no branch sampling for software events
7638          */
7639         if (has_branch_stack(event))
7640                 return -EOPNOTSUPP;
7641
7642         switch (event_id) {
7643         case PERF_COUNT_SW_CPU_CLOCK:
7644         case PERF_COUNT_SW_TASK_CLOCK:
7645                 return -ENOENT;
7646
7647         default:
7648                 break;
7649         }
7650
7651         if (event_id >= PERF_COUNT_SW_MAX)
7652                 return -ENOENT;
7653
7654         if (!event->parent) {
7655                 int err;
7656
7657                 err = swevent_hlist_get();
7658                 if (err)
7659                         return err;
7660
7661                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7662                 event->destroy = sw_perf_event_destroy;
7663         }
7664
7665         return 0;
7666 }
7667
7668 static struct pmu perf_swevent = {
7669         .task_ctx_nr    = perf_sw_context,
7670
7671         .capabilities   = PERF_PMU_CAP_NO_NMI,
7672
7673         .event_init     = perf_swevent_init,
7674         .add            = perf_swevent_add,
7675         .del            = perf_swevent_del,
7676         .start          = perf_swevent_start,
7677         .stop           = perf_swevent_stop,
7678         .read           = perf_swevent_read,
7679 };
7680
7681 #ifdef CONFIG_EVENT_TRACING
7682
7683 static int perf_tp_filter_match(struct perf_event *event,
7684                                 struct perf_sample_data *data)
7685 {
7686         void *record = data->raw->frag.data;
7687
7688         /* only top level events have filters set */
7689         if (event->parent)
7690                 event = event->parent;
7691
7692         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7693                 return 1;
7694         return 0;
7695 }
7696
7697 static int perf_tp_event_match(struct perf_event *event,
7698                                 struct perf_sample_data *data,
7699                                 struct pt_regs *regs)
7700 {
7701         if (event->hw.state & PERF_HES_STOPPED)
7702                 return 0;
7703         /*
7704          * All tracepoints are from kernel-space.
7705          */
7706         if (event->attr.exclude_kernel)
7707                 return 0;
7708
7709         if (!perf_tp_filter_match(event, data))
7710                 return 0;
7711
7712         return 1;
7713 }
7714
7715 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7716                                struct trace_event_call *call, u64 count,
7717                                struct pt_regs *regs, struct hlist_head *head,
7718                                struct task_struct *task)
7719 {
7720         struct bpf_prog *prog = call->prog;
7721
7722         if (prog) {
7723                 *(struct pt_regs **)raw_data = regs;
7724                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7725                         perf_swevent_put_recursion_context(rctx);
7726                         return;
7727                 }
7728         }
7729         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7730                       rctx, task);
7731 }
7732 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7733
7734 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7735                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7736                    struct task_struct *task)
7737 {
7738         struct perf_sample_data data;
7739         struct perf_event *event;
7740
7741         struct perf_raw_record raw = {
7742                 .frag = {
7743                         .size = entry_size,
7744                         .data = record,
7745                 },
7746         };
7747
7748         perf_sample_data_init(&data, 0, 0);
7749         data.raw = &raw;
7750
7751         perf_trace_buf_update(record, event_type);
7752
7753         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7754                 if (perf_tp_event_match(event, &data, regs))
7755                         perf_swevent_event(event, count, &data, regs);
7756         }
7757
7758         /*
7759          * If we got specified a target task, also iterate its context and
7760          * deliver this event there too.
7761          */
7762         if (task && task != current) {
7763                 struct perf_event_context *ctx;
7764                 struct trace_entry *entry = record;
7765
7766                 rcu_read_lock();
7767                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7768                 if (!ctx)
7769                         goto unlock;
7770
7771                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7772                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7773                                 continue;
7774                         if (event->attr.config != entry->type)
7775                                 continue;
7776                         if (perf_tp_event_match(event, &data, regs))
7777                                 perf_swevent_event(event, count, &data, regs);
7778                 }
7779 unlock:
7780                 rcu_read_unlock();
7781         }
7782
7783         perf_swevent_put_recursion_context(rctx);
7784 }
7785 EXPORT_SYMBOL_GPL(perf_tp_event);
7786
7787 static void tp_perf_event_destroy(struct perf_event *event)
7788 {
7789         perf_trace_destroy(event);
7790 }
7791
7792 static int perf_tp_event_init(struct perf_event *event)
7793 {
7794         int err;
7795
7796         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7797                 return -ENOENT;
7798
7799         /*
7800          * no branch sampling for tracepoint events
7801          */
7802         if (has_branch_stack(event))
7803                 return -EOPNOTSUPP;
7804
7805         err = perf_trace_init(event);
7806         if (err)
7807                 return err;
7808
7809         event->destroy = tp_perf_event_destroy;
7810
7811         return 0;
7812 }
7813
7814 static struct pmu perf_tracepoint = {
7815         .task_ctx_nr    = perf_sw_context,
7816
7817         .event_init     = perf_tp_event_init,
7818         .add            = perf_trace_add,
7819         .del            = perf_trace_del,
7820         .start          = perf_swevent_start,
7821         .stop           = perf_swevent_stop,
7822         .read           = perf_swevent_read,
7823 };
7824
7825 static inline void perf_tp_register(void)
7826 {
7827         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7828 }
7829
7830 static void perf_event_free_filter(struct perf_event *event)
7831 {
7832         ftrace_profile_free_filter(event);
7833 }
7834
7835 #ifdef CONFIG_BPF_SYSCALL
7836 static void bpf_overflow_handler(struct perf_event *event,
7837                                  struct perf_sample_data *data,
7838                                  struct pt_regs *regs)
7839 {
7840         struct bpf_perf_event_data_kern ctx = {
7841                 .data = data,
7842                 .regs = regs,
7843         };
7844         int ret = 0;
7845
7846         preempt_disable();
7847         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7848                 goto out;
7849         rcu_read_lock();
7850         ret = BPF_PROG_RUN(event->prog, &ctx);
7851         rcu_read_unlock();
7852 out:
7853         __this_cpu_dec(bpf_prog_active);
7854         preempt_enable();
7855         if (!ret)
7856                 return;
7857
7858         event->orig_overflow_handler(event, data, regs);
7859 }
7860
7861 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7862 {
7863         struct bpf_prog *prog;
7864
7865         if (event->overflow_handler_context)
7866                 /* hw breakpoint or kernel counter */
7867                 return -EINVAL;
7868
7869         if (event->prog)
7870                 return -EEXIST;
7871
7872         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7873         if (IS_ERR(prog))
7874                 return PTR_ERR(prog);
7875
7876         event->prog = prog;
7877         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7878         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7879         return 0;
7880 }
7881
7882 static void perf_event_free_bpf_handler(struct perf_event *event)
7883 {
7884         struct bpf_prog *prog = event->prog;
7885
7886         if (!prog)
7887                 return;
7888
7889         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7890         event->prog = NULL;
7891         bpf_prog_put(prog);
7892 }
7893 #else
7894 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7895 {
7896         return -EOPNOTSUPP;
7897 }
7898 static void perf_event_free_bpf_handler(struct perf_event *event)
7899 {
7900 }
7901 #endif
7902
7903 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7904 {
7905         bool is_kprobe, is_tracepoint;
7906         struct bpf_prog *prog;
7907
7908         if (event->attr.type == PERF_TYPE_HARDWARE ||
7909             event->attr.type == PERF_TYPE_SOFTWARE)
7910                 return perf_event_set_bpf_handler(event, prog_fd);
7911
7912         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7913                 return -EINVAL;
7914
7915         if (event->tp_event->prog)
7916                 return -EEXIST;
7917
7918         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7919         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7920         if (!is_kprobe && !is_tracepoint)
7921                 /* bpf programs can only be attached to u/kprobe or tracepoint */
7922                 return -EINVAL;
7923
7924         prog = bpf_prog_get(prog_fd);
7925         if (IS_ERR(prog))
7926                 return PTR_ERR(prog);
7927
7928         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7929             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7930                 /* valid fd, but invalid bpf program type */
7931                 bpf_prog_put(prog);
7932                 return -EINVAL;
7933         }
7934
7935         if (is_tracepoint) {
7936                 int off = trace_event_get_offsets(event->tp_event);
7937
7938                 if (prog->aux->max_ctx_offset > off) {
7939                         bpf_prog_put(prog);
7940                         return -EACCES;
7941                 }
7942         }
7943         event->tp_event->prog = prog;
7944
7945         return 0;
7946 }
7947
7948 static void perf_event_free_bpf_prog(struct perf_event *event)
7949 {
7950         struct bpf_prog *prog;
7951
7952         perf_event_free_bpf_handler(event);
7953
7954         if (!event->tp_event)
7955                 return;
7956
7957         prog = event->tp_event->prog;
7958         if (prog) {
7959                 event->tp_event->prog = NULL;
7960                 bpf_prog_put(prog);
7961         }
7962 }
7963
7964 #else
7965
7966 static inline void perf_tp_register(void)
7967 {
7968 }
7969
7970 static void perf_event_free_filter(struct perf_event *event)
7971 {
7972 }
7973
7974 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7975 {
7976         return -ENOENT;
7977 }
7978
7979 static void perf_event_free_bpf_prog(struct perf_event *event)
7980 {
7981 }
7982 #endif /* CONFIG_EVENT_TRACING */
7983
7984 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7985 void perf_bp_event(struct perf_event *bp, void *data)
7986 {
7987         struct perf_sample_data sample;
7988         struct pt_regs *regs = data;
7989
7990         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7991
7992         if (!bp->hw.state && !perf_exclude_event(bp, regs))
7993                 perf_swevent_event(bp, 1, &sample, regs);
7994 }
7995 #endif
7996
7997 /*
7998  * Allocate a new address filter
7999  */
8000 static struct perf_addr_filter *
8001 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8002 {
8003         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8004         struct perf_addr_filter *filter;
8005
8006         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8007         if (!filter)
8008                 return NULL;
8009
8010         INIT_LIST_HEAD(&filter->entry);
8011         list_add_tail(&filter->entry, filters);
8012
8013         return filter;
8014 }
8015
8016 static void free_filters_list(struct list_head *filters)
8017 {
8018         struct perf_addr_filter *filter, *iter;
8019
8020         list_for_each_entry_safe(filter, iter, filters, entry) {
8021                 if (filter->inode)
8022                         iput(filter->inode);
8023                 list_del(&filter->entry);
8024                 kfree(filter);
8025         }
8026 }
8027
8028 /*
8029  * Free existing address filters and optionally install new ones
8030  */
8031 static void perf_addr_filters_splice(struct perf_event *event,
8032                                      struct list_head *head)
8033 {
8034         unsigned long flags;
8035         LIST_HEAD(list);
8036
8037         if (!has_addr_filter(event))
8038                 return;
8039
8040         /* don't bother with children, they don't have their own filters */
8041         if (event->parent)
8042                 return;
8043
8044         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8045
8046         list_splice_init(&event->addr_filters.list, &list);
8047         if (head)
8048                 list_splice(head, &event->addr_filters.list);
8049
8050         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8051
8052         free_filters_list(&list);
8053 }
8054
8055 /*
8056  * Scan through mm's vmas and see if one of them matches the
8057  * @filter; if so, adjust filter's address range.
8058  * Called with mm::mmap_sem down for reading.
8059  */
8060 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8061                                             struct mm_struct *mm)
8062 {
8063         struct vm_area_struct *vma;
8064
8065         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8066                 struct file *file = vma->vm_file;
8067                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8068                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8069
8070                 if (!file)
8071                         continue;
8072
8073                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8074                         continue;
8075
8076                 return vma->vm_start;
8077         }
8078
8079         return 0;
8080 }
8081
8082 /*
8083  * Update event's address range filters based on the
8084  * task's existing mappings, if any.
8085  */
8086 static void perf_event_addr_filters_apply(struct perf_event *event)
8087 {
8088         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8089         struct task_struct *task = READ_ONCE(event->ctx->task);
8090         struct perf_addr_filter *filter;
8091         struct mm_struct *mm = NULL;
8092         unsigned int count = 0;
8093         unsigned long flags;
8094
8095         /*
8096          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8097          * will stop on the parent's child_mutex that our caller is also holding
8098          */
8099         if (task == TASK_TOMBSTONE)
8100                 return;
8101
8102         if (!ifh->nr_file_filters)
8103                 return;
8104
8105         mm = get_task_mm(event->ctx->task);
8106         if (!mm)
8107                 goto restart;
8108
8109         down_read(&mm->mmap_sem);
8110
8111         raw_spin_lock_irqsave(&ifh->lock, flags);
8112         list_for_each_entry(filter, &ifh->list, entry) {
8113                 event->addr_filters_offs[count] = 0;
8114
8115                 /*
8116                  * Adjust base offset if the filter is associated to a binary
8117                  * that needs to be mapped:
8118                  */
8119                 if (filter->inode)
8120                         event->addr_filters_offs[count] =
8121                                 perf_addr_filter_apply(filter, mm);
8122
8123                 count++;
8124         }
8125
8126         event->addr_filters_gen++;
8127         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8128
8129         up_read(&mm->mmap_sem);
8130
8131         mmput(mm);
8132
8133 restart:
8134         perf_event_stop(event, 1);
8135 }
8136
8137 /*
8138  * Address range filtering: limiting the data to certain
8139  * instruction address ranges. Filters are ioctl()ed to us from
8140  * userspace as ascii strings.
8141  *
8142  * Filter string format:
8143  *
8144  * ACTION RANGE_SPEC
8145  * where ACTION is one of the
8146  *  * "filter": limit the trace to this region
8147  *  * "start": start tracing from this address
8148  *  * "stop": stop tracing at this address/region;
8149  * RANGE_SPEC is
8150  *  * for kernel addresses: <start address>[/<size>]
8151  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8152  *
8153  * if <size> is not specified, the range is treated as a single address.
8154  */
8155 enum {
8156         IF_ACT_NONE = -1,
8157         IF_ACT_FILTER,
8158         IF_ACT_START,
8159         IF_ACT_STOP,
8160         IF_SRC_FILE,
8161         IF_SRC_KERNEL,
8162         IF_SRC_FILEADDR,
8163         IF_SRC_KERNELADDR,
8164 };
8165
8166 enum {
8167         IF_STATE_ACTION = 0,
8168         IF_STATE_SOURCE,
8169         IF_STATE_END,
8170 };
8171
8172 static const match_table_t if_tokens = {
8173         { IF_ACT_FILTER,        "filter" },
8174         { IF_ACT_START,         "start" },
8175         { IF_ACT_STOP,          "stop" },
8176         { IF_SRC_FILE,          "%u/%u@%s" },
8177         { IF_SRC_KERNEL,        "%u/%u" },
8178         { IF_SRC_FILEADDR,      "%u@%s" },
8179         { IF_SRC_KERNELADDR,    "%u" },
8180         { IF_ACT_NONE,          NULL },
8181 };
8182
8183 /*
8184  * Address filter string parser
8185  */
8186 static int
8187 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8188                              struct list_head *filters)
8189 {
8190         struct perf_addr_filter *filter = NULL;
8191         char *start, *orig, *filename = NULL;
8192         struct path path;
8193         substring_t args[MAX_OPT_ARGS];
8194         int state = IF_STATE_ACTION, token;
8195         unsigned int kernel = 0;
8196         int ret = -EINVAL;
8197
8198         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8199         if (!fstr)
8200                 return -ENOMEM;
8201
8202         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8203                 ret = -EINVAL;
8204
8205                 if (!*start)
8206                         continue;
8207
8208                 /* filter definition begins */
8209                 if (state == IF_STATE_ACTION) {
8210                         filter = perf_addr_filter_new(event, filters);
8211                         if (!filter)
8212                                 goto fail;
8213                 }
8214
8215                 token = match_token(start, if_tokens, args);
8216                 switch (token) {
8217                 case IF_ACT_FILTER:
8218                 case IF_ACT_START:
8219                         filter->filter = 1;
8220
8221                 case IF_ACT_STOP:
8222                         if (state != IF_STATE_ACTION)
8223                                 goto fail;
8224
8225                         state = IF_STATE_SOURCE;
8226                         break;
8227
8228                 case IF_SRC_KERNELADDR:
8229                 case IF_SRC_KERNEL:
8230                         kernel = 1;
8231
8232                 case IF_SRC_FILEADDR:
8233                 case IF_SRC_FILE:
8234                         if (state != IF_STATE_SOURCE)
8235                                 goto fail;
8236
8237                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8238                                 filter->range = 1;
8239
8240                         *args[0].to = 0;
8241                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8242                         if (ret)
8243                                 goto fail;
8244
8245                         if (filter->range) {
8246                                 *args[1].to = 0;
8247                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8248                                 if (ret)
8249                                         goto fail;
8250                         }
8251
8252                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8253                                 int fpos = filter->range ? 2 : 1;
8254
8255                                 filename = match_strdup(&args[fpos]);
8256                                 if (!filename) {
8257                                         ret = -ENOMEM;
8258                                         goto fail;
8259                                 }
8260                         }
8261
8262                         state = IF_STATE_END;
8263                         break;
8264
8265                 default:
8266                         goto fail;
8267                 }
8268
8269                 /*
8270                  * Filter definition is fully parsed, validate and install it.
8271                  * Make sure that it doesn't contradict itself or the event's
8272                  * attribute.
8273                  */
8274                 if (state == IF_STATE_END) {
8275                         ret = -EINVAL;
8276                         if (kernel && event->attr.exclude_kernel)
8277                                 goto fail;
8278
8279                         if (!kernel) {
8280                                 if (!filename)
8281                                         goto fail;
8282
8283                                 /*
8284                                  * For now, we only support file-based filters
8285                                  * in per-task events; doing so for CPU-wide
8286                                  * events requires additional context switching
8287                                  * trickery, since same object code will be
8288                                  * mapped at different virtual addresses in
8289                                  * different processes.
8290                                  */
8291                                 ret = -EOPNOTSUPP;
8292                                 if (!event->ctx->task)
8293                                         goto fail_free_name;
8294
8295                                 /* look up the path and grab its inode */
8296                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8297                                 if (ret)
8298                                         goto fail_free_name;
8299
8300                                 filter->inode = igrab(d_inode(path.dentry));
8301                                 path_put(&path);
8302                                 kfree(filename);
8303                                 filename = NULL;
8304
8305                                 ret = -EINVAL;
8306                                 if (!filter->inode ||
8307                                     !S_ISREG(filter->inode->i_mode))
8308                                         /* free_filters_list() will iput() */
8309                                         goto fail;
8310
8311                                 event->addr_filters.nr_file_filters++;
8312                         }
8313
8314                         /* ready to consume more filters */
8315                         state = IF_STATE_ACTION;
8316                         filter = NULL;
8317                 }
8318         }
8319
8320         if (state != IF_STATE_ACTION)
8321                 goto fail;
8322
8323         kfree(orig);
8324
8325         return 0;
8326
8327 fail_free_name:
8328         kfree(filename);
8329 fail:
8330         free_filters_list(filters);
8331         kfree(orig);
8332
8333         return ret;
8334 }
8335
8336 static int
8337 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8338 {
8339         LIST_HEAD(filters);
8340         int ret;
8341
8342         /*
8343          * Since this is called in perf_ioctl() path, we're already holding
8344          * ctx::mutex.
8345          */
8346         lockdep_assert_held(&event->ctx->mutex);
8347
8348         if (WARN_ON_ONCE(event->parent))
8349                 return -EINVAL;
8350
8351         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8352         if (ret)
8353                 goto fail_clear_files;
8354
8355         ret = event->pmu->addr_filters_validate(&filters);
8356         if (ret)
8357                 goto fail_free_filters;
8358
8359         /* remove existing filters, if any */
8360         perf_addr_filters_splice(event, &filters);
8361
8362         /* install new filters */
8363         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8364
8365         return ret;
8366
8367 fail_free_filters:
8368         free_filters_list(&filters);
8369
8370 fail_clear_files:
8371         event->addr_filters.nr_file_filters = 0;
8372
8373         return ret;
8374 }
8375
8376 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8377 {
8378         char *filter_str;
8379         int ret = -EINVAL;
8380
8381         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8382             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8383             !has_addr_filter(event))
8384                 return -EINVAL;
8385
8386         filter_str = strndup_user(arg, PAGE_SIZE);
8387         if (IS_ERR(filter_str))
8388                 return PTR_ERR(filter_str);
8389
8390         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8391             event->attr.type == PERF_TYPE_TRACEPOINT)
8392                 ret = ftrace_profile_set_filter(event, event->attr.config,
8393                                                 filter_str);
8394         else if (has_addr_filter(event))
8395                 ret = perf_event_set_addr_filter(event, filter_str);
8396
8397         kfree(filter_str);
8398         return ret;
8399 }
8400
8401 /*
8402  * hrtimer based swevent callback
8403  */
8404
8405 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8406 {
8407         enum hrtimer_restart ret = HRTIMER_RESTART;
8408         struct perf_sample_data data;
8409         struct pt_regs *regs;
8410         struct perf_event *event;
8411         u64 period;
8412
8413         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8414
8415         if (event->state != PERF_EVENT_STATE_ACTIVE)
8416                 return HRTIMER_NORESTART;
8417
8418         event->pmu->read(event);
8419
8420         perf_sample_data_init(&data, 0, event->hw.last_period);
8421         regs = get_irq_regs();
8422
8423         if (regs && !perf_exclude_event(event, regs)) {
8424                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8425                         if (__perf_event_overflow(event, 1, &data, regs))
8426                                 ret = HRTIMER_NORESTART;
8427         }
8428
8429         period = max_t(u64, 10000, event->hw.sample_period);
8430         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8431
8432         return ret;
8433 }
8434
8435 static void perf_swevent_start_hrtimer(struct perf_event *event)
8436 {
8437         struct hw_perf_event *hwc = &event->hw;
8438         s64 period;
8439
8440         if (!is_sampling_event(event))
8441                 return;
8442
8443         period = local64_read(&hwc->period_left);
8444         if (period) {
8445                 if (period < 0)
8446                         period = 10000;
8447
8448                 local64_set(&hwc->period_left, 0);
8449         } else {
8450                 period = max_t(u64, 10000, hwc->sample_period);
8451         }
8452         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8453                       HRTIMER_MODE_REL_PINNED);
8454 }
8455
8456 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8457 {
8458         struct hw_perf_event *hwc = &event->hw;
8459
8460         if (is_sampling_event(event)) {
8461                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8462                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8463
8464                 hrtimer_cancel(&hwc->hrtimer);
8465         }
8466 }
8467
8468 static void perf_swevent_init_hrtimer(struct perf_event *event)
8469 {
8470         struct hw_perf_event *hwc = &event->hw;
8471
8472         if (!is_sampling_event(event))
8473                 return;
8474
8475         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8476         hwc->hrtimer.function = perf_swevent_hrtimer;
8477
8478         /*
8479          * Since hrtimers have a fixed rate, we can do a static freq->period
8480          * mapping and avoid the whole period adjust feedback stuff.
8481          */
8482         if (event->attr.freq) {
8483                 long freq = event->attr.sample_freq;
8484
8485                 event->attr.sample_period = NSEC_PER_SEC / freq;
8486                 hwc->sample_period = event->attr.sample_period;
8487                 local64_set(&hwc->period_left, hwc->sample_period);
8488                 hwc->last_period = hwc->sample_period;
8489                 event->attr.freq = 0;
8490         }
8491 }
8492
8493 /*
8494  * Software event: cpu wall time clock
8495  */
8496
8497 static void cpu_clock_event_update(struct perf_event *event)
8498 {
8499         s64 prev;
8500         u64 now;
8501
8502         now = local_clock();
8503         prev = local64_xchg(&event->hw.prev_count, now);
8504         local64_add(now - prev, &event->count);
8505 }
8506
8507 static void cpu_clock_event_start(struct perf_event *event, int flags)
8508 {
8509         local64_set(&event->hw.prev_count, local_clock());
8510         perf_swevent_start_hrtimer(event);
8511 }
8512
8513 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8514 {
8515         perf_swevent_cancel_hrtimer(event);
8516         cpu_clock_event_update(event);
8517 }
8518
8519 static int cpu_clock_event_add(struct perf_event *event, int flags)
8520 {
8521         if (flags & PERF_EF_START)
8522                 cpu_clock_event_start(event, flags);
8523         perf_event_update_userpage(event);
8524
8525         return 0;
8526 }
8527
8528 static void cpu_clock_event_del(struct perf_event *event, int flags)
8529 {
8530         cpu_clock_event_stop(event, flags);
8531 }
8532
8533 static void cpu_clock_event_read(struct perf_event *event)
8534 {
8535         cpu_clock_event_update(event);
8536 }
8537
8538 static int cpu_clock_event_init(struct perf_event *event)
8539 {
8540         if (event->attr.type != PERF_TYPE_SOFTWARE)
8541                 return -ENOENT;
8542
8543         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8544                 return -ENOENT;
8545
8546         /*
8547          * no branch sampling for software events
8548          */
8549         if (has_branch_stack(event))
8550                 return -EOPNOTSUPP;
8551
8552         perf_swevent_init_hrtimer(event);
8553
8554         return 0;
8555 }
8556
8557 static struct pmu perf_cpu_clock = {
8558         .task_ctx_nr    = perf_sw_context,
8559
8560         .capabilities   = PERF_PMU_CAP_NO_NMI,
8561
8562         .event_init     = cpu_clock_event_init,
8563         .add            = cpu_clock_event_add,
8564         .del            = cpu_clock_event_del,
8565         .start          = cpu_clock_event_start,
8566         .stop           = cpu_clock_event_stop,
8567         .read           = cpu_clock_event_read,
8568 };
8569
8570 /*
8571  * Software event: task time clock
8572  */
8573
8574 static void task_clock_event_update(struct perf_event *event, u64 now)
8575 {
8576         u64 prev;
8577         s64 delta;
8578
8579         prev = local64_xchg(&event->hw.prev_count, now);
8580         delta = now - prev;
8581         local64_add(delta, &event->count);
8582 }
8583
8584 static void task_clock_event_start(struct perf_event *event, int flags)
8585 {
8586         local64_set(&event->hw.prev_count, event->ctx->time);
8587         perf_swevent_start_hrtimer(event);
8588 }
8589
8590 static void task_clock_event_stop(struct perf_event *event, int flags)
8591 {
8592         perf_swevent_cancel_hrtimer(event);
8593         task_clock_event_update(event, event->ctx->time);
8594 }
8595
8596 static int task_clock_event_add(struct perf_event *event, int flags)
8597 {
8598         if (flags & PERF_EF_START)
8599                 task_clock_event_start(event, flags);
8600         perf_event_update_userpage(event);
8601
8602         return 0;
8603 }
8604
8605 static void task_clock_event_del(struct perf_event *event, int flags)
8606 {
8607         task_clock_event_stop(event, PERF_EF_UPDATE);
8608 }
8609
8610 static void task_clock_event_read(struct perf_event *event)
8611 {
8612         u64 now = perf_clock();
8613         u64 delta = now - event->ctx->timestamp;
8614         u64 time = event->ctx->time + delta;
8615
8616         task_clock_event_update(event, time);
8617 }
8618
8619 static int task_clock_event_init(struct perf_event *event)
8620 {
8621         if (event->attr.type != PERF_TYPE_SOFTWARE)
8622                 return -ENOENT;
8623
8624         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8625                 return -ENOENT;
8626
8627         /*
8628          * no branch sampling for software events
8629          */
8630         if (has_branch_stack(event))
8631                 return -EOPNOTSUPP;
8632
8633         perf_swevent_init_hrtimer(event);
8634
8635         return 0;
8636 }
8637
8638 static struct pmu perf_task_clock = {
8639         .task_ctx_nr    = perf_sw_context,
8640
8641         .capabilities   = PERF_PMU_CAP_NO_NMI,
8642
8643         .event_init     = task_clock_event_init,
8644         .add            = task_clock_event_add,
8645         .del            = task_clock_event_del,
8646         .start          = task_clock_event_start,
8647         .stop           = task_clock_event_stop,
8648         .read           = task_clock_event_read,
8649 };
8650
8651 static void perf_pmu_nop_void(struct pmu *pmu)
8652 {
8653 }
8654
8655 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8656 {
8657 }
8658
8659 static int perf_pmu_nop_int(struct pmu *pmu)
8660 {
8661         return 0;
8662 }
8663
8664 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8665
8666 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8667 {
8668         __this_cpu_write(nop_txn_flags, flags);
8669
8670         if (flags & ~PERF_PMU_TXN_ADD)
8671                 return;
8672
8673         perf_pmu_disable(pmu);
8674 }
8675
8676 static int perf_pmu_commit_txn(struct pmu *pmu)
8677 {
8678         unsigned int flags = __this_cpu_read(nop_txn_flags);
8679
8680         __this_cpu_write(nop_txn_flags, 0);
8681
8682         if (flags & ~PERF_PMU_TXN_ADD)
8683                 return 0;
8684
8685         perf_pmu_enable(pmu);
8686         return 0;
8687 }
8688
8689 static void perf_pmu_cancel_txn(struct pmu *pmu)
8690 {
8691         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8692
8693         __this_cpu_write(nop_txn_flags, 0);
8694
8695         if (flags & ~PERF_PMU_TXN_ADD)
8696                 return;
8697
8698         perf_pmu_enable(pmu);
8699 }
8700
8701 static int perf_event_idx_default(struct perf_event *event)
8702 {
8703         return 0;
8704 }
8705
8706 /*
8707  * Ensures all contexts with the same task_ctx_nr have the same
8708  * pmu_cpu_context too.
8709  */
8710 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8711 {
8712         struct pmu *pmu;
8713
8714         if (ctxn < 0)
8715                 return NULL;
8716
8717         list_for_each_entry(pmu, &pmus, entry) {
8718                 if (pmu->task_ctx_nr == ctxn)
8719                         return pmu->pmu_cpu_context;
8720         }
8721
8722         return NULL;
8723 }
8724
8725 static void free_pmu_context(struct pmu *pmu)
8726 {
8727         mutex_lock(&pmus_lock);
8728         free_percpu(pmu->pmu_cpu_context);
8729         mutex_unlock(&pmus_lock);
8730 }
8731
8732 /*
8733  * Let userspace know that this PMU supports address range filtering:
8734  */
8735 static ssize_t nr_addr_filters_show(struct device *dev,
8736                                     struct device_attribute *attr,
8737                                     char *page)
8738 {
8739         struct pmu *pmu = dev_get_drvdata(dev);
8740
8741         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8742 }
8743 DEVICE_ATTR_RO(nr_addr_filters);
8744
8745 static struct idr pmu_idr;
8746
8747 static ssize_t
8748 type_show(struct device *dev, struct device_attribute *attr, char *page)
8749 {
8750         struct pmu *pmu = dev_get_drvdata(dev);
8751
8752         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8753 }
8754 static DEVICE_ATTR_RO(type);
8755
8756 static ssize_t
8757 perf_event_mux_interval_ms_show(struct device *dev,
8758                                 struct device_attribute *attr,
8759                                 char *page)
8760 {
8761         struct pmu *pmu = dev_get_drvdata(dev);
8762
8763         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8764 }
8765
8766 static DEFINE_MUTEX(mux_interval_mutex);
8767
8768 static ssize_t
8769 perf_event_mux_interval_ms_store(struct device *dev,
8770                                  struct device_attribute *attr,
8771                                  const char *buf, size_t count)
8772 {
8773         struct pmu *pmu = dev_get_drvdata(dev);
8774         int timer, cpu, ret;
8775
8776         ret = kstrtoint(buf, 0, &timer);
8777         if (ret)
8778                 return ret;
8779
8780         if (timer < 1)
8781                 return -EINVAL;
8782
8783         /* same value, noting to do */
8784         if (timer == pmu->hrtimer_interval_ms)
8785                 return count;
8786
8787         mutex_lock(&mux_interval_mutex);
8788         pmu->hrtimer_interval_ms = timer;
8789
8790         /* update all cpuctx for this PMU */
8791         get_online_cpus();
8792         for_each_online_cpu(cpu) {
8793                 struct perf_cpu_context *cpuctx;
8794                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8795                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8796
8797                 cpu_function_call(cpu,
8798                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8799         }
8800         put_online_cpus();
8801         mutex_unlock(&mux_interval_mutex);
8802
8803         return count;
8804 }
8805 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8806
8807 static struct attribute *pmu_dev_attrs[] = {
8808         &dev_attr_type.attr,
8809         &dev_attr_perf_event_mux_interval_ms.attr,
8810         NULL,
8811 };
8812 ATTRIBUTE_GROUPS(pmu_dev);
8813
8814 static int pmu_bus_running;
8815 static struct bus_type pmu_bus = {
8816         .name           = "event_source",
8817         .dev_groups     = pmu_dev_groups,
8818 };
8819
8820 static void pmu_dev_release(struct device *dev)
8821 {
8822         kfree(dev);
8823 }
8824
8825 static int pmu_dev_alloc(struct pmu *pmu)
8826 {
8827         int ret = -ENOMEM;
8828
8829         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8830         if (!pmu->dev)
8831                 goto out;
8832
8833         pmu->dev->groups = pmu->attr_groups;
8834         device_initialize(pmu->dev);
8835         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8836         if (ret)
8837                 goto free_dev;
8838
8839         dev_set_drvdata(pmu->dev, pmu);
8840         pmu->dev->bus = &pmu_bus;
8841         pmu->dev->release = pmu_dev_release;
8842         ret = device_add(pmu->dev);
8843         if (ret)
8844                 goto free_dev;
8845
8846         /* For PMUs with address filters, throw in an extra attribute: */
8847         if (pmu->nr_addr_filters)
8848                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8849
8850         if (ret)
8851                 goto del_dev;
8852
8853 out:
8854         return ret;
8855
8856 del_dev:
8857         device_del(pmu->dev);
8858
8859 free_dev:
8860         put_device(pmu->dev);
8861         goto out;
8862 }
8863
8864 static struct lock_class_key cpuctx_mutex;
8865 static struct lock_class_key cpuctx_lock;
8866
8867 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8868 {
8869         int cpu, ret;
8870
8871         mutex_lock(&pmus_lock);
8872         ret = -ENOMEM;
8873         pmu->pmu_disable_count = alloc_percpu(int);
8874         if (!pmu->pmu_disable_count)
8875                 goto unlock;
8876
8877         pmu->type = -1;
8878         if (!name)
8879                 goto skip_type;
8880         pmu->name = name;
8881
8882         if (type < 0) {
8883                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8884                 if (type < 0) {
8885                         ret = type;
8886                         goto free_pdc;
8887                 }
8888         }
8889         pmu->type = type;
8890
8891         if (pmu_bus_running) {
8892                 ret = pmu_dev_alloc(pmu);
8893                 if (ret)
8894                         goto free_idr;
8895         }
8896
8897 skip_type:
8898         if (pmu->task_ctx_nr == perf_hw_context) {
8899                 static int hw_context_taken = 0;
8900
8901                 /*
8902                  * Other than systems with heterogeneous CPUs, it never makes
8903                  * sense for two PMUs to share perf_hw_context. PMUs which are
8904                  * uncore must use perf_invalid_context.
8905                  */
8906                 if (WARN_ON_ONCE(hw_context_taken &&
8907                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8908                         pmu->task_ctx_nr = perf_invalid_context;
8909
8910                 hw_context_taken = 1;
8911         }
8912
8913         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8914         if (pmu->pmu_cpu_context)
8915                 goto got_cpu_context;
8916
8917         ret = -ENOMEM;
8918         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8919         if (!pmu->pmu_cpu_context)
8920                 goto free_dev;
8921
8922         for_each_possible_cpu(cpu) {
8923                 struct perf_cpu_context *cpuctx;
8924
8925                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8926                 __perf_event_init_context(&cpuctx->ctx);
8927                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8928                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8929                 cpuctx->ctx.pmu = pmu;
8930
8931                 __perf_mux_hrtimer_init(cpuctx, cpu);
8932         }
8933
8934 got_cpu_context:
8935         if (!pmu->start_txn) {
8936                 if (pmu->pmu_enable) {
8937                         /*
8938                          * If we have pmu_enable/pmu_disable calls, install
8939                          * transaction stubs that use that to try and batch
8940                          * hardware accesses.
8941                          */
8942                         pmu->start_txn  = perf_pmu_start_txn;
8943                         pmu->commit_txn = perf_pmu_commit_txn;
8944                         pmu->cancel_txn = perf_pmu_cancel_txn;
8945                 } else {
8946                         pmu->start_txn  = perf_pmu_nop_txn;
8947                         pmu->commit_txn = perf_pmu_nop_int;
8948                         pmu->cancel_txn = perf_pmu_nop_void;
8949                 }
8950         }
8951
8952         if (!pmu->pmu_enable) {
8953                 pmu->pmu_enable  = perf_pmu_nop_void;
8954                 pmu->pmu_disable = perf_pmu_nop_void;
8955         }
8956
8957         if (!pmu->event_idx)
8958                 pmu->event_idx = perf_event_idx_default;
8959
8960         list_add_rcu(&pmu->entry, &pmus);
8961         atomic_set(&pmu->exclusive_cnt, 0);
8962         ret = 0;
8963 unlock:
8964         mutex_unlock(&pmus_lock);
8965
8966         return ret;
8967
8968 free_dev:
8969         device_del(pmu->dev);
8970         put_device(pmu->dev);
8971
8972 free_idr:
8973         if (pmu->type >= PERF_TYPE_MAX)
8974                 idr_remove(&pmu_idr, pmu->type);
8975
8976 free_pdc:
8977         free_percpu(pmu->pmu_disable_count);
8978         goto unlock;
8979 }
8980 EXPORT_SYMBOL_GPL(perf_pmu_register);
8981
8982 void perf_pmu_unregister(struct pmu *pmu)
8983 {
8984         int remove_device;
8985
8986         mutex_lock(&pmus_lock);
8987         remove_device = pmu_bus_running;
8988         list_del_rcu(&pmu->entry);
8989         mutex_unlock(&pmus_lock);
8990
8991         /*
8992          * We dereference the pmu list under both SRCU and regular RCU, so
8993          * synchronize against both of those.
8994          */
8995         synchronize_srcu(&pmus_srcu);
8996         synchronize_rcu();
8997
8998         free_percpu(pmu->pmu_disable_count);
8999         if (pmu->type >= PERF_TYPE_MAX)
9000                 idr_remove(&pmu_idr, pmu->type);
9001         if (remove_device) {
9002                 if (pmu->nr_addr_filters)
9003                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9004                 device_del(pmu->dev);
9005                 put_device(pmu->dev);
9006         }
9007         free_pmu_context(pmu);
9008 }
9009 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9010
9011 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9012 {
9013         struct perf_event_context *ctx = NULL;
9014         int ret;
9015
9016         if (!try_module_get(pmu->module))
9017                 return -ENODEV;
9018
9019         if (event->group_leader != event) {
9020                 /*
9021                  * This ctx->mutex can nest when we're called through
9022                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9023                  */
9024                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9025                                                  SINGLE_DEPTH_NESTING);
9026                 BUG_ON(!ctx);
9027         }
9028
9029         event->pmu = pmu;
9030         ret = pmu->event_init(event);
9031
9032         if (ctx)
9033                 perf_event_ctx_unlock(event->group_leader, ctx);
9034
9035         if (ret)
9036                 module_put(pmu->module);
9037
9038         return ret;
9039 }
9040
9041 static struct pmu *perf_init_event(struct perf_event *event)
9042 {
9043         struct pmu *pmu = NULL;
9044         int idx;
9045         int ret;
9046
9047         idx = srcu_read_lock(&pmus_srcu);
9048
9049         /* Try parent's PMU first: */
9050         if (event->parent && event->parent->pmu) {
9051                 pmu = event->parent->pmu;
9052                 ret = perf_try_init_event(pmu, event);
9053                 if (!ret)
9054                         goto unlock;
9055         }
9056
9057         rcu_read_lock();
9058         pmu = idr_find(&pmu_idr, event->attr.type);
9059         rcu_read_unlock();
9060         if (pmu) {
9061                 ret = perf_try_init_event(pmu, event);
9062                 if (ret)
9063                         pmu = ERR_PTR(ret);
9064                 goto unlock;
9065         }
9066
9067         list_for_each_entry_rcu(pmu, &pmus, entry) {
9068                 ret = perf_try_init_event(pmu, event);
9069                 if (!ret)
9070                         goto unlock;
9071
9072                 if (ret != -ENOENT) {
9073                         pmu = ERR_PTR(ret);
9074                         goto unlock;
9075                 }
9076         }
9077         pmu = ERR_PTR(-ENOENT);
9078 unlock:
9079         srcu_read_unlock(&pmus_srcu, idx);
9080
9081         return pmu;
9082 }
9083
9084 static void attach_sb_event(struct perf_event *event)
9085 {
9086         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9087
9088         raw_spin_lock(&pel->lock);
9089         list_add_rcu(&event->sb_list, &pel->list);
9090         raw_spin_unlock(&pel->lock);
9091 }
9092
9093 /*
9094  * We keep a list of all !task (and therefore per-cpu) events
9095  * that need to receive side-band records.
9096  *
9097  * This avoids having to scan all the various PMU per-cpu contexts
9098  * looking for them.
9099  */
9100 static void account_pmu_sb_event(struct perf_event *event)
9101 {
9102         if (is_sb_event(event))
9103                 attach_sb_event(event);
9104 }
9105
9106 static void account_event_cpu(struct perf_event *event, int cpu)
9107 {
9108         if (event->parent)
9109                 return;
9110
9111         if (is_cgroup_event(event))
9112                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9113 }
9114
9115 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9116 static void account_freq_event_nohz(void)
9117 {
9118 #ifdef CONFIG_NO_HZ_FULL
9119         /* Lock so we don't race with concurrent unaccount */
9120         spin_lock(&nr_freq_lock);
9121         if (atomic_inc_return(&nr_freq_events) == 1)
9122                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9123         spin_unlock(&nr_freq_lock);
9124 #endif
9125 }
9126
9127 static void account_freq_event(void)
9128 {
9129         if (tick_nohz_full_enabled())
9130                 account_freq_event_nohz();
9131         else
9132                 atomic_inc(&nr_freq_events);
9133 }
9134
9135
9136 static void account_event(struct perf_event *event)
9137 {
9138         bool inc = false;
9139
9140         if (event->parent)
9141                 return;
9142
9143         if (event->attach_state & PERF_ATTACH_TASK)
9144                 inc = true;
9145         if (event->attr.mmap || event->attr.mmap_data)
9146                 atomic_inc(&nr_mmap_events);
9147         if (event->attr.comm)
9148                 atomic_inc(&nr_comm_events);
9149         if (event->attr.task)
9150                 atomic_inc(&nr_task_events);
9151         if (event->attr.freq)
9152                 account_freq_event();
9153         if (event->attr.context_switch) {
9154                 atomic_inc(&nr_switch_events);
9155                 inc = true;
9156         }
9157         if (has_branch_stack(event))
9158                 inc = true;
9159         if (is_cgroup_event(event))
9160                 inc = true;
9161
9162         if (inc) {
9163                 if (atomic_inc_not_zero(&perf_sched_count))
9164                         goto enabled;
9165
9166                 mutex_lock(&perf_sched_mutex);
9167                 if (!atomic_read(&perf_sched_count)) {
9168                         static_branch_enable(&perf_sched_events);
9169                         /*
9170                          * Guarantee that all CPUs observe they key change and
9171                          * call the perf scheduling hooks before proceeding to
9172                          * install events that need them.
9173                          */
9174                         synchronize_sched();
9175                 }
9176                 /*
9177                  * Now that we have waited for the sync_sched(), allow further
9178                  * increments to by-pass the mutex.
9179                  */
9180                 atomic_inc(&perf_sched_count);
9181                 mutex_unlock(&perf_sched_mutex);
9182         }
9183 enabled:
9184
9185         account_event_cpu(event, event->cpu);
9186
9187         account_pmu_sb_event(event);
9188 }
9189
9190 /*
9191  * Allocate and initialize a event structure
9192  */
9193 static struct perf_event *
9194 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9195                  struct task_struct *task,
9196                  struct perf_event *group_leader,
9197                  struct perf_event *parent_event,
9198                  perf_overflow_handler_t overflow_handler,
9199                  void *context, int cgroup_fd)
9200 {
9201         struct pmu *pmu;
9202         struct perf_event *event;
9203         struct hw_perf_event *hwc;
9204         long err = -EINVAL;
9205
9206         if ((unsigned)cpu >= nr_cpu_ids) {
9207                 if (!task || cpu != -1)
9208                         return ERR_PTR(-EINVAL);
9209         }
9210
9211         event = kzalloc(sizeof(*event), GFP_KERNEL);
9212         if (!event)
9213                 return ERR_PTR(-ENOMEM);
9214
9215         /*
9216          * Single events are their own group leaders, with an
9217          * empty sibling list:
9218          */
9219         if (!group_leader)
9220                 group_leader = event;
9221
9222         mutex_init(&event->child_mutex);
9223         INIT_LIST_HEAD(&event->child_list);
9224
9225         INIT_LIST_HEAD(&event->group_entry);
9226         INIT_LIST_HEAD(&event->event_entry);
9227         INIT_LIST_HEAD(&event->sibling_list);
9228         INIT_LIST_HEAD(&event->rb_entry);
9229         INIT_LIST_HEAD(&event->active_entry);
9230         INIT_LIST_HEAD(&event->addr_filters.list);
9231         INIT_HLIST_NODE(&event->hlist_entry);
9232
9233
9234         init_waitqueue_head(&event->waitq);
9235         init_irq_work(&event->pending, perf_pending_event);
9236
9237         mutex_init(&event->mmap_mutex);
9238         raw_spin_lock_init(&event->addr_filters.lock);
9239
9240         atomic_long_set(&event->refcount, 1);
9241         event->cpu              = cpu;
9242         event->attr             = *attr;
9243         event->group_leader     = group_leader;
9244         event->pmu              = NULL;
9245         event->oncpu            = -1;
9246
9247         event->parent           = parent_event;
9248
9249         event->ns               = get_pid_ns(task_active_pid_ns(current));
9250         event->id               = atomic64_inc_return(&perf_event_id);
9251
9252         event->state            = PERF_EVENT_STATE_INACTIVE;
9253
9254         if (task) {
9255                 event->attach_state = PERF_ATTACH_TASK;
9256                 /*
9257                  * XXX pmu::event_init needs to know what task to account to
9258                  * and we cannot use the ctx information because we need the
9259                  * pmu before we get a ctx.
9260                  */
9261                 event->hw.target = task;
9262         }
9263
9264         event->clock = &local_clock;
9265         if (parent_event)
9266                 event->clock = parent_event->clock;
9267
9268         if (!overflow_handler && parent_event) {
9269                 overflow_handler = parent_event->overflow_handler;
9270                 context = parent_event->overflow_handler_context;
9271 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9272                 if (overflow_handler == bpf_overflow_handler) {
9273                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9274
9275                         if (IS_ERR(prog)) {
9276                                 err = PTR_ERR(prog);
9277                                 goto err_ns;
9278                         }
9279                         event->prog = prog;
9280                         event->orig_overflow_handler =
9281                                 parent_event->orig_overflow_handler;
9282                 }
9283 #endif
9284         }
9285
9286         if (overflow_handler) {
9287                 event->overflow_handler = overflow_handler;
9288                 event->overflow_handler_context = context;
9289         } else if (is_write_backward(event)){
9290                 event->overflow_handler = perf_event_output_backward;
9291                 event->overflow_handler_context = NULL;
9292         } else {
9293                 event->overflow_handler = perf_event_output_forward;
9294                 event->overflow_handler_context = NULL;
9295         }
9296
9297         perf_event__state_init(event);
9298
9299         pmu = NULL;
9300
9301         hwc = &event->hw;
9302         hwc->sample_period = attr->sample_period;
9303         if (attr->freq && attr->sample_freq)
9304                 hwc->sample_period = 1;
9305         hwc->last_period = hwc->sample_period;
9306
9307         local64_set(&hwc->period_left, hwc->sample_period);
9308
9309         /*
9310          * we currently do not support PERF_FORMAT_GROUP on inherited events
9311          */
9312         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9313                 goto err_ns;
9314
9315         if (!has_branch_stack(event))
9316                 event->attr.branch_sample_type = 0;
9317
9318         if (cgroup_fd != -1) {
9319                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9320                 if (err)
9321                         goto err_ns;
9322         }
9323
9324         pmu = perf_init_event(event);
9325         if (!pmu)
9326                 goto err_ns;
9327         else if (IS_ERR(pmu)) {
9328                 err = PTR_ERR(pmu);
9329                 goto err_ns;
9330         }
9331
9332         err = exclusive_event_init(event);
9333         if (err)
9334                 goto err_pmu;
9335
9336         if (has_addr_filter(event)) {
9337                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9338                                                    sizeof(unsigned long),
9339                                                    GFP_KERNEL);
9340                 if (!event->addr_filters_offs)
9341                         goto err_per_task;
9342
9343                 /* force hw sync on the address filters */
9344                 event->addr_filters_gen = 1;
9345         }
9346
9347         if (!event->parent) {
9348                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9349                         err = get_callchain_buffers(attr->sample_max_stack);
9350                         if (err)
9351                                 goto err_addr_filters;
9352                 }
9353         }
9354
9355         /* symmetric to unaccount_event() in _free_event() */
9356         account_event(event);
9357
9358         return event;
9359
9360 err_addr_filters:
9361         kfree(event->addr_filters_offs);
9362
9363 err_per_task:
9364         exclusive_event_destroy(event);
9365
9366 err_pmu:
9367         if (event->destroy)
9368                 event->destroy(event);
9369         module_put(pmu->module);
9370 err_ns:
9371         if (is_cgroup_event(event))
9372                 perf_detach_cgroup(event);
9373         if (event->ns)
9374                 put_pid_ns(event->ns);
9375         kfree(event);
9376
9377         return ERR_PTR(err);
9378 }
9379
9380 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9381                           struct perf_event_attr *attr)
9382 {
9383         u32 size;
9384         int ret;
9385
9386         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9387                 return -EFAULT;
9388
9389         /*
9390          * zero the full structure, so that a short copy will be nice.
9391          */
9392         memset(attr, 0, sizeof(*attr));
9393
9394         ret = get_user(size, &uattr->size);
9395         if (ret)
9396                 return ret;
9397
9398         if (size > PAGE_SIZE)   /* silly large */
9399                 goto err_size;
9400
9401         if (!size)              /* abi compat */
9402                 size = PERF_ATTR_SIZE_VER0;
9403
9404         if (size < PERF_ATTR_SIZE_VER0)
9405                 goto err_size;
9406
9407         /*
9408          * If we're handed a bigger struct than we know of,
9409          * ensure all the unknown bits are 0 - i.e. new
9410          * user-space does not rely on any kernel feature
9411          * extensions we dont know about yet.
9412          */
9413         if (size > sizeof(*attr)) {
9414                 unsigned char __user *addr;
9415                 unsigned char __user *end;
9416                 unsigned char val;
9417
9418                 addr = (void __user *)uattr + sizeof(*attr);
9419                 end  = (void __user *)uattr + size;
9420
9421                 for (; addr < end; addr++) {
9422                         ret = get_user(val, addr);
9423                         if (ret)
9424                                 return ret;
9425                         if (val)
9426                                 goto err_size;
9427                 }
9428                 size = sizeof(*attr);
9429         }
9430
9431         ret = copy_from_user(attr, uattr, size);
9432         if (ret)
9433                 return -EFAULT;
9434
9435         if (attr->__reserved_1)
9436                 return -EINVAL;
9437
9438         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9439                 return -EINVAL;
9440
9441         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9442                 return -EINVAL;
9443
9444         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9445                 u64 mask = attr->branch_sample_type;
9446
9447                 /* only using defined bits */
9448                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9449                         return -EINVAL;
9450
9451                 /* at least one branch bit must be set */
9452                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9453                         return -EINVAL;
9454
9455                 /* propagate priv level, when not set for branch */
9456                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9457
9458                         /* exclude_kernel checked on syscall entry */
9459                         if (!attr->exclude_kernel)
9460                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9461
9462                         if (!attr->exclude_user)
9463                                 mask |= PERF_SAMPLE_BRANCH_USER;
9464
9465                         if (!attr->exclude_hv)
9466                                 mask |= PERF_SAMPLE_BRANCH_HV;
9467                         /*
9468                          * adjust user setting (for HW filter setup)
9469                          */
9470                         attr->branch_sample_type = mask;
9471                 }
9472                 /* privileged levels capture (kernel, hv): check permissions */
9473                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9474                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9475                         return -EACCES;
9476         }
9477
9478         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9479                 ret = perf_reg_validate(attr->sample_regs_user);
9480                 if (ret)
9481                         return ret;
9482         }
9483
9484         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9485                 if (!arch_perf_have_user_stack_dump())
9486                         return -ENOSYS;
9487
9488                 /*
9489                  * We have __u32 type for the size, but so far
9490                  * we can only use __u16 as maximum due to the
9491                  * __u16 sample size limit.
9492                  */
9493                 if (attr->sample_stack_user >= USHRT_MAX)
9494                         ret = -EINVAL;
9495                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9496                         ret = -EINVAL;
9497         }
9498
9499         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9500                 ret = perf_reg_validate(attr->sample_regs_intr);
9501 out:
9502         return ret;
9503
9504 err_size:
9505         put_user(sizeof(*attr), &uattr->size);
9506         ret = -E2BIG;
9507         goto out;
9508 }
9509
9510 static int
9511 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9512 {
9513         struct ring_buffer *rb = NULL;
9514         int ret = -EINVAL;
9515
9516         if (!output_event)
9517                 goto set;
9518
9519         /* don't allow circular references */
9520         if (event == output_event)
9521                 goto out;
9522
9523         /*
9524          * Don't allow cross-cpu buffers
9525          */
9526         if (output_event->cpu != event->cpu)
9527                 goto out;
9528
9529         /*
9530          * If its not a per-cpu rb, it must be the same task.
9531          */
9532         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9533                 goto out;
9534
9535         /*
9536          * Mixing clocks in the same buffer is trouble you don't need.
9537          */
9538         if (output_event->clock != event->clock)
9539                 goto out;
9540
9541         /*
9542          * Either writing ring buffer from beginning or from end.
9543          * Mixing is not allowed.
9544          */
9545         if (is_write_backward(output_event) != is_write_backward(event))
9546                 goto out;
9547
9548         /*
9549          * If both events generate aux data, they must be on the same PMU
9550          */
9551         if (has_aux(event) && has_aux(output_event) &&
9552             event->pmu != output_event->pmu)
9553                 goto out;
9554
9555 set:
9556         mutex_lock(&event->mmap_mutex);
9557         /* Can't redirect output if we've got an active mmap() */
9558         if (atomic_read(&event->mmap_count))
9559                 goto unlock;
9560
9561         if (output_event) {
9562                 /* get the rb we want to redirect to */
9563                 rb = ring_buffer_get(output_event);
9564                 if (!rb)
9565                         goto unlock;
9566         }
9567
9568         ring_buffer_attach(event, rb);
9569
9570         ret = 0;
9571 unlock:
9572         mutex_unlock(&event->mmap_mutex);
9573
9574 out:
9575         return ret;
9576 }
9577
9578 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9579 {
9580         if (b < a)
9581                 swap(a, b);
9582
9583         mutex_lock(a);
9584         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9585 }
9586
9587 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9588 {
9589         bool nmi_safe = false;
9590
9591         switch (clk_id) {
9592         case CLOCK_MONOTONIC:
9593                 event->clock = &ktime_get_mono_fast_ns;
9594                 nmi_safe = true;
9595                 break;
9596
9597         case CLOCK_MONOTONIC_RAW:
9598                 event->clock = &ktime_get_raw_fast_ns;
9599                 nmi_safe = true;
9600                 break;
9601
9602         case CLOCK_REALTIME:
9603                 event->clock = &ktime_get_real_ns;
9604                 break;
9605
9606         case CLOCK_BOOTTIME:
9607                 event->clock = &ktime_get_boot_ns;
9608                 break;
9609
9610         case CLOCK_TAI:
9611                 event->clock = &ktime_get_tai_ns;
9612                 break;
9613
9614         default:
9615                 return -EINVAL;
9616         }
9617
9618         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9619                 return -EINVAL;
9620
9621         return 0;
9622 }
9623
9624 /*
9625  * Variation on perf_event_ctx_lock_nested(), except we take two context
9626  * mutexes.
9627  */
9628 static struct perf_event_context *
9629 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9630                              struct perf_event_context *ctx)
9631 {
9632         struct perf_event_context *gctx;
9633
9634 again:
9635         rcu_read_lock();
9636         gctx = READ_ONCE(group_leader->ctx);
9637         if (!atomic_inc_not_zero(&gctx->refcount)) {
9638                 rcu_read_unlock();
9639                 goto again;
9640         }
9641         rcu_read_unlock();
9642
9643         mutex_lock_double(&gctx->mutex, &ctx->mutex);
9644
9645         if (group_leader->ctx != gctx) {
9646                 mutex_unlock(&ctx->mutex);
9647                 mutex_unlock(&gctx->mutex);
9648                 put_ctx(gctx);
9649                 goto again;
9650         }
9651
9652         return gctx;
9653 }
9654
9655 /**
9656  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9657  *
9658  * @attr_uptr:  event_id type attributes for monitoring/sampling
9659  * @pid:                target pid
9660  * @cpu:                target cpu
9661  * @group_fd:           group leader event fd
9662  */
9663 SYSCALL_DEFINE5(perf_event_open,
9664                 struct perf_event_attr __user *, attr_uptr,
9665                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9666 {
9667         struct perf_event *group_leader = NULL, *output_event = NULL;
9668         struct perf_event *event, *sibling;
9669         struct perf_event_attr attr;
9670         struct perf_event_context *ctx, *uninitialized_var(gctx);
9671         struct file *event_file = NULL;
9672         struct fd group = {NULL, 0};
9673         struct task_struct *task = NULL;
9674         struct pmu *pmu;
9675         int event_fd;
9676         int move_group = 0;
9677         int err;
9678         int f_flags = O_RDWR;
9679         int cgroup_fd = -1;
9680
9681         /* for future expandability... */
9682         if (flags & ~PERF_FLAG_ALL)
9683                 return -EINVAL;
9684
9685         err = perf_copy_attr(attr_uptr, &attr);
9686         if (err)
9687                 return err;
9688
9689         if (!attr.exclude_kernel) {
9690                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9691                         return -EACCES;
9692         }
9693
9694         if (attr.freq) {
9695                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9696                         return -EINVAL;
9697         } else {
9698                 if (attr.sample_period & (1ULL << 63))
9699                         return -EINVAL;
9700         }
9701
9702         if (!attr.sample_max_stack)
9703                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9704
9705         /*
9706          * In cgroup mode, the pid argument is used to pass the fd
9707          * opened to the cgroup directory in cgroupfs. The cpu argument
9708          * designates the cpu on which to monitor threads from that
9709          * cgroup.
9710          */
9711         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9712                 return -EINVAL;
9713
9714         if (flags & PERF_FLAG_FD_CLOEXEC)
9715                 f_flags |= O_CLOEXEC;
9716
9717         event_fd = get_unused_fd_flags(f_flags);
9718         if (event_fd < 0)
9719                 return event_fd;
9720
9721         if (group_fd != -1) {
9722                 err = perf_fget_light(group_fd, &group);
9723                 if (err)
9724                         goto err_fd;
9725                 group_leader = group.file->private_data;
9726                 if (flags & PERF_FLAG_FD_OUTPUT)
9727                         output_event = group_leader;
9728                 if (flags & PERF_FLAG_FD_NO_GROUP)
9729                         group_leader = NULL;
9730         }
9731
9732         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9733                 task = find_lively_task_by_vpid(pid);
9734                 if (IS_ERR(task)) {
9735                         err = PTR_ERR(task);
9736                         goto err_group_fd;
9737                 }
9738         }
9739
9740         if (task && group_leader &&
9741             group_leader->attr.inherit != attr.inherit) {
9742                 err = -EINVAL;
9743                 goto err_task;
9744         }
9745
9746         get_online_cpus();
9747
9748         if (task) {
9749                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9750                 if (err)
9751                         goto err_cpus;
9752
9753                 /*
9754                  * Reuse ptrace permission checks for now.
9755                  *
9756                  * We must hold cred_guard_mutex across this and any potential
9757                  * perf_install_in_context() call for this new event to
9758                  * serialize against exec() altering our credentials (and the
9759                  * perf_event_exit_task() that could imply).
9760                  */
9761                 err = -EACCES;
9762                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9763                         goto err_cred;
9764         }
9765
9766         if (flags & PERF_FLAG_PID_CGROUP)
9767                 cgroup_fd = pid;
9768
9769         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9770                                  NULL, NULL, cgroup_fd);
9771         if (IS_ERR(event)) {
9772                 err = PTR_ERR(event);
9773                 goto err_cred;
9774         }
9775
9776         if (is_sampling_event(event)) {
9777                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9778                         err = -EOPNOTSUPP;
9779                         goto err_alloc;
9780                 }
9781         }
9782
9783         /*
9784          * Special case software events and allow them to be part of
9785          * any hardware group.
9786          */
9787         pmu = event->pmu;
9788
9789         if (attr.use_clockid) {
9790                 err = perf_event_set_clock(event, attr.clockid);
9791                 if (err)
9792                         goto err_alloc;
9793         }
9794
9795         if (pmu->task_ctx_nr == perf_sw_context)
9796                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9797
9798         if (group_leader &&
9799             (is_software_event(event) != is_software_event(group_leader))) {
9800                 if (is_software_event(event)) {
9801                         /*
9802                          * If event and group_leader are not both a software
9803                          * event, and event is, then group leader is not.
9804                          *
9805                          * Allow the addition of software events to !software
9806                          * groups, this is safe because software events never
9807                          * fail to schedule.
9808                          */
9809                         pmu = group_leader->pmu;
9810                 } else if (is_software_event(group_leader) &&
9811                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9812                         /*
9813                          * In case the group is a pure software group, and we
9814                          * try to add a hardware event, move the whole group to
9815                          * the hardware context.
9816                          */
9817                         move_group = 1;
9818                 }
9819         }
9820
9821         /*
9822          * Get the target context (task or percpu):
9823          */
9824         ctx = find_get_context(pmu, task, event);
9825         if (IS_ERR(ctx)) {
9826                 err = PTR_ERR(ctx);
9827                 goto err_alloc;
9828         }
9829
9830         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9831                 err = -EBUSY;
9832                 goto err_context;
9833         }
9834
9835         /*
9836          * Look up the group leader (we will attach this event to it):
9837          */
9838         if (group_leader) {
9839                 err = -EINVAL;
9840
9841                 /*
9842                  * Do not allow a recursive hierarchy (this new sibling
9843                  * becoming part of another group-sibling):
9844                  */
9845                 if (group_leader->group_leader != group_leader)
9846                         goto err_context;
9847
9848                 /* All events in a group should have the same clock */
9849                 if (group_leader->clock != event->clock)
9850                         goto err_context;
9851
9852                 /*
9853                  * Do not allow to attach to a group in a different
9854                  * task or CPU context:
9855                  */
9856                 if (move_group) {
9857                         /*
9858                          * Make sure we're both on the same task, or both
9859                          * per-cpu events.
9860                          */
9861                         if (group_leader->ctx->task != ctx->task)
9862                                 goto err_context;
9863
9864                         /*
9865                          * Make sure we're both events for the same CPU;
9866                          * grouping events for different CPUs is broken; since
9867                          * you can never concurrently schedule them anyhow.
9868                          */
9869                         if (group_leader->cpu != event->cpu)
9870                                 goto err_context;
9871                 } else {
9872                         if (group_leader->ctx != ctx)
9873                                 goto err_context;
9874                 }
9875
9876                 /*
9877                  * Only a group leader can be exclusive or pinned
9878                  */
9879                 if (attr.exclusive || attr.pinned)
9880                         goto err_context;
9881         }
9882
9883         if (output_event) {
9884                 err = perf_event_set_output(event, output_event);
9885                 if (err)
9886                         goto err_context;
9887         }
9888
9889         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9890                                         f_flags);
9891         if (IS_ERR(event_file)) {
9892                 err = PTR_ERR(event_file);
9893                 event_file = NULL;
9894                 goto err_context;
9895         }
9896
9897         if (move_group) {
9898                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
9899
9900                 if (gctx->task == TASK_TOMBSTONE) {
9901                         err = -ESRCH;
9902                         goto err_locked;
9903                 }
9904
9905                 /*
9906                  * Check if we raced against another sys_perf_event_open() call
9907                  * moving the software group underneath us.
9908                  */
9909                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9910                         /*
9911                          * If someone moved the group out from under us, check
9912                          * if this new event wound up on the same ctx, if so
9913                          * its the regular !move_group case, otherwise fail.
9914                          */
9915                         if (gctx != ctx) {
9916                                 err = -EINVAL;
9917                                 goto err_locked;
9918                         } else {
9919                                 perf_event_ctx_unlock(group_leader, gctx);
9920                                 move_group = 0;
9921                         }
9922                 }
9923         } else {
9924                 mutex_lock(&ctx->mutex);
9925         }
9926
9927         if (ctx->task == TASK_TOMBSTONE) {
9928                 err = -ESRCH;
9929                 goto err_locked;
9930         }
9931
9932         if (!perf_event_validate_size(event)) {
9933                 err = -E2BIG;
9934                 goto err_locked;
9935         }
9936
9937         /*
9938          * Must be under the same ctx::mutex as perf_install_in_context(),
9939          * because we need to serialize with concurrent event creation.
9940          */
9941         if (!exclusive_event_installable(event, ctx)) {
9942                 /* exclusive and group stuff are assumed mutually exclusive */
9943                 WARN_ON_ONCE(move_group);
9944
9945                 err = -EBUSY;
9946                 goto err_locked;
9947         }
9948
9949         WARN_ON_ONCE(ctx->parent_ctx);
9950
9951         /*
9952          * This is the point on no return; we cannot fail hereafter. This is
9953          * where we start modifying current state.
9954          */
9955
9956         if (move_group) {
9957                 /*
9958                  * See perf_event_ctx_lock() for comments on the details
9959                  * of swizzling perf_event::ctx.
9960                  */
9961                 perf_remove_from_context(group_leader, 0);
9962                 put_ctx(gctx);
9963
9964                 list_for_each_entry(sibling, &group_leader->sibling_list,
9965                                     group_entry) {
9966                         perf_remove_from_context(sibling, 0);
9967                         put_ctx(gctx);
9968                 }
9969
9970                 /*
9971                  * Wait for everybody to stop referencing the events through
9972                  * the old lists, before installing it on new lists.
9973                  */
9974                 synchronize_rcu();
9975
9976                 /*
9977                  * Install the group siblings before the group leader.
9978                  *
9979                  * Because a group leader will try and install the entire group
9980                  * (through the sibling list, which is still in-tact), we can
9981                  * end up with siblings installed in the wrong context.
9982                  *
9983                  * By installing siblings first we NO-OP because they're not
9984                  * reachable through the group lists.
9985                  */
9986                 list_for_each_entry(sibling, &group_leader->sibling_list,
9987                                     group_entry) {
9988                         perf_event__state_init(sibling);
9989                         perf_install_in_context(ctx, sibling, sibling->cpu);
9990                         get_ctx(ctx);
9991                 }
9992
9993                 /*
9994                  * Removing from the context ends up with disabled
9995                  * event. What we want here is event in the initial
9996                  * startup state, ready to be add into new context.
9997                  */
9998                 perf_event__state_init(group_leader);
9999                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10000                 get_ctx(ctx);
10001         }
10002
10003         /*
10004          * Precalculate sample_data sizes; do while holding ctx::mutex such
10005          * that we're serialized against further additions and before
10006          * perf_install_in_context() which is the point the event is active and
10007          * can use these values.
10008          */
10009         perf_event__header_size(event);
10010         perf_event__id_header_size(event);
10011
10012         event->owner = current;
10013
10014         perf_install_in_context(ctx, event, event->cpu);
10015         perf_unpin_context(ctx);
10016
10017         if (move_group)
10018                 perf_event_ctx_unlock(group_leader, gctx);
10019         mutex_unlock(&ctx->mutex);
10020
10021         if (task) {
10022                 mutex_unlock(&task->signal->cred_guard_mutex);
10023                 put_task_struct(task);
10024         }
10025
10026         put_online_cpus();
10027
10028         mutex_lock(&current->perf_event_mutex);
10029         list_add_tail(&event->owner_entry, &current->perf_event_list);
10030         mutex_unlock(&current->perf_event_mutex);
10031
10032         /*
10033          * Drop the reference on the group_event after placing the
10034          * new event on the sibling_list. This ensures destruction
10035          * of the group leader will find the pointer to itself in
10036          * perf_group_detach().
10037          */
10038         fdput(group);
10039         fd_install(event_fd, event_file);
10040         return event_fd;
10041
10042 err_locked:
10043         if (move_group)
10044                 perf_event_ctx_unlock(group_leader, gctx);
10045         mutex_unlock(&ctx->mutex);
10046 /* err_file: */
10047         fput(event_file);
10048 err_context:
10049         perf_unpin_context(ctx);
10050         put_ctx(ctx);
10051 err_alloc:
10052         /*
10053          * If event_file is set, the fput() above will have called ->release()
10054          * and that will take care of freeing the event.
10055          */
10056         if (!event_file)
10057                 free_event(event);
10058 err_cred:
10059         if (task)
10060                 mutex_unlock(&task->signal->cred_guard_mutex);
10061 err_cpus:
10062         put_online_cpus();
10063 err_task:
10064         if (task)
10065                 put_task_struct(task);
10066 err_group_fd:
10067         fdput(group);
10068 err_fd:
10069         put_unused_fd(event_fd);
10070         return err;
10071 }
10072
10073 /**
10074  * perf_event_create_kernel_counter
10075  *
10076  * @attr: attributes of the counter to create
10077  * @cpu: cpu in which the counter is bound
10078  * @task: task to profile (NULL for percpu)
10079  */
10080 struct perf_event *
10081 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10082                                  struct task_struct *task,
10083                                  perf_overflow_handler_t overflow_handler,
10084                                  void *context)
10085 {
10086         struct perf_event_context *ctx;
10087         struct perf_event *event;
10088         int err;
10089
10090         /*
10091          * Get the target context (task or percpu):
10092          */
10093
10094         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10095                                  overflow_handler, context, -1);
10096         if (IS_ERR(event)) {
10097                 err = PTR_ERR(event);
10098                 goto err;
10099         }
10100
10101         /* Mark owner so we could distinguish it from user events. */
10102         event->owner = TASK_TOMBSTONE;
10103
10104         ctx = find_get_context(event->pmu, task, event);
10105         if (IS_ERR(ctx)) {
10106                 err = PTR_ERR(ctx);
10107                 goto err_free;
10108         }
10109
10110         WARN_ON_ONCE(ctx->parent_ctx);
10111         mutex_lock(&ctx->mutex);
10112         if (ctx->task == TASK_TOMBSTONE) {
10113                 err = -ESRCH;
10114                 goto err_unlock;
10115         }
10116
10117         if (!exclusive_event_installable(event, ctx)) {
10118                 err = -EBUSY;
10119                 goto err_unlock;
10120         }
10121
10122         perf_install_in_context(ctx, event, cpu);
10123         perf_unpin_context(ctx);
10124         mutex_unlock(&ctx->mutex);
10125
10126         return event;
10127
10128 err_unlock:
10129         mutex_unlock(&ctx->mutex);
10130         perf_unpin_context(ctx);
10131         put_ctx(ctx);
10132 err_free:
10133         free_event(event);
10134 err:
10135         return ERR_PTR(err);
10136 }
10137 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10138
10139 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10140 {
10141         struct perf_event_context *src_ctx;
10142         struct perf_event_context *dst_ctx;
10143         struct perf_event *event, *tmp;
10144         LIST_HEAD(events);
10145
10146         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10147         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10148
10149         /*
10150          * See perf_event_ctx_lock() for comments on the details
10151          * of swizzling perf_event::ctx.
10152          */
10153         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10154         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10155                                  event_entry) {
10156                 perf_remove_from_context(event, 0);
10157                 unaccount_event_cpu(event, src_cpu);
10158                 put_ctx(src_ctx);
10159                 list_add(&event->migrate_entry, &events);
10160         }
10161
10162         /*
10163          * Wait for the events to quiesce before re-instating them.
10164          */
10165         synchronize_rcu();
10166
10167         /*
10168          * Re-instate events in 2 passes.
10169          *
10170          * Skip over group leaders and only install siblings on this first
10171          * pass, siblings will not get enabled without a leader, however a
10172          * leader will enable its siblings, even if those are still on the old
10173          * context.
10174          */
10175         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10176                 if (event->group_leader == event)
10177                         continue;
10178
10179                 list_del(&event->migrate_entry);
10180                 if (event->state >= PERF_EVENT_STATE_OFF)
10181                         event->state = PERF_EVENT_STATE_INACTIVE;
10182                 account_event_cpu(event, dst_cpu);
10183                 perf_install_in_context(dst_ctx, event, dst_cpu);
10184                 get_ctx(dst_ctx);
10185         }
10186
10187         /*
10188          * Once all the siblings are setup properly, install the group leaders
10189          * to make it go.
10190          */
10191         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10192                 list_del(&event->migrate_entry);
10193                 if (event->state >= PERF_EVENT_STATE_OFF)
10194                         event->state = PERF_EVENT_STATE_INACTIVE;
10195                 account_event_cpu(event, dst_cpu);
10196                 perf_install_in_context(dst_ctx, event, dst_cpu);
10197                 get_ctx(dst_ctx);
10198         }
10199         mutex_unlock(&dst_ctx->mutex);
10200         mutex_unlock(&src_ctx->mutex);
10201 }
10202 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10203
10204 static void sync_child_event(struct perf_event *child_event,
10205                                struct task_struct *child)
10206 {
10207         struct perf_event *parent_event = child_event->parent;
10208         u64 child_val;
10209
10210         if (child_event->attr.inherit_stat)
10211                 perf_event_read_event(child_event, child);
10212
10213         child_val = perf_event_count(child_event);
10214
10215         /*
10216          * Add back the child's count to the parent's count:
10217          */
10218         atomic64_add(child_val, &parent_event->child_count);
10219         atomic64_add(child_event->total_time_enabled,
10220                      &parent_event->child_total_time_enabled);
10221         atomic64_add(child_event->total_time_running,
10222                      &parent_event->child_total_time_running);
10223 }
10224
10225 static void
10226 perf_event_exit_event(struct perf_event *child_event,
10227                       struct perf_event_context *child_ctx,
10228                       struct task_struct *child)
10229 {
10230         struct perf_event *parent_event = child_event->parent;
10231
10232         /*
10233          * Do not destroy the 'original' grouping; because of the context
10234          * switch optimization the original events could've ended up in a
10235          * random child task.
10236          *
10237          * If we were to destroy the original group, all group related
10238          * operations would cease to function properly after this random
10239          * child dies.
10240          *
10241          * Do destroy all inherited groups, we don't care about those
10242          * and being thorough is better.
10243          */
10244         raw_spin_lock_irq(&child_ctx->lock);
10245         WARN_ON_ONCE(child_ctx->is_active);
10246
10247         if (parent_event)
10248                 perf_group_detach(child_event);
10249         list_del_event(child_event, child_ctx);
10250         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10251         raw_spin_unlock_irq(&child_ctx->lock);
10252
10253         /*
10254          * Parent events are governed by their filedesc, retain them.
10255          */
10256         if (!parent_event) {
10257                 perf_event_wakeup(child_event);
10258                 return;
10259         }
10260         /*
10261          * Child events can be cleaned up.
10262          */
10263
10264         sync_child_event(child_event, child);
10265
10266         /*
10267          * Remove this event from the parent's list
10268          */
10269         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10270         mutex_lock(&parent_event->child_mutex);
10271         list_del_init(&child_event->child_list);
10272         mutex_unlock(&parent_event->child_mutex);
10273
10274         /*
10275          * Kick perf_poll() for is_event_hup().
10276          */
10277         perf_event_wakeup(parent_event);
10278         free_event(child_event);
10279         put_event(parent_event);
10280 }
10281
10282 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10283 {
10284         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10285         struct perf_event *child_event, *next;
10286
10287         WARN_ON_ONCE(child != current);
10288
10289         child_ctx = perf_pin_task_context(child, ctxn);
10290         if (!child_ctx)
10291                 return;
10292
10293         /*
10294          * In order to reduce the amount of tricky in ctx tear-down, we hold
10295          * ctx::mutex over the entire thing. This serializes against almost
10296          * everything that wants to access the ctx.
10297          *
10298          * The exception is sys_perf_event_open() /
10299          * perf_event_create_kernel_count() which does find_get_context()
10300          * without ctx::mutex (it cannot because of the move_group double mutex
10301          * lock thing). See the comments in perf_install_in_context().
10302          */
10303         mutex_lock(&child_ctx->mutex);
10304
10305         /*
10306          * In a single ctx::lock section, de-schedule the events and detach the
10307          * context from the task such that we cannot ever get it scheduled back
10308          * in.
10309          */
10310         raw_spin_lock_irq(&child_ctx->lock);
10311         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10312
10313         /*
10314          * Now that the context is inactive, destroy the task <-> ctx relation
10315          * and mark the context dead.
10316          */
10317         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10318         put_ctx(child_ctx); /* cannot be last */
10319         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10320         put_task_struct(current); /* cannot be last */
10321
10322         clone_ctx = unclone_ctx(child_ctx);
10323         raw_spin_unlock_irq(&child_ctx->lock);
10324
10325         if (clone_ctx)
10326                 put_ctx(clone_ctx);
10327
10328         /*
10329          * Report the task dead after unscheduling the events so that we
10330          * won't get any samples after PERF_RECORD_EXIT. We can however still
10331          * get a few PERF_RECORD_READ events.
10332          */
10333         perf_event_task(child, child_ctx, 0);
10334
10335         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10336                 perf_event_exit_event(child_event, child_ctx, child);
10337
10338         mutex_unlock(&child_ctx->mutex);
10339
10340         put_ctx(child_ctx);
10341 }
10342
10343 /*
10344  * When a child task exits, feed back event values to parent events.
10345  *
10346  * Can be called with cred_guard_mutex held when called from
10347  * install_exec_creds().
10348  */
10349 void perf_event_exit_task(struct task_struct *child)
10350 {
10351         struct perf_event *event, *tmp;
10352         int ctxn;
10353
10354         mutex_lock(&child->perf_event_mutex);
10355         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10356                                  owner_entry) {
10357                 list_del_init(&event->owner_entry);
10358
10359                 /*
10360                  * Ensure the list deletion is visible before we clear
10361                  * the owner, closes a race against perf_release() where
10362                  * we need to serialize on the owner->perf_event_mutex.
10363                  */
10364                 smp_store_release(&event->owner, NULL);
10365         }
10366         mutex_unlock(&child->perf_event_mutex);
10367
10368         for_each_task_context_nr(ctxn)
10369                 perf_event_exit_task_context(child, ctxn);
10370
10371         /*
10372          * The perf_event_exit_task_context calls perf_event_task
10373          * with child's task_ctx, which generates EXIT events for
10374          * child contexts and sets child->perf_event_ctxp[] to NULL.
10375          * At this point we need to send EXIT events to cpu contexts.
10376          */
10377         perf_event_task(child, NULL, 0);
10378 }
10379
10380 static void perf_free_event(struct perf_event *event,
10381                             struct perf_event_context *ctx)
10382 {
10383         struct perf_event *parent = event->parent;
10384
10385         if (WARN_ON_ONCE(!parent))
10386                 return;
10387
10388         mutex_lock(&parent->child_mutex);
10389         list_del_init(&event->child_list);
10390         mutex_unlock(&parent->child_mutex);
10391
10392         put_event(parent);
10393
10394         raw_spin_lock_irq(&ctx->lock);
10395         perf_group_detach(event);
10396         list_del_event(event, ctx);
10397         raw_spin_unlock_irq(&ctx->lock);
10398         free_event(event);
10399 }
10400
10401 /*
10402  * Free an unexposed, unused context as created by inheritance by
10403  * perf_event_init_task below, used by fork() in case of fail.
10404  *
10405  * Not all locks are strictly required, but take them anyway to be nice and
10406  * help out with the lockdep assertions.
10407  */
10408 void perf_event_free_task(struct task_struct *task)
10409 {
10410         struct perf_event_context *ctx;
10411         struct perf_event *event, *tmp;
10412         int ctxn;
10413
10414         for_each_task_context_nr(ctxn) {
10415                 ctx = task->perf_event_ctxp[ctxn];
10416                 if (!ctx)
10417                         continue;
10418
10419                 mutex_lock(&ctx->mutex);
10420                 raw_spin_lock_irq(&ctx->lock);
10421                 /*
10422                  * Destroy the task <-> ctx relation and mark the context dead.
10423                  *
10424                  * This is important because even though the task hasn't been
10425                  * exposed yet the context has been (through child_list).
10426                  */
10427                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10428                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10429                 put_task_struct(task); /* cannot be last */
10430                 raw_spin_unlock_irq(&ctx->lock);
10431
10432                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10433                         perf_free_event(event, ctx);
10434
10435                 mutex_unlock(&ctx->mutex);
10436                 put_ctx(ctx);
10437         }
10438 }
10439
10440 void perf_event_delayed_put(struct task_struct *task)
10441 {
10442         int ctxn;
10443
10444         for_each_task_context_nr(ctxn)
10445                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10446 }
10447
10448 struct file *perf_event_get(unsigned int fd)
10449 {
10450         struct file *file;
10451
10452         file = fget_raw(fd);
10453         if (!file)
10454                 return ERR_PTR(-EBADF);
10455
10456         if (file->f_op != &perf_fops) {
10457                 fput(file);
10458                 return ERR_PTR(-EBADF);
10459         }
10460
10461         return file;
10462 }
10463
10464 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10465 {
10466         if (!event)
10467                 return ERR_PTR(-EINVAL);
10468
10469         return &event->attr;
10470 }
10471
10472 /*
10473  * Inherit a event from parent task to child task.
10474  *
10475  * Returns:
10476  *  - valid pointer on success
10477  *  - NULL for orphaned events
10478  *  - IS_ERR() on error
10479  */
10480 static struct perf_event *
10481 inherit_event(struct perf_event *parent_event,
10482               struct task_struct *parent,
10483               struct perf_event_context *parent_ctx,
10484               struct task_struct *child,
10485               struct perf_event *group_leader,
10486               struct perf_event_context *child_ctx)
10487 {
10488         enum perf_event_active_state parent_state = parent_event->state;
10489         struct perf_event *child_event;
10490         unsigned long flags;
10491
10492         /*
10493          * Instead of creating recursive hierarchies of events,
10494          * we link inherited events back to the original parent,
10495          * which has a filp for sure, which we use as the reference
10496          * count:
10497          */
10498         if (parent_event->parent)
10499                 parent_event = parent_event->parent;
10500
10501         child_event = perf_event_alloc(&parent_event->attr,
10502                                            parent_event->cpu,
10503                                            child,
10504                                            group_leader, parent_event,
10505                                            NULL, NULL, -1);
10506         if (IS_ERR(child_event))
10507                 return child_event;
10508
10509         /*
10510          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10511          * must be under the same lock in order to serialize against
10512          * perf_event_release_kernel(), such that either we must observe
10513          * is_orphaned_event() or they will observe us on the child_list.
10514          */
10515         mutex_lock(&parent_event->child_mutex);
10516         if (is_orphaned_event(parent_event) ||
10517             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10518                 mutex_unlock(&parent_event->child_mutex);
10519                 free_event(child_event);
10520                 return NULL;
10521         }
10522
10523         get_ctx(child_ctx);
10524
10525         /*
10526          * Make the child state follow the state of the parent event,
10527          * not its attr.disabled bit.  We hold the parent's mutex,
10528          * so we won't race with perf_event_{en, dis}able_family.
10529          */
10530         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10531                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10532         else
10533                 child_event->state = PERF_EVENT_STATE_OFF;
10534
10535         if (parent_event->attr.freq) {
10536                 u64 sample_period = parent_event->hw.sample_period;
10537                 struct hw_perf_event *hwc = &child_event->hw;
10538
10539                 hwc->sample_period = sample_period;
10540                 hwc->last_period   = sample_period;
10541
10542                 local64_set(&hwc->period_left, sample_period);
10543         }
10544
10545         child_event->ctx = child_ctx;
10546         child_event->overflow_handler = parent_event->overflow_handler;
10547         child_event->overflow_handler_context
10548                 = parent_event->overflow_handler_context;
10549
10550         /*
10551          * Precalculate sample_data sizes
10552          */
10553         perf_event__header_size(child_event);
10554         perf_event__id_header_size(child_event);
10555
10556         /*
10557          * Link it up in the child's context:
10558          */
10559         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10560         add_event_to_ctx(child_event, child_ctx);
10561         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10562
10563         /*
10564          * Link this into the parent event's child list
10565          */
10566         list_add_tail(&child_event->child_list, &parent_event->child_list);
10567         mutex_unlock(&parent_event->child_mutex);
10568
10569         return child_event;
10570 }
10571
10572 /*
10573  * Inherits an event group.
10574  *
10575  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10576  * This matches with perf_event_release_kernel() removing all child events.
10577  *
10578  * Returns:
10579  *  - 0 on success
10580  *  - <0 on error
10581  */
10582 static int inherit_group(struct perf_event *parent_event,
10583               struct task_struct *parent,
10584               struct perf_event_context *parent_ctx,
10585               struct task_struct *child,
10586               struct perf_event_context *child_ctx)
10587 {
10588         struct perf_event *leader;
10589         struct perf_event *sub;
10590         struct perf_event *child_ctr;
10591
10592         leader = inherit_event(parent_event, parent, parent_ctx,
10593                                  child, NULL, child_ctx);
10594         if (IS_ERR(leader))
10595                 return PTR_ERR(leader);
10596         /*
10597          * @leader can be NULL here because of is_orphaned_event(). In this
10598          * case inherit_event() will create individual events, similar to what
10599          * perf_group_detach() would do anyway.
10600          */
10601         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10602                 child_ctr = inherit_event(sub, parent, parent_ctx,
10603                                             child, leader, child_ctx);
10604                 if (IS_ERR(child_ctr))
10605                         return PTR_ERR(child_ctr);
10606         }
10607         return 0;
10608 }
10609
10610 /*
10611  * Creates the child task context and tries to inherit the event-group.
10612  *
10613  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10614  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10615  * consistent with perf_event_release_kernel() removing all child events.
10616  *
10617  * Returns:
10618  *  - 0 on success
10619  *  - <0 on error
10620  */
10621 static int
10622 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10623                    struct perf_event_context *parent_ctx,
10624                    struct task_struct *child, int ctxn,
10625                    int *inherited_all)
10626 {
10627         int ret;
10628         struct perf_event_context *child_ctx;
10629
10630         if (!event->attr.inherit) {
10631                 *inherited_all = 0;
10632                 return 0;
10633         }
10634
10635         child_ctx = child->perf_event_ctxp[ctxn];
10636         if (!child_ctx) {
10637                 /*
10638                  * This is executed from the parent task context, so
10639                  * inherit events that have been marked for cloning.
10640                  * First allocate and initialize a context for the
10641                  * child.
10642                  */
10643                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10644                 if (!child_ctx)
10645                         return -ENOMEM;
10646
10647                 child->perf_event_ctxp[ctxn] = child_ctx;
10648         }
10649
10650         ret = inherit_group(event, parent, parent_ctx,
10651                             child, child_ctx);
10652
10653         if (ret)
10654                 *inherited_all = 0;
10655
10656         return ret;
10657 }
10658
10659 /*
10660  * Initialize the perf_event context in task_struct
10661  */
10662 static int perf_event_init_context(struct task_struct *child, int ctxn)
10663 {
10664         struct perf_event_context *child_ctx, *parent_ctx;
10665         struct perf_event_context *cloned_ctx;
10666         struct perf_event *event;
10667         struct task_struct *parent = current;
10668         int inherited_all = 1;
10669         unsigned long flags;
10670         int ret = 0;
10671
10672         if (likely(!parent->perf_event_ctxp[ctxn]))
10673                 return 0;
10674
10675         /*
10676          * If the parent's context is a clone, pin it so it won't get
10677          * swapped under us.
10678          */
10679         parent_ctx = perf_pin_task_context(parent, ctxn);
10680         if (!parent_ctx)
10681                 return 0;
10682
10683         /*
10684          * No need to check if parent_ctx != NULL here; since we saw
10685          * it non-NULL earlier, the only reason for it to become NULL
10686          * is if we exit, and since we're currently in the middle of
10687          * a fork we can't be exiting at the same time.
10688          */
10689
10690         /*
10691          * Lock the parent list. No need to lock the child - not PID
10692          * hashed yet and not running, so nobody can access it.
10693          */
10694         mutex_lock(&parent_ctx->mutex);
10695
10696         /*
10697          * We dont have to disable NMIs - we are only looking at
10698          * the list, not manipulating it:
10699          */
10700         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10701                 ret = inherit_task_group(event, parent, parent_ctx,
10702                                          child, ctxn, &inherited_all);
10703                 if (ret)
10704                         goto out_unlock;
10705         }
10706
10707         /*
10708          * We can't hold ctx->lock when iterating the ->flexible_group list due
10709          * to allocations, but we need to prevent rotation because
10710          * rotate_ctx() will change the list from interrupt context.
10711          */
10712         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10713         parent_ctx->rotate_disable = 1;
10714         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10715
10716         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10717                 ret = inherit_task_group(event, parent, parent_ctx,
10718                                          child, ctxn, &inherited_all);
10719                 if (ret)
10720                         goto out_unlock;
10721         }
10722
10723         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10724         parent_ctx->rotate_disable = 0;
10725
10726         child_ctx = child->perf_event_ctxp[ctxn];
10727
10728         if (child_ctx && inherited_all) {
10729                 /*
10730                  * Mark the child context as a clone of the parent
10731                  * context, or of whatever the parent is a clone of.
10732                  *
10733                  * Note that if the parent is a clone, the holding of
10734                  * parent_ctx->lock avoids it from being uncloned.
10735                  */
10736                 cloned_ctx = parent_ctx->parent_ctx;
10737                 if (cloned_ctx) {
10738                         child_ctx->parent_ctx = cloned_ctx;
10739                         child_ctx->parent_gen = parent_ctx->parent_gen;
10740                 } else {
10741                         child_ctx->parent_ctx = parent_ctx;
10742                         child_ctx->parent_gen = parent_ctx->generation;
10743                 }
10744                 get_ctx(child_ctx->parent_ctx);
10745         }
10746
10747         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10748 out_unlock:
10749         mutex_unlock(&parent_ctx->mutex);
10750
10751         perf_unpin_context(parent_ctx);
10752         put_ctx(parent_ctx);
10753
10754         return ret;
10755 }
10756
10757 /*
10758  * Initialize the perf_event context in task_struct
10759  */
10760 int perf_event_init_task(struct task_struct *child)
10761 {
10762         int ctxn, ret;
10763
10764         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10765         mutex_init(&child->perf_event_mutex);
10766         INIT_LIST_HEAD(&child->perf_event_list);
10767
10768         for_each_task_context_nr(ctxn) {
10769                 ret = perf_event_init_context(child, ctxn);
10770                 if (ret) {
10771                         perf_event_free_task(child);
10772                         return ret;
10773                 }
10774         }
10775
10776         return 0;
10777 }
10778
10779 static void __init perf_event_init_all_cpus(void)
10780 {
10781         struct swevent_htable *swhash;
10782         int cpu;
10783
10784         for_each_possible_cpu(cpu) {
10785                 swhash = &per_cpu(swevent_htable, cpu);
10786                 mutex_init(&swhash->hlist_mutex);
10787                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10788
10789                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10790                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10791
10792 #ifdef CONFIG_CGROUP_PERF
10793                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10794 #endif
10795                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10796         }
10797 }
10798
10799 int perf_event_init_cpu(unsigned int cpu)
10800 {
10801         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10802
10803         mutex_lock(&swhash->hlist_mutex);
10804         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10805                 struct swevent_hlist *hlist;
10806
10807                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10808                 WARN_ON(!hlist);
10809                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10810         }
10811         mutex_unlock(&swhash->hlist_mutex);
10812         return 0;
10813 }
10814
10815 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10816 static void __perf_event_exit_context(void *__info)
10817 {
10818         struct perf_event_context *ctx = __info;
10819         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10820         struct perf_event *event;
10821
10822         raw_spin_lock(&ctx->lock);
10823         list_for_each_entry(event, &ctx->event_list, event_entry)
10824                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10825         raw_spin_unlock(&ctx->lock);
10826 }
10827
10828 static void perf_event_exit_cpu_context(int cpu)
10829 {
10830         struct perf_event_context *ctx;
10831         struct pmu *pmu;
10832         int idx;
10833
10834         idx = srcu_read_lock(&pmus_srcu);
10835         list_for_each_entry_rcu(pmu, &pmus, entry) {
10836                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10837
10838                 mutex_lock(&ctx->mutex);
10839                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10840                 mutex_unlock(&ctx->mutex);
10841         }
10842         srcu_read_unlock(&pmus_srcu, idx);
10843 }
10844 #else
10845
10846 static void perf_event_exit_cpu_context(int cpu) { }
10847
10848 #endif
10849
10850 int perf_event_exit_cpu(unsigned int cpu)
10851 {
10852         perf_event_exit_cpu_context(cpu);
10853         return 0;
10854 }
10855
10856 static int
10857 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10858 {
10859         int cpu;
10860
10861         for_each_online_cpu(cpu)
10862                 perf_event_exit_cpu(cpu);
10863
10864         return NOTIFY_OK;
10865 }
10866
10867 /*
10868  * Run the perf reboot notifier at the very last possible moment so that
10869  * the generic watchdog code runs as long as possible.
10870  */
10871 static struct notifier_block perf_reboot_notifier = {
10872         .notifier_call = perf_reboot,
10873         .priority = INT_MIN,
10874 };
10875
10876 void __init perf_event_init(void)
10877 {
10878         int ret;
10879
10880         idr_init(&pmu_idr);
10881
10882         perf_event_init_all_cpus();
10883         init_srcu_struct(&pmus_srcu);
10884         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10885         perf_pmu_register(&perf_cpu_clock, NULL, -1);
10886         perf_pmu_register(&perf_task_clock, NULL, -1);
10887         perf_tp_register();
10888         perf_event_init_cpu(smp_processor_id());
10889         register_reboot_notifier(&perf_reboot_notifier);
10890
10891         ret = init_hw_breakpoint();
10892         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10893
10894         /*
10895          * Build time assertion that we keep the data_head at the intended
10896          * location.  IOW, validation we got the __reserved[] size right.
10897          */
10898         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10899                      != 1024);
10900 }
10901
10902 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10903                               char *page)
10904 {
10905         struct perf_pmu_events_attr *pmu_attr =
10906                 container_of(attr, struct perf_pmu_events_attr, attr);
10907
10908         if (pmu_attr->event_str)
10909                 return sprintf(page, "%s\n", pmu_attr->event_str);
10910
10911         return 0;
10912 }
10913 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10914
10915 static int __init perf_event_sysfs_init(void)
10916 {
10917         struct pmu *pmu;
10918         int ret;
10919
10920         mutex_lock(&pmus_lock);
10921
10922         ret = bus_register(&pmu_bus);
10923         if (ret)
10924                 goto unlock;
10925
10926         list_for_each_entry(pmu, &pmus, entry) {
10927                 if (!pmu->name || pmu->type < 0)
10928                         continue;
10929
10930                 ret = pmu_dev_alloc(pmu);
10931                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10932         }
10933         pmu_bus_running = 1;
10934         ret = 0;
10935
10936 unlock:
10937         mutex_unlock(&pmus_lock);
10938
10939         return ret;
10940 }
10941 device_initcall(perf_event_sysfs_init);
10942
10943 #ifdef CONFIG_CGROUP_PERF
10944 static struct cgroup_subsys_state *
10945 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10946 {
10947         struct perf_cgroup *jc;
10948
10949         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10950         if (!jc)
10951                 return ERR_PTR(-ENOMEM);
10952
10953         jc->info = alloc_percpu(struct perf_cgroup_info);
10954         if (!jc->info) {
10955                 kfree(jc);
10956                 return ERR_PTR(-ENOMEM);
10957         }
10958
10959         return &jc->css;
10960 }
10961
10962 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10963 {
10964         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10965
10966         free_percpu(jc->info);
10967         kfree(jc);
10968 }
10969
10970 static int __perf_cgroup_move(void *info)
10971 {
10972         struct task_struct *task = info;
10973         rcu_read_lock();
10974         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10975         rcu_read_unlock();
10976         return 0;
10977 }
10978
10979 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10980 {
10981         struct task_struct *task;
10982         struct cgroup_subsys_state *css;
10983
10984         cgroup_taskset_for_each(task, css, tset)
10985                 task_function_call(task, __perf_cgroup_move, task);
10986 }
10987
10988 struct cgroup_subsys perf_event_cgrp_subsys = {
10989         .css_alloc      = perf_cgroup_css_alloc,
10990         .css_free       = perf_cgroup_css_free,
10991         .attach         = perf_cgroup_attach,
10992         /*
10993          * Implicitly enable on dfl hierarchy so that perf events can
10994          * always be filtered by cgroup2 path as long as perf_event
10995          * controller is not mounted on a legacy hierarchy.
10996          */
10997         .implicit_on_dfl = true,
10998 };
10999 #endif /* CONFIG_CGROUP_PERF */