79363f298445fb5c81085f83399b5a28c2b2d5cc
[sfrench/cifs-2.6.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57         struct task_struct      *p;
58         remote_function_f       func;
59         void                    *info;
60         int                     ret;
61 };
62
63 static void remote_function(void *data)
64 {
65         struct remote_function_call *tfc = data;
66         struct task_struct *p = tfc->p;
67
68         if (p) {
69                 /* -EAGAIN */
70                 if (task_cpu(p) != smp_processor_id())
71                         return;
72
73                 /*
74                  * Now that we're on right CPU with IRQs disabled, we can test
75                  * if we hit the right task without races.
76                  */
77
78                 tfc->ret = -ESRCH; /* No such (running) process */
79                 if (p != current)
80                         return;
81         }
82
83         tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:          the task to evaluate
89  * @func:       the function to be called
90  * @info:       the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *          -ESRCH  - when the process isn't running
97  *          -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102         struct remote_function_call data = {
103                 .p      = p,
104                 .func   = func,
105                 .info   = info,
106                 .ret    = -EAGAIN,
107         };
108         int ret;
109
110         do {
111                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112                 if (!ret)
113                         ret = data.ret;
114         } while (ret == -EAGAIN);
115
116         return ret;
117 }
118
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:       the function to be called
122  * @info:       the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130         struct remote_function_call data = {
131                 .p      = NULL,
132                 .func   = func,
133                 .info   = info,
134                 .ret    = -ENXIO, /* No such CPU */
135         };
136
137         smp_call_function_single(cpu, remote_function, &data, 1);
138
139         return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149                           struct perf_event_context *ctx)
150 {
151         raw_spin_lock(&cpuctx->ctx.lock);
152         if (ctx)
153                 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157                             struct perf_event_context *ctx)
158 {
159         if (ctx)
160                 raw_spin_unlock(&ctx->lock);
161         raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191                         struct perf_event_context *, void *);
192
193 struct event_function_struct {
194         struct perf_event *event;
195         event_f func;
196         void *data;
197 };
198
199 static int event_function(void *info)
200 {
201         struct event_function_struct *efs = info;
202         struct perf_event *event = efs->event;
203         struct perf_event_context *ctx = event->ctx;
204         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205         struct perf_event_context *task_ctx = cpuctx->task_ctx;
206         int ret = 0;
207
208         WARN_ON_ONCE(!irqs_disabled());
209
210         perf_ctx_lock(cpuctx, task_ctx);
211         /*
212          * Since we do the IPI call without holding ctx->lock things can have
213          * changed, double check we hit the task we set out to hit.
214          */
215         if (ctx->task) {
216                 if (ctx->task != current) {
217                         ret = -ESRCH;
218                         goto unlock;
219                 }
220
221                 /*
222                  * We only use event_function_call() on established contexts,
223                  * and event_function() is only ever called when active (or
224                  * rather, we'll have bailed in task_function_call() or the
225                  * above ctx->task != current test), therefore we must have
226                  * ctx->is_active here.
227                  */
228                 WARN_ON_ONCE(!ctx->is_active);
229                 /*
230                  * And since we have ctx->is_active, cpuctx->task_ctx must
231                  * match.
232                  */
233                 WARN_ON_ONCE(task_ctx != ctx);
234         } else {
235                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236         }
237
238         efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240         perf_ctx_unlock(cpuctx, task_ctx);
241
242         return ret;
243 }
244
245 static void event_function_local(struct perf_event *event, event_f func, void *data)
246 {
247         struct event_function_struct efs = {
248                 .event = event,
249                 .func = func,
250                 .data = data,
251         };
252
253         int ret = event_function(&efs);
254         WARN_ON_ONCE(ret);
255 }
256
257 static void event_function_call(struct perf_event *event, event_f func, void *data)
258 {
259         struct perf_event_context *ctx = event->ctx;
260         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
261         struct event_function_struct efs = {
262                 .event = event,
263                 .func = func,
264                 .data = data,
265         };
266
267         if (!event->parent) {
268                 /*
269                  * If this is a !child event, we must hold ctx::mutex to
270                  * stabilize the the event->ctx relation. See
271                  * perf_event_ctx_lock().
272                  */
273                 lockdep_assert_held(&ctx->mutex);
274         }
275
276         if (!task) {
277                 cpu_function_call(event->cpu, event_function, &efs);
278                 return;
279         }
280
281         if (task == TASK_TOMBSTONE)
282                 return;
283
284 again:
285         if (!task_function_call(task, event_function, &efs))
286                 return;
287
288         raw_spin_lock_irq(&ctx->lock);
289         /*
290          * Reload the task pointer, it might have been changed by
291          * a concurrent perf_event_context_sched_out().
292          */
293         task = ctx->task;
294         if (task == TASK_TOMBSTONE) {
295                 raw_spin_unlock_irq(&ctx->lock);
296                 return;
297         }
298         if (ctx->is_active) {
299                 raw_spin_unlock_irq(&ctx->lock);
300                 goto again;
301         }
302         func(event, NULL, ctx, data);
303         raw_spin_unlock_irq(&ctx->lock);
304 }
305
306 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
307                        PERF_FLAG_FD_OUTPUT  |\
308                        PERF_FLAG_PID_CGROUP |\
309                        PERF_FLAG_FD_CLOEXEC)
310
311 /*
312  * branch priv levels that need permission checks
313  */
314 #define PERF_SAMPLE_BRANCH_PERM_PLM \
315         (PERF_SAMPLE_BRANCH_KERNEL |\
316          PERF_SAMPLE_BRANCH_HV)
317
318 enum event_type_t {
319         EVENT_FLEXIBLE = 0x1,
320         EVENT_PINNED = 0x2,
321         EVENT_TIME = 0x4,
322         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
323 };
324
325 /*
326  * perf_sched_events : >0 events exist
327  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
328  */
329
330 static void perf_sched_delayed(struct work_struct *work);
331 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
332 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
333 static DEFINE_MUTEX(perf_sched_mutex);
334 static atomic_t perf_sched_count;
335
336 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
337 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
338
339 static atomic_t nr_mmap_events __read_mostly;
340 static atomic_t nr_comm_events __read_mostly;
341 static atomic_t nr_task_events __read_mostly;
342 static atomic_t nr_freq_events __read_mostly;
343 static atomic_t nr_switch_events __read_mostly;
344
345 static LIST_HEAD(pmus);
346 static DEFINE_MUTEX(pmus_lock);
347 static struct srcu_struct pmus_srcu;
348
349 /*
350  * perf event paranoia level:
351  *  -1 - not paranoid at all
352  *   0 - disallow raw tracepoint access for unpriv
353  *   1 - disallow cpu events for unpriv
354  *   2 - disallow kernel profiling for unpriv
355  */
356 int sysctl_perf_event_paranoid __read_mostly = 2;
357
358 /* Minimum for 512 kiB + 1 user control page */
359 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
360
361 /*
362  * max perf event sample rate
363  */
364 #define DEFAULT_MAX_SAMPLE_RATE         100000
365 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
366 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
367
368 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
369
370 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
371 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
372
373 static int perf_sample_allowed_ns __read_mostly =
374         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
375
376 static void update_perf_cpu_limits(void)
377 {
378         u64 tmp = perf_sample_period_ns;
379
380         tmp *= sysctl_perf_cpu_time_max_percent;
381         tmp = div_u64(tmp, 100);
382         if (!tmp)
383                 tmp = 1;
384
385         WRITE_ONCE(perf_sample_allowed_ns, tmp);
386 }
387
388 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
389
390 int perf_proc_update_handler(struct ctl_table *table, int write,
391                 void __user *buffer, size_t *lenp,
392                 loff_t *ppos)
393 {
394         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
395
396         if (ret || !write)
397                 return ret;
398
399         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
400         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
401         update_perf_cpu_limits();
402
403         return 0;
404 }
405
406 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
407
408 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
409                                 void __user *buffer, size_t *lenp,
410                                 loff_t *ppos)
411 {
412         int ret = proc_dointvec(table, write, buffer, lenp, ppos);
413
414         if (ret || !write)
415                 return ret;
416
417         if (sysctl_perf_cpu_time_max_percent == 100 ||
418             sysctl_perf_cpu_time_max_percent == 0) {
419                 printk(KERN_WARNING
420                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
421                 WRITE_ONCE(perf_sample_allowed_ns, 0);
422         } else {
423                 update_perf_cpu_limits();
424         }
425
426         return 0;
427 }
428
429 /*
430  * perf samples are done in some very critical code paths (NMIs).
431  * If they take too much CPU time, the system can lock up and not
432  * get any real work done.  This will drop the sample rate when
433  * we detect that events are taking too long.
434  */
435 #define NR_ACCUMULATED_SAMPLES 128
436 static DEFINE_PER_CPU(u64, running_sample_length);
437
438 static u64 __report_avg;
439 static u64 __report_allowed;
440
441 static void perf_duration_warn(struct irq_work *w)
442 {
443         printk_ratelimited(KERN_WARNING
444                 "perf: interrupt took too long (%lld > %lld), lowering "
445                 "kernel.perf_event_max_sample_rate to %d\n",
446                 __report_avg, __report_allowed,
447                 sysctl_perf_event_sample_rate);
448 }
449
450 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
451
452 void perf_sample_event_took(u64 sample_len_ns)
453 {
454         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
455         u64 running_len;
456         u64 avg_len;
457         u32 max;
458
459         if (max_len == 0)
460                 return;
461
462         /* Decay the counter by 1 average sample. */
463         running_len = __this_cpu_read(running_sample_length);
464         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
465         running_len += sample_len_ns;
466         __this_cpu_write(running_sample_length, running_len);
467
468         /*
469          * Note: this will be biased artifically low until we have
470          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
471          * from having to maintain a count.
472          */
473         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
474         if (avg_len <= max_len)
475                 return;
476
477         __report_avg = avg_len;
478         __report_allowed = max_len;
479
480         /*
481          * Compute a throttle threshold 25% below the current duration.
482          */
483         avg_len += avg_len / 4;
484         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
485         if (avg_len < max)
486                 max /= (u32)avg_len;
487         else
488                 max = 1;
489
490         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
491         WRITE_ONCE(max_samples_per_tick, max);
492
493         sysctl_perf_event_sample_rate = max * HZ;
494         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
495
496         if (!irq_work_queue(&perf_duration_work)) {
497                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
498                              "kernel.perf_event_max_sample_rate to %d\n",
499                              __report_avg, __report_allowed,
500                              sysctl_perf_event_sample_rate);
501         }
502 }
503
504 static atomic64_t perf_event_id;
505
506 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
507                               enum event_type_t event_type);
508
509 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
510                              enum event_type_t event_type,
511                              struct task_struct *task);
512
513 static void update_context_time(struct perf_event_context *ctx);
514 static u64 perf_event_time(struct perf_event *event);
515
516 void __weak perf_event_print_debug(void)        { }
517
518 extern __weak const char *perf_pmu_name(void)
519 {
520         return "pmu";
521 }
522
523 static inline u64 perf_clock(void)
524 {
525         return local_clock();
526 }
527
528 static inline u64 perf_event_clock(struct perf_event *event)
529 {
530         return event->clock();
531 }
532
533 #ifdef CONFIG_CGROUP_PERF
534
535 static inline bool
536 perf_cgroup_match(struct perf_event *event)
537 {
538         struct perf_event_context *ctx = event->ctx;
539         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
540
541         /* @event doesn't care about cgroup */
542         if (!event->cgrp)
543                 return true;
544
545         /* wants specific cgroup scope but @cpuctx isn't associated with any */
546         if (!cpuctx->cgrp)
547                 return false;
548
549         /*
550          * Cgroup scoping is recursive.  An event enabled for a cgroup is
551          * also enabled for all its descendant cgroups.  If @cpuctx's
552          * cgroup is a descendant of @event's (the test covers identity
553          * case), it's a match.
554          */
555         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
556                                     event->cgrp->css.cgroup);
557 }
558
559 static inline void perf_detach_cgroup(struct perf_event *event)
560 {
561         css_put(&event->cgrp->css);
562         event->cgrp = NULL;
563 }
564
565 static inline int is_cgroup_event(struct perf_event *event)
566 {
567         return event->cgrp != NULL;
568 }
569
570 static inline u64 perf_cgroup_event_time(struct perf_event *event)
571 {
572         struct perf_cgroup_info *t;
573
574         t = per_cpu_ptr(event->cgrp->info, event->cpu);
575         return t->time;
576 }
577
578 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
579 {
580         struct perf_cgroup_info *info;
581         u64 now;
582
583         now = perf_clock();
584
585         info = this_cpu_ptr(cgrp->info);
586
587         info->time += now - info->timestamp;
588         info->timestamp = now;
589 }
590
591 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
592 {
593         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
594         if (cgrp_out)
595                 __update_cgrp_time(cgrp_out);
596 }
597
598 static inline void update_cgrp_time_from_event(struct perf_event *event)
599 {
600         struct perf_cgroup *cgrp;
601
602         /*
603          * ensure we access cgroup data only when needed and
604          * when we know the cgroup is pinned (css_get)
605          */
606         if (!is_cgroup_event(event))
607                 return;
608
609         cgrp = perf_cgroup_from_task(current, event->ctx);
610         /*
611          * Do not update time when cgroup is not active
612          */
613         if (cgrp == event->cgrp)
614                 __update_cgrp_time(event->cgrp);
615 }
616
617 static inline void
618 perf_cgroup_set_timestamp(struct task_struct *task,
619                           struct perf_event_context *ctx)
620 {
621         struct perf_cgroup *cgrp;
622         struct perf_cgroup_info *info;
623
624         /*
625          * ctx->lock held by caller
626          * ensure we do not access cgroup data
627          * unless we have the cgroup pinned (css_get)
628          */
629         if (!task || !ctx->nr_cgroups)
630                 return;
631
632         cgrp = perf_cgroup_from_task(task, ctx);
633         info = this_cpu_ptr(cgrp->info);
634         info->timestamp = ctx->timestamp;
635 }
636
637 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
638 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
639
640 /*
641  * reschedule events based on the cgroup constraint of task.
642  *
643  * mode SWOUT : schedule out everything
644  * mode SWIN : schedule in based on cgroup for next
645  */
646 static void perf_cgroup_switch(struct task_struct *task, int mode)
647 {
648         struct perf_cpu_context *cpuctx;
649         struct pmu *pmu;
650         unsigned long flags;
651
652         /*
653          * disable interrupts to avoid geting nr_cgroup
654          * changes via __perf_event_disable(). Also
655          * avoids preemption.
656          */
657         local_irq_save(flags);
658
659         /*
660          * we reschedule only in the presence of cgroup
661          * constrained events.
662          */
663
664         list_for_each_entry_rcu(pmu, &pmus, entry) {
665                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
666                 if (cpuctx->unique_pmu != pmu)
667                         continue; /* ensure we process each cpuctx once */
668
669                 /*
670                  * perf_cgroup_events says at least one
671                  * context on this CPU has cgroup events.
672                  *
673                  * ctx->nr_cgroups reports the number of cgroup
674                  * events for a context.
675                  */
676                 if (cpuctx->ctx.nr_cgroups > 0) {
677                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
678                         perf_pmu_disable(cpuctx->ctx.pmu);
679
680                         if (mode & PERF_CGROUP_SWOUT) {
681                                 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
682                                 /*
683                                  * must not be done before ctxswout due
684                                  * to event_filter_match() in event_sched_out()
685                                  */
686                                 cpuctx->cgrp = NULL;
687                         }
688
689                         if (mode & PERF_CGROUP_SWIN) {
690                                 WARN_ON_ONCE(cpuctx->cgrp);
691                                 /*
692                                  * set cgrp before ctxsw in to allow
693                                  * event_filter_match() to not have to pass
694                                  * task around
695                                  * we pass the cpuctx->ctx to perf_cgroup_from_task()
696                                  * because cgorup events are only per-cpu
697                                  */
698                                 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
699                                 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
700                         }
701                         perf_pmu_enable(cpuctx->ctx.pmu);
702                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
703                 }
704         }
705
706         local_irq_restore(flags);
707 }
708
709 static inline void perf_cgroup_sched_out(struct task_struct *task,
710                                          struct task_struct *next)
711 {
712         struct perf_cgroup *cgrp1;
713         struct perf_cgroup *cgrp2 = NULL;
714
715         rcu_read_lock();
716         /*
717          * we come here when we know perf_cgroup_events > 0
718          * we do not need to pass the ctx here because we know
719          * we are holding the rcu lock
720          */
721         cgrp1 = perf_cgroup_from_task(task, NULL);
722         cgrp2 = perf_cgroup_from_task(next, NULL);
723
724         /*
725          * only schedule out current cgroup events if we know
726          * that we are switching to a different cgroup. Otherwise,
727          * do no touch the cgroup events.
728          */
729         if (cgrp1 != cgrp2)
730                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
731
732         rcu_read_unlock();
733 }
734
735 static inline void perf_cgroup_sched_in(struct task_struct *prev,
736                                         struct task_struct *task)
737 {
738         struct perf_cgroup *cgrp1;
739         struct perf_cgroup *cgrp2 = NULL;
740
741         rcu_read_lock();
742         /*
743          * we come here when we know perf_cgroup_events > 0
744          * we do not need to pass the ctx here because we know
745          * we are holding the rcu lock
746          */
747         cgrp1 = perf_cgroup_from_task(task, NULL);
748         cgrp2 = perf_cgroup_from_task(prev, NULL);
749
750         /*
751          * only need to schedule in cgroup events if we are changing
752          * cgroup during ctxsw. Cgroup events were not scheduled
753          * out of ctxsw out if that was not the case.
754          */
755         if (cgrp1 != cgrp2)
756                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
757
758         rcu_read_unlock();
759 }
760
761 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
762                                       struct perf_event_attr *attr,
763                                       struct perf_event *group_leader)
764 {
765         struct perf_cgroup *cgrp;
766         struct cgroup_subsys_state *css;
767         struct fd f = fdget(fd);
768         int ret = 0;
769
770         if (!f.file)
771                 return -EBADF;
772
773         css = css_tryget_online_from_dir(f.file->f_path.dentry,
774                                          &perf_event_cgrp_subsys);
775         if (IS_ERR(css)) {
776                 ret = PTR_ERR(css);
777                 goto out;
778         }
779
780         cgrp = container_of(css, struct perf_cgroup, css);
781         event->cgrp = cgrp;
782
783         /*
784          * all events in a group must monitor
785          * the same cgroup because a task belongs
786          * to only one perf cgroup at a time
787          */
788         if (group_leader && group_leader->cgrp != cgrp) {
789                 perf_detach_cgroup(event);
790                 ret = -EINVAL;
791         }
792 out:
793         fdput(f);
794         return ret;
795 }
796
797 static inline void
798 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
799 {
800         struct perf_cgroup_info *t;
801         t = per_cpu_ptr(event->cgrp->info, event->cpu);
802         event->shadow_ctx_time = now - t->timestamp;
803 }
804
805 static inline void
806 perf_cgroup_defer_enabled(struct perf_event *event)
807 {
808         /*
809          * when the current task's perf cgroup does not match
810          * the event's, we need to remember to call the
811          * perf_mark_enable() function the first time a task with
812          * a matching perf cgroup is scheduled in.
813          */
814         if (is_cgroup_event(event) && !perf_cgroup_match(event))
815                 event->cgrp_defer_enabled = 1;
816 }
817
818 static inline void
819 perf_cgroup_mark_enabled(struct perf_event *event,
820                          struct perf_event_context *ctx)
821 {
822         struct perf_event *sub;
823         u64 tstamp = perf_event_time(event);
824
825         if (!event->cgrp_defer_enabled)
826                 return;
827
828         event->cgrp_defer_enabled = 0;
829
830         event->tstamp_enabled = tstamp - event->total_time_enabled;
831         list_for_each_entry(sub, &event->sibling_list, group_entry) {
832                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
833                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
834                         sub->cgrp_defer_enabled = 0;
835                 }
836         }
837 }
838 #else /* !CONFIG_CGROUP_PERF */
839
840 static inline bool
841 perf_cgroup_match(struct perf_event *event)
842 {
843         return true;
844 }
845
846 static inline void perf_detach_cgroup(struct perf_event *event)
847 {}
848
849 static inline int is_cgroup_event(struct perf_event *event)
850 {
851         return 0;
852 }
853
854 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
855 {
856         return 0;
857 }
858
859 static inline void update_cgrp_time_from_event(struct perf_event *event)
860 {
861 }
862
863 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
864 {
865 }
866
867 static inline void perf_cgroup_sched_out(struct task_struct *task,
868                                          struct task_struct *next)
869 {
870 }
871
872 static inline void perf_cgroup_sched_in(struct task_struct *prev,
873                                         struct task_struct *task)
874 {
875 }
876
877 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
878                                       struct perf_event_attr *attr,
879                                       struct perf_event *group_leader)
880 {
881         return -EINVAL;
882 }
883
884 static inline void
885 perf_cgroup_set_timestamp(struct task_struct *task,
886                           struct perf_event_context *ctx)
887 {
888 }
889
890 void
891 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
892 {
893 }
894
895 static inline void
896 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
897 {
898 }
899
900 static inline u64 perf_cgroup_event_time(struct perf_event *event)
901 {
902         return 0;
903 }
904
905 static inline void
906 perf_cgroup_defer_enabled(struct perf_event *event)
907 {
908 }
909
910 static inline void
911 perf_cgroup_mark_enabled(struct perf_event *event,
912                          struct perf_event_context *ctx)
913 {
914 }
915 #endif
916
917 /*
918  * set default to be dependent on timer tick just
919  * like original code
920  */
921 #define PERF_CPU_HRTIMER (1000 / HZ)
922 /*
923  * function must be called with interrupts disbled
924  */
925 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
926 {
927         struct perf_cpu_context *cpuctx;
928         int rotations = 0;
929
930         WARN_ON(!irqs_disabled());
931
932         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
933         rotations = perf_rotate_context(cpuctx);
934
935         raw_spin_lock(&cpuctx->hrtimer_lock);
936         if (rotations)
937                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
938         else
939                 cpuctx->hrtimer_active = 0;
940         raw_spin_unlock(&cpuctx->hrtimer_lock);
941
942         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
943 }
944
945 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
946 {
947         struct hrtimer *timer = &cpuctx->hrtimer;
948         struct pmu *pmu = cpuctx->ctx.pmu;
949         u64 interval;
950
951         /* no multiplexing needed for SW PMU */
952         if (pmu->task_ctx_nr == perf_sw_context)
953                 return;
954
955         /*
956          * check default is sane, if not set then force to
957          * default interval (1/tick)
958          */
959         interval = pmu->hrtimer_interval_ms;
960         if (interval < 1)
961                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
962
963         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
964
965         raw_spin_lock_init(&cpuctx->hrtimer_lock);
966         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
967         timer->function = perf_mux_hrtimer_handler;
968 }
969
970 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
971 {
972         struct hrtimer *timer = &cpuctx->hrtimer;
973         struct pmu *pmu = cpuctx->ctx.pmu;
974         unsigned long flags;
975
976         /* not for SW PMU */
977         if (pmu->task_ctx_nr == perf_sw_context)
978                 return 0;
979
980         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
981         if (!cpuctx->hrtimer_active) {
982                 cpuctx->hrtimer_active = 1;
983                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
984                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
985         }
986         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
987
988         return 0;
989 }
990
991 void perf_pmu_disable(struct pmu *pmu)
992 {
993         int *count = this_cpu_ptr(pmu->pmu_disable_count);
994         if (!(*count)++)
995                 pmu->pmu_disable(pmu);
996 }
997
998 void perf_pmu_enable(struct pmu *pmu)
999 {
1000         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1001         if (!--(*count))
1002                 pmu->pmu_enable(pmu);
1003 }
1004
1005 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1006
1007 /*
1008  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1009  * perf_event_task_tick() are fully serialized because they're strictly cpu
1010  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1011  * disabled, while perf_event_task_tick is called from IRQ context.
1012  */
1013 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1014 {
1015         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1016
1017         WARN_ON(!irqs_disabled());
1018
1019         WARN_ON(!list_empty(&ctx->active_ctx_list));
1020
1021         list_add(&ctx->active_ctx_list, head);
1022 }
1023
1024 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1025 {
1026         WARN_ON(!irqs_disabled());
1027
1028         WARN_ON(list_empty(&ctx->active_ctx_list));
1029
1030         list_del_init(&ctx->active_ctx_list);
1031 }
1032
1033 static void get_ctx(struct perf_event_context *ctx)
1034 {
1035         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1036 }
1037
1038 static void free_ctx(struct rcu_head *head)
1039 {
1040         struct perf_event_context *ctx;
1041
1042         ctx = container_of(head, struct perf_event_context, rcu_head);
1043         kfree(ctx->task_ctx_data);
1044         kfree(ctx);
1045 }
1046
1047 static void put_ctx(struct perf_event_context *ctx)
1048 {
1049         if (atomic_dec_and_test(&ctx->refcount)) {
1050                 if (ctx->parent_ctx)
1051                         put_ctx(ctx->parent_ctx);
1052                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1053                         put_task_struct(ctx->task);
1054                 call_rcu(&ctx->rcu_head, free_ctx);
1055         }
1056 }
1057
1058 /*
1059  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1060  * perf_pmu_migrate_context() we need some magic.
1061  *
1062  * Those places that change perf_event::ctx will hold both
1063  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1064  *
1065  * Lock ordering is by mutex address. There are two other sites where
1066  * perf_event_context::mutex nests and those are:
1067  *
1068  *  - perf_event_exit_task_context()    [ child , 0 ]
1069  *      perf_event_exit_event()
1070  *        put_event()                   [ parent, 1 ]
1071  *
1072  *  - perf_event_init_context()         [ parent, 0 ]
1073  *      inherit_task_group()
1074  *        inherit_group()
1075  *          inherit_event()
1076  *            perf_event_alloc()
1077  *              perf_init_event()
1078  *                perf_try_init_event() [ child , 1 ]
1079  *
1080  * While it appears there is an obvious deadlock here -- the parent and child
1081  * nesting levels are inverted between the two. This is in fact safe because
1082  * life-time rules separate them. That is an exiting task cannot fork, and a
1083  * spawning task cannot (yet) exit.
1084  *
1085  * But remember that that these are parent<->child context relations, and
1086  * migration does not affect children, therefore these two orderings should not
1087  * interact.
1088  *
1089  * The change in perf_event::ctx does not affect children (as claimed above)
1090  * because the sys_perf_event_open() case will install a new event and break
1091  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1092  * concerned with cpuctx and that doesn't have children.
1093  *
1094  * The places that change perf_event::ctx will issue:
1095  *
1096  *   perf_remove_from_context();
1097  *   synchronize_rcu();
1098  *   perf_install_in_context();
1099  *
1100  * to affect the change. The remove_from_context() + synchronize_rcu() should
1101  * quiesce the event, after which we can install it in the new location. This
1102  * means that only external vectors (perf_fops, prctl) can perturb the event
1103  * while in transit. Therefore all such accessors should also acquire
1104  * perf_event_context::mutex to serialize against this.
1105  *
1106  * However; because event->ctx can change while we're waiting to acquire
1107  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1108  * function.
1109  *
1110  * Lock order:
1111  *    cred_guard_mutex
1112  *      task_struct::perf_event_mutex
1113  *        perf_event_context::mutex
1114  *          perf_event::child_mutex;
1115  *            perf_event_context::lock
1116  *          perf_event::mmap_mutex
1117  *          mmap_sem
1118  */
1119 static struct perf_event_context *
1120 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1121 {
1122         struct perf_event_context *ctx;
1123
1124 again:
1125         rcu_read_lock();
1126         ctx = ACCESS_ONCE(event->ctx);
1127         if (!atomic_inc_not_zero(&ctx->refcount)) {
1128                 rcu_read_unlock();
1129                 goto again;
1130         }
1131         rcu_read_unlock();
1132
1133         mutex_lock_nested(&ctx->mutex, nesting);
1134         if (event->ctx != ctx) {
1135                 mutex_unlock(&ctx->mutex);
1136                 put_ctx(ctx);
1137                 goto again;
1138         }
1139
1140         return ctx;
1141 }
1142
1143 static inline struct perf_event_context *
1144 perf_event_ctx_lock(struct perf_event *event)
1145 {
1146         return perf_event_ctx_lock_nested(event, 0);
1147 }
1148
1149 static void perf_event_ctx_unlock(struct perf_event *event,
1150                                   struct perf_event_context *ctx)
1151 {
1152         mutex_unlock(&ctx->mutex);
1153         put_ctx(ctx);
1154 }
1155
1156 /*
1157  * This must be done under the ctx->lock, such as to serialize against
1158  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1159  * calling scheduler related locks and ctx->lock nests inside those.
1160  */
1161 static __must_check struct perf_event_context *
1162 unclone_ctx(struct perf_event_context *ctx)
1163 {
1164         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1165
1166         lockdep_assert_held(&ctx->lock);
1167
1168         if (parent_ctx)
1169                 ctx->parent_ctx = NULL;
1170         ctx->generation++;
1171
1172         return parent_ctx;
1173 }
1174
1175 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1176 {
1177         /*
1178          * only top level events have the pid namespace they were created in
1179          */
1180         if (event->parent)
1181                 event = event->parent;
1182
1183         return task_tgid_nr_ns(p, event->ns);
1184 }
1185
1186 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1187 {
1188         /*
1189          * only top level events have the pid namespace they were created in
1190          */
1191         if (event->parent)
1192                 event = event->parent;
1193
1194         return task_pid_nr_ns(p, event->ns);
1195 }
1196
1197 /*
1198  * If we inherit events we want to return the parent event id
1199  * to userspace.
1200  */
1201 static u64 primary_event_id(struct perf_event *event)
1202 {
1203         u64 id = event->id;
1204
1205         if (event->parent)
1206                 id = event->parent->id;
1207
1208         return id;
1209 }
1210
1211 /*
1212  * Get the perf_event_context for a task and lock it.
1213  *
1214  * This has to cope with with the fact that until it is locked,
1215  * the context could get moved to another task.
1216  */
1217 static struct perf_event_context *
1218 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1219 {
1220         struct perf_event_context *ctx;
1221
1222 retry:
1223         /*
1224          * One of the few rules of preemptible RCU is that one cannot do
1225          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1226          * part of the read side critical section was irqs-enabled -- see
1227          * rcu_read_unlock_special().
1228          *
1229          * Since ctx->lock nests under rq->lock we must ensure the entire read
1230          * side critical section has interrupts disabled.
1231          */
1232         local_irq_save(*flags);
1233         rcu_read_lock();
1234         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1235         if (ctx) {
1236                 /*
1237                  * If this context is a clone of another, it might
1238                  * get swapped for another underneath us by
1239                  * perf_event_task_sched_out, though the
1240                  * rcu_read_lock() protects us from any context
1241                  * getting freed.  Lock the context and check if it
1242                  * got swapped before we could get the lock, and retry
1243                  * if so.  If we locked the right context, then it
1244                  * can't get swapped on us any more.
1245                  */
1246                 raw_spin_lock(&ctx->lock);
1247                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1248                         raw_spin_unlock(&ctx->lock);
1249                         rcu_read_unlock();
1250                         local_irq_restore(*flags);
1251                         goto retry;
1252                 }
1253
1254                 if (ctx->task == TASK_TOMBSTONE ||
1255                     !atomic_inc_not_zero(&ctx->refcount)) {
1256                         raw_spin_unlock(&ctx->lock);
1257                         ctx = NULL;
1258                 } else {
1259                         WARN_ON_ONCE(ctx->task != task);
1260                 }
1261         }
1262         rcu_read_unlock();
1263         if (!ctx)
1264                 local_irq_restore(*flags);
1265         return ctx;
1266 }
1267
1268 /*
1269  * Get the context for a task and increment its pin_count so it
1270  * can't get swapped to another task.  This also increments its
1271  * reference count so that the context can't get freed.
1272  */
1273 static struct perf_event_context *
1274 perf_pin_task_context(struct task_struct *task, int ctxn)
1275 {
1276         struct perf_event_context *ctx;
1277         unsigned long flags;
1278
1279         ctx = perf_lock_task_context(task, ctxn, &flags);
1280         if (ctx) {
1281                 ++ctx->pin_count;
1282                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1283         }
1284         return ctx;
1285 }
1286
1287 static void perf_unpin_context(struct perf_event_context *ctx)
1288 {
1289         unsigned long flags;
1290
1291         raw_spin_lock_irqsave(&ctx->lock, flags);
1292         --ctx->pin_count;
1293         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1294 }
1295
1296 /*
1297  * Update the record of the current time in a context.
1298  */
1299 static void update_context_time(struct perf_event_context *ctx)
1300 {
1301         u64 now = perf_clock();
1302
1303         ctx->time += now - ctx->timestamp;
1304         ctx->timestamp = now;
1305 }
1306
1307 static u64 perf_event_time(struct perf_event *event)
1308 {
1309         struct perf_event_context *ctx = event->ctx;
1310
1311         if (is_cgroup_event(event))
1312                 return perf_cgroup_event_time(event);
1313
1314         return ctx ? ctx->time : 0;
1315 }
1316
1317 /*
1318  * Update the total_time_enabled and total_time_running fields for a event.
1319  */
1320 static void update_event_times(struct perf_event *event)
1321 {
1322         struct perf_event_context *ctx = event->ctx;
1323         u64 run_end;
1324
1325         lockdep_assert_held(&ctx->lock);
1326
1327         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1328             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1329                 return;
1330
1331         /*
1332          * in cgroup mode, time_enabled represents
1333          * the time the event was enabled AND active
1334          * tasks were in the monitored cgroup. This is
1335          * independent of the activity of the context as
1336          * there may be a mix of cgroup and non-cgroup events.
1337          *
1338          * That is why we treat cgroup events differently
1339          * here.
1340          */
1341         if (is_cgroup_event(event))
1342                 run_end = perf_cgroup_event_time(event);
1343         else if (ctx->is_active)
1344                 run_end = ctx->time;
1345         else
1346                 run_end = event->tstamp_stopped;
1347
1348         event->total_time_enabled = run_end - event->tstamp_enabled;
1349
1350         if (event->state == PERF_EVENT_STATE_INACTIVE)
1351                 run_end = event->tstamp_stopped;
1352         else
1353                 run_end = perf_event_time(event);
1354
1355         event->total_time_running = run_end - event->tstamp_running;
1356
1357 }
1358
1359 /*
1360  * Update total_time_enabled and total_time_running for all events in a group.
1361  */
1362 static void update_group_times(struct perf_event *leader)
1363 {
1364         struct perf_event *event;
1365
1366         update_event_times(leader);
1367         list_for_each_entry(event, &leader->sibling_list, group_entry)
1368                 update_event_times(event);
1369 }
1370
1371 static struct list_head *
1372 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1373 {
1374         if (event->attr.pinned)
1375                 return &ctx->pinned_groups;
1376         else
1377                 return &ctx->flexible_groups;
1378 }
1379
1380 /*
1381  * Add a event from the lists for its context.
1382  * Must be called with ctx->mutex and ctx->lock held.
1383  */
1384 static void
1385 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1386 {
1387         lockdep_assert_held(&ctx->lock);
1388
1389         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1390         event->attach_state |= PERF_ATTACH_CONTEXT;
1391
1392         /*
1393          * If we're a stand alone event or group leader, we go to the context
1394          * list, group events are kept attached to the group so that
1395          * perf_group_detach can, at all times, locate all siblings.
1396          */
1397         if (event->group_leader == event) {
1398                 struct list_head *list;
1399
1400                 if (is_software_event(event))
1401                         event->group_flags |= PERF_GROUP_SOFTWARE;
1402
1403                 list = ctx_group_list(event, ctx);
1404                 list_add_tail(&event->group_entry, list);
1405         }
1406
1407         if (is_cgroup_event(event))
1408                 ctx->nr_cgroups++;
1409
1410         list_add_rcu(&event->event_entry, &ctx->event_list);
1411         ctx->nr_events++;
1412         if (event->attr.inherit_stat)
1413                 ctx->nr_stat++;
1414
1415         ctx->generation++;
1416 }
1417
1418 /*
1419  * Initialize event state based on the perf_event_attr::disabled.
1420  */
1421 static inline void perf_event__state_init(struct perf_event *event)
1422 {
1423         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1424                                               PERF_EVENT_STATE_INACTIVE;
1425 }
1426
1427 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1428 {
1429         int entry = sizeof(u64); /* value */
1430         int size = 0;
1431         int nr = 1;
1432
1433         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1434                 size += sizeof(u64);
1435
1436         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1437                 size += sizeof(u64);
1438
1439         if (event->attr.read_format & PERF_FORMAT_ID)
1440                 entry += sizeof(u64);
1441
1442         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1443                 nr += nr_siblings;
1444                 size += sizeof(u64);
1445         }
1446
1447         size += entry * nr;
1448         event->read_size = size;
1449 }
1450
1451 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1452 {
1453         struct perf_sample_data *data;
1454         u16 size = 0;
1455
1456         if (sample_type & PERF_SAMPLE_IP)
1457                 size += sizeof(data->ip);
1458
1459         if (sample_type & PERF_SAMPLE_ADDR)
1460                 size += sizeof(data->addr);
1461
1462         if (sample_type & PERF_SAMPLE_PERIOD)
1463                 size += sizeof(data->period);
1464
1465         if (sample_type & PERF_SAMPLE_WEIGHT)
1466                 size += sizeof(data->weight);
1467
1468         if (sample_type & PERF_SAMPLE_READ)
1469                 size += event->read_size;
1470
1471         if (sample_type & PERF_SAMPLE_DATA_SRC)
1472                 size += sizeof(data->data_src.val);
1473
1474         if (sample_type & PERF_SAMPLE_TRANSACTION)
1475                 size += sizeof(data->txn);
1476
1477         event->header_size = size;
1478 }
1479
1480 /*
1481  * Called at perf_event creation and when events are attached/detached from a
1482  * group.
1483  */
1484 static void perf_event__header_size(struct perf_event *event)
1485 {
1486         __perf_event_read_size(event,
1487                                event->group_leader->nr_siblings);
1488         __perf_event_header_size(event, event->attr.sample_type);
1489 }
1490
1491 static void perf_event__id_header_size(struct perf_event *event)
1492 {
1493         struct perf_sample_data *data;
1494         u64 sample_type = event->attr.sample_type;
1495         u16 size = 0;
1496
1497         if (sample_type & PERF_SAMPLE_TID)
1498                 size += sizeof(data->tid_entry);
1499
1500         if (sample_type & PERF_SAMPLE_TIME)
1501                 size += sizeof(data->time);
1502
1503         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1504                 size += sizeof(data->id);
1505
1506         if (sample_type & PERF_SAMPLE_ID)
1507                 size += sizeof(data->id);
1508
1509         if (sample_type & PERF_SAMPLE_STREAM_ID)
1510                 size += sizeof(data->stream_id);
1511
1512         if (sample_type & PERF_SAMPLE_CPU)
1513                 size += sizeof(data->cpu_entry);
1514
1515         event->id_header_size = size;
1516 }
1517
1518 static bool perf_event_validate_size(struct perf_event *event)
1519 {
1520         /*
1521          * The values computed here will be over-written when we actually
1522          * attach the event.
1523          */
1524         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1525         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1526         perf_event__id_header_size(event);
1527
1528         /*
1529          * Sum the lot; should not exceed the 64k limit we have on records.
1530          * Conservative limit to allow for callchains and other variable fields.
1531          */
1532         if (event->read_size + event->header_size +
1533             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1534                 return false;
1535
1536         return true;
1537 }
1538
1539 static void perf_group_attach(struct perf_event *event)
1540 {
1541         struct perf_event *group_leader = event->group_leader, *pos;
1542
1543         /*
1544          * We can have double attach due to group movement in perf_event_open.
1545          */
1546         if (event->attach_state & PERF_ATTACH_GROUP)
1547                 return;
1548
1549         event->attach_state |= PERF_ATTACH_GROUP;
1550
1551         if (group_leader == event)
1552                 return;
1553
1554         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1555
1556         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1557                         !is_software_event(event))
1558                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1559
1560         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1561         group_leader->nr_siblings++;
1562
1563         perf_event__header_size(group_leader);
1564
1565         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1566                 perf_event__header_size(pos);
1567 }
1568
1569 /*
1570  * Remove a event from the lists for its context.
1571  * Must be called with ctx->mutex and ctx->lock held.
1572  */
1573 static void
1574 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1575 {
1576         struct perf_cpu_context *cpuctx;
1577
1578         WARN_ON_ONCE(event->ctx != ctx);
1579         lockdep_assert_held(&ctx->lock);
1580
1581         /*
1582          * We can have double detach due to exit/hot-unplug + close.
1583          */
1584         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1585                 return;
1586
1587         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1588
1589         if (is_cgroup_event(event)) {
1590                 ctx->nr_cgroups--;
1591                 /*
1592                  * Because cgroup events are always per-cpu events, this will
1593                  * always be called from the right CPU.
1594                  */
1595                 cpuctx = __get_cpu_context(ctx);
1596                 /*
1597                  * If there are no more cgroup events then clear cgrp to avoid
1598                  * stale pointer in update_cgrp_time_from_cpuctx().
1599                  */
1600                 if (!ctx->nr_cgroups)
1601                         cpuctx->cgrp = NULL;
1602         }
1603
1604         ctx->nr_events--;
1605         if (event->attr.inherit_stat)
1606                 ctx->nr_stat--;
1607
1608         list_del_rcu(&event->event_entry);
1609
1610         if (event->group_leader == event)
1611                 list_del_init(&event->group_entry);
1612
1613         update_group_times(event);
1614
1615         /*
1616          * If event was in error state, then keep it
1617          * that way, otherwise bogus counts will be
1618          * returned on read(). The only way to get out
1619          * of error state is by explicit re-enabling
1620          * of the event
1621          */
1622         if (event->state > PERF_EVENT_STATE_OFF)
1623                 event->state = PERF_EVENT_STATE_OFF;
1624
1625         ctx->generation++;
1626 }
1627
1628 static void perf_group_detach(struct perf_event *event)
1629 {
1630         struct perf_event *sibling, *tmp;
1631         struct list_head *list = NULL;
1632
1633         /*
1634          * We can have double detach due to exit/hot-unplug + close.
1635          */
1636         if (!(event->attach_state & PERF_ATTACH_GROUP))
1637                 return;
1638
1639         event->attach_state &= ~PERF_ATTACH_GROUP;
1640
1641         /*
1642          * If this is a sibling, remove it from its group.
1643          */
1644         if (event->group_leader != event) {
1645                 list_del_init(&event->group_entry);
1646                 event->group_leader->nr_siblings--;
1647                 goto out;
1648         }
1649
1650         if (!list_empty(&event->group_entry))
1651                 list = &event->group_entry;
1652
1653         /*
1654          * If this was a group event with sibling events then
1655          * upgrade the siblings to singleton events by adding them
1656          * to whatever list we are on.
1657          */
1658         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1659                 if (list)
1660                         list_move_tail(&sibling->group_entry, list);
1661                 sibling->group_leader = sibling;
1662
1663                 /* Inherit group flags from the previous leader */
1664                 sibling->group_flags = event->group_flags;
1665
1666                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1667         }
1668
1669 out:
1670         perf_event__header_size(event->group_leader);
1671
1672         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1673                 perf_event__header_size(tmp);
1674 }
1675
1676 static bool is_orphaned_event(struct perf_event *event)
1677 {
1678         return event->state == PERF_EVENT_STATE_DEAD;
1679 }
1680
1681 static inline int pmu_filter_match(struct perf_event *event)
1682 {
1683         struct pmu *pmu = event->pmu;
1684         return pmu->filter_match ? pmu->filter_match(event) : 1;
1685 }
1686
1687 static inline int
1688 event_filter_match(struct perf_event *event)
1689 {
1690         return (event->cpu == -1 || event->cpu == smp_processor_id())
1691             && perf_cgroup_match(event) && pmu_filter_match(event);
1692 }
1693
1694 static void
1695 event_sched_out(struct perf_event *event,
1696                   struct perf_cpu_context *cpuctx,
1697                   struct perf_event_context *ctx)
1698 {
1699         u64 tstamp = perf_event_time(event);
1700         u64 delta;
1701
1702         WARN_ON_ONCE(event->ctx != ctx);
1703         lockdep_assert_held(&ctx->lock);
1704
1705         /*
1706          * An event which could not be activated because of
1707          * filter mismatch still needs to have its timings
1708          * maintained, otherwise bogus information is return
1709          * via read() for time_enabled, time_running:
1710          */
1711         if (event->state == PERF_EVENT_STATE_INACTIVE
1712             && !event_filter_match(event)) {
1713                 delta = tstamp - event->tstamp_stopped;
1714                 event->tstamp_running += delta;
1715                 event->tstamp_stopped = tstamp;
1716         }
1717
1718         if (event->state != PERF_EVENT_STATE_ACTIVE)
1719                 return;
1720
1721         perf_pmu_disable(event->pmu);
1722
1723         event->tstamp_stopped = tstamp;
1724         event->pmu->del(event, 0);
1725         event->oncpu = -1;
1726         event->state = PERF_EVENT_STATE_INACTIVE;
1727         if (event->pending_disable) {
1728                 event->pending_disable = 0;
1729                 event->state = PERF_EVENT_STATE_OFF;
1730         }
1731
1732         if (!is_software_event(event))
1733                 cpuctx->active_oncpu--;
1734         if (!--ctx->nr_active)
1735                 perf_event_ctx_deactivate(ctx);
1736         if (event->attr.freq && event->attr.sample_freq)
1737                 ctx->nr_freq--;
1738         if (event->attr.exclusive || !cpuctx->active_oncpu)
1739                 cpuctx->exclusive = 0;
1740
1741         perf_pmu_enable(event->pmu);
1742 }
1743
1744 static void
1745 group_sched_out(struct perf_event *group_event,
1746                 struct perf_cpu_context *cpuctx,
1747                 struct perf_event_context *ctx)
1748 {
1749         struct perf_event *event;
1750         int state = group_event->state;
1751
1752         event_sched_out(group_event, cpuctx, ctx);
1753
1754         /*
1755          * Schedule out siblings (if any):
1756          */
1757         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1758                 event_sched_out(event, cpuctx, ctx);
1759
1760         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1761                 cpuctx->exclusive = 0;
1762 }
1763
1764 #define DETACH_GROUP    0x01UL
1765
1766 /*
1767  * Cross CPU call to remove a performance event
1768  *
1769  * We disable the event on the hardware level first. After that we
1770  * remove it from the context list.
1771  */
1772 static void
1773 __perf_remove_from_context(struct perf_event *event,
1774                            struct perf_cpu_context *cpuctx,
1775                            struct perf_event_context *ctx,
1776                            void *info)
1777 {
1778         unsigned long flags = (unsigned long)info;
1779
1780         event_sched_out(event, cpuctx, ctx);
1781         if (flags & DETACH_GROUP)
1782                 perf_group_detach(event);
1783         list_del_event(event, ctx);
1784
1785         if (!ctx->nr_events && ctx->is_active) {
1786                 ctx->is_active = 0;
1787                 if (ctx->task) {
1788                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1789                         cpuctx->task_ctx = NULL;
1790                 }
1791         }
1792 }
1793
1794 /*
1795  * Remove the event from a task's (or a CPU's) list of events.
1796  *
1797  * If event->ctx is a cloned context, callers must make sure that
1798  * every task struct that event->ctx->task could possibly point to
1799  * remains valid.  This is OK when called from perf_release since
1800  * that only calls us on the top-level context, which can't be a clone.
1801  * When called from perf_event_exit_task, it's OK because the
1802  * context has been detached from its task.
1803  */
1804 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1805 {
1806         lockdep_assert_held(&event->ctx->mutex);
1807
1808         event_function_call(event, __perf_remove_from_context, (void *)flags);
1809 }
1810
1811 /*
1812  * Cross CPU call to disable a performance event
1813  */
1814 static void __perf_event_disable(struct perf_event *event,
1815                                  struct perf_cpu_context *cpuctx,
1816                                  struct perf_event_context *ctx,
1817                                  void *info)
1818 {
1819         if (event->state < PERF_EVENT_STATE_INACTIVE)
1820                 return;
1821
1822         update_context_time(ctx);
1823         update_cgrp_time_from_event(event);
1824         update_group_times(event);
1825         if (event == event->group_leader)
1826                 group_sched_out(event, cpuctx, ctx);
1827         else
1828                 event_sched_out(event, cpuctx, ctx);
1829         event->state = PERF_EVENT_STATE_OFF;
1830 }
1831
1832 /*
1833  * Disable a event.
1834  *
1835  * If event->ctx is a cloned context, callers must make sure that
1836  * every task struct that event->ctx->task could possibly point to
1837  * remains valid.  This condition is satisifed when called through
1838  * perf_event_for_each_child or perf_event_for_each because they
1839  * hold the top-level event's child_mutex, so any descendant that
1840  * goes to exit will block in perf_event_exit_event().
1841  *
1842  * When called from perf_pending_event it's OK because event->ctx
1843  * is the current context on this CPU and preemption is disabled,
1844  * hence we can't get into perf_event_task_sched_out for this context.
1845  */
1846 static void _perf_event_disable(struct perf_event *event)
1847 {
1848         struct perf_event_context *ctx = event->ctx;
1849
1850         raw_spin_lock_irq(&ctx->lock);
1851         if (event->state <= PERF_EVENT_STATE_OFF) {
1852                 raw_spin_unlock_irq(&ctx->lock);
1853                 return;
1854         }
1855         raw_spin_unlock_irq(&ctx->lock);
1856
1857         event_function_call(event, __perf_event_disable, NULL);
1858 }
1859
1860 void perf_event_disable_local(struct perf_event *event)
1861 {
1862         event_function_local(event, __perf_event_disable, NULL);
1863 }
1864
1865 /*
1866  * Strictly speaking kernel users cannot create groups and therefore this
1867  * interface does not need the perf_event_ctx_lock() magic.
1868  */
1869 void perf_event_disable(struct perf_event *event)
1870 {
1871         struct perf_event_context *ctx;
1872
1873         ctx = perf_event_ctx_lock(event);
1874         _perf_event_disable(event);
1875         perf_event_ctx_unlock(event, ctx);
1876 }
1877 EXPORT_SYMBOL_GPL(perf_event_disable);
1878
1879 static void perf_set_shadow_time(struct perf_event *event,
1880                                  struct perf_event_context *ctx,
1881                                  u64 tstamp)
1882 {
1883         /*
1884          * use the correct time source for the time snapshot
1885          *
1886          * We could get by without this by leveraging the
1887          * fact that to get to this function, the caller
1888          * has most likely already called update_context_time()
1889          * and update_cgrp_time_xx() and thus both timestamp
1890          * are identical (or very close). Given that tstamp is,
1891          * already adjusted for cgroup, we could say that:
1892          *    tstamp - ctx->timestamp
1893          * is equivalent to
1894          *    tstamp - cgrp->timestamp.
1895          *
1896          * Then, in perf_output_read(), the calculation would
1897          * work with no changes because:
1898          * - event is guaranteed scheduled in
1899          * - no scheduled out in between
1900          * - thus the timestamp would be the same
1901          *
1902          * But this is a bit hairy.
1903          *
1904          * So instead, we have an explicit cgroup call to remain
1905          * within the time time source all along. We believe it
1906          * is cleaner and simpler to understand.
1907          */
1908         if (is_cgroup_event(event))
1909                 perf_cgroup_set_shadow_time(event, tstamp);
1910         else
1911                 event->shadow_ctx_time = tstamp - ctx->timestamp;
1912 }
1913
1914 #define MAX_INTERRUPTS (~0ULL)
1915
1916 static void perf_log_throttle(struct perf_event *event, int enable);
1917 static void perf_log_itrace_start(struct perf_event *event);
1918
1919 static int
1920 event_sched_in(struct perf_event *event,
1921                  struct perf_cpu_context *cpuctx,
1922                  struct perf_event_context *ctx)
1923 {
1924         u64 tstamp = perf_event_time(event);
1925         int ret = 0;
1926
1927         lockdep_assert_held(&ctx->lock);
1928
1929         if (event->state <= PERF_EVENT_STATE_OFF)
1930                 return 0;
1931
1932         WRITE_ONCE(event->oncpu, smp_processor_id());
1933         /*
1934          * Order event::oncpu write to happen before the ACTIVE state
1935          * is visible.
1936          */
1937         smp_wmb();
1938         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
1939
1940         /*
1941          * Unthrottle events, since we scheduled we might have missed several
1942          * ticks already, also for a heavily scheduling task there is little
1943          * guarantee it'll get a tick in a timely manner.
1944          */
1945         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1946                 perf_log_throttle(event, 1);
1947                 event->hw.interrupts = 0;
1948         }
1949
1950         /*
1951          * The new state must be visible before we turn it on in the hardware:
1952          */
1953         smp_wmb();
1954
1955         perf_pmu_disable(event->pmu);
1956
1957         perf_set_shadow_time(event, ctx, tstamp);
1958
1959         perf_log_itrace_start(event);
1960
1961         if (event->pmu->add(event, PERF_EF_START)) {
1962                 event->state = PERF_EVENT_STATE_INACTIVE;
1963                 event->oncpu = -1;
1964                 ret = -EAGAIN;
1965                 goto out;
1966         }
1967
1968         event->tstamp_running += tstamp - event->tstamp_stopped;
1969
1970         if (!is_software_event(event))
1971                 cpuctx->active_oncpu++;
1972         if (!ctx->nr_active++)
1973                 perf_event_ctx_activate(ctx);
1974         if (event->attr.freq && event->attr.sample_freq)
1975                 ctx->nr_freq++;
1976
1977         if (event->attr.exclusive)
1978                 cpuctx->exclusive = 1;
1979
1980 out:
1981         perf_pmu_enable(event->pmu);
1982
1983         return ret;
1984 }
1985
1986 static int
1987 group_sched_in(struct perf_event *group_event,
1988                struct perf_cpu_context *cpuctx,
1989                struct perf_event_context *ctx)
1990 {
1991         struct perf_event *event, *partial_group = NULL;
1992         struct pmu *pmu = ctx->pmu;
1993         u64 now = ctx->time;
1994         bool simulate = false;
1995
1996         if (group_event->state == PERF_EVENT_STATE_OFF)
1997                 return 0;
1998
1999         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2000
2001         if (event_sched_in(group_event, cpuctx, ctx)) {
2002                 pmu->cancel_txn(pmu);
2003                 perf_mux_hrtimer_restart(cpuctx);
2004                 return -EAGAIN;
2005         }
2006
2007         /*
2008          * Schedule in siblings as one group (if any):
2009          */
2010         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2011                 if (event_sched_in(event, cpuctx, ctx)) {
2012                         partial_group = event;
2013                         goto group_error;
2014                 }
2015         }
2016
2017         if (!pmu->commit_txn(pmu))
2018                 return 0;
2019
2020 group_error:
2021         /*
2022          * Groups can be scheduled in as one unit only, so undo any
2023          * partial group before returning:
2024          * The events up to the failed event are scheduled out normally,
2025          * tstamp_stopped will be updated.
2026          *
2027          * The failed events and the remaining siblings need to have
2028          * their timings updated as if they had gone thru event_sched_in()
2029          * and event_sched_out(). This is required to get consistent timings
2030          * across the group. This also takes care of the case where the group
2031          * could never be scheduled by ensuring tstamp_stopped is set to mark
2032          * the time the event was actually stopped, such that time delta
2033          * calculation in update_event_times() is correct.
2034          */
2035         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2036                 if (event == partial_group)
2037                         simulate = true;
2038
2039                 if (simulate) {
2040                         event->tstamp_running += now - event->tstamp_stopped;
2041                         event->tstamp_stopped = now;
2042                 } else {
2043                         event_sched_out(event, cpuctx, ctx);
2044                 }
2045         }
2046         event_sched_out(group_event, cpuctx, ctx);
2047
2048         pmu->cancel_txn(pmu);
2049
2050         perf_mux_hrtimer_restart(cpuctx);
2051
2052         return -EAGAIN;
2053 }
2054
2055 /*
2056  * Work out whether we can put this event group on the CPU now.
2057  */
2058 static int group_can_go_on(struct perf_event *event,
2059                            struct perf_cpu_context *cpuctx,
2060                            int can_add_hw)
2061 {
2062         /*
2063          * Groups consisting entirely of software events can always go on.
2064          */
2065         if (event->group_flags & PERF_GROUP_SOFTWARE)
2066                 return 1;
2067         /*
2068          * If an exclusive group is already on, no other hardware
2069          * events can go on.
2070          */
2071         if (cpuctx->exclusive)
2072                 return 0;
2073         /*
2074          * If this group is exclusive and there are already
2075          * events on the CPU, it can't go on.
2076          */
2077         if (event->attr.exclusive && cpuctx->active_oncpu)
2078                 return 0;
2079         /*
2080          * Otherwise, try to add it if all previous groups were able
2081          * to go on.
2082          */
2083         return can_add_hw;
2084 }
2085
2086 static void add_event_to_ctx(struct perf_event *event,
2087                                struct perf_event_context *ctx)
2088 {
2089         u64 tstamp = perf_event_time(event);
2090
2091         list_add_event(event, ctx);
2092         perf_group_attach(event);
2093         event->tstamp_enabled = tstamp;
2094         event->tstamp_running = tstamp;
2095         event->tstamp_stopped = tstamp;
2096 }
2097
2098 static void ctx_sched_out(struct perf_event_context *ctx,
2099                           struct perf_cpu_context *cpuctx,
2100                           enum event_type_t event_type);
2101 static void
2102 ctx_sched_in(struct perf_event_context *ctx,
2103              struct perf_cpu_context *cpuctx,
2104              enum event_type_t event_type,
2105              struct task_struct *task);
2106
2107 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2108                                struct perf_event_context *ctx)
2109 {
2110         if (!cpuctx->task_ctx)
2111                 return;
2112
2113         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2114                 return;
2115
2116         ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2117 }
2118
2119 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2120                                 struct perf_event_context *ctx,
2121                                 struct task_struct *task)
2122 {
2123         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2124         if (ctx)
2125                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2126         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2127         if (ctx)
2128                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2129 }
2130
2131 static void ctx_resched(struct perf_cpu_context *cpuctx,
2132                         struct perf_event_context *task_ctx)
2133 {
2134         perf_pmu_disable(cpuctx->ctx.pmu);
2135         if (task_ctx)
2136                 task_ctx_sched_out(cpuctx, task_ctx);
2137         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2138         perf_event_sched_in(cpuctx, task_ctx, current);
2139         perf_pmu_enable(cpuctx->ctx.pmu);
2140 }
2141
2142 /*
2143  * Cross CPU call to install and enable a performance event
2144  *
2145  * Very similar to remote_function() + event_function() but cannot assume that
2146  * things like ctx->is_active and cpuctx->task_ctx are set.
2147  */
2148 static int  __perf_install_in_context(void *info)
2149 {
2150         struct perf_event *event = info;
2151         struct perf_event_context *ctx = event->ctx;
2152         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2153         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2154         bool activate = true;
2155         int ret = 0;
2156
2157         raw_spin_lock(&cpuctx->ctx.lock);
2158         if (ctx->task) {
2159                 raw_spin_lock(&ctx->lock);
2160                 task_ctx = ctx;
2161
2162                 /* If we're on the wrong CPU, try again */
2163                 if (task_cpu(ctx->task) != smp_processor_id()) {
2164                         ret = -ESRCH;
2165                         goto unlock;
2166                 }
2167
2168                 /*
2169                  * If we're on the right CPU, see if the task we target is
2170                  * current, if not we don't have to activate the ctx, a future
2171                  * context switch will do that for us.
2172                  */
2173                 if (ctx->task != current)
2174                         activate = false;
2175                 else
2176                         WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2177
2178         } else if (task_ctx) {
2179                 raw_spin_lock(&task_ctx->lock);
2180         }
2181
2182         if (activate) {
2183                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2184                 add_event_to_ctx(event, ctx);
2185                 ctx_resched(cpuctx, task_ctx);
2186         } else {
2187                 add_event_to_ctx(event, ctx);
2188         }
2189
2190 unlock:
2191         perf_ctx_unlock(cpuctx, task_ctx);
2192
2193         return ret;
2194 }
2195
2196 /*
2197  * Attach a performance event to a context.
2198  *
2199  * Very similar to event_function_call, see comment there.
2200  */
2201 static void
2202 perf_install_in_context(struct perf_event_context *ctx,
2203                         struct perf_event *event,
2204                         int cpu)
2205 {
2206         struct task_struct *task = READ_ONCE(ctx->task);
2207
2208         lockdep_assert_held(&ctx->mutex);
2209
2210         event->ctx = ctx;
2211         if (event->cpu != -1)
2212                 event->cpu = cpu;
2213
2214         if (!task) {
2215                 cpu_function_call(cpu, __perf_install_in_context, event);
2216                 return;
2217         }
2218
2219         /*
2220          * Should not happen, we validate the ctx is still alive before calling.
2221          */
2222         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2223                 return;
2224
2225         /*
2226          * Installing events is tricky because we cannot rely on ctx->is_active
2227          * to be set in case this is the nr_events 0 -> 1 transition.
2228          */
2229 again:
2230         /*
2231          * Cannot use task_function_call() because we need to run on the task's
2232          * CPU regardless of whether its current or not.
2233          */
2234         if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2235                 return;
2236
2237         raw_spin_lock_irq(&ctx->lock);
2238         task = ctx->task;
2239         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2240                 /*
2241                  * Cannot happen because we already checked above (which also
2242                  * cannot happen), and we hold ctx->mutex, which serializes us
2243                  * against perf_event_exit_task_context().
2244                  */
2245                 raw_spin_unlock_irq(&ctx->lock);
2246                 return;
2247         }
2248         raw_spin_unlock_irq(&ctx->lock);
2249         /*
2250          * Since !ctx->is_active doesn't mean anything, we must IPI
2251          * unconditionally.
2252          */
2253         goto again;
2254 }
2255
2256 /*
2257  * Put a event into inactive state and update time fields.
2258  * Enabling the leader of a group effectively enables all
2259  * the group members that aren't explicitly disabled, so we
2260  * have to update their ->tstamp_enabled also.
2261  * Note: this works for group members as well as group leaders
2262  * since the non-leader members' sibling_lists will be empty.
2263  */
2264 static void __perf_event_mark_enabled(struct perf_event *event)
2265 {
2266         struct perf_event *sub;
2267         u64 tstamp = perf_event_time(event);
2268
2269         event->state = PERF_EVENT_STATE_INACTIVE;
2270         event->tstamp_enabled = tstamp - event->total_time_enabled;
2271         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2272                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2273                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2274         }
2275 }
2276
2277 /*
2278  * Cross CPU call to enable a performance event
2279  */
2280 static void __perf_event_enable(struct perf_event *event,
2281                                 struct perf_cpu_context *cpuctx,
2282                                 struct perf_event_context *ctx,
2283                                 void *info)
2284 {
2285         struct perf_event *leader = event->group_leader;
2286         struct perf_event_context *task_ctx;
2287
2288         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2289             event->state <= PERF_EVENT_STATE_ERROR)
2290                 return;
2291
2292         if (ctx->is_active)
2293                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2294
2295         __perf_event_mark_enabled(event);
2296
2297         if (!ctx->is_active)
2298                 return;
2299
2300         if (!event_filter_match(event)) {
2301                 if (is_cgroup_event(event))
2302                         perf_cgroup_defer_enabled(event);
2303                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2304                 return;
2305         }
2306
2307         /*
2308          * If the event is in a group and isn't the group leader,
2309          * then don't put it on unless the group is on.
2310          */
2311         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2312                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2313                 return;
2314         }
2315
2316         task_ctx = cpuctx->task_ctx;
2317         if (ctx->task)
2318                 WARN_ON_ONCE(task_ctx != ctx);
2319
2320         ctx_resched(cpuctx, task_ctx);
2321 }
2322
2323 /*
2324  * Enable a event.
2325  *
2326  * If event->ctx is a cloned context, callers must make sure that
2327  * every task struct that event->ctx->task could possibly point to
2328  * remains valid.  This condition is satisfied when called through
2329  * perf_event_for_each_child or perf_event_for_each as described
2330  * for perf_event_disable.
2331  */
2332 static void _perf_event_enable(struct perf_event *event)
2333 {
2334         struct perf_event_context *ctx = event->ctx;
2335
2336         raw_spin_lock_irq(&ctx->lock);
2337         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2338             event->state <  PERF_EVENT_STATE_ERROR) {
2339                 raw_spin_unlock_irq(&ctx->lock);
2340                 return;
2341         }
2342
2343         /*
2344          * If the event is in error state, clear that first.
2345          *
2346          * That way, if we see the event in error state below, we know that it
2347          * has gone back into error state, as distinct from the task having
2348          * been scheduled away before the cross-call arrived.
2349          */
2350         if (event->state == PERF_EVENT_STATE_ERROR)
2351                 event->state = PERF_EVENT_STATE_OFF;
2352         raw_spin_unlock_irq(&ctx->lock);
2353
2354         event_function_call(event, __perf_event_enable, NULL);
2355 }
2356
2357 /*
2358  * See perf_event_disable();
2359  */
2360 void perf_event_enable(struct perf_event *event)
2361 {
2362         struct perf_event_context *ctx;
2363
2364         ctx = perf_event_ctx_lock(event);
2365         _perf_event_enable(event);
2366         perf_event_ctx_unlock(event, ctx);
2367 }
2368 EXPORT_SYMBOL_GPL(perf_event_enable);
2369
2370 struct stop_event_data {
2371         struct perf_event       *event;
2372         unsigned int            restart;
2373 };
2374
2375 static int __perf_event_stop(void *info)
2376 {
2377         struct stop_event_data *sd = info;
2378         struct perf_event *event = sd->event;
2379
2380         /* if it's already INACTIVE, do nothing */
2381         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2382                 return 0;
2383
2384         /* matches smp_wmb() in event_sched_in() */
2385         smp_rmb();
2386
2387         /*
2388          * There is a window with interrupts enabled before we get here,
2389          * so we need to check again lest we try to stop another CPU's event.
2390          */
2391         if (READ_ONCE(event->oncpu) != smp_processor_id())
2392                 return -EAGAIN;
2393
2394         event->pmu->stop(event, PERF_EF_UPDATE);
2395
2396         /*
2397          * May race with the actual stop (through perf_pmu_output_stop()),
2398          * but it is only used for events with AUX ring buffer, and such
2399          * events will refuse to restart because of rb::aux_mmap_count==0,
2400          * see comments in perf_aux_output_begin().
2401          *
2402          * Since this is happening on a event-local CPU, no trace is lost
2403          * while restarting.
2404          */
2405         if (sd->restart)
2406                 event->pmu->start(event, PERF_EF_START);
2407
2408         return 0;
2409 }
2410
2411 static int perf_event_restart(struct perf_event *event)
2412 {
2413         struct stop_event_data sd = {
2414                 .event          = event,
2415                 .restart        = 1,
2416         };
2417         int ret = 0;
2418
2419         do {
2420                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2421                         return 0;
2422
2423                 /* matches smp_wmb() in event_sched_in() */
2424                 smp_rmb();
2425
2426                 /*
2427                  * We only want to restart ACTIVE events, so if the event goes
2428                  * inactive here (event->oncpu==-1), there's nothing more to do;
2429                  * fall through with ret==-ENXIO.
2430                  */
2431                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2432                                         __perf_event_stop, &sd);
2433         } while (ret == -EAGAIN);
2434
2435         return ret;
2436 }
2437
2438 /*
2439  * In order to contain the amount of racy and tricky in the address filter
2440  * configuration management, it is a two part process:
2441  *
2442  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2443  *      we update the addresses of corresponding vmas in
2444  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2445  * (p2) when an event is scheduled in (pmu::add), it calls
2446  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2447  *      if the generation has changed since the previous call.
2448  *
2449  * If (p1) happens while the event is active, we restart it to force (p2).
2450  *
2451  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2452  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2453  *     ioctl;
2454  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2455  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2456  *     for reading;
2457  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2458  *     of exec.
2459  */
2460 void perf_event_addr_filters_sync(struct perf_event *event)
2461 {
2462         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2463
2464         if (!has_addr_filter(event))
2465                 return;
2466
2467         raw_spin_lock(&ifh->lock);
2468         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2469                 event->pmu->addr_filters_sync(event);
2470                 event->hw.addr_filters_gen = event->addr_filters_gen;
2471         }
2472         raw_spin_unlock(&ifh->lock);
2473 }
2474 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2475
2476 static int _perf_event_refresh(struct perf_event *event, int refresh)
2477 {
2478         /*
2479          * not supported on inherited events
2480          */
2481         if (event->attr.inherit || !is_sampling_event(event))
2482                 return -EINVAL;
2483
2484         atomic_add(refresh, &event->event_limit);
2485         _perf_event_enable(event);
2486
2487         return 0;
2488 }
2489
2490 /*
2491  * See perf_event_disable()
2492  */
2493 int perf_event_refresh(struct perf_event *event, int refresh)
2494 {
2495         struct perf_event_context *ctx;
2496         int ret;
2497
2498         ctx = perf_event_ctx_lock(event);
2499         ret = _perf_event_refresh(event, refresh);
2500         perf_event_ctx_unlock(event, ctx);
2501
2502         return ret;
2503 }
2504 EXPORT_SYMBOL_GPL(perf_event_refresh);
2505
2506 static void ctx_sched_out(struct perf_event_context *ctx,
2507                           struct perf_cpu_context *cpuctx,
2508                           enum event_type_t event_type)
2509 {
2510         int is_active = ctx->is_active;
2511         struct perf_event *event;
2512
2513         lockdep_assert_held(&ctx->lock);
2514
2515         if (likely(!ctx->nr_events)) {
2516                 /*
2517                  * See __perf_remove_from_context().
2518                  */
2519                 WARN_ON_ONCE(ctx->is_active);
2520                 if (ctx->task)
2521                         WARN_ON_ONCE(cpuctx->task_ctx);
2522                 return;
2523         }
2524
2525         ctx->is_active &= ~event_type;
2526         if (!(ctx->is_active & EVENT_ALL))
2527                 ctx->is_active = 0;
2528
2529         if (ctx->task) {
2530                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2531                 if (!ctx->is_active)
2532                         cpuctx->task_ctx = NULL;
2533         }
2534
2535         /*
2536          * Always update time if it was set; not only when it changes.
2537          * Otherwise we can 'forget' to update time for any but the last
2538          * context we sched out. For example:
2539          *
2540          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2541          *   ctx_sched_out(.event_type = EVENT_PINNED)
2542          *
2543          * would only update time for the pinned events.
2544          */
2545         if (is_active & EVENT_TIME) {
2546                 /* update (and stop) ctx time */
2547                 update_context_time(ctx);
2548                 update_cgrp_time_from_cpuctx(cpuctx);
2549         }
2550
2551         is_active ^= ctx->is_active; /* changed bits */
2552
2553         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2554                 return;
2555
2556         perf_pmu_disable(ctx->pmu);
2557         if (is_active & EVENT_PINNED) {
2558                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2559                         group_sched_out(event, cpuctx, ctx);
2560         }
2561
2562         if (is_active & EVENT_FLEXIBLE) {
2563                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2564                         group_sched_out(event, cpuctx, ctx);
2565         }
2566         perf_pmu_enable(ctx->pmu);
2567 }
2568
2569 /*
2570  * Test whether two contexts are equivalent, i.e. whether they have both been
2571  * cloned from the same version of the same context.
2572  *
2573  * Equivalence is measured using a generation number in the context that is
2574  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2575  * and list_del_event().
2576  */
2577 static int context_equiv(struct perf_event_context *ctx1,
2578                          struct perf_event_context *ctx2)
2579 {
2580         lockdep_assert_held(&ctx1->lock);
2581         lockdep_assert_held(&ctx2->lock);
2582
2583         /* Pinning disables the swap optimization */
2584         if (ctx1->pin_count || ctx2->pin_count)
2585                 return 0;
2586
2587         /* If ctx1 is the parent of ctx2 */
2588         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2589                 return 1;
2590
2591         /* If ctx2 is the parent of ctx1 */
2592         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2593                 return 1;
2594
2595         /*
2596          * If ctx1 and ctx2 have the same parent; we flatten the parent
2597          * hierarchy, see perf_event_init_context().
2598          */
2599         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2600                         ctx1->parent_gen == ctx2->parent_gen)
2601                 return 1;
2602
2603         /* Unmatched */
2604         return 0;
2605 }
2606
2607 static void __perf_event_sync_stat(struct perf_event *event,
2608                                      struct perf_event *next_event)
2609 {
2610         u64 value;
2611
2612         if (!event->attr.inherit_stat)
2613                 return;
2614
2615         /*
2616          * Update the event value, we cannot use perf_event_read()
2617          * because we're in the middle of a context switch and have IRQs
2618          * disabled, which upsets smp_call_function_single(), however
2619          * we know the event must be on the current CPU, therefore we
2620          * don't need to use it.
2621          */
2622         switch (event->state) {
2623         case PERF_EVENT_STATE_ACTIVE:
2624                 event->pmu->read(event);
2625                 /* fall-through */
2626
2627         case PERF_EVENT_STATE_INACTIVE:
2628                 update_event_times(event);
2629                 break;
2630
2631         default:
2632                 break;
2633         }
2634
2635         /*
2636          * In order to keep per-task stats reliable we need to flip the event
2637          * values when we flip the contexts.
2638          */
2639         value = local64_read(&next_event->count);
2640         value = local64_xchg(&event->count, value);
2641         local64_set(&next_event->count, value);
2642
2643         swap(event->total_time_enabled, next_event->total_time_enabled);
2644         swap(event->total_time_running, next_event->total_time_running);
2645
2646         /*
2647          * Since we swizzled the values, update the user visible data too.
2648          */
2649         perf_event_update_userpage(event);
2650         perf_event_update_userpage(next_event);
2651 }
2652
2653 static void perf_event_sync_stat(struct perf_event_context *ctx,
2654                                    struct perf_event_context *next_ctx)
2655 {
2656         struct perf_event *event, *next_event;
2657
2658         if (!ctx->nr_stat)
2659                 return;
2660
2661         update_context_time(ctx);
2662
2663         event = list_first_entry(&ctx->event_list,
2664                                    struct perf_event, event_entry);
2665
2666         next_event = list_first_entry(&next_ctx->event_list,
2667                                         struct perf_event, event_entry);
2668
2669         while (&event->event_entry != &ctx->event_list &&
2670                &next_event->event_entry != &next_ctx->event_list) {
2671
2672                 __perf_event_sync_stat(event, next_event);
2673
2674                 event = list_next_entry(event, event_entry);
2675                 next_event = list_next_entry(next_event, event_entry);
2676         }
2677 }
2678
2679 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2680                                          struct task_struct *next)
2681 {
2682         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2683         struct perf_event_context *next_ctx;
2684         struct perf_event_context *parent, *next_parent;
2685         struct perf_cpu_context *cpuctx;
2686         int do_switch = 1;
2687
2688         if (likely(!ctx))
2689                 return;
2690
2691         cpuctx = __get_cpu_context(ctx);
2692         if (!cpuctx->task_ctx)
2693                 return;
2694
2695         rcu_read_lock();
2696         next_ctx = next->perf_event_ctxp[ctxn];
2697         if (!next_ctx)
2698                 goto unlock;
2699
2700         parent = rcu_dereference(ctx->parent_ctx);
2701         next_parent = rcu_dereference(next_ctx->parent_ctx);
2702
2703         /* If neither context have a parent context; they cannot be clones. */
2704         if (!parent && !next_parent)
2705                 goto unlock;
2706
2707         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2708                 /*
2709                  * Looks like the two contexts are clones, so we might be
2710                  * able to optimize the context switch.  We lock both
2711                  * contexts and check that they are clones under the
2712                  * lock (including re-checking that neither has been
2713                  * uncloned in the meantime).  It doesn't matter which
2714                  * order we take the locks because no other cpu could
2715                  * be trying to lock both of these tasks.
2716                  */
2717                 raw_spin_lock(&ctx->lock);
2718                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2719                 if (context_equiv(ctx, next_ctx)) {
2720                         WRITE_ONCE(ctx->task, next);
2721                         WRITE_ONCE(next_ctx->task, task);
2722
2723                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2724
2725                         /*
2726                          * RCU_INIT_POINTER here is safe because we've not
2727                          * modified the ctx and the above modification of
2728                          * ctx->task and ctx->task_ctx_data are immaterial
2729                          * since those values are always verified under
2730                          * ctx->lock which we're now holding.
2731                          */
2732                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2733                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2734
2735                         do_switch = 0;
2736
2737                         perf_event_sync_stat(ctx, next_ctx);
2738                 }
2739                 raw_spin_unlock(&next_ctx->lock);
2740                 raw_spin_unlock(&ctx->lock);
2741         }
2742 unlock:
2743         rcu_read_unlock();
2744
2745         if (do_switch) {
2746                 raw_spin_lock(&ctx->lock);
2747                 task_ctx_sched_out(cpuctx, ctx);
2748                 raw_spin_unlock(&ctx->lock);
2749         }
2750 }
2751
2752 void perf_sched_cb_dec(struct pmu *pmu)
2753 {
2754         this_cpu_dec(perf_sched_cb_usages);
2755 }
2756
2757 void perf_sched_cb_inc(struct pmu *pmu)
2758 {
2759         this_cpu_inc(perf_sched_cb_usages);
2760 }
2761
2762 /*
2763  * This function provides the context switch callback to the lower code
2764  * layer. It is invoked ONLY when the context switch callback is enabled.
2765  */
2766 static void perf_pmu_sched_task(struct task_struct *prev,
2767                                 struct task_struct *next,
2768                                 bool sched_in)
2769 {
2770         struct perf_cpu_context *cpuctx;
2771         struct pmu *pmu;
2772         unsigned long flags;
2773
2774         if (prev == next)
2775                 return;
2776
2777         local_irq_save(flags);
2778
2779         rcu_read_lock();
2780
2781         list_for_each_entry_rcu(pmu, &pmus, entry) {
2782                 if (pmu->sched_task) {
2783                         cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2784
2785                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2786
2787                         perf_pmu_disable(pmu);
2788
2789                         pmu->sched_task(cpuctx->task_ctx, sched_in);
2790
2791                         perf_pmu_enable(pmu);
2792
2793                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2794                 }
2795         }
2796
2797         rcu_read_unlock();
2798
2799         local_irq_restore(flags);
2800 }
2801
2802 static void perf_event_switch(struct task_struct *task,
2803                               struct task_struct *next_prev, bool sched_in);
2804
2805 #define for_each_task_context_nr(ctxn)                                  \
2806         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2807
2808 /*
2809  * Called from scheduler to remove the events of the current task,
2810  * with interrupts disabled.
2811  *
2812  * We stop each event and update the event value in event->count.
2813  *
2814  * This does not protect us against NMI, but disable()
2815  * sets the disabled bit in the control field of event _before_
2816  * accessing the event control register. If a NMI hits, then it will
2817  * not restart the event.
2818  */
2819 void __perf_event_task_sched_out(struct task_struct *task,
2820                                  struct task_struct *next)
2821 {
2822         int ctxn;
2823
2824         if (__this_cpu_read(perf_sched_cb_usages))
2825                 perf_pmu_sched_task(task, next, false);
2826
2827         if (atomic_read(&nr_switch_events))
2828                 perf_event_switch(task, next, false);
2829
2830         for_each_task_context_nr(ctxn)
2831                 perf_event_context_sched_out(task, ctxn, next);
2832
2833         /*
2834          * if cgroup events exist on this CPU, then we need
2835          * to check if we have to switch out PMU state.
2836          * cgroup event are system-wide mode only
2837          */
2838         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2839                 perf_cgroup_sched_out(task, next);
2840 }
2841
2842 /*
2843  * Called with IRQs disabled
2844  */
2845 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2846                               enum event_type_t event_type)
2847 {
2848         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2849 }
2850
2851 static void
2852 ctx_pinned_sched_in(struct perf_event_context *ctx,
2853                     struct perf_cpu_context *cpuctx)
2854 {
2855         struct perf_event *event;
2856
2857         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2858                 if (event->state <= PERF_EVENT_STATE_OFF)
2859                         continue;
2860                 if (!event_filter_match(event))
2861                         continue;
2862
2863                 /* may need to reset tstamp_enabled */
2864                 if (is_cgroup_event(event))
2865                         perf_cgroup_mark_enabled(event, ctx);
2866
2867                 if (group_can_go_on(event, cpuctx, 1))
2868                         group_sched_in(event, cpuctx, ctx);
2869
2870                 /*
2871                  * If this pinned group hasn't been scheduled,
2872                  * put it in error state.
2873                  */
2874                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2875                         update_group_times(event);
2876                         event->state = PERF_EVENT_STATE_ERROR;
2877                 }
2878         }
2879 }
2880
2881 static void
2882 ctx_flexible_sched_in(struct perf_event_context *ctx,
2883                       struct perf_cpu_context *cpuctx)
2884 {
2885         struct perf_event *event;
2886         int can_add_hw = 1;
2887
2888         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2889                 /* Ignore events in OFF or ERROR state */
2890                 if (event->state <= PERF_EVENT_STATE_OFF)
2891                         continue;
2892                 /*
2893                  * Listen to the 'cpu' scheduling filter constraint
2894                  * of events:
2895                  */
2896                 if (!event_filter_match(event))
2897                         continue;
2898
2899                 /* may need to reset tstamp_enabled */
2900                 if (is_cgroup_event(event))
2901                         perf_cgroup_mark_enabled(event, ctx);
2902
2903                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2904                         if (group_sched_in(event, cpuctx, ctx))
2905                                 can_add_hw = 0;
2906                 }
2907         }
2908 }
2909
2910 static void
2911 ctx_sched_in(struct perf_event_context *ctx,
2912              struct perf_cpu_context *cpuctx,
2913              enum event_type_t event_type,
2914              struct task_struct *task)
2915 {
2916         int is_active = ctx->is_active;
2917         u64 now;
2918
2919         lockdep_assert_held(&ctx->lock);
2920
2921         if (likely(!ctx->nr_events))
2922                 return;
2923
2924         ctx->is_active |= (event_type | EVENT_TIME);
2925         if (ctx->task) {
2926                 if (!is_active)
2927                         cpuctx->task_ctx = ctx;
2928                 else
2929                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2930         }
2931
2932         is_active ^= ctx->is_active; /* changed bits */
2933
2934         if (is_active & EVENT_TIME) {
2935                 /* start ctx time */
2936                 now = perf_clock();
2937                 ctx->timestamp = now;
2938                 perf_cgroup_set_timestamp(task, ctx);
2939         }
2940
2941         /*
2942          * First go through the list and put on any pinned groups
2943          * in order to give them the best chance of going on.
2944          */
2945         if (is_active & EVENT_PINNED)
2946                 ctx_pinned_sched_in(ctx, cpuctx);
2947
2948         /* Then walk through the lower prio flexible groups */
2949         if (is_active & EVENT_FLEXIBLE)
2950                 ctx_flexible_sched_in(ctx, cpuctx);
2951 }
2952
2953 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2954                              enum event_type_t event_type,
2955                              struct task_struct *task)
2956 {
2957         struct perf_event_context *ctx = &cpuctx->ctx;
2958
2959         ctx_sched_in(ctx, cpuctx, event_type, task);
2960 }
2961
2962 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2963                                         struct task_struct *task)
2964 {
2965         struct perf_cpu_context *cpuctx;
2966
2967         cpuctx = __get_cpu_context(ctx);
2968         if (cpuctx->task_ctx == ctx)
2969                 return;
2970
2971         perf_ctx_lock(cpuctx, ctx);
2972         perf_pmu_disable(ctx->pmu);
2973         /*
2974          * We want to keep the following priority order:
2975          * cpu pinned (that don't need to move), task pinned,
2976          * cpu flexible, task flexible.
2977          */
2978         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2979         perf_event_sched_in(cpuctx, ctx, task);
2980         perf_pmu_enable(ctx->pmu);
2981         perf_ctx_unlock(cpuctx, ctx);
2982 }
2983
2984 /*
2985  * Called from scheduler to add the events of the current task
2986  * with interrupts disabled.
2987  *
2988  * We restore the event value and then enable it.
2989  *
2990  * This does not protect us against NMI, but enable()
2991  * sets the enabled bit in the control field of event _before_
2992  * accessing the event control register. If a NMI hits, then it will
2993  * keep the event running.
2994  */
2995 void __perf_event_task_sched_in(struct task_struct *prev,
2996                                 struct task_struct *task)
2997 {
2998         struct perf_event_context *ctx;
2999         int ctxn;
3000
3001         /*
3002          * If cgroup events exist on this CPU, then we need to check if we have
3003          * to switch in PMU state; cgroup event are system-wide mode only.
3004          *
3005          * Since cgroup events are CPU events, we must schedule these in before
3006          * we schedule in the task events.
3007          */
3008         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3009                 perf_cgroup_sched_in(prev, task);
3010
3011         for_each_task_context_nr(ctxn) {
3012                 ctx = task->perf_event_ctxp[ctxn];
3013                 if (likely(!ctx))
3014                         continue;
3015
3016                 perf_event_context_sched_in(ctx, task);
3017         }
3018
3019         if (atomic_read(&nr_switch_events))
3020                 perf_event_switch(task, prev, true);
3021
3022         if (__this_cpu_read(perf_sched_cb_usages))
3023                 perf_pmu_sched_task(prev, task, true);
3024 }
3025
3026 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3027 {
3028         u64 frequency = event->attr.sample_freq;
3029         u64 sec = NSEC_PER_SEC;
3030         u64 divisor, dividend;
3031
3032         int count_fls, nsec_fls, frequency_fls, sec_fls;
3033
3034         count_fls = fls64(count);
3035         nsec_fls = fls64(nsec);
3036         frequency_fls = fls64(frequency);
3037         sec_fls = 30;
3038
3039         /*
3040          * We got @count in @nsec, with a target of sample_freq HZ
3041          * the target period becomes:
3042          *
3043          *             @count * 10^9
3044          * period = -------------------
3045          *          @nsec * sample_freq
3046          *
3047          */
3048
3049         /*
3050          * Reduce accuracy by one bit such that @a and @b converge
3051          * to a similar magnitude.
3052          */
3053 #define REDUCE_FLS(a, b)                \
3054 do {                                    \
3055         if (a##_fls > b##_fls) {        \
3056                 a >>= 1;                \
3057                 a##_fls--;              \
3058         } else {                        \
3059                 b >>= 1;                \
3060                 b##_fls--;              \
3061         }                               \
3062 } while (0)
3063
3064         /*
3065          * Reduce accuracy until either term fits in a u64, then proceed with
3066          * the other, so that finally we can do a u64/u64 division.
3067          */
3068         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3069                 REDUCE_FLS(nsec, frequency);
3070                 REDUCE_FLS(sec, count);
3071         }
3072
3073         if (count_fls + sec_fls > 64) {
3074                 divisor = nsec * frequency;
3075
3076                 while (count_fls + sec_fls > 64) {
3077                         REDUCE_FLS(count, sec);
3078                         divisor >>= 1;
3079                 }
3080
3081                 dividend = count * sec;
3082         } else {
3083                 dividend = count * sec;
3084
3085                 while (nsec_fls + frequency_fls > 64) {
3086                         REDUCE_FLS(nsec, frequency);
3087                         dividend >>= 1;
3088                 }
3089
3090                 divisor = nsec * frequency;
3091         }
3092
3093         if (!divisor)
3094                 return dividend;
3095
3096         return div64_u64(dividend, divisor);
3097 }
3098
3099 static DEFINE_PER_CPU(int, perf_throttled_count);
3100 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3101
3102 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3103 {
3104         struct hw_perf_event *hwc = &event->hw;
3105         s64 period, sample_period;
3106         s64 delta;
3107
3108         period = perf_calculate_period(event, nsec, count);
3109
3110         delta = (s64)(period - hwc->sample_period);
3111         delta = (delta + 7) / 8; /* low pass filter */
3112
3113         sample_period = hwc->sample_period + delta;
3114
3115         if (!sample_period)
3116                 sample_period = 1;
3117
3118         hwc->sample_period = sample_period;
3119
3120         if (local64_read(&hwc->period_left) > 8*sample_period) {
3121                 if (disable)
3122                         event->pmu->stop(event, PERF_EF_UPDATE);
3123
3124                 local64_set(&hwc->period_left, 0);
3125
3126                 if (disable)
3127                         event->pmu->start(event, PERF_EF_RELOAD);
3128         }
3129 }
3130
3131 /*
3132  * combine freq adjustment with unthrottling to avoid two passes over the
3133  * events. At the same time, make sure, having freq events does not change
3134  * the rate of unthrottling as that would introduce bias.
3135  */
3136 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3137                                            int needs_unthr)
3138 {
3139         struct perf_event *event;
3140         struct hw_perf_event *hwc;
3141         u64 now, period = TICK_NSEC;
3142         s64 delta;
3143
3144         /*
3145          * only need to iterate over all events iff:
3146          * - context have events in frequency mode (needs freq adjust)
3147          * - there are events to unthrottle on this cpu
3148          */
3149         if (!(ctx->nr_freq || needs_unthr))
3150                 return;
3151
3152         raw_spin_lock(&ctx->lock);
3153         perf_pmu_disable(ctx->pmu);
3154
3155         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3156                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3157                         continue;
3158
3159                 if (!event_filter_match(event))
3160                         continue;
3161
3162                 perf_pmu_disable(event->pmu);
3163
3164                 hwc = &event->hw;
3165
3166                 if (hwc->interrupts == MAX_INTERRUPTS) {
3167                         hwc->interrupts = 0;
3168                         perf_log_throttle(event, 1);
3169                         event->pmu->start(event, 0);
3170                 }
3171
3172                 if (!event->attr.freq || !event->attr.sample_freq)
3173                         goto next;
3174
3175                 /*
3176                  * stop the event and update event->count
3177                  */
3178                 event->pmu->stop(event, PERF_EF_UPDATE);
3179
3180                 now = local64_read(&event->count);
3181                 delta = now - hwc->freq_count_stamp;
3182                 hwc->freq_count_stamp = now;
3183
3184                 /*
3185                  * restart the event
3186                  * reload only if value has changed
3187                  * we have stopped the event so tell that
3188                  * to perf_adjust_period() to avoid stopping it
3189                  * twice.
3190                  */
3191                 if (delta > 0)
3192                         perf_adjust_period(event, period, delta, false);
3193
3194                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3195         next:
3196                 perf_pmu_enable(event->pmu);
3197         }
3198
3199         perf_pmu_enable(ctx->pmu);
3200         raw_spin_unlock(&ctx->lock);
3201 }
3202
3203 /*
3204  * Round-robin a context's events:
3205  */
3206 static void rotate_ctx(struct perf_event_context *ctx)
3207 {
3208         /*
3209          * Rotate the first entry last of non-pinned groups. Rotation might be
3210          * disabled by the inheritance code.
3211          */
3212         if (!ctx->rotate_disable)
3213                 list_rotate_left(&ctx->flexible_groups);
3214 }
3215
3216 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3217 {
3218         struct perf_event_context *ctx = NULL;
3219         int rotate = 0;
3220
3221         if (cpuctx->ctx.nr_events) {
3222                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3223                         rotate = 1;
3224         }
3225
3226         ctx = cpuctx->task_ctx;
3227         if (ctx && ctx->nr_events) {
3228                 if (ctx->nr_events != ctx->nr_active)
3229                         rotate = 1;
3230         }
3231
3232         if (!rotate)
3233                 goto done;
3234
3235         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3236         perf_pmu_disable(cpuctx->ctx.pmu);
3237
3238         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3239         if (ctx)
3240                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3241
3242         rotate_ctx(&cpuctx->ctx);
3243         if (ctx)
3244                 rotate_ctx(ctx);
3245
3246         perf_event_sched_in(cpuctx, ctx, current);
3247
3248         perf_pmu_enable(cpuctx->ctx.pmu);
3249         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3250 done:
3251
3252         return rotate;
3253 }
3254
3255 void perf_event_task_tick(void)
3256 {
3257         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3258         struct perf_event_context *ctx, *tmp;
3259         int throttled;
3260
3261         WARN_ON(!irqs_disabled());
3262
3263         __this_cpu_inc(perf_throttled_seq);
3264         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3265         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3266
3267         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3268                 perf_adjust_freq_unthr_context(ctx, throttled);
3269 }
3270
3271 static int event_enable_on_exec(struct perf_event *event,
3272                                 struct perf_event_context *ctx)
3273 {
3274         if (!event->attr.enable_on_exec)
3275                 return 0;
3276
3277         event->attr.enable_on_exec = 0;
3278         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3279                 return 0;
3280
3281         __perf_event_mark_enabled(event);
3282
3283         return 1;
3284 }
3285
3286 /*
3287  * Enable all of a task's events that have been marked enable-on-exec.
3288  * This expects task == current.
3289  */
3290 static void perf_event_enable_on_exec(int ctxn)
3291 {
3292         struct perf_event_context *ctx, *clone_ctx = NULL;
3293         struct perf_cpu_context *cpuctx;
3294         struct perf_event *event;
3295         unsigned long flags;
3296         int enabled = 0;
3297
3298         local_irq_save(flags);
3299         ctx = current->perf_event_ctxp[ctxn];
3300         if (!ctx || !ctx->nr_events)
3301                 goto out;
3302
3303         cpuctx = __get_cpu_context(ctx);
3304         perf_ctx_lock(cpuctx, ctx);
3305         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3306         list_for_each_entry(event, &ctx->event_list, event_entry)
3307                 enabled |= event_enable_on_exec(event, ctx);
3308
3309         /*
3310          * Unclone and reschedule this context if we enabled any event.
3311          */
3312         if (enabled) {
3313                 clone_ctx = unclone_ctx(ctx);
3314                 ctx_resched(cpuctx, ctx);
3315         }
3316         perf_ctx_unlock(cpuctx, ctx);
3317
3318 out:
3319         local_irq_restore(flags);
3320
3321         if (clone_ctx)
3322                 put_ctx(clone_ctx);
3323 }
3324
3325 struct perf_read_data {
3326         struct perf_event *event;
3327         bool group;
3328         int ret;
3329 };
3330
3331 /*
3332  * Cross CPU call to read the hardware event
3333  */
3334 static void __perf_event_read(void *info)
3335 {
3336         struct perf_read_data *data = info;
3337         struct perf_event *sub, *event = data->event;
3338         struct perf_event_context *ctx = event->ctx;
3339         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3340         struct pmu *pmu = event->pmu;
3341
3342         /*
3343          * If this is a task context, we need to check whether it is
3344          * the current task context of this cpu.  If not it has been
3345          * scheduled out before the smp call arrived.  In that case
3346          * event->count would have been updated to a recent sample
3347          * when the event was scheduled out.
3348          */
3349         if (ctx->task && cpuctx->task_ctx != ctx)
3350                 return;
3351
3352         raw_spin_lock(&ctx->lock);
3353         if (ctx->is_active) {
3354                 update_context_time(ctx);
3355                 update_cgrp_time_from_event(event);
3356         }
3357
3358         update_event_times(event);
3359         if (event->state != PERF_EVENT_STATE_ACTIVE)
3360                 goto unlock;
3361
3362         if (!data->group) {
3363                 pmu->read(event);
3364                 data->ret = 0;
3365                 goto unlock;
3366         }
3367
3368         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3369
3370         pmu->read(event);
3371
3372         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3373                 update_event_times(sub);
3374                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3375                         /*
3376                          * Use sibling's PMU rather than @event's since
3377                          * sibling could be on different (eg: software) PMU.
3378                          */
3379                         sub->pmu->read(sub);
3380                 }
3381         }
3382
3383         data->ret = pmu->commit_txn(pmu);
3384
3385 unlock:
3386         raw_spin_unlock(&ctx->lock);
3387 }
3388
3389 static inline u64 perf_event_count(struct perf_event *event)
3390 {
3391         if (event->pmu->count)
3392                 return event->pmu->count(event);
3393
3394         return __perf_event_count(event);
3395 }
3396
3397 /*
3398  * NMI-safe method to read a local event, that is an event that
3399  * is:
3400  *   - either for the current task, or for this CPU
3401  *   - does not have inherit set, for inherited task events
3402  *     will not be local and we cannot read them atomically
3403  *   - must not have a pmu::count method
3404  */
3405 u64 perf_event_read_local(struct perf_event *event)
3406 {
3407         unsigned long flags;
3408         u64 val;
3409
3410         /*
3411          * Disabling interrupts avoids all counter scheduling (context
3412          * switches, timer based rotation and IPIs).
3413          */
3414         local_irq_save(flags);
3415
3416         /* If this is a per-task event, it must be for current */
3417         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3418                      event->hw.target != current);
3419
3420         /* If this is a per-CPU event, it must be for this CPU */
3421         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3422                      event->cpu != smp_processor_id());
3423
3424         /*
3425          * It must not be an event with inherit set, we cannot read
3426          * all child counters from atomic context.
3427          */
3428         WARN_ON_ONCE(event->attr.inherit);
3429
3430         /*
3431          * It must not have a pmu::count method, those are not
3432          * NMI safe.
3433          */
3434         WARN_ON_ONCE(event->pmu->count);
3435
3436         /*
3437          * If the event is currently on this CPU, its either a per-task event,
3438          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3439          * oncpu == -1).
3440          */
3441         if (event->oncpu == smp_processor_id())
3442                 event->pmu->read(event);
3443
3444         val = local64_read(&event->count);
3445         local_irq_restore(flags);
3446
3447         return val;
3448 }
3449
3450 static int perf_event_read(struct perf_event *event, bool group)
3451 {
3452         int ret = 0;
3453
3454         /*
3455          * If event is enabled and currently active on a CPU, update the
3456          * value in the event structure:
3457          */
3458         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3459                 struct perf_read_data data = {
3460                         .event = event,
3461                         .group = group,
3462                         .ret = 0,
3463                 };
3464                 smp_call_function_single(event->oncpu,
3465                                          __perf_event_read, &data, 1);
3466                 ret = data.ret;
3467         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3468                 struct perf_event_context *ctx = event->ctx;
3469                 unsigned long flags;
3470
3471                 raw_spin_lock_irqsave(&ctx->lock, flags);
3472                 /*
3473                  * may read while context is not active
3474                  * (e.g., thread is blocked), in that case
3475                  * we cannot update context time
3476                  */
3477                 if (ctx->is_active) {
3478                         update_context_time(ctx);
3479                         update_cgrp_time_from_event(event);
3480                 }
3481                 if (group)
3482                         update_group_times(event);
3483                 else
3484                         update_event_times(event);
3485                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3486         }
3487
3488         return ret;
3489 }
3490
3491 /*
3492  * Initialize the perf_event context in a task_struct:
3493  */
3494 static void __perf_event_init_context(struct perf_event_context *ctx)
3495 {
3496         raw_spin_lock_init(&ctx->lock);
3497         mutex_init(&ctx->mutex);
3498         INIT_LIST_HEAD(&ctx->active_ctx_list);
3499         INIT_LIST_HEAD(&ctx->pinned_groups);
3500         INIT_LIST_HEAD(&ctx->flexible_groups);
3501         INIT_LIST_HEAD(&ctx->event_list);
3502         atomic_set(&ctx->refcount, 1);
3503 }
3504
3505 static struct perf_event_context *
3506 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3507 {
3508         struct perf_event_context *ctx;
3509
3510         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3511         if (!ctx)
3512                 return NULL;
3513
3514         __perf_event_init_context(ctx);
3515         if (task) {
3516                 ctx->task = task;
3517                 get_task_struct(task);
3518         }
3519         ctx->pmu = pmu;
3520
3521         return ctx;
3522 }
3523
3524 static struct task_struct *
3525 find_lively_task_by_vpid(pid_t vpid)
3526 {
3527         struct task_struct *task;
3528
3529         rcu_read_lock();
3530         if (!vpid)
3531                 task = current;
3532         else
3533                 task = find_task_by_vpid(vpid);
3534         if (task)
3535                 get_task_struct(task);
3536         rcu_read_unlock();
3537
3538         if (!task)
3539                 return ERR_PTR(-ESRCH);
3540
3541         return task;
3542 }
3543
3544 /*
3545  * Returns a matching context with refcount and pincount.
3546  */
3547 static struct perf_event_context *
3548 find_get_context(struct pmu *pmu, struct task_struct *task,
3549                 struct perf_event *event)
3550 {
3551         struct perf_event_context *ctx, *clone_ctx = NULL;
3552         struct perf_cpu_context *cpuctx;
3553         void *task_ctx_data = NULL;
3554         unsigned long flags;
3555         int ctxn, err;
3556         int cpu = event->cpu;
3557
3558         if (!task) {
3559                 /* Must be root to operate on a CPU event: */
3560                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3561                         return ERR_PTR(-EACCES);
3562
3563                 /*
3564                  * We could be clever and allow to attach a event to an
3565                  * offline CPU and activate it when the CPU comes up, but
3566                  * that's for later.
3567                  */
3568                 if (!cpu_online(cpu))
3569                         return ERR_PTR(-ENODEV);
3570
3571                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3572                 ctx = &cpuctx->ctx;
3573                 get_ctx(ctx);
3574                 ++ctx->pin_count;
3575
3576                 return ctx;
3577         }
3578
3579         err = -EINVAL;
3580         ctxn = pmu->task_ctx_nr;
3581         if (ctxn < 0)
3582                 goto errout;
3583
3584         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3585                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3586                 if (!task_ctx_data) {
3587                         err = -ENOMEM;
3588                         goto errout;
3589                 }
3590         }
3591
3592 retry:
3593         ctx = perf_lock_task_context(task, ctxn, &flags);
3594         if (ctx) {
3595                 clone_ctx = unclone_ctx(ctx);
3596                 ++ctx->pin_count;
3597
3598                 if (task_ctx_data && !ctx->task_ctx_data) {
3599                         ctx->task_ctx_data = task_ctx_data;
3600                         task_ctx_data = NULL;
3601                 }
3602                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3603
3604                 if (clone_ctx)
3605                         put_ctx(clone_ctx);
3606         } else {
3607                 ctx = alloc_perf_context(pmu, task);
3608                 err = -ENOMEM;
3609                 if (!ctx)
3610                         goto errout;
3611
3612                 if (task_ctx_data) {
3613                         ctx->task_ctx_data = task_ctx_data;
3614                         task_ctx_data = NULL;
3615                 }
3616
3617                 err = 0;
3618                 mutex_lock(&task->perf_event_mutex);
3619                 /*
3620                  * If it has already passed perf_event_exit_task().
3621                  * we must see PF_EXITING, it takes this mutex too.
3622                  */
3623                 if (task->flags & PF_EXITING)
3624                         err = -ESRCH;
3625                 else if (task->perf_event_ctxp[ctxn])
3626                         err = -EAGAIN;
3627                 else {
3628                         get_ctx(ctx);
3629                         ++ctx->pin_count;
3630                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3631                 }
3632                 mutex_unlock(&task->perf_event_mutex);
3633
3634                 if (unlikely(err)) {
3635                         put_ctx(ctx);
3636
3637                         if (err == -EAGAIN)
3638                                 goto retry;
3639                         goto errout;
3640                 }
3641         }
3642
3643         kfree(task_ctx_data);
3644         return ctx;
3645
3646 errout:
3647         kfree(task_ctx_data);
3648         return ERR_PTR(err);
3649 }
3650
3651 static void perf_event_free_filter(struct perf_event *event);
3652 static void perf_event_free_bpf_prog(struct perf_event *event);
3653
3654 static void free_event_rcu(struct rcu_head *head)
3655 {
3656         struct perf_event *event;
3657
3658         event = container_of(head, struct perf_event, rcu_head);
3659         if (event->ns)
3660                 put_pid_ns(event->ns);
3661         perf_event_free_filter(event);
3662         kfree(event);
3663 }
3664
3665 static void ring_buffer_attach(struct perf_event *event,
3666                                struct ring_buffer *rb);
3667
3668 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3669 {
3670         if (event->parent)
3671                 return;
3672
3673         if (is_cgroup_event(event))
3674                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3675 }
3676
3677 #ifdef CONFIG_NO_HZ_FULL
3678 static DEFINE_SPINLOCK(nr_freq_lock);
3679 #endif
3680
3681 static void unaccount_freq_event_nohz(void)
3682 {
3683 #ifdef CONFIG_NO_HZ_FULL
3684         spin_lock(&nr_freq_lock);
3685         if (atomic_dec_and_test(&nr_freq_events))
3686                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3687         spin_unlock(&nr_freq_lock);
3688 #endif
3689 }
3690
3691 static void unaccount_freq_event(void)
3692 {
3693         if (tick_nohz_full_enabled())
3694                 unaccount_freq_event_nohz();
3695         else
3696                 atomic_dec(&nr_freq_events);
3697 }
3698
3699 static void unaccount_event(struct perf_event *event)
3700 {
3701         bool dec = false;
3702
3703         if (event->parent)
3704                 return;
3705
3706         if (event->attach_state & PERF_ATTACH_TASK)
3707                 dec = true;
3708         if (event->attr.mmap || event->attr.mmap_data)
3709                 atomic_dec(&nr_mmap_events);
3710         if (event->attr.comm)
3711                 atomic_dec(&nr_comm_events);
3712         if (event->attr.task)
3713                 atomic_dec(&nr_task_events);
3714         if (event->attr.freq)
3715                 unaccount_freq_event();
3716         if (event->attr.context_switch) {
3717                 dec = true;
3718                 atomic_dec(&nr_switch_events);
3719         }
3720         if (is_cgroup_event(event))
3721                 dec = true;
3722         if (has_branch_stack(event))
3723                 dec = true;
3724
3725         if (dec) {
3726                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3727                         schedule_delayed_work(&perf_sched_work, HZ);
3728         }
3729
3730         unaccount_event_cpu(event, event->cpu);
3731 }
3732
3733 static void perf_sched_delayed(struct work_struct *work)
3734 {
3735         mutex_lock(&perf_sched_mutex);
3736         if (atomic_dec_and_test(&perf_sched_count))
3737                 static_branch_disable(&perf_sched_events);
3738         mutex_unlock(&perf_sched_mutex);
3739 }
3740
3741 /*
3742  * The following implement mutual exclusion of events on "exclusive" pmus
3743  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3744  * at a time, so we disallow creating events that might conflict, namely:
3745  *
3746  *  1) cpu-wide events in the presence of per-task events,
3747  *  2) per-task events in the presence of cpu-wide events,
3748  *  3) two matching events on the same context.
3749  *
3750  * The former two cases are handled in the allocation path (perf_event_alloc(),
3751  * _free_event()), the latter -- before the first perf_install_in_context().
3752  */
3753 static int exclusive_event_init(struct perf_event *event)
3754 {
3755         struct pmu *pmu = event->pmu;
3756
3757         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3758                 return 0;
3759
3760         /*
3761          * Prevent co-existence of per-task and cpu-wide events on the
3762          * same exclusive pmu.
3763          *
3764          * Negative pmu::exclusive_cnt means there are cpu-wide
3765          * events on this "exclusive" pmu, positive means there are
3766          * per-task events.
3767          *
3768          * Since this is called in perf_event_alloc() path, event::ctx
3769          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3770          * to mean "per-task event", because unlike other attach states it
3771          * never gets cleared.
3772          */
3773         if (event->attach_state & PERF_ATTACH_TASK) {
3774                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3775                         return -EBUSY;
3776         } else {
3777                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3778                         return -EBUSY;
3779         }
3780
3781         return 0;
3782 }
3783
3784 static void exclusive_event_destroy(struct perf_event *event)
3785 {
3786         struct pmu *pmu = event->pmu;
3787
3788         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3789                 return;
3790
3791         /* see comment in exclusive_event_init() */
3792         if (event->attach_state & PERF_ATTACH_TASK)
3793                 atomic_dec(&pmu->exclusive_cnt);
3794         else
3795                 atomic_inc(&pmu->exclusive_cnt);
3796 }
3797
3798 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3799 {
3800         if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3801             (e1->cpu == e2->cpu ||
3802              e1->cpu == -1 ||
3803              e2->cpu == -1))
3804                 return true;
3805         return false;
3806 }
3807
3808 /* Called under the same ctx::mutex as perf_install_in_context() */
3809 static bool exclusive_event_installable(struct perf_event *event,
3810                                         struct perf_event_context *ctx)
3811 {
3812         struct perf_event *iter_event;
3813         struct pmu *pmu = event->pmu;
3814
3815         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3816                 return true;
3817
3818         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3819                 if (exclusive_event_match(iter_event, event))
3820                         return false;
3821         }
3822
3823         return true;
3824 }
3825
3826 static void perf_addr_filters_splice(struct perf_event *event,
3827                                        struct list_head *head);
3828
3829 static void _free_event(struct perf_event *event)
3830 {
3831         irq_work_sync(&event->pending);
3832
3833         unaccount_event(event);
3834
3835         if (event->rb) {
3836                 /*
3837                  * Can happen when we close an event with re-directed output.
3838                  *
3839                  * Since we have a 0 refcount, perf_mmap_close() will skip
3840                  * over us; possibly making our ring_buffer_put() the last.
3841                  */
3842                 mutex_lock(&event->mmap_mutex);
3843                 ring_buffer_attach(event, NULL);
3844                 mutex_unlock(&event->mmap_mutex);
3845         }
3846
3847         if (is_cgroup_event(event))
3848                 perf_detach_cgroup(event);
3849
3850         if (!event->parent) {
3851                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3852                         put_callchain_buffers();
3853         }
3854
3855         perf_event_free_bpf_prog(event);
3856         perf_addr_filters_splice(event, NULL);
3857         kfree(event->addr_filters_offs);
3858
3859         if (event->destroy)
3860                 event->destroy(event);
3861
3862         if (event->ctx)
3863                 put_ctx(event->ctx);
3864
3865         if (event->pmu) {
3866                 exclusive_event_destroy(event);
3867                 module_put(event->pmu->module);
3868         }
3869
3870         call_rcu(&event->rcu_head, free_event_rcu);
3871 }
3872
3873 /*
3874  * Used to free events which have a known refcount of 1, such as in error paths
3875  * where the event isn't exposed yet and inherited events.
3876  */
3877 static void free_event(struct perf_event *event)
3878 {
3879         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3880                                 "unexpected event refcount: %ld; ptr=%p\n",
3881                                 atomic_long_read(&event->refcount), event)) {
3882                 /* leak to avoid use-after-free */
3883                 return;
3884         }
3885
3886         _free_event(event);
3887 }
3888
3889 /*
3890  * Remove user event from the owner task.
3891  */
3892 static void perf_remove_from_owner(struct perf_event *event)
3893 {
3894         struct task_struct *owner;
3895
3896         rcu_read_lock();
3897         /*
3898          * Matches the smp_store_release() in perf_event_exit_task(). If we
3899          * observe !owner it means the list deletion is complete and we can
3900          * indeed free this event, otherwise we need to serialize on
3901          * owner->perf_event_mutex.
3902          */
3903         owner = lockless_dereference(event->owner);
3904         if (owner) {
3905                 /*
3906                  * Since delayed_put_task_struct() also drops the last
3907                  * task reference we can safely take a new reference
3908                  * while holding the rcu_read_lock().
3909                  */
3910                 get_task_struct(owner);
3911         }
3912         rcu_read_unlock();
3913
3914         if (owner) {
3915                 /*
3916                  * If we're here through perf_event_exit_task() we're already
3917                  * holding ctx->mutex which would be an inversion wrt. the
3918                  * normal lock order.
3919                  *
3920                  * However we can safely take this lock because its the child
3921                  * ctx->mutex.
3922                  */
3923                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3924
3925                 /*
3926                  * We have to re-check the event->owner field, if it is cleared
3927                  * we raced with perf_event_exit_task(), acquiring the mutex
3928                  * ensured they're done, and we can proceed with freeing the
3929                  * event.
3930                  */
3931                 if (event->owner) {
3932                         list_del_init(&event->owner_entry);
3933                         smp_store_release(&event->owner, NULL);
3934                 }
3935                 mutex_unlock(&owner->perf_event_mutex);
3936                 put_task_struct(owner);
3937         }
3938 }
3939
3940 static void put_event(struct perf_event *event)
3941 {
3942         if (!atomic_long_dec_and_test(&event->refcount))
3943                 return;
3944
3945         _free_event(event);
3946 }
3947
3948 /*
3949  * Kill an event dead; while event:refcount will preserve the event
3950  * object, it will not preserve its functionality. Once the last 'user'
3951  * gives up the object, we'll destroy the thing.
3952  */
3953 int perf_event_release_kernel(struct perf_event *event)
3954 {
3955         struct perf_event_context *ctx = event->ctx;
3956         struct perf_event *child, *tmp;
3957
3958         /*
3959          * If we got here through err_file: fput(event_file); we will not have
3960          * attached to a context yet.
3961          */
3962         if (!ctx) {
3963                 WARN_ON_ONCE(event->attach_state &
3964                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3965                 goto no_ctx;
3966         }
3967
3968         if (!is_kernel_event(event))
3969                 perf_remove_from_owner(event);
3970
3971         ctx = perf_event_ctx_lock(event);
3972         WARN_ON_ONCE(ctx->parent_ctx);
3973         perf_remove_from_context(event, DETACH_GROUP);
3974
3975         raw_spin_lock_irq(&ctx->lock);
3976         /*
3977          * Mark this even as STATE_DEAD, there is no external reference to it
3978          * anymore.
3979          *
3980          * Anybody acquiring event->child_mutex after the below loop _must_
3981          * also see this, most importantly inherit_event() which will avoid
3982          * placing more children on the list.
3983          *
3984          * Thus this guarantees that we will in fact observe and kill _ALL_
3985          * child events.
3986          */
3987         event->state = PERF_EVENT_STATE_DEAD;
3988         raw_spin_unlock_irq(&ctx->lock);
3989
3990         perf_event_ctx_unlock(event, ctx);
3991
3992 again:
3993         mutex_lock(&event->child_mutex);
3994         list_for_each_entry(child, &event->child_list, child_list) {
3995
3996                 /*
3997                  * Cannot change, child events are not migrated, see the
3998                  * comment with perf_event_ctx_lock_nested().
3999                  */
4000                 ctx = lockless_dereference(child->ctx);
4001                 /*
4002                  * Since child_mutex nests inside ctx::mutex, we must jump
4003                  * through hoops. We start by grabbing a reference on the ctx.
4004                  *
4005                  * Since the event cannot get freed while we hold the
4006                  * child_mutex, the context must also exist and have a !0
4007                  * reference count.
4008                  */
4009                 get_ctx(ctx);
4010
4011                 /*
4012                  * Now that we have a ctx ref, we can drop child_mutex, and
4013                  * acquire ctx::mutex without fear of it going away. Then we
4014                  * can re-acquire child_mutex.
4015                  */
4016                 mutex_unlock(&event->child_mutex);
4017                 mutex_lock(&ctx->mutex);
4018                 mutex_lock(&event->child_mutex);
4019
4020                 /*
4021                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4022                  * state, if child is still the first entry, it didn't get freed
4023                  * and we can continue doing so.
4024                  */
4025                 tmp = list_first_entry_or_null(&event->child_list,
4026                                                struct perf_event, child_list);
4027                 if (tmp == child) {
4028                         perf_remove_from_context(child, DETACH_GROUP);
4029                         list_del(&child->child_list);
4030                         free_event(child);
4031                         /*
4032                          * This matches the refcount bump in inherit_event();
4033                          * this can't be the last reference.
4034                          */
4035                         put_event(event);
4036                 }
4037
4038                 mutex_unlock(&event->child_mutex);
4039                 mutex_unlock(&ctx->mutex);
4040                 put_ctx(ctx);
4041                 goto again;
4042         }
4043         mutex_unlock(&event->child_mutex);
4044
4045 no_ctx:
4046         put_event(event); /* Must be the 'last' reference */
4047         return 0;
4048 }
4049 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4050
4051 /*
4052  * Called when the last reference to the file is gone.
4053  */
4054 static int perf_release(struct inode *inode, struct file *file)
4055 {
4056         perf_event_release_kernel(file->private_data);
4057         return 0;
4058 }
4059
4060 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4061 {
4062         struct perf_event *child;
4063         u64 total = 0;
4064
4065         *enabled = 0;
4066         *running = 0;
4067
4068         mutex_lock(&event->child_mutex);
4069
4070         (void)perf_event_read(event, false);
4071         total += perf_event_count(event);
4072
4073         *enabled += event->total_time_enabled +
4074                         atomic64_read(&event->child_total_time_enabled);
4075         *running += event->total_time_running +
4076                         atomic64_read(&event->child_total_time_running);
4077
4078         list_for_each_entry(child, &event->child_list, child_list) {
4079                 (void)perf_event_read(child, false);
4080                 total += perf_event_count(child);
4081                 *enabled += child->total_time_enabled;
4082                 *running += child->total_time_running;
4083         }
4084         mutex_unlock(&event->child_mutex);
4085
4086         return total;
4087 }
4088 EXPORT_SYMBOL_GPL(perf_event_read_value);
4089
4090 static int __perf_read_group_add(struct perf_event *leader,
4091                                         u64 read_format, u64 *values)
4092 {
4093         struct perf_event *sub;
4094         int n = 1; /* skip @nr */
4095         int ret;
4096
4097         ret = perf_event_read(leader, true);
4098         if (ret)
4099                 return ret;
4100
4101         /*
4102          * Since we co-schedule groups, {enabled,running} times of siblings
4103          * will be identical to those of the leader, so we only publish one
4104          * set.
4105          */
4106         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4107                 values[n++] += leader->total_time_enabled +
4108                         atomic64_read(&leader->child_total_time_enabled);
4109         }
4110
4111         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4112                 values[n++] += leader->total_time_running +
4113                         atomic64_read(&leader->child_total_time_running);
4114         }
4115
4116         /*
4117          * Write {count,id} tuples for every sibling.
4118          */
4119         values[n++] += perf_event_count(leader);
4120         if (read_format & PERF_FORMAT_ID)
4121                 values[n++] = primary_event_id(leader);
4122
4123         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4124                 values[n++] += perf_event_count(sub);
4125                 if (read_format & PERF_FORMAT_ID)
4126                         values[n++] = primary_event_id(sub);
4127         }
4128
4129         return 0;
4130 }
4131
4132 static int perf_read_group(struct perf_event *event,
4133                                    u64 read_format, char __user *buf)
4134 {
4135         struct perf_event *leader = event->group_leader, *child;
4136         struct perf_event_context *ctx = leader->ctx;
4137         int ret;
4138         u64 *values;
4139
4140         lockdep_assert_held(&ctx->mutex);
4141
4142         values = kzalloc(event->read_size, GFP_KERNEL);
4143         if (!values)
4144                 return -ENOMEM;
4145
4146         values[0] = 1 + leader->nr_siblings;
4147
4148         /*
4149          * By locking the child_mutex of the leader we effectively
4150          * lock the child list of all siblings.. XXX explain how.
4151          */
4152         mutex_lock(&leader->child_mutex);
4153
4154         ret = __perf_read_group_add(leader, read_format, values);
4155         if (ret)
4156                 goto unlock;
4157
4158         list_for_each_entry(child, &leader->child_list, child_list) {
4159                 ret = __perf_read_group_add(child, read_format, values);
4160                 if (ret)
4161                         goto unlock;
4162         }
4163
4164         mutex_unlock(&leader->child_mutex);
4165
4166         ret = event->read_size;
4167         if (copy_to_user(buf, values, event->read_size))
4168                 ret = -EFAULT;
4169         goto out;
4170
4171 unlock:
4172         mutex_unlock(&leader->child_mutex);
4173 out:
4174         kfree(values);
4175         return ret;
4176 }
4177
4178 static int perf_read_one(struct perf_event *event,
4179                                  u64 read_format, char __user *buf)
4180 {
4181         u64 enabled, running;
4182         u64 values[4];
4183         int n = 0;
4184
4185         values[n++] = perf_event_read_value(event, &enabled, &running);
4186         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4187                 values[n++] = enabled;
4188         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4189                 values[n++] = running;
4190         if (read_format & PERF_FORMAT_ID)
4191                 values[n++] = primary_event_id(event);
4192
4193         if (copy_to_user(buf, values, n * sizeof(u64)))
4194                 return -EFAULT;
4195
4196         return n * sizeof(u64);
4197 }
4198
4199 static bool is_event_hup(struct perf_event *event)
4200 {
4201         bool no_children;
4202
4203         if (event->state > PERF_EVENT_STATE_EXIT)
4204                 return false;
4205
4206         mutex_lock(&event->child_mutex);
4207         no_children = list_empty(&event->child_list);
4208         mutex_unlock(&event->child_mutex);
4209         return no_children;
4210 }
4211
4212 /*
4213  * Read the performance event - simple non blocking version for now
4214  */
4215 static ssize_t
4216 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4217 {
4218         u64 read_format = event->attr.read_format;
4219         int ret;
4220
4221         /*
4222          * Return end-of-file for a read on a event that is in
4223          * error state (i.e. because it was pinned but it couldn't be
4224          * scheduled on to the CPU at some point).
4225          */
4226         if (event->state == PERF_EVENT_STATE_ERROR)
4227                 return 0;
4228
4229         if (count < event->read_size)
4230                 return -ENOSPC;
4231
4232         WARN_ON_ONCE(event->ctx->parent_ctx);
4233         if (read_format & PERF_FORMAT_GROUP)
4234                 ret = perf_read_group(event, read_format, buf);
4235         else
4236                 ret = perf_read_one(event, read_format, buf);
4237
4238         return ret;
4239 }
4240
4241 static ssize_t
4242 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4243 {
4244         struct perf_event *event = file->private_data;
4245         struct perf_event_context *ctx;
4246         int ret;
4247
4248         ctx = perf_event_ctx_lock(event);
4249         ret = __perf_read(event, buf, count);
4250         perf_event_ctx_unlock(event, ctx);
4251
4252         return ret;
4253 }
4254
4255 static unsigned int perf_poll(struct file *file, poll_table *wait)
4256 {
4257         struct perf_event *event = file->private_data;
4258         struct ring_buffer *rb;
4259         unsigned int events = POLLHUP;
4260
4261         poll_wait(file, &event->waitq, wait);
4262
4263         if (is_event_hup(event))
4264                 return events;
4265
4266         /*
4267          * Pin the event->rb by taking event->mmap_mutex; otherwise
4268          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4269          */
4270         mutex_lock(&event->mmap_mutex);
4271         rb = event->rb;
4272         if (rb)
4273                 events = atomic_xchg(&rb->poll, 0);
4274         mutex_unlock(&event->mmap_mutex);
4275         return events;
4276 }
4277
4278 static void _perf_event_reset(struct perf_event *event)
4279 {
4280         (void)perf_event_read(event, false);
4281         local64_set(&event->count, 0);
4282         perf_event_update_userpage(event);
4283 }
4284
4285 /*
4286  * Holding the top-level event's child_mutex means that any
4287  * descendant process that has inherited this event will block
4288  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4289  * task existence requirements of perf_event_enable/disable.
4290  */
4291 static void perf_event_for_each_child(struct perf_event *event,
4292                                         void (*func)(struct perf_event *))
4293 {
4294         struct perf_event *child;
4295
4296         WARN_ON_ONCE(event->ctx->parent_ctx);
4297
4298         mutex_lock(&event->child_mutex);
4299         func(event);
4300         list_for_each_entry(child, &event->child_list, child_list)
4301                 func(child);
4302         mutex_unlock(&event->child_mutex);
4303 }
4304
4305 static void perf_event_for_each(struct perf_event *event,
4306                                   void (*func)(struct perf_event *))
4307 {
4308         struct perf_event_context *ctx = event->ctx;
4309         struct perf_event *sibling;
4310
4311         lockdep_assert_held(&ctx->mutex);
4312
4313         event = event->group_leader;
4314
4315         perf_event_for_each_child(event, func);
4316         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4317                 perf_event_for_each_child(sibling, func);
4318 }
4319
4320 static void __perf_event_period(struct perf_event *event,
4321                                 struct perf_cpu_context *cpuctx,
4322                                 struct perf_event_context *ctx,
4323                                 void *info)
4324 {
4325         u64 value = *((u64 *)info);
4326         bool active;
4327
4328         if (event->attr.freq) {
4329                 event->attr.sample_freq = value;
4330         } else {
4331                 event->attr.sample_period = value;
4332                 event->hw.sample_period = value;
4333         }
4334
4335         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4336         if (active) {
4337                 perf_pmu_disable(ctx->pmu);
4338                 /*
4339                  * We could be throttled; unthrottle now to avoid the tick
4340                  * trying to unthrottle while we already re-started the event.
4341                  */
4342                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4343                         event->hw.interrupts = 0;
4344                         perf_log_throttle(event, 1);
4345                 }
4346                 event->pmu->stop(event, PERF_EF_UPDATE);
4347         }
4348
4349         local64_set(&event->hw.period_left, 0);
4350
4351         if (active) {
4352                 event->pmu->start(event, PERF_EF_RELOAD);
4353                 perf_pmu_enable(ctx->pmu);
4354         }
4355 }
4356
4357 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4358 {
4359         u64 value;
4360
4361         if (!is_sampling_event(event))
4362                 return -EINVAL;
4363
4364         if (copy_from_user(&value, arg, sizeof(value)))
4365                 return -EFAULT;
4366
4367         if (!value)
4368                 return -EINVAL;
4369
4370         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4371                 return -EINVAL;
4372
4373         event_function_call(event, __perf_event_period, &value);
4374
4375         return 0;
4376 }
4377
4378 static const struct file_operations perf_fops;
4379
4380 static inline int perf_fget_light(int fd, struct fd *p)
4381 {
4382         struct fd f = fdget(fd);
4383         if (!f.file)
4384                 return -EBADF;
4385
4386         if (f.file->f_op != &perf_fops) {
4387                 fdput(f);
4388                 return -EBADF;
4389         }
4390         *p = f;
4391         return 0;
4392 }
4393
4394 static int perf_event_set_output(struct perf_event *event,
4395                                  struct perf_event *output_event);
4396 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4397 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4398
4399 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4400 {
4401         void (*func)(struct perf_event *);
4402         u32 flags = arg;
4403
4404         switch (cmd) {
4405         case PERF_EVENT_IOC_ENABLE:
4406                 func = _perf_event_enable;
4407                 break;
4408         case PERF_EVENT_IOC_DISABLE:
4409                 func = _perf_event_disable;
4410                 break;
4411         case PERF_EVENT_IOC_RESET:
4412                 func = _perf_event_reset;
4413                 break;
4414
4415         case PERF_EVENT_IOC_REFRESH:
4416                 return _perf_event_refresh(event, arg);
4417
4418         case PERF_EVENT_IOC_PERIOD:
4419                 return perf_event_period(event, (u64 __user *)arg);
4420
4421         case PERF_EVENT_IOC_ID:
4422         {
4423                 u64 id = primary_event_id(event);
4424
4425                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4426                         return -EFAULT;
4427                 return 0;
4428         }
4429
4430         case PERF_EVENT_IOC_SET_OUTPUT:
4431         {
4432                 int ret;
4433                 if (arg != -1) {
4434                         struct perf_event *output_event;
4435                         struct fd output;
4436                         ret = perf_fget_light(arg, &output);
4437                         if (ret)
4438                                 return ret;
4439                         output_event = output.file->private_data;
4440                         ret = perf_event_set_output(event, output_event);
4441                         fdput(output);
4442                 } else {
4443                         ret = perf_event_set_output(event, NULL);
4444                 }
4445                 return ret;
4446         }
4447
4448         case PERF_EVENT_IOC_SET_FILTER:
4449                 return perf_event_set_filter(event, (void __user *)arg);
4450
4451         case PERF_EVENT_IOC_SET_BPF:
4452                 return perf_event_set_bpf_prog(event, arg);
4453
4454         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4455                 struct ring_buffer *rb;
4456
4457                 rcu_read_lock();
4458                 rb = rcu_dereference(event->rb);
4459                 if (!rb || !rb->nr_pages) {
4460                         rcu_read_unlock();
4461                         return -EINVAL;
4462                 }
4463                 rb_toggle_paused(rb, !!arg);
4464                 rcu_read_unlock();
4465                 return 0;
4466         }
4467         default:
4468                 return -ENOTTY;
4469         }
4470
4471         if (flags & PERF_IOC_FLAG_GROUP)
4472                 perf_event_for_each(event, func);
4473         else
4474                 perf_event_for_each_child(event, func);
4475
4476         return 0;
4477 }
4478
4479 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4480 {
4481         struct perf_event *event = file->private_data;
4482         struct perf_event_context *ctx;
4483         long ret;
4484
4485         ctx = perf_event_ctx_lock(event);
4486         ret = _perf_ioctl(event, cmd, arg);
4487         perf_event_ctx_unlock(event, ctx);
4488
4489         return ret;
4490 }
4491
4492 #ifdef CONFIG_COMPAT
4493 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4494                                 unsigned long arg)
4495 {
4496         switch (_IOC_NR(cmd)) {
4497         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4498         case _IOC_NR(PERF_EVENT_IOC_ID):
4499                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4500                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4501                         cmd &= ~IOCSIZE_MASK;
4502                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4503                 }
4504                 break;
4505         }
4506         return perf_ioctl(file, cmd, arg);
4507 }
4508 #else
4509 # define perf_compat_ioctl NULL
4510 #endif
4511
4512 int perf_event_task_enable(void)
4513 {
4514         struct perf_event_context *ctx;
4515         struct perf_event *event;
4516
4517         mutex_lock(&current->perf_event_mutex);
4518         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4519                 ctx = perf_event_ctx_lock(event);
4520                 perf_event_for_each_child(event, _perf_event_enable);
4521                 perf_event_ctx_unlock(event, ctx);
4522         }
4523         mutex_unlock(&current->perf_event_mutex);
4524
4525         return 0;
4526 }
4527
4528 int perf_event_task_disable(void)
4529 {
4530         struct perf_event_context *ctx;
4531         struct perf_event *event;
4532
4533         mutex_lock(&current->perf_event_mutex);
4534         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4535                 ctx = perf_event_ctx_lock(event);
4536                 perf_event_for_each_child(event, _perf_event_disable);
4537                 perf_event_ctx_unlock(event, ctx);
4538         }
4539         mutex_unlock(&current->perf_event_mutex);
4540
4541         return 0;
4542 }
4543
4544 static int perf_event_index(struct perf_event *event)
4545 {
4546         if (event->hw.state & PERF_HES_STOPPED)
4547                 return 0;
4548
4549         if (event->state != PERF_EVENT_STATE_ACTIVE)
4550                 return 0;
4551
4552         return event->pmu->event_idx(event);
4553 }
4554
4555 static void calc_timer_values(struct perf_event *event,
4556                                 u64 *now,
4557                                 u64 *enabled,
4558                                 u64 *running)
4559 {
4560         u64 ctx_time;
4561
4562         *now = perf_clock();
4563         ctx_time = event->shadow_ctx_time + *now;
4564         *enabled = ctx_time - event->tstamp_enabled;
4565         *running = ctx_time - event->tstamp_running;
4566 }
4567
4568 static void perf_event_init_userpage(struct perf_event *event)
4569 {
4570         struct perf_event_mmap_page *userpg;
4571         struct ring_buffer *rb;
4572
4573         rcu_read_lock();
4574         rb = rcu_dereference(event->rb);
4575         if (!rb)
4576                 goto unlock;
4577
4578         userpg = rb->user_page;
4579
4580         /* Allow new userspace to detect that bit 0 is deprecated */
4581         userpg->cap_bit0_is_deprecated = 1;
4582         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4583         userpg->data_offset = PAGE_SIZE;
4584         userpg->data_size = perf_data_size(rb);
4585
4586 unlock:
4587         rcu_read_unlock();
4588 }
4589
4590 void __weak arch_perf_update_userpage(
4591         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4592 {
4593 }
4594
4595 /*
4596  * Callers need to ensure there can be no nesting of this function, otherwise
4597  * the seqlock logic goes bad. We can not serialize this because the arch
4598  * code calls this from NMI context.
4599  */
4600 void perf_event_update_userpage(struct perf_event *event)
4601 {
4602         struct perf_event_mmap_page *userpg;
4603         struct ring_buffer *rb;
4604         u64 enabled, running, now;
4605
4606         rcu_read_lock();
4607         rb = rcu_dereference(event->rb);
4608         if (!rb)
4609                 goto unlock;
4610
4611         /*
4612          * compute total_time_enabled, total_time_running
4613          * based on snapshot values taken when the event
4614          * was last scheduled in.
4615          *
4616          * we cannot simply called update_context_time()
4617          * because of locking issue as we can be called in
4618          * NMI context
4619          */
4620         calc_timer_values(event, &now, &enabled, &running);
4621
4622         userpg = rb->user_page;
4623         /*
4624          * Disable preemption so as to not let the corresponding user-space
4625          * spin too long if we get preempted.
4626          */
4627         preempt_disable();
4628         ++userpg->lock;
4629         barrier();
4630         userpg->index = perf_event_index(event);
4631         userpg->offset = perf_event_count(event);
4632         if (userpg->index)
4633                 userpg->offset -= local64_read(&event->hw.prev_count);
4634
4635         userpg->time_enabled = enabled +
4636                         atomic64_read(&event->child_total_time_enabled);
4637
4638         userpg->time_running = running +
4639                         atomic64_read(&event->child_total_time_running);
4640
4641         arch_perf_update_userpage(event, userpg, now);
4642
4643         barrier();
4644         ++userpg->lock;
4645         preempt_enable();
4646 unlock:
4647         rcu_read_unlock();
4648 }
4649
4650 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4651 {
4652         struct perf_event *event = vma->vm_file->private_data;
4653         struct ring_buffer *rb;
4654         int ret = VM_FAULT_SIGBUS;
4655
4656         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4657                 if (vmf->pgoff == 0)
4658                         ret = 0;
4659                 return ret;
4660         }
4661
4662         rcu_read_lock();
4663         rb = rcu_dereference(event->rb);
4664         if (!rb)
4665                 goto unlock;
4666
4667         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4668                 goto unlock;
4669
4670         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4671         if (!vmf->page)
4672                 goto unlock;
4673
4674         get_page(vmf->page);
4675         vmf->page->mapping = vma->vm_file->f_mapping;
4676         vmf->page->index   = vmf->pgoff;
4677
4678         ret = 0;
4679 unlock:
4680         rcu_read_unlock();
4681
4682         return ret;
4683 }
4684
4685 static void ring_buffer_attach(struct perf_event *event,
4686                                struct ring_buffer *rb)
4687 {
4688         struct ring_buffer *old_rb = NULL;
4689         unsigned long flags;
4690
4691         if (event->rb) {
4692                 /*
4693                  * Should be impossible, we set this when removing
4694                  * event->rb_entry and wait/clear when adding event->rb_entry.
4695                  */
4696                 WARN_ON_ONCE(event->rcu_pending);
4697
4698                 old_rb = event->rb;
4699                 spin_lock_irqsave(&old_rb->event_lock, flags);
4700                 list_del_rcu(&event->rb_entry);
4701                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4702
4703                 event->rcu_batches = get_state_synchronize_rcu();
4704                 event->rcu_pending = 1;
4705         }
4706
4707         if (rb) {
4708                 if (event->rcu_pending) {
4709                         cond_synchronize_rcu(event->rcu_batches);
4710                         event->rcu_pending = 0;
4711                 }
4712
4713                 spin_lock_irqsave(&rb->event_lock, flags);
4714                 list_add_rcu(&event->rb_entry, &rb->event_list);
4715                 spin_unlock_irqrestore(&rb->event_lock, flags);
4716         }
4717
4718         rcu_assign_pointer(event->rb, rb);
4719
4720         if (old_rb) {
4721                 ring_buffer_put(old_rb);
4722                 /*
4723                  * Since we detached before setting the new rb, so that we
4724                  * could attach the new rb, we could have missed a wakeup.
4725                  * Provide it now.
4726                  */
4727                 wake_up_all(&event->waitq);
4728         }
4729 }
4730
4731 static void ring_buffer_wakeup(struct perf_event *event)
4732 {
4733         struct ring_buffer *rb;
4734
4735         rcu_read_lock();
4736         rb = rcu_dereference(event->rb);
4737         if (rb) {
4738                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4739                         wake_up_all(&event->waitq);
4740         }
4741         rcu_read_unlock();
4742 }
4743
4744 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4745 {
4746         struct ring_buffer *rb;
4747
4748         rcu_read_lock();
4749         rb = rcu_dereference(event->rb);
4750         if (rb) {
4751                 if (!atomic_inc_not_zero(&rb->refcount))
4752                         rb = NULL;
4753         }
4754         rcu_read_unlock();
4755
4756         return rb;
4757 }
4758
4759 void ring_buffer_put(struct ring_buffer *rb)
4760 {
4761         if (!atomic_dec_and_test(&rb->refcount))
4762                 return;
4763
4764         WARN_ON_ONCE(!list_empty(&rb->event_list));
4765
4766         call_rcu(&rb->rcu_head, rb_free_rcu);
4767 }
4768
4769 static void perf_mmap_open(struct vm_area_struct *vma)
4770 {
4771         struct perf_event *event = vma->vm_file->private_data;
4772
4773         atomic_inc(&event->mmap_count);
4774         atomic_inc(&event->rb->mmap_count);
4775
4776         if (vma->vm_pgoff)
4777                 atomic_inc(&event->rb->aux_mmap_count);
4778
4779         if (event->pmu->event_mapped)
4780                 event->pmu->event_mapped(event);
4781 }
4782
4783 static void perf_pmu_output_stop(struct perf_event *event);
4784
4785 /*
4786  * A buffer can be mmap()ed multiple times; either directly through the same
4787  * event, or through other events by use of perf_event_set_output().
4788  *
4789  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4790  * the buffer here, where we still have a VM context. This means we need
4791  * to detach all events redirecting to us.
4792  */
4793 static void perf_mmap_close(struct vm_area_struct *vma)
4794 {
4795         struct perf_event *event = vma->vm_file->private_data;
4796
4797         struct ring_buffer *rb = ring_buffer_get(event);
4798         struct user_struct *mmap_user = rb->mmap_user;
4799         int mmap_locked = rb->mmap_locked;
4800         unsigned long size = perf_data_size(rb);
4801
4802         if (event->pmu->event_unmapped)
4803                 event->pmu->event_unmapped(event);
4804
4805         /*
4806          * rb->aux_mmap_count will always drop before rb->mmap_count and
4807          * event->mmap_count, so it is ok to use event->mmap_mutex to
4808          * serialize with perf_mmap here.
4809          */
4810         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4811             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4812                 /*
4813                  * Stop all AUX events that are writing to this buffer,
4814                  * so that we can free its AUX pages and corresponding PMU
4815                  * data. Note that after rb::aux_mmap_count dropped to zero,
4816                  * they won't start any more (see perf_aux_output_begin()).
4817                  */
4818                 perf_pmu_output_stop(event);
4819
4820                 /* now it's safe to free the pages */
4821                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4822                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4823
4824                 /* this has to be the last one */
4825                 rb_free_aux(rb);
4826                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4827
4828                 mutex_unlock(&event->mmap_mutex);
4829         }
4830
4831         atomic_dec(&rb->mmap_count);
4832
4833         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4834                 goto out_put;
4835
4836         ring_buffer_attach(event, NULL);
4837         mutex_unlock(&event->mmap_mutex);
4838
4839         /* If there's still other mmap()s of this buffer, we're done. */
4840         if (atomic_read(&rb->mmap_count))
4841                 goto out_put;
4842
4843         /*
4844          * No other mmap()s, detach from all other events that might redirect
4845          * into the now unreachable buffer. Somewhat complicated by the
4846          * fact that rb::event_lock otherwise nests inside mmap_mutex.
4847          */
4848 again:
4849         rcu_read_lock();
4850         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4851                 if (!atomic_long_inc_not_zero(&event->refcount)) {
4852                         /*
4853                          * This event is en-route to free_event() which will
4854                          * detach it and remove it from the list.
4855                          */
4856                         continue;
4857                 }
4858                 rcu_read_unlock();
4859
4860                 mutex_lock(&event->mmap_mutex);
4861                 /*
4862                  * Check we didn't race with perf_event_set_output() which can
4863                  * swizzle the rb from under us while we were waiting to
4864                  * acquire mmap_mutex.
4865                  *
4866                  * If we find a different rb; ignore this event, a next
4867                  * iteration will no longer find it on the list. We have to
4868                  * still restart the iteration to make sure we're not now
4869                  * iterating the wrong list.
4870                  */
4871                 if (event->rb == rb)
4872                         ring_buffer_attach(event, NULL);
4873
4874                 mutex_unlock(&event->mmap_mutex);
4875                 put_event(event);
4876
4877                 /*
4878                  * Restart the iteration; either we're on the wrong list or
4879                  * destroyed its integrity by doing a deletion.
4880                  */
4881                 goto again;
4882         }
4883         rcu_read_unlock();
4884
4885         /*
4886          * It could be there's still a few 0-ref events on the list; they'll
4887          * get cleaned up by free_event() -- they'll also still have their
4888          * ref on the rb and will free it whenever they are done with it.
4889          *
4890          * Aside from that, this buffer is 'fully' detached and unmapped,
4891          * undo the VM accounting.
4892          */
4893
4894         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4895         vma->vm_mm->pinned_vm -= mmap_locked;
4896         free_uid(mmap_user);
4897
4898 out_put:
4899         ring_buffer_put(rb); /* could be last */
4900 }
4901
4902 static const struct vm_operations_struct perf_mmap_vmops = {
4903         .open           = perf_mmap_open,
4904         .close          = perf_mmap_close, /* non mergable */
4905         .fault          = perf_mmap_fault,
4906         .page_mkwrite   = perf_mmap_fault,
4907 };
4908
4909 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4910 {
4911         struct perf_event *event = file->private_data;
4912         unsigned long user_locked, user_lock_limit;
4913         struct user_struct *user = current_user();
4914         unsigned long locked, lock_limit;
4915         struct ring_buffer *rb = NULL;
4916         unsigned long vma_size;
4917         unsigned long nr_pages;
4918         long user_extra = 0, extra = 0;
4919         int ret = 0, flags = 0;
4920
4921         /*
4922          * Don't allow mmap() of inherited per-task counters. This would
4923          * create a performance issue due to all children writing to the
4924          * same rb.
4925          */
4926         if (event->cpu == -1 && event->attr.inherit)
4927                 return -EINVAL;
4928
4929         if (!(vma->vm_flags & VM_SHARED))
4930                 return -EINVAL;
4931
4932         vma_size = vma->vm_end - vma->vm_start;
4933
4934         if (vma->vm_pgoff == 0) {
4935                 nr_pages = (vma_size / PAGE_SIZE) - 1;
4936         } else {
4937                 /*
4938                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4939                  * mapped, all subsequent mappings should have the same size
4940                  * and offset. Must be above the normal perf buffer.
4941                  */
4942                 u64 aux_offset, aux_size;
4943
4944                 if (!event->rb)
4945                         return -EINVAL;
4946
4947                 nr_pages = vma_size / PAGE_SIZE;
4948
4949                 mutex_lock(&event->mmap_mutex);
4950                 ret = -EINVAL;
4951
4952                 rb = event->rb;
4953                 if (!rb)
4954                         goto aux_unlock;
4955
4956                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4957                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4958
4959                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4960                         goto aux_unlock;
4961
4962                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4963                         goto aux_unlock;
4964
4965                 /* already mapped with a different offset */
4966                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4967                         goto aux_unlock;
4968
4969                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4970                         goto aux_unlock;
4971
4972                 /* already mapped with a different size */
4973                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4974                         goto aux_unlock;
4975
4976                 if (!is_power_of_2(nr_pages))
4977                         goto aux_unlock;
4978
4979                 if (!atomic_inc_not_zero(&rb->mmap_count))
4980                         goto aux_unlock;
4981
4982                 if (rb_has_aux(rb)) {
4983                         atomic_inc(&rb->aux_mmap_count);
4984                         ret = 0;
4985                         goto unlock;
4986                 }
4987
4988                 atomic_set(&rb->aux_mmap_count, 1);
4989                 user_extra = nr_pages;
4990
4991                 goto accounting;
4992         }
4993
4994         /*
4995          * If we have rb pages ensure they're a power-of-two number, so we
4996          * can do bitmasks instead of modulo.
4997          */
4998         if (nr_pages != 0 && !is_power_of_2(nr_pages))
4999                 return -EINVAL;
5000
5001         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5002                 return -EINVAL;
5003
5004         WARN_ON_ONCE(event->ctx->parent_ctx);
5005 again:
5006         mutex_lock(&event->mmap_mutex);
5007         if (event->rb) {
5008                 if (event->rb->nr_pages != nr_pages) {
5009                         ret = -EINVAL;
5010                         goto unlock;
5011                 }
5012
5013                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5014                         /*
5015                          * Raced against perf_mmap_close() through
5016                          * perf_event_set_output(). Try again, hope for better
5017                          * luck.
5018                          */
5019                         mutex_unlock(&event->mmap_mutex);
5020                         goto again;
5021                 }
5022
5023                 goto unlock;
5024         }
5025
5026         user_extra = nr_pages + 1;
5027
5028 accounting:
5029         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5030
5031         /*
5032          * Increase the limit linearly with more CPUs:
5033          */
5034         user_lock_limit *= num_online_cpus();
5035
5036         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5037
5038         if (user_locked > user_lock_limit)
5039                 extra = user_locked - user_lock_limit;
5040
5041         lock_limit = rlimit(RLIMIT_MEMLOCK);
5042         lock_limit >>= PAGE_SHIFT;
5043         locked = vma->vm_mm->pinned_vm + extra;
5044
5045         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5046                 !capable(CAP_IPC_LOCK)) {
5047                 ret = -EPERM;
5048                 goto unlock;
5049         }
5050
5051         WARN_ON(!rb && event->rb);
5052
5053         if (vma->vm_flags & VM_WRITE)
5054                 flags |= RING_BUFFER_WRITABLE;
5055
5056         if (!rb) {
5057                 rb = rb_alloc(nr_pages,
5058                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5059                               event->cpu, flags);
5060
5061                 if (!rb) {
5062                         ret = -ENOMEM;
5063                         goto unlock;
5064                 }
5065
5066                 atomic_set(&rb->mmap_count, 1);
5067                 rb->mmap_user = get_current_user();
5068                 rb->mmap_locked = extra;
5069
5070                 ring_buffer_attach(event, rb);
5071
5072                 perf_event_init_userpage(event);
5073                 perf_event_update_userpage(event);
5074         } else {
5075                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5076                                    event->attr.aux_watermark, flags);
5077                 if (!ret)
5078                         rb->aux_mmap_locked = extra;
5079         }
5080
5081 unlock:
5082         if (!ret) {
5083                 atomic_long_add(user_extra, &user->locked_vm);
5084                 vma->vm_mm->pinned_vm += extra;
5085
5086                 atomic_inc(&event->mmap_count);
5087         } else if (rb) {
5088                 atomic_dec(&rb->mmap_count);
5089         }
5090 aux_unlock:
5091         mutex_unlock(&event->mmap_mutex);
5092
5093         /*
5094          * Since pinned accounting is per vm we cannot allow fork() to copy our
5095          * vma.
5096          */
5097         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5098         vma->vm_ops = &perf_mmap_vmops;
5099
5100         if (event->pmu->event_mapped)
5101                 event->pmu->event_mapped(event);
5102
5103         return ret;
5104 }
5105
5106 static int perf_fasync(int fd, struct file *filp, int on)
5107 {
5108         struct inode *inode = file_inode(filp);
5109         struct perf_event *event = filp->private_data;
5110         int retval;
5111
5112         inode_lock(inode);
5113         retval = fasync_helper(fd, filp, on, &event->fasync);
5114         inode_unlock(inode);
5115
5116         if (retval < 0)
5117                 return retval;
5118
5119         return 0;
5120 }
5121
5122 static const struct file_operations perf_fops = {
5123         .llseek                 = no_llseek,
5124         .release                = perf_release,
5125         .read                   = perf_read,
5126         .poll                   = perf_poll,
5127         .unlocked_ioctl         = perf_ioctl,
5128         .compat_ioctl           = perf_compat_ioctl,
5129         .mmap                   = perf_mmap,
5130         .fasync                 = perf_fasync,
5131 };
5132
5133 /*
5134  * Perf event wakeup
5135  *
5136  * If there's data, ensure we set the poll() state and publish everything
5137  * to user-space before waking everybody up.
5138  */
5139
5140 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5141 {
5142         /* only the parent has fasync state */
5143         if (event->parent)
5144                 event = event->parent;
5145         return &event->fasync;
5146 }
5147
5148 void perf_event_wakeup(struct perf_event *event)
5149 {
5150         ring_buffer_wakeup(event);
5151
5152         if (event->pending_kill) {
5153                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5154                 event->pending_kill = 0;
5155         }
5156 }
5157
5158 static void perf_pending_event(struct irq_work *entry)
5159 {
5160         struct perf_event *event = container_of(entry,
5161                         struct perf_event, pending);
5162         int rctx;
5163
5164         rctx = perf_swevent_get_recursion_context();
5165         /*
5166          * If we 'fail' here, that's OK, it means recursion is already disabled
5167          * and we won't recurse 'further'.
5168          */
5169
5170         if (event->pending_disable) {
5171                 event->pending_disable = 0;
5172                 perf_event_disable_local(event);
5173         }
5174
5175         if (event->pending_wakeup) {
5176                 event->pending_wakeup = 0;
5177                 perf_event_wakeup(event);
5178         }
5179
5180         if (rctx >= 0)
5181                 perf_swevent_put_recursion_context(rctx);
5182 }
5183
5184 /*
5185  * We assume there is only KVM supporting the callbacks.
5186  * Later on, we might change it to a list if there is
5187  * another virtualization implementation supporting the callbacks.
5188  */
5189 struct perf_guest_info_callbacks *perf_guest_cbs;
5190
5191 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5192 {
5193         perf_guest_cbs = cbs;
5194         return 0;
5195 }
5196 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5197
5198 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5199 {
5200         perf_guest_cbs = NULL;
5201         return 0;
5202 }
5203 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5204
5205 static void
5206 perf_output_sample_regs(struct perf_output_handle *handle,
5207                         struct pt_regs *regs, u64 mask)
5208 {
5209         int bit;
5210
5211         for_each_set_bit(bit, (const unsigned long *) &mask,
5212                          sizeof(mask) * BITS_PER_BYTE) {
5213                 u64 val;
5214
5215                 val = perf_reg_value(regs, bit);
5216                 perf_output_put(handle, val);
5217         }
5218 }
5219
5220 static void perf_sample_regs_user(struct perf_regs *regs_user,
5221                                   struct pt_regs *regs,
5222                                   struct pt_regs *regs_user_copy)
5223 {
5224         if (user_mode(regs)) {
5225                 regs_user->abi = perf_reg_abi(current);
5226                 regs_user->regs = regs;
5227         } else if (current->mm) {
5228                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5229         } else {
5230                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5231                 regs_user->regs = NULL;
5232         }
5233 }
5234
5235 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5236                                   struct pt_regs *regs)
5237 {
5238         regs_intr->regs = regs;
5239         regs_intr->abi  = perf_reg_abi(current);
5240 }
5241
5242
5243 /*
5244  * Get remaining task size from user stack pointer.
5245  *
5246  * It'd be better to take stack vma map and limit this more
5247  * precisly, but there's no way to get it safely under interrupt,
5248  * so using TASK_SIZE as limit.
5249  */
5250 static u64 perf_ustack_task_size(struct pt_regs *regs)
5251 {
5252         unsigned long addr = perf_user_stack_pointer(regs);
5253
5254         if (!addr || addr >= TASK_SIZE)
5255                 return 0;
5256
5257         return TASK_SIZE - addr;
5258 }
5259
5260 static u16
5261 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5262                         struct pt_regs *regs)
5263 {
5264         u64 task_size;
5265
5266         /* No regs, no stack pointer, no dump. */
5267         if (!regs)
5268                 return 0;
5269
5270         /*
5271          * Check if we fit in with the requested stack size into the:
5272          * - TASK_SIZE
5273          *   If we don't, we limit the size to the TASK_SIZE.
5274          *
5275          * - remaining sample size
5276          *   If we don't, we customize the stack size to
5277          *   fit in to the remaining sample size.
5278          */
5279
5280         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5281         stack_size = min(stack_size, (u16) task_size);
5282
5283         /* Current header size plus static size and dynamic size. */
5284         header_size += 2 * sizeof(u64);
5285
5286         /* Do we fit in with the current stack dump size? */
5287         if ((u16) (header_size + stack_size) < header_size) {
5288                 /*
5289                  * If we overflow the maximum size for the sample,
5290                  * we customize the stack dump size to fit in.
5291                  */
5292                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5293                 stack_size = round_up(stack_size, sizeof(u64));
5294         }
5295
5296         return stack_size;
5297 }
5298
5299 static void
5300 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5301                           struct pt_regs *regs)
5302 {
5303         /* Case of a kernel thread, nothing to dump */
5304         if (!regs) {
5305                 u64 size = 0;
5306                 perf_output_put(handle, size);
5307         } else {
5308                 unsigned long sp;
5309                 unsigned int rem;
5310                 u64 dyn_size;
5311
5312                 /*
5313                  * We dump:
5314                  * static size
5315                  *   - the size requested by user or the best one we can fit
5316                  *     in to the sample max size
5317                  * data
5318                  *   - user stack dump data
5319                  * dynamic size
5320                  *   - the actual dumped size
5321                  */
5322
5323                 /* Static size. */
5324                 perf_output_put(handle, dump_size);
5325
5326                 /* Data. */
5327                 sp = perf_user_stack_pointer(regs);
5328                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5329                 dyn_size = dump_size - rem;
5330
5331                 perf_output_skip(handle, rem);
5332
5333                 /* Dynamic size. */
5334                 perf_output_put(handle, dyn_size);
5335         }
5336 }
5337
5338 static void __perf_event_header__init_id(struct perf_event_header *header,
5339                                          struct perf_sample_data *data,
5340                                          struct perf_event *event)
5341 {
5342         u64 sample_type = event->attr.sample_type;
5343
5344         data->type = sample_type;
5345         header->size += event->id_header_size;
5346
5347         if (sample_type & PERF_SAMPLE_TID) {
5348                 /* namespace issues */
5349                 data->tid_entry.pid = perf_event_pid(event, current);
5350                 data->tid_entry.tid = perf_event_tid(event, current);
5351         }
5352
5353         if (sample_type & PERF_SAMPLE_TIME)
5354                 data->time = perf_event_clock(event);
5355
5356         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5357                 data->id = primary_event_id(event);
5358
5359         if (sample_type & PERF_SAMPLE_STREAM_ID)
5360                 data->stream_id = event->id;
5361
5362         if (sample_type & PERF_SAMPLE_CPU) {
5363                 data->cpu_entry.cpu      = raw_smp_processor_id();
5364                 data->cpu_entry.reserved = 0;
5365         }
5366 }
5367
5368 void perf_event_header__init_id(struct perf_event_header *header,
5369                                 struct perf_sample_data *data,
5370                                 struct perf_event *event)
5371 {
5372         if (event->attr.sample_id_all)
5373                 __perf_event_header__init_id(header, data, event);
5374 }
5375
5376 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5377                                            struct perf_sample_data *data)
5378 {
5379         u64 sample_type = data->type;
5380
5381         if (sample_type & PERF_SAMPLE_TID)
5382                 perf_output_put(handle, data->tid_entry);
5383
5384         if (sample_type & PERF_SAMPLE_TIME)
5385                 perf_output_put(handle, data->time);
5386
5387         if (sample_type & PERF_SAMPLE_ID)
5388                 perf_output_put(handle, data->id);
5389
5390         if (sample_type & PERF_SAMPLE_STREAM_ID)
5391                 perf_output_put(handle, data->stream_id);
5392
5393         if (sample_type & PERF_SAMPLE_CPU)
5394                 perf_output_put(handle, data->cpu_entry);
5395
5396         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5397                 perf_output_put(handle, data->id);
5398 }
5399
5400 void perf_event__output_id_sample(struct perf_event *event,
5401                                   struct perf_output_handle *handle,
5402                                   struct perf_sample_data *sample)
5403 {
5404         if (event->attr.sample_id_all)
5405                 __perf_event__output_id_sample(handle, sample);
5406 }
5407
5408 static void perf_output_read_one(struct perf_output_handle *handle,
5409                                  struct perf_event *event,
5410                                  u64 enabled, u64 running)
5411 {
5412         u64 read_format = event->attr.read_format;
5413         u64 values[4];
5414         int n = 0;
5415
5416         values[n++] = perf_event_count(event);
5417         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5418                 values[n++] = enabled +
5419                         atomic64_read(&event->child_total_time_enabled);
5420         }
5421         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5422                 values[n++] = running +
5423                         atomic64_read(&event->child_total_time_running);
5424         }
5425         if (read_format & PERF_FORMAT_ID)
5426                 values[n++] = primary_event_id(event);
5427
5428         __output_copy(handle, values, n * sizeof(u64));
5429 }
5430
5431 /*
5432  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5433  */
5434 static void perf_output_read_group(struct perf_output_handle *handle,
5435                             struct perf_event *event,
5436                             u64 enabled, u64 running)
5437 {
5438         struct perf_event *leader = event->group_leader, *sub;
5439         u64 read_format = event->attr.read_format;
5440         u64 values[5];
5441         int n = 0;
5442
5443         values[n++] = 1 + leader->nr_siblings;
5444
5445         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5446                 values[n++] = enabled;
5447
5448         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5449                 values[n++] = running;
5450
5451         if (leader != event)
5452                 leader->pmu->read(leader);
5453
5454         values[n++] = perf_event_count(leader);
5455         if (read_format & PERF_FORMAT_ID)
5456                 values[n++] = primary_event_id(leader);
5457
5458         __output_copy(handle, values, n * sizeof(u64));
5459
5460         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5461                 n = 0;
5462
5463                 if ((sub != event) &&
5464                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5465                         sub->pmu->read(sub);
5466
5467                 values[n++] = perf_event_count(sub);
5468                 if (read_format & PERF_FORMAT_ID)
5469                         values[n++] = primary_event_id(sub);
5470
5471                 __output_copy(handle, values, n * sizeof(u64));
5472         }
5473 }
5474
5475 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5476                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5477
5478 static void perf_output_read(struct perf_output_handle *handle,
5479                              struct perf_event *event)
5480 {
5481         u64 enabled = 0, running = 0, now;
5482         u64 read_format = event->attr.read_format;
5483
5484         /*
5485          * compute total_time_enabled, total_time_running
5486          * based on snapshot values taken when the event
5487          * was last scheduled in.
5488          *
5489          * we cannot simply called update_context_time()
5490          * because of locking issue as we are called in
5491          * NMI context
5492          */
5493         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5494                 calc_timer_values(event, &now, &enabled, &running);
5495
5496         if (event->attr.read_format & PERF_FORMAT_GROUP)
5497                 perf_output_read_group(handle, event, enabled, running);
5498         else
5499                 perf_output_read_one(handle, event, enabled, running);
5500 }
5501
5502 void perf_output_sample(struct perf_output_handle *handle,
5503                         struct perf_event_header *header,
5504                         struct perf_sample_data *data,
5505                         struct perf_event *event)
5506 {
5507         u64 sample_type = data->type;
5508
5509         perf_output_put(handle, *header);
5510
5511         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5512                 perf_output_put(handle, data->id);
5513
5514         if (sample_type & PERF_SAMPLE_IP)
5515                 perf_output_put(handle, data->ip);
5516
5517         if (sample_type & PERF_SAMPLE_TID)
5518                 perf_output_put(handle, data->tid_entry);
5519
5520         if (sample_type & PERF_SAMPLE_TIME)
5521                 perf_output_put(handle, data->time);
5522
5523         if (sample_type & PERF_SAMPLE_ADDR)
5524                 perf_output_put(handle, data->addr);
5525
5526         if (sample_type & PERF_SAMPLE_ID)
5527                 perf_output_put(handle, data->id);
5528
5529         if (sample_type & PERF_SAMPLE_STREAM_ID)
5530                 perf_output_put(handle, data->stream_id);
5531
5532         if (sample_type & PERF_SAMPLE_CPU)
5533                 perf_output_put(handle, data->cpu_entry);
5534
5535         if (sample_type & PERF_SAMPLE_PERIOD)
5536                 perf_output_put(handle, data->period);
5537
5538         if (sample_type & PERF_SAMPLE_READ)
5539                 perf_output_read(handle, event);
5540
5541         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5542                 if (data->callchain) {
5543                         int size = 1;
5544
5545                         if (data->callchain)
5546                                 size += data->callchain->nr;
5547
5548                         size *= sizeof(u64);
5549
5550                         __output_copy(handle, data->callchain, size);
5551                 } else {
5552                         u64 nr = 0;
5553                         perf_output_put(handle, nr);
5554                 }
5555         }
5556
5557         if (sample_type & PERF_SAMPLE_RAW) {
5558                 if (data->raw) {
5559                         u32 raw_size = data->raw->size;
5560                         u32 real_size = round_up(raw_size + sizeof(u32),
5561                                                  sizeof(u64)) - sizeof(u32);
5562                         u64 zero = 0;
5563
5564                         perf_output_put(handle, real_size);
5565                         __output_copy(handle, data->raw->data, raw_size);
5566                         if (real_size - raw_size)
5567                                 __output_copy(handle, &zero, real_size - raw_size);
5568                 } else {
5569                         struct {
5570                                 u32     size;
5571                                 u32     data;
5572                         } raw = {
5573                                 .size = sizeof(u32),
5574                                 .data = 0,
5575                         };
5576                         perf_output_put(handle, raw);
5577                 }
5578         }
5579
5580         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5581                 if (data->br_stack) {
5582                         size_t size;
5583
5584                         size = data->br_stack->nr
5585                              * sizeof(struct perf_branch_entry);
5586
5587                         perf_output_put(handle, data->br_stack->nr);
5588                         perf_output_copy(handle, data->br_stack->entries, size);
5589                 } else {
5590                         /*
5591                          * we always store at least the value of nr
5592                          */
5593                         u64 nr = 0;
5594                         perf_output_put(handle, nr);
5595                 }
5596         }
5597
5598         if (sample_type & PERF_SAMPLE_REGS_USER) {
5599                 u64 abi = data->regs_user.abi;
5600
5601                 /*
5602                  * If there are no regs to dump, notice it through
5603                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5604                  */
5605                 perf_output_put(handle, abi);
5606
5607                 if (abi) {
5608                         u64 mask = event->attr.sample_regs_user;
5609                         perf_output_sample_regs(handle,
5610                                                 data->regs_user.regs,
5611                                                 mask);
5612                 }
5613         }
5614
5615         if (sample_type & PERF_SAMPLE_STACK_USER) {
5616                 perf_output_sample_ustack(handle,
5617                                           data->stack_user_size,
5618                                           data->regs_user.regs);
5619         }
5620
5621         if (sample_type & PERF_SAMPLE_WEIGHT)
5622                 perf_output_put(handle, data->weight);
5623
5624         if (sample_type & PERF_SAMPLE_DATA_SRC)
5625                 perf_output_put(handle, data->data_src.val);
5626
5627         if (sample_type & PERF_SAMPLE_TRANSACTION)
5628                 perf_output_put(handle, data->txn);
5629
5630         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5631                 u64 abi = data->regs_intr.abi;
5632                 /*
5633                  * If there are no regs to dump, notice it through
5634                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5635                  */
5636                 perf_output_put(handle, abi);
5637
5638                 if (abi) {
5639                         u64 mask = event->attr.sample_regs_intr;
5640
5641                         perf_output_sample_regs(handle,
5642                                                 data->regs_intr.regs,
5643                                                 mask);
5644                 }
5645         }
5646
5647         if (!event->attr.watermark) {
5648                 int wakeup_events = event->attr.wakeup_events;
5649
5650                 if (wakeup_events) {
5651                         struct ring_buffer *rb = handle->rb;
5652                         int events = local_inc_return(&rb->events);
5653
5654                         if (events >= wakeup_events) {
5655                                 local_sub(wakeup_events, &rb->events);
5656                                 local_inc(&rb->wakeup);
5657                         }
5658                 }
5659         }
5660 }
5661
5662 void perf_prepare_sample(struct perf_event_header *header,
5663                          struct perf_sample_data *data,
5664                          struct perf_event *event,
5665                          struct pt_regs *regs)
5666 {
5667         u64 sample_type = event->attr.sample_type;
5668
5669         header->type = PERF_RECORD_SAMPLE;
5670         header->size = sizeof(*header) + event->header_size;
5671
5672         header->misc = 0;
5673         header->misc |= perf_misc_flags(regs);
5674
5675         __perf_event_header__init_id(header, data, event);
5676
5677         if (sample_type & PERF_SAMPLE_IP)
5678                 data->ip = perf_instruction_pointer(regs);
5679
5680         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5681                 int size = 1;
5682
5683                 data->callchain = perf_callchain(event, regs);
5684
5685                 if (data->callchain)
5686                         size += data->callchain->nr;
5687
5688                 header->size += size * sizeof(u64);
5689         }
5690
5691         if (sample_type & PERF_SAMPLE_RAW) {
5692                 int size = sizeof(u32);
5693
5694                 if (data->raw)
5695                         size += data->raw->size;
5696                 else
5697                         size += sizeof(u32);
5698
5699                 header->size += round_up(size, sizeof(u64));
5700         }
5701
5702         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5703                 int size = sizeof(u64); /* nr */
5704                 if (data->br_stack) {
5705                         size += data->br_stack->nr
5706                               * sizeof(struct perf_branch_entry);
5707                 }
5708                 header->size += size;
5709         }
5710
5711         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5712                 perf_sample_regs_user(&data->regs_user, regs,
5713                                       &data->regs_user_copy);
5714
5715         if (sample_type & PERF_SAMPLE_REGS_USER) {
5716                 /* regs dump ABI info */
5717                 int size = sizeof(u64);
5718
5719                 if (data->regs_user.regs) {
5720                         u64 mask = event->attr.sample_regs_user;
5721                         size += hweight64(mask) * sizeof(u64);
5722                 }
5723
5724                 header->size += size;
5725         }
5726
5727         if (sample_type & PERF_SAMPLE_STACK_USER) {
5728                 /*
5729                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5730                  * processed as the last one or have additional check added
5731                  * in case new sample type is added, because we could eat
5732                  * up the rest of the sample size.
5733                  */
5734                 u16 stack_size = event->attr.sample_stack_user;
5735                 u16 size = sizeof(u64);
5736
5737                 stack_size = perf_sample_ustack_size(stack_size, header->size,
5738                                                      data->regs_user.regs);
5739
5740                 /*
5741                  * If there is something to dump, add space for the dump
5742                  * itself and for the field that tells the dynamic size,
5743                  * which is how many have been actually dumped.
5744                  */
5745                 if (stack_size)
5746                         size += sizeof(u64) + stack_size;
5747
5748                 data->stack_user_size = stack_size;
5749                 header->size += size;
5750         }
5751
5752         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5753                 /* regs dump ABI info */
5754                 int size = sizeof(u64);
5755
5756                 perf_sample_regs_intr(&data->regs_intr, regs);
5757
5758                 if (data->regs_intr.regs) {
5759                         u64 mask = event->attr.sample_regs_intr;
5760
5761                         size += hweight64(mask) * sizeof(u64);
5762                 }
5763
5764                 header->size += size;
5765         }
5766 }
5767
5768 static void __always_inline
5769 __perf_event_output(struct perf_event *event,
5770                     struct perf_sample_data *data,
5771                     struct pt_regs *regs,
5772                     int (*output_begin)(struct perf_output_handle *,
5773                                         struct perf_event *,
5774                                         unsigned int))
5775 {
5776         struct perf_output_handle handle;
5777         struct perf_event_header header;
5778
5779         /* protect the callchain buffers */
5780         rcu_read_lock();
5781
5782         perf_prepare_sample(&header, data, event, regs);
5783
5784         if (output_begin(&handle, event, header.size))
5785                 goto exit;
5786
5787         perf_output_sample(&handle, &header, data, event);
5788
5789         perf_output_end(&handle);
5790
5791 exit:
5792         rcu_read_unlock();
5793 }
5794
5795 void
5796 perf_event_output_forward(struct perf_event *event,
5797                          struct perf_sample_data *data,
5798                          struct pt_regs *regs)
5799 {
5800         __perf_event_output(event, data, regs, perf_output_begin_forward);
5801 }
5802
5803 void
5804 perf_event_output_backward(struct perf_event *event,
5805                            struct perf_sample_data *data,
5806                            struct pt_regs *regs)
5807 {
5808         __perf_event_output(event, data, regs, perf_output_begin_backward);
5809 }
5810
5811 void
5812 perf_event_output(struct perf_event *event,
5813                   struct perf_sample_data *data,
5814                   struct pt_regs *regs)
5815 {
5816         __perf_event_output(event, data, regs, perf_output_begin);
5817 }
5818
5819 /*
5820  * read event_id
5821  */
5822
5823 struct perf_read_event {
5824         struct perf_event_header        header;
5825
5826         u32                             pid;
5827         u32                             tid;
5828 };
5829
5830 static void
5831 perf_event_read_event(struct perf_event *event,
5832                         struct task_struct *task)
5833 {
5834         struct perf_output_handle handle;
5835         struct perf_sample_data sample;
5836         struct perf_read_event read_event = {
5837                 .header = {
5838                         .type = PERF_RECORD_READ,
5839                         .misc = 0,
5840                         .size = sizeof(read_event) + event->read_size,
5841                 },
5842                 .pid = perf_event_pid(event, task),
5843                 .tid = perf_event_tid(event, task),
5844         };
5845         int ret;
5846
5847         perf_event_header__init_id(&read_event.header, &sample, event);
5848         ret = perf_output_begin(&handle, event, read_event.header.size);
5849         if (ret)
5850                 return;
5851
5852         perf_output_put(&handle, read_event);
5853         perf_output_read(&handle, event);
5854         perf_event__output_id_sample(event, &handle, &sample);
5855
5856         perf_output_end(&handle);
5857 }
5858
5859 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5860
5861 static void
5862 perf_event_aux_ctx(struct perf_event_context *ctx,
5863                    perf_event_aux_output_cb output,
5864                    void *data, bool all)
5865 {
5866         struct perf_event *event;
5867
5868         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5869                 if (!all) {
5870                         if (event->state < PERF_EVENT_STATE_INACTIVE)
5871                                 continue;
5872                         if (!event_filter_match(event))
5873                                 continue;
5874                 }
5875
5876                 output(event, data);
5877         }
5878 }
5879
5880 static void
5881 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5882                         struct perf_event_context *task_ctx)
5883 {
5884         rcu_read_lock();
5885         preempt_disable();
5886         perf_event_aux_ctx(task_ctx, output, data, false);
5887         preempt_enable();
5888         rcu_read_unlock();
5889 }
5890
5891 static void
5892 perf_event_aux(perf_event_aux_output_cb output, void *data,
5893                struct perf_event_context *task_ctx)
5894 {
5895         struct perf_cpu_context *cpuctx;
5896         struct perf_event_context *ctx;
5897         struct pmu *pmu;
5898         int ctxn;
5899
5900         /*
5901          * If we have task_ctx != NULL we only notify
5902          * the task context itself. The task_ctx is set
5903          * only for EXIT events before releasing task
5904          * context.
5905          */
5906         if (task_ctx) {
5907                 perf_event_aux_task_ctx(output, data, task_ctx);
5908                 return;
5909         }
5910
5911         rcu_read_lock();
5912         list_for_each_entry_rcu(pmu, &pmus, entry) {
5913                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5914                 if (cpuctx->unique_pmu != pmu)
5915                         goto next;
5916                 perf_event_aux_ctx(&cpuctx->ctx, output, data, false);
5917                 ctxn = pmu->task_ctx_nr;
5918                 if (ctxn < 0)
5919                         goto next;
5920                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5921                 if (ctx)
5922                         perf_event_aux_ctx(ctx, output, data, false);
5923 next:
5924                 put_cpu_ptr(pmu->pmu_cpu_context);
5925         }
5926         rcu_read_unlock();
5927 }
5928
5929 /*
5930  * Clear all file-based filters at exec, they'll have to be
5931  * re-instated when/if these objects are mmapped again.
5932  */
5933 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
5934 {
5935         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
5936         struct perf_addr_filter *filter;
5937         unsigned int restart = 0, count = 0;
5938         unsigned long flags;
5939
5940         if (!has_addr_filter(event))
5941                 return;
5942
5943         raw_spin_lock_irqsave(&ifh->lock, flags);
5944         list_for_each_entry(filter, &ifh->list, entry) {
5945                 if (filter->inode) {
5946                         event->addr_filters_offs[count] = 0;
5947                         restart++;
5948                 }
5949
5950                 count++;
5951         }
5952
5953         if (restart)
5954                 event->addr_filters_gen++;
5955         raw_spin_unlock_irqrestore(&ifh->lock, flags);
5956
5957         if (restart)
5958                 perf_event_restart(event);
5959 }
5960
5961 void perf_event_exec(void)
5962 {
5963         struct perf_event_context *ctx;
5964         int ctxn;
5965
5966         rcu_read_lock();
5967         for_each_task_context_nr(ctxn) {
5968                 ctx = current->perf_event_ctxp[ctxn];
5969                 if (!ctx)
5970                         continue;
5971
5972                 perf_event_enable_on_exec(ctxn);
5973
5974                 perf_event_aux_ctx(ctx, perf_event_addr_filters_exec, NULL,
5975                                    true);
5976         }
5977         rcu_read_unlock();
5978 }
5979
5980 struct remote_output {
5981         struct ring_buffer      *rb;
5982         int                     err;
5983 };
5984
5985 static void __perf_event_output_stop(struct perf_event *event, void *data)
5986 {
5987         struct perf_event *parent = event->parent;
5988         struct remote_output *ro = data;
5989         struct ring_buffer *rb = ro->rb;
5990         struct stop_event_data sd = {
5991                 .event  = event,
5992         };
5993
5994         if (!has_aux(event))
5995                 return;
5996
5997         if (!parent)
5998                 parent = event;
5999
6000         /*
6001          * In case of inheritance, it will be the parent that links to the
6002          * ring-buffer, but it will be the child that's actually using it:
6003          */
6004         if (rcu_dereference(parent->rb) == rb)
6005                 ro->err = __perf_event_stop(&sd);
6006 }
6007
6008 static int __perf_pmu_output_stop(void *info)
6009 {
6010         struct perf_event *event = info;
6011         struct pmu *pmu = event->pmu;
6012         struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
6013         struct remote_output ro = {
6014                 .rb     = event->rb,
6015         };
6016
6017         rcu_read_lock();
6018         perf_event_aux_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6019         if (cpuctx->task_ctx)
6020                 perf_event_aux_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6021                                    &ro, false);
6022         rcu_read_unlock();
6023
6024         return ro.err;
6025 }
6026
6027 static void perf_pmu_output_stop(struct perf_event *event)
6028 {
6029         struct perf_event *iter;
6030         int err, cpu;
6031
6032 restart:
6033         rcu_read_lock();
6034         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6035                 /*
6036                  * For per-CPU events, we need to make sure that neither they
6037                  * nor their children are running; for cpu==-1 events it's
6038                  * sufficient to stop the event itself if it's active, since
6039                  * it can't have children.
6040                  */
6041                 cpu = iter->cpu;
6042                 if (cpu == -1)
6043                         cpu = READ_ONCE(iter->oncpu);
6044
6045                 if (cpu == -1)
6046                         continue;
6047
6048                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6049                 if (err == -EAGAIN) {
6050                         rcu_read_unlock();
6051                         goto restart;
6052                 }
6053         }
6054         rcu_read_unlock();
6055 }
6056
6057 /*
6058  * task tracking -- fork/exit
6059  *
6060  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6061  */
6062
6063 struct perf_task_event {
6064         struct task_struct              *task;
6065         struct perf_event_context       *task_ctx;
6066
6067         struct {
6068                 struct perf_event_header        header;
6069
6070                 u32                             pid;
6071                 u32                             ppid;
6072                 u32                             tid;
6073                 u32                             ptid;
6074                 u64                             time;
6075         } event_id;
6076 };
6077
6078 static int perf_event_task_match(struct perf_event *event)
6079 {
6080         return event->attr.comm  || event->attr.mmap ||
6081                event->attr.mmap2 || event->attr.mmap_data ||
6082                event->attr.task;
6083 }
6084
6085 static void perf_event_task_output(struct perf_event *event,
6086                                    void *data)
6087 {
6088         struct perf_task_event *task_event = data;
6089         struct perf_output_handle handle;
6090         struct perf_sample_data sample;
6091         struct task_struct *task = task_event->task;
6092         int ret, size = task_event->event_id.header.size;
6093
6094         if (!perf_event_task_match(event))
6095                 return;
6096
6097         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6098
6099         ret = perf_output_begin(&handle, event,
6100                                 task_event->event_id.header.size);
6101         if (ret)
6102                 goto out;
6103
6104         task_event->event_id.pid = perf_event_pid(event, task);
6105         task_event->event_id.ppid = perf_event_pid(event, current);
6106
6107         task_event->event_id.tid = perf_event_tid(event, task);
6108         task_event->event_id.ptid = perf_event_tid(event, current);
6109
6110         task_event->event_id.time = perf_event_clock(event);
6111
6112         perf_output_put(&handle, task_event->event_id);
6113
6114         perf_event__output_id_sample(event, &handle, &sample);
6115
6116         perf_output_end(&handle);
6117 out:
6118         task_event->event_id.header.size = size;
6119 }
6120
6121 static void perf_event_task(struct task_struct *task,
6122                               struct perf_event_context *task_ctx,
6123                               int new)
6124 {
6125         struct perf_task_event task_event;
6126
6127         if (!atomic_read(&nr_comm_events) &&
6128             !atomic_read(&nr_mmap_events) &&
6129             !atomic_read(&nr_task_events))
6130                 return;
6131
6132         task_event = (struct perf_task_event){
6133                 .task     = task,
6134                 .task_ctx = task_ctx,
6135                 .event_id    = {
6136                         .header = {
6137                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6138                                 .misc = 0,
6139                                 .size = sizeof(task_event.event_id),
6140                         },
6141                         /* .pid  */
6142                         /* .ppid */
6143                         /* .tid  */
6144                         /* .ptid */
6145                         /* .time */
6146                 },
6147         };
6148
6149         perf_event_aux(perf_event_task_output,
6150                        &task_event,
6151                        task_ctx);
6152 }
6153
6154 void perf_event_fork(struct task_struct *task)
6155 {
6156         perf_event_task(task, NULL, 1);
6157 }
6158
6159 /*
6160  * comm tracking
6161  */
6162
6163 struct perf_comm_event {
6164         struct task_struct      *task;
6165         char                    *comm;
6166         int                     comm_size;
6167
6168         struct {
6169                 struct perf_event_header        header;
6170
6171                 u32                             pid;
6172                 u32                             tid;
6173         } event_id;
6174 };
6175
6176 static int perf_event_comm_match(struct perf_event *event)
6177 {
6178         return event->attr.comm;
6179 }
6180
6181 static void perf_event_comm_output(struct perf_event *event,
6182                                    void *data)
6183 {
6184         struct perf_comm_event *comm_event = data;
6185         struct perf_output_handle handle;
6186         struct perf_sample_data sample;
6187         int size = comm_event->event_id.header.size;
6188         int ret;
6189
6190         if (!perf_event_comm_match(event))
6191                 return;
6192
6193         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6194         ret = perf_output_begin(&handle, event,
6195                                 comm_event->event_id.header.size);
6196
6197         if (ret)
6198                 goto out;
6199
6200         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6201         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6202
6203         perf_output_put(&handle, comm_event->event_id);
6204         __output_copy(&handle, comm_event->comm,
6205                                    comm_event->comm_size);
6206
6207         perf_event__output_id_sample(event, &handle, &sample);
6208
6209         perf_output_end(&handle);
6210 out:
6211         comm_event->event_id.header.size = size;
6212 }
6213
6214 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6215 {
6216         char comm[TASK_COMM_LEN];
6217         unsigned int size;
6218
6219         memset(comm, 0, sizeof(comm));
6220         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6221         size = ALIGN(strlen(comm)+1, sizeof(u64));
6222
6223         comm_event->comm = comm;
6224         comm_event->comm_size = size;
6225
6226         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6227
6228         perf_event_aux(perf_event_comm_output,
6229                        comm_event,
6230                        NULL);
6231 }
6232
6233 void perf_event_comm(struct task_struct *task, bool exec)
6234 {
6235         struct perf_comm_event comm_event;
6236
6237         if (!atomic_read(&nr_comm_events))
6238                 return;
6239
6240         comm_event = (struct perf_comm_event){
6241                 .task   = task,
6242                 /* .comm      */
6243                 /* .comm_size */
6244                 .event_id  = {
6245                         .header = {
6246                                 .type = PERF_RECORD_COMM,
6247                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6248                                 /* .size */
6249                         },
6250                         /* .pid */
6251                         /* .tid */
6252                 },
6253         };
6254
6255         perf_event_comm_event(&comm_event);
6256 }
6257
6258 /*
6259  * mmap tracking
6260  */
6261
6262 struct perf_mmap_event {
6263         struct vm_area_struct   *vma;
6264
6265         const char              *file_name;
6266         int                     file_size;
6267         int                     maj, min;
6268         u64                     ino;
6269         u64                     ino_generation;
6270         u32                     prot, flags;
6271
6272         struct {
6273                 struct perf_event_header        header;
6274
6275                 u32                             pid;
6276                 u32                             tid;
6277                 u64                             start;
6278                 u64                             len;
6279                 u64                             pgoff;
6280         } event_id;
6281 };
6282
6283 static int perf_event_mmap_match(struct perf_event *event,
6284                                  void *data)
6285 {
6286         struct perf_mmap_event *mmap_event = data;
6287         struct vm_area_struct *vma = mmap_event->vma;
6288         int executable = vma->vm_flags & VM_EXEC;
6289
6290         return (!executable && event->attr.mmap_data) ||
6291                (executable && (event->attr.mmap || event->attr.mmap2));
6292 }
6293
6294 static void perf_event_mmap_output(struct perf_event *event,
6295                                    void *data)
6296 {
6297         struct perf_mmap_event *mmap_event = data;
6298         struct perf_output_handle handle;
6299         struct perf_sample_data sample;
6300         int size = mmap_event->event_id.header.size;
6301         int ret;
6302
6303         if (!perf_event_mmap_match(event, data))
6304                 return;
6305
6306         if (event->attr.mmap2) {
6307                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6308                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6309                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6310                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6311                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6312                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6313                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6314         }
6315
6316         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6317         ret = perf_output_begin(&handle, event,
6318                                 mmap_event->event_id.header.size);
6319         if (ret)
6320                 goto out;
6321
6322         mmap_event->event_id.pid = perf_event_pid(event, current);
6323         mmap_event->event_id.tid = perf_event_tid(event, current);
6324
6325         perf_output_put(&handle, mmap_event->event_id);
6326
6327         if (event->attr.mmap2) {
6328                 perf_output_put(&handle, mmap_event->maj);
6329                 perf_output_put(&handle, mmap_event->min);
6330                 perf_output_put(&handle, mmap_event->ino);
6331                 perf_output_put(&handle, mmap_event->ino_generation);
6332                 perf_output_put(&handle, mmap_event->prot);
6333                 perf_output_put(&handle, mmap_event->flags);
6334         }
6335
6336         __output_copy(&handle, mmap_event->file_name,
6337                                    mmap_event->file_size);
6338
6339         perf_event__output_id_sample(event, &handle, &sample);
6340
6341         perf_output_end(&handle);
6342 out:
6343         mmap_event->event_id.header.size = size;
6344 }
6345
6346 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6347 {
6348         struct vm_area_struct *vma = mmap_event->vma;
6349         struct file *file = vma->vm_file;
6350         int maj = 0, min = 0;
6351         u64 ino = 0, gen = 0;
6352         u32 prot = 0, flags = 0;
6353         unsigned int size;
6354         char tmp[16];
6355         char *buf = NULL;
6356         char *name;
6357
6358         if (file) {
6359                 struct inode *inode;
6360                 dev_t dev;
6361
6362                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6363                 if (!buf) {
6364                         name = "//enomem";
6365                         goto cpy_name;
6366                 }
6367                 /*
6368                  * d_path() works from the end of the rb backwards, so we
6369                  * need to add enough zero bytes after the string to handle
6370                  * the 64bit alignment we do later.
6371                  */
6372                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6373                 if (IS_ERR(name)) {
6374                         name = "//toolong";
6375                         goto cpy_name;
6376                 }
6377                 inode = file_inode(vma->vm_file);
6378                 dev = inode->i_sb->s_dev;
6379                 ino = inode->i_ino;
6380                 gen = inode->i_generation;
6381                 maj = MAJOR(dev);
6382                 min = MINOR(dev);
6383
6384                 if (vma->vm_flags & VM_READ)
6385                         prot |= PROT_READ;
6386                 if (vma->vm_flags & VM_WRITE)
6387                         prot |= PROT_WRITE;
6388                 if (vma->vm_flags & VM_EXEC)
6389                         prot |= PROT_EXEC;
6390
6391                 if (vma->vm_flags & VM_MAYSHARE)
6392                         flags = MAP_SHARED;
6393                 else
6394                         flags = MAP_PRIVATE;
6395
6396                 if (vma->vm_flags & VM_DENYWRITE)
6397                         flags |= MAP_DENYWRITE;
6398                 if (vma->vm_flags & VM_MAYEXEC)
6399                         flags |= MAP_EXECUTABLE;
6400                 if (vma->vm_flags & VM_LOCKED)
6401                         flags |= MAP_LOCKED;
6402                 if (vma->vm_flags & VM_HUGETLB)
6403                         flags |= MAP_HUGETLB;
6404
6405                 goto got_name;
6406         } else {
6407                 if (vma->vm_ops && vma->vm_ops->name) {
6408                         name = (char *) vma->vm_ops->name(vma);
6409                         if (name)
6410                                 goto cpy_name;
6411                 }
6412
6413                 name = (char *)arch_vma_name(vma);
6414                 if (name)
6415                         goto cpy_name;
6416
6417                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6418                                 vma->vm_end >= vma->vm_mm->brk) {
6419                         name = "[heap]";
6420                         goto cpy_name;
6421                 }
6422                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6423                                 vma->vm_end >= vma->vm_mm->start_stack) {
6424                         name = "[stack]";
6425                         goto cpy_name;
6426                 }
6427
6428                 name = "//anon";
6429                 goto cpy_name;
6430         }
6431
6432 cpy_name:
6433         strlcpy(tmp, name, sizeof(tmp));
6434         name = tmp;
6435 got_name:
6436         /*
6437          * Since our buffer works in 8 byte units we need to align our string
6438          * size to a multiple of 8. However, we must guarantee the tail end is
6439          * zero'd out to avoid leaking random bits to userspace.
6440          */
6441         size = strlen(name)+1;
6442         while (!IS_ALIGNED(size, sizeof(u64)))
6443                 name[size++] = '\0';
6444
6445         mmap_event->file_name = name;
6446         mmap_event->file_size = size;
6447         mmap_event->maj = maj;
6448         mmap_event->min = min;
6449         mmap_event->ino = ino;
6450         mmap_event->ino_generation = gen;
6451         mmap_event->prot = prot;
6452         mmap_event->flags = flags;
6453
6454         if (!(vma->vm_flags & VM_EXEC))
6455                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6456
6457         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6458
6459         perf_event_aux(perf_event_mmap_output,
6460                        mmap_event,
6461                        NULL);
6462
6463         kfree(buf);
6464 }
6465
6466 /*
6467  * Whether this @filter depends on a dynamic object which is not loaded
6468  * yet or its load addresses are not known.
6469  */
6470 static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter)
6471 {
6472         return filter->filter && filter->inode;
6473 }
6474
6475 /*
6476  * Check whether inode and address range match filter criteria.
6477  */
6478 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6479                                      struct file *file, unsigned long offset,
6480                                      unsigned long size)
6481 {
6482         if (filter->inode != file->f_inode)
6483                 return false;
6484
6485         if (filter->offset > offset + size)
6486                 return false;
6487
6488         if (filter->offset + filter->size < offset)
6489                 return false;
6490
6491         return true;
6492 }
6493
6494 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6495 {
6496         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6497         struct vm_area_struct *vma = data;
6498         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6499         struct file *file = vma->vm_file;
6500         struct perf_addr_filter *filter;
6501         unsigned int restart = 0, count = 0;
6502
6503         if (!has_addr_filter(event))
6504                 return;
6505
6506         if (!file)
6507                 return;
6508
6509         raw_spin_lock_irqsave(&ifh->lock, flags);
6510         list_for_each_entry(filter, &ifh->list, entry) {
6511                 if (perf_addr_filter_match(filter, file, off,
6512                                              vma->vm_end - vma->vm_start)) {
6513                         event->addr_filters_offs[count] = vma->vm_start;
6514                         restart++;
6515                 }
6516
6517                 count++;
6518         }
6519
6520         if (restart)
6521                 event->addr_filters_gen++;
6522         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6523
6524         if (restart)
6525                 perf_event_restart(event);
6526 }
6527
6528 /*
6529  * Adjust all task's events' filters to the new vma
6530  */
6531 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6532 {
6533         struct perf_event_context *ctx;
6534         int ctxn;
6535
6536         rcu_read_lock();
6537         for_each_task_context_nr(ctxn) {
6538                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6539                 if (!ctx)
6540                         continue;
6541
6542                 perf_event_aux_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6543         }
6544         rcu_read_unlock();
6545 }
6546
6547 void perf_event_mmap(struct vm_area_struct *vma)
6548 {
6549         struct perf_mmap_event mmap_event;
6550
6551         if (!atomic_read(&nr_mmap_events))
6552                 return;
6553
6554         mmap_event = (struct perf_mmap_event){
6555                 .vma    = vma,
6556                 /* .file_name */
6557                 /* .file_size */
6558                 .event_id  = {
6559                         .header = {
6560                                 .type = PERF_RECORD_MMAP,
6561                                 .misc = PERF_RECORD_MISC_USER,
6562                                 /* .size */
6563                         },
6564                         /* .pid */
6565                         /* .tid */
6566                         .start  = vma->vm_start,
6567                         .len    = vma->vm_end - vma->vm_start,
6568                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6569                 },
6570                 /* .maj (attr_mmap2 only) */
6571                 /* .min (attr_mmap2 only) */
6572                 /* .ino (attr_mmap2 only) */
6573                 /* .ino_generation (attr_mmap2 only) */
6574                 /* .prot (attr_mmap2 only) */
6575                 /* .flags (attr_mmap2 only) */
6576         };
6577
6578         perf_addr_filters_adjust(vma);
6579         perf_event_mmap_event(&mmap_event);
6580 }
6581
6582 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6583                           unsigned long size, u64 flags)
6584 {
6585         struct perf_output_handle handle;
6586         struct perf_sample_data sample;
6587         struct perf_aux_event {
6588                 struct perf_event_header        header;
6589                 u64                             offset;
6590                 u64                             size;
6591                 u64                             flags;
6592         } rec = {
6593                 .header = {
6594                         .type = PERF_RECORD_AUX,
6595                         .misc = 0,
6596                         .size = sizeof(rec),
6597                 },
6598                 .offset         = head,
6599                 .size           = size,
6600                 .flags          = flags,
6601         };
6602         int ret;
6603
6604         perf_event_header__init_id(&rec.header, &sample, event);
6605         ret = perf_output_begin(&handle, event, rec.header.size);
6606
6607         if (ret)
6608                 return;
6609
6610         perf_output_put(&handle, rec);
6611         perf_event__output_id_sample(event, &handle, &sample);
6612
6613         perf_output_end(&handle);
6614 }
6615
6616 /*
6617  * Lost/dropped samples logging
6618  */
6619 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6620 {
6621         struct perf_output_handle handle;
6622         struct perf_sample_data sample;
6623         int ret;
6624
6625         struct {
6626                 struct perf_event_header        header;
6627                 u64                             lost;
6628         } lost_samples_event = {
6629                 .header = {
6630                         .type = PERF_RECORD_LOST_SAMPLES,
6631                         .misc = 0,
6632                         .size = sizeof(lost_samples_event),
6633                 },
6634                 .lost           = lost,
6635         };
6636
6637         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6638
6639         ret = perf_output_begin(&handle, event,
6640                                 lost_samples_event.header.size);
6641         if (ret)
6642                 return;
6643
6644         perf_output_put(&handle, lost_samples_event);
6645         perf_event__output_id_sample(event, &handle, &sample);
6646         perf_output_end(&handle);
6647 }
6648
6649 /*
6650  * context_switch tracking
6651  */
6652
6653 struct perf_switch_event {
6654         struct task_struct      *task;
6655         struct task_struct      *next_prev;
6656
6657         struct {
6658                 struct perf_event_header        header;
6659                 u32                             next_prev_pid;
6660                 u32                             next_prev_tid;
6661         } event_id;
6662 };
6663
6664 static int perf_event_switch_match(struct perf_event *event)
6665 {
6666         return event->attr.context_switch;
6667 }
6668
6669 static void perf_event_switch_output(struct perf_event *event, void *data)
6670 {
6671         struct perf_switch_event *se = data;
6672         struct perf_output_handle handle;
6673         struct perf_sample_data sample;
6674         int ret;
6675
6676         if (!perf_event_switch_match(event))
6677                 return;
6678
6679         /* Only CPU-wide events are allowed to see next/prev pid/tid */
6680         if (event->ctx->task) {
6681                 se->event_id.header.type = PERF_RECORD_SWITCH;
6682                 se->event_id.header.size = sizeof(se->event_id.header);
6683         } else {
6684                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6685                 se->event_id.header.size = sizeof(se->event_id);
6686                 se->event_id.next_prev_pid =
6687                                         perf_event_pid(event, se->next_prev);
6688                 se->event_id.next_prev_tid =
6689                                         perf_event_tid(event, se->next_prev);
6690         }
6691
6692         perf_event_header__init_id(&se->event_id.header, &sample, event);
6693
6694         ret = perf_output_begin(&handle, event, se->event_id.header.size);
6695         if (ret)
6696                 return;
6697
6698         if (event->ctx->task)
6699                 perf_output_put(&handle, se->event_id.header);
6700         else
6701                 perf_output_put(&handle, se->event_id);
6702
6703         perf_event__output_id_sample(event, &handle, &sample);
6704
6705         perf_output_end(&handle);
6706 }
6707
6708 static void perf_event_switch(struct task_struct *task,
6709                               struct task_struct *next_prev, bool sched_in)
6710 {
6711         struct perf_switch_event switch_event;
6712
6713         /* N.B. caller checks nr_switch_events != 0 */
6714
6715         switch_event = (struct perf_switch_event){
6716                 .task           = task,
6717                 .next_prev      = next_prev,
6718                 .event_id       = {
6719                         .header = {
6720                                 /* .type */
6721                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6722                                 /* .size */
6723                         },
6724                         /* .next_prev_pid */
6725                         /* .next_prev_tid */
6726                 },
6727         };
6728
6729         perf_event_aux(perf_event_switch_output,
6730                        &switch_event,
6731                        NULL);
6732 }
6733
6734 /*
6735  * IRQ throttle logging
6736  */
6737
6738 static void perf_log_throttle(struct perf_event *event, int enable)
6739 {
6740         struct perf_output_handle handle;
6741         struct perf_sample_data sample;
6742         int ret;
6743
6744         struct {
6745                 struct perf_event_header        header;
6746                 u64                             time;
6747                 u64                             id;
6748                 u64                             stream_id;
6749         } throttle_event = {
6750                 .header = {
6751                         .type = PERF_RECORD_THROTTLE,
6752                         .misc = 0,
6753                         .size = sizeof(throttle_event),
6754                 },
6755                 .time           = perf_event_clock(event),
6756                 .id             = primary_event_id(event),
6757                 .stream_id      = event->id,
6758         };
6759
6760         if (enable)
6761                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6762
6763         perf_event_header__init_id(&throttle_event.header, &sample, event);
6764
6765         ret = perf_output_begin(&handle, event,
6766                                 throttle_event.header.size);
6767         if (ret)
6768                 return;
6769
6770         perf_output_put(&handle, throttle_event);
6771         perf_event__output_id_sample(event, &handle, &sample);
6772         perf_output_end(&handle);
6773 }
6774
6775 static void perf_log_itrace_start(struct perf_event *event)
6776 {
6777         struct perf_output_handle handle;
6778         struct perf_sample_data sample;
6779         struct perf_aux_event {
6780                 struct perf_event_header        header;
6781                 u32                             pid;
6782                 u32                             tid;
6783         } rec;
6784         int ret;
6785
6786         if (event->parent)
6787                 event = event->parent;
6788
6789         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6790             event->hw.itrace_started)
6791                 return;
6792
6793         rec.header.type = PERF_RECORD_ITRACE_START;
6794         rec.header.misc = 0;
6795         rec.header.size = sizeof(rec);
6796         rec.pid = perf_event_pid(event, current);
6797         rec.tid = perf_event_tid(event, current);
6798
6799         perf_event_header__init_id(&rec.header, &sample, event);
6800         ret = perf_output_begin(&handle, event, rec.header.size);
6801
6802         if (ret)
6803                 return;
6804
6805         perf_output_put(&handle, rec);
6806         perf_event__output_id_sample(event, &handle, &sample);
6807
6808         perf_output_end(&handle);
6809 }
6810
6811 /*
6812  * Generic event overflow handling, sampling.
6813  */
6814
6815 static int __perf_event_overflow(struct perf_event *event,
6816                                    int throttle, struct perf_sample_data *data,
6817                                    struct pt_regs *regs)
6818 {
6819         int events = atomic_read(&event->event_limit);
6820         struct hw_perf_event *hwc = &event->hw;
6821         u64 seq;
6822         int ret = 0;
6823
6824         /*
6825          * Non-sampling counters might still use the PMI to fold short
6826          * hardware counters, ignore those.
6827          */
6828         if (unlikely(!is_sampling_event(event)))
6829                 return 0;
6830
6831         seq = __this_cpu_read(perf_throttled_seq);
6832         if (seq != hwc->interrupts_seq) {
6833                 hwc->interrupts_seq = seq;
6834                 hwc->interrupts = 1;
6835         } else {
6836                 hwc->interrupts++;
6837                 if (unlikely(throttle
6838                              && hwc->interrupts >= max_samples_per_tick)) {
6839                         __this_cpu_inc(perf_throttled_count);
6840                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6841                         hwc->interrupts = MAX_INTERRUPTS;
6842                         perf_log_throttle(event, 0);
6843                         ret = 1;
6844                 }
6845         }
6846
6847         if (event->attr.freq) {
6848                 u64 now = perf_clock();
6849                 s64 delta = now - hwc->freq_time_stamp;
6850
6851                 hwc->freq_time_stamp = now;
6852
6853                 if (delta > 0 && delta < 2*TICK_NSEC)
6854                         perf_adjust_period(event, delta, hwc->last_period, true);
6855         }
6856
6857         /*
6858          * XXX event_limit might not quite work as expected on inherited
6859          * events
6860          */
6861
6862         event->pending_kill = POLL_IN;
6863         if (events && atomic_dec_and_test(&event->event_limit)) {
6864                 ret = 1;
6865                 event->pending_kill = POLL_HUP;
6866                 event->pending_disable = 1;
6867                 irq_work_queue(&event->pending);
6868         }
6869
6870         event->overflow_handler(event, data, regs);
6871
6872         if (*perf_event_fasync(event) && event->pending_kill) {
6873                 event->pending_wakeup = 1;
6874                 irq_work_queue(&event->pending);
6875         }
6876
6877         return ret;
6878 }
6879
6880 int perf_event_overflow(struct perf_event *event,
6881                           struct perf_sample_data *data,
6882                           struct pt_regs *regs)
6883 {
6884         return __perf_event_overflow(event, 1, data, regs);
6885 }
6886
6887 /*
6888  * Generic software event infrastructure
6889  */
6890
6891 struct swevent_htable {
6892         struct swevent_hlist            *swevent_hlist;
6893         struct mutex                    hlist_mutex;
6894         int                             hlist_refcount;
6895
6896         /* Recursion avoidance in each contexts */
6897         int                             recursion[PERF_NR_CONTEXTS];
6898 };
6899
6900 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6901
6902 /*
6903  * We directly increment event->count and keep a second value in
6904  * event->hw.period_left to count intervals. This period event
6905  * is kept in the range [-sample_period, 0] so that we can use the
6906  * sign as trigger.
6907  */
6908
6909 u64 perf_swevent_set_period(struct perf_event *event)
6910 {
6911         struct hw_perf_event *hwc = &event->hw;
6912         u64 period = hwc->last_period;
6913         u64 nr, offset;
6914         s64 old, val;
6915
6916         hwc->last_period = hwc->sample_period;
6917
6918 again:
6919         old = val = local64_read(&hwc->period_left);
6920         if (val < 0)
6921                 return 0;
6922
6923         nr = div64_u64(period + val, period);
6924         offset = nr * period;
6925         val -= offset;
6926         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6927                 goto again;
6928
6929         return nr;
6930 }
6931
6932 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6933                                     struct perf_sample_data *data,
6934                                     struct pt_regs *regs)
6935 {
6936         struct hw_perf_event *hwc = &event->hw;
6937         int throttle = 0;
6938
6939         if (!overflow)
6940                 overflow = perf_swevent_set_period(event);
6941
6942         if (hwc->interrupts == MAX_INTERRUPTS)
6943                 return;
6944
6945         for (; overflow; overflow--) {
6946                 if (__perf_event_overflow(event, throttle,
6947                                             data, regs)) {
6948                         /*
6949                          * We inhibit the overflow from happening when
6950                          * hwc->interrupts == MAX_INTERRUPTS.
6951                          */
6952                         break;
6953                 }
6954                 throttle = 1;
6955         }
6956 }
6957
6958 static void perf_swevent_event(struct perf_event *event, u64 nr,
6959                                struct perf_sample_data *data,
6960                                struct pt_regs *regs)
6961 {
6962         struct hw_perf_event *hwc = &event->hw;
6963
6964         local64_add(nr, &event->count);
6965
6966         if (!regs)
6967                 return;
6968
6969         if (!is_sampling_event(event))
6970                 return;
6971
6972         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6973                 data->period = nr;
6974                 return perf_swevent_overflow(event, 1, data, regs);
6975         } else
6976                 data->period = event->hw.last_period;
6977
6978         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6979                 return perf_swevent_overflow(event, 1, data, regs);
6980
6981         if (local64_add_negative(nr, &hwc->period_left))
6982                 return;
6983
6984         perf_swevent_overflow(event, 0, data, regs);
6985 }
6986
6987 static int perf_exclude_event(struct perf_event *event,
6988                               struct pt_regs *regs)
6989 {
6990         if (event->hw.state & PERF_HES_STOPPED)
6991                 return 1;
6992
6993         if (regs) {
6994                 if (event->attr.exclude_user && user_mode(regs))
6995                         return 1;
6996
6997                 if (event->attr.exclude_kernel && !user_mode(regs))
6998                         return 1;
6999         }
7000
7001         return 0;
7002 }
7003
7004 static int perf_swevent_match(struct perf_event *event,
7005                                 enum perf_type_id type,
7006                                 u32 event_id,
7007                                 struct perf_sample_data *data,
7008                                 struct pt_regs *regs)
7009 {
7010         if (event->attr.type != type)
7011                 return 0;
7012
7013         if (event->attr.config != event_id)
7014                 return 0;
7015
7016         if (perf_exclude_event(event, regs))
7017                 return 0;
7018
7019         return 1;
7020 }
7021
7022 static inline u64 swevent_hash(u64 type, u32 event_id)
7023 {
7024         u64 val = event_id | (type << 32);
7025
7026         return hash_64(val, SWEVENT_HLIST_BITS);
7027 }
7028
7029 static inline struct hlist_head *
7030 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7031 {
7032         u64 hash = swevent_hash(type, event_id);
7033
7034         return &hlist->heads[hash];
7035 }
7036
7037 /* For the read side: events when they trigger */
7038 static inline struct hlist_head *
7039 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7040 {
7041         struct swevent_hlist *hlist;
7042
7043         hlist = rcu_dereference(swhash->swevent_hlist);
7044         if (!hlist)
7045                 return NULL;
7046
7047         return __find_swevent_head(hlist, type, event_id);
7048 }
7049
7050 /* For the event head insertion and removal in the hlist */
7051 static inline struct hlist_head *
7052 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7053 {
7054         struct swevent_hlist *hlist;
7055         u32 event_id = event->attr.config;
7056         u64 type = event->attr.type;
7057
7058         /*
7059          * Event scheduling is always serialized against hlist allocation
7060          * and release. Which makes the protected version suitable here.
7061          * The context lock guarantees that.
7062          */
7063         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7064                                           lockdep_is_held(&event->ctx->lock));
7065         if (!hlist)
7066                 return NULL;
7067
7068         return __find_swevent_head(hlist, type, event_id);
7069 }
7070
7071 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7072                                     u64 nr,
7073                                     struct perf_sample_data *data,
7074                                     struct pt_regs *regs)
7075 {
7076         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7077         struct perf_event *event;
7078         struct hlist_head *head;
7079
7080         rcu_read_lock();
7081         head = find_swevent_head_rcu(swhash, type, event_id);
7082         if (!head)
7083                 goto end;
7084
7085         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7086                 if (perf_swevent_match(event, type, event_id, data, regs))
7087                         perf_swevent_event(event, nr, data, regs);
7088         }
7089 end:
7090         rcu_read_unlock();
7091 }
7092
7093 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7094
7095 int perf_swevent_get_recursion_context(void)
7096 {
7097         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7098
7099         return get_recursion_context(swhash->recursion);
7100 }
7101 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7102
7103 inline void perf_swevent_put_recursion_context(int rctx)
7104 {
7105         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7106
7107         put_recursion_context(swhash->recursion, rctx);
7108 }
7109
7110 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7111 {
7112         struct perf_sample_data data;
7113
7114         if (WARN_ON_ONCE(!regs))
7115                 return;
7116
7117         perf_sample_data_init(&data, addr, 0);
7118         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7119 }
7120
7121 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7122 {
7123         int rctx;
7124
7125         preempt_disable_notrace();
7126         rctx = perf_swevent_get_recursion_context();
7127         if (unlikely(rctx < 0))
7128                 goto fail;
7129
7130         ___perf_sw_event(event_id, nr, regs, addr);
7131
7132         perf_swevent_put_recursion_context(rctx);
7133 fail:
7134         preempt_enable_notrace();
7135 }
7136
7137 static void perf_swevent_read(struct perf_event *event)
7138 {
7139 }
7140
7141 static int perf_swevent_add(struct perf_event *event, int flags)
7142 {
7143         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7144         struct hw_perf_event *hwc = &event->hw;
7145         struct hlist_head *head;
7146
7147         if (is_sampling_event(event)) {
7148                 hwc->last_period = hwc->sample_period;
7149                 perf_swevent_set_period(event);
7150         }
7151
7152         hwc->state = !(flags & PERF_EF_START);
7153
7154         head = find_swevent_head(swhash, event);
7155         if (WARN_ON_ONCE(!head))
7156                 return -EINVAL;
7157
7158         hlist_add_head_rcu(&event->hlist_entry, head);
7159         perf_event_update_userpage(event);
7160
7161         return 0;
7162 }
7163
7164 static void perf_swevent_del(struct perf_event *event, int flags)
7165 {
7166         hlist_del_rcu(&event->hlist_entry);
7167 }
7168
7169 static void perf_swevent_start(struct perf_event *event, int flags)
7170 {
7171         event->hw.state = 0;
7172 }
7173
7174 static void perf_swevent_stop(struct perf_event *event, int flags)
7175 {
7176         event->hw.state = PERF_HES_STOPPED;
7177 }
7178
7179 /* Deref the hlist from the update side */
7180 static inline struct swevent_hlist *
7181 swevent_hlist_deref(struct swevent_htable *swhash)
7182 {
7183         return rcu_dereference_protected(swhash->swevent_hlist,
7184                                          lockdep_is_held(&swhash->hlist_mutex));
7185 }
7186
7187 static void swevent_hlist_release(struct swevent_htable *swhash)
7188 {
7189         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7190
7191         if (!hlist)
7192                 return;
7193
7194         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7195         kfree_rcu(hlist, rcu_head);
7196 }
7197
7198 static void swevent_hlist_put_cpu(int cpu)
7199 {
7200         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7201
7202         mutex_lock(&swhash->hlist_mutex);
7203
7204         if (!--swhash->hlist_refcount)
7205                 swevent_hlist_release(swhash);
7206
7207         mutex_unlock(&swhash->hlist_mutex);
7208 }
7209
7210 static void swevent_hlist_put(void)
7211 {
7212         int cpu;
7213
7214         for_each_possible_cpu(cpu)
7215                 swevent_hlist_put_cpu(cpu);
7216 }
7217
7218 static int swevent_hlist_get_cpu(int cpu)
7219 {
7220         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7221         int err = 0;
7222
7223         mutex_lock(&swhash->hlist_mutex);
7224         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7225                 struct swevent_hlist *hlist;
7226
7227                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7228                 if (!hlist) {
7229                         err = -ENOMEM;
7230                         goto exit;
7231                 }
7232                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7233         }
7234         swhash->hlist_refcount++;
7235 exit:
7236         mutex_unlock(&swhash->hlist_mutex);
7237
7238         return err;
7239 }
7240
7241 static int swevent_hlist_get(void)
7242 {
7243         int err, cpu, failed_cpu;
7244
7245         get_online_cpus();
7246         for_each_possible_cpu(cpu) {
7247                 err = swevent_hlist_get_cpu(cpu);
7248                 if (err) {
7249                         failed_cpu = cpu;
7250                         goto fail;
7251                 }
7252         }
7253         put_online_cpus();
7254
7255         return 0;
7256 fail:
7257         for_each_possible_cpu(cpu) {
7258                 if (cpu == failed_cpu)
7259                         break;
7260                 swevent_hlist_put_cpu(cpu);
7261         }
7262
7263         put_online_cpus();
7264         return err;
7265 }
7266
7267 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7268
7269 static void sw_perf_event_destroy(struct perf_event *event)
7270 {
7271         u64 event_id = event->attr.config;
7272
7273         WARN_ON(event->parent);
7274
7275         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7276         swevent_hlist_put();
7277 }
7278
7279 static int perf_swevent_init(struct perf_event *event)
7280 {
7281         u64 event_id = event->attr.config;
7282
7283         if (event->attr.type != PERF_TYPE_SOFTWARE)
7284                 return -ENOENT;
7285
7286         /*
7287          * no branch sampling for software events
7288          */
7289         if (has_branch_stack(event))
7290                 return -EOPNOTSUPP;
7291
7292         switch (event_id) {
7293         case PERF_COUNT_SW_CPU_CLOCK:
7294         case PERF_COUNT_SW_TASK_CLOCK:
7295                 return -ENOENT;
7296
7297         default:
7298                 break;
7299         }
7300
7301         if (event_id >= PERF_COUNT_SW_MAX)
7302                 return -ENOENT;
7303
7304         if (!event->parent) {
7305                 int err;
7306
7307                 err = swevent_hlist_get();
7308                 if (err)
7309                         return err;
7310
7311                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7312                 event->destroy = sw_perf_event_destroy;
7313         }
7314
7315         return 0;
7316 }
7317
7318 static struct pmu perf_swevent = {
7319         .task_ctx_nr    = perf_sw_context,
7320
7321         .capabilities   = PERF_PMU_CAP_NO_NMI,
7322
7323         .event_init     = perf_swevent_init,
7324         .add            = perf_swevent_add,
7325         .del            = perf_swevent_del,
7326         .start          = perf_swevent_start,
7327         .stop           = perf_swevent_stop,
7328         .read           = perf_swevent_read,
7329 };
7330
7331 #ifdef CONFIG_EVENT_TRACING
7332
7333 static int perf_tp_filter_match(struct perf_event *event,
7334                                 struct perf_sample_data *data)
7335 {
7336         void *record = data->raw->data;
7337
7338         /* only top level events have filters set */
7339         if (event->parent)
7340                 event = event->parent;
7341
7342         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7343                 return 1;
7344         return 0;
7345 }
7346
7347 static int perf_tp_event_match(struct perf_event *event,
7348                                 struct perf_sample_data *data,
7349                                 struct pt_regs *regs)
7350 {
7351         if (event->hw.state & PERF_HES_STOPPED)
7352                 return 0;
7353         /*
7354          * All tracepoints are from kernel-space.
7355          */
7356         if (event->attr.exclude_kernel)
7357                 return 0;
7358
7359         if (!perf_tp_filter_match(event, data))
7360                 return 0;
7361
7362         return 1;
7363 }
7364
7365 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
7366                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7367                    struct task_struct *task)
7368 {
7369         struct perf_sample_data data;
7370         struct perf_event *event;
7371
7372         struct perf_raw_record raw = {
7373                 .size = entry_size,
7374                 .data = record,
7375         };
7376
7377         perf_sample_data_init(&data, addr, 0);
7378         data.raw = &raw;
7379
7380         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7381                 if (perf_tp_event_match(event, &data, regs))
7382                         perf_swevent_event(event, count, &data, regs);
7383         }
7384
7385         /*
7386          * If we got specified a target task, also iterate its context and
7387          * deliver this event there too.
7388          */
7389         if (task && task != current) {
7390                 struct perf_event_context *ctx;
7391                 struct trace_entry *entry = record;
7392
7393                 rcu_read_lock();
7394                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7395                 if (!ctx)
7396                         goto unlock;
7397
7398                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7399                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7400                                 continue;
7401                         if (event->attr.config != entry->type)
7402                                 continue;
7403                         if (perf_tp_event_match(event, &data, regs))
7404                                 perf_swevent_event(event, count, &data, regs);
7405                 }
7406 unlock:
7407                 rcu_read_unlock();
7408         }
7409
7410         perf_swevent_put_recursion_context(rctx);
7411 }
7412 EXPORT_SYMBOL_GPL(perf_tp_event);
7413
7414 static void tp_perf_event_destroy(struct perf_event *event)
7415 {
7416         perf_trace_destroy(event);
7417 }
7418
7419 static int perf_tp_event_init(struct perf_event *event)
7420 {
7421         int err;
7422
7423         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7424                 return -ENOENT;
7425
7426         /*
7427          * no branch sampling for tracepoint events
7428          */
7429         if (has_branch_stack(event))
7430                 return -EOPNOTSUPP;
7431
7432         err = perf_trace_init(event);
7433         if (err)
7434                 return err;
7435
7436         event->destroy = tp_perf_event_destroy;
7437
7438         return 0;
7439 }
7440
7441 static struct pmu perf_tracepoint = {
7442         .task_ctx_nr    = perf_sw_context,
7443
7444         .event_init     = perf_tp_event_init,
7445         .add            = perf_trace_add,
7446         .del            = perf_trace_del,
7447         .start          = perf_swevent_start,
7448         .stop           = perf_swevent_stop,
7449         .read           = perf_swevent_read,
7450 };
7451
7452 static inline void perf_tp_register(void)
7453 {
7454         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7455 }
7456
7457 static void perf_event_free_filter(struct perf_event *event)
7458 {
7459         ftrace_profile_free_filter(event);
7460 }
7461
7462 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7463 {
7464         struct bpf_prog *prog;
7465
7466         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7467                 return -EINVAL;
7468
7469         if (event->tp_event->prog)
7470                 return -EEXIST;
7471
7472         if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7473                 /* bpf programs can only be attached to u/kprobes */
7474                 return -EINVAL;
7475
7476         prog = bpf_prog_get(prog_fd);
7477         if (IS_ERR(prog))
7478                 return PTR_ERR(prog);
7479
7480         if (prog->type != BPF_PROG_TYPE_KPROBE) {
7481                 /* valid fd, but invalid bpf program type */
7482                 bpf_prog_put(prog);
7483                 return -EINVAL;
7484         }
7485
7486         event->tp_event->prog = prog;
7487
7488         return 0;
7489 }
7490
7491 static void perf_event_free_bpf_prog(struct perf_event *event)
7492 {
7493         struct bpf_prog *prog;
7494
7495         if (!event->tp_event)
7496                 return;
7497
7498         prog = event->tp_event->prog;
7499         if (prog) {
7500                 event->tp_event->prog = NULL;
7501                 bpf_prog_put(prog);
7502         }
7503 }
7504
7505 #else
7506
7507 static inline void perf_tp_register(void)
7508 {
7509 }
7510
7511 static void perf_event_free_filter(struct perf_event *event)
7512 {
7513 }
7514
7515 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7516 {
7517         return -ENOENT;
7518 }
7519
7520 static void perf_event_free_bpf_prog(struct perf_event *event)
7521 {
7522 }
7523 #endif /* CONFIG_EVENT_TRACING */
7524
7525 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7526 void perf_bp_event(struct perf_event *bp, void *data)
7527 {
7528         struct perf_sample_data sample;
7529         struct pt_regs *regs = data;
7530
7531         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7532
7533         if (!bp->hw.state && !perf_exclude_event(bp, regs))
7534                 perf_swevent_event(bp, 1, &sample, regs);
7535 }
7536 #endif
7537
7538 /*
7539  * Allocate a new address filter
7540  */
7541 static struct perf_addr_filter *
7542 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7543 {
7544         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7545         struct perf_addr_filter *filter;
7546
7547         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7548         if (!filter)
7549                 return NULL;
7550
7551         INIT_LIST_HEAD(&filter->entry);
7552         list_add_tail(&filter->entry, filters);
7553
7554         return filter;
7555 }
7556
7557 static void free_filters_list(struct list_head *filters)
7558 {
7559         struct perf_addr_filter *filter, *iter;
7560
7561         list_for_each_entry_safe(filter, iter, filters, entry) {
7562                 if (filter->inode)
7563                         iput(filter->inode);
7564                 list_del(&filter->entry);
7565                 kfree(filter);
7566         }
7567 }
7568
7569 /*
7570  * Free existing address filters and optionally install new ones
7571  */
7572 static void perf_addr_filters_splice(struct perf_event *event,
7573                                      struct list_head *head)
7574 {
7575         unsigned long flags;
7576         LIST_HEAD(list);
7577
7578         if (!has_addr_filter(event))
7579                 return;
7580
7581         /* don't bother with children, they don't have their own filters */
7582         if (event->parent)
7583                 return;
7584
7585         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7586
7587         list_splice_init(&event->addr_filters.list, &list);
7588         if (head)
7589                 list_splice(head, &event->addr_filters.list);
7590
7591         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7592
7593         free_filters_list(&list);
7594 }
7595
7596 /*
7597  * Scan through mm's vmas and see if one of them matches the
7598  * @filter; if so, adjust filter's address range.
7599  * Called with mm::mmap_sem down for reading.
7600  */
7601 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7602                                             struct mm_struct *mm)
7603 {
7604         struct vm_area_struct *vma;
7605
7606         for (vma = mm->mmap; vma; vma = vma->vm_next) {
7607                 struct file *file = vma->vm_file;
7608                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7609                 unsigned long vma_size = vma->vm_end - vma->vm_start;
7610
7611                 if (!file)
7612                         continue;
7613
7614                 if (!perf_addr_filter_match(filter, file, off, vma_size))
7615                         continue;
7616
7617                 return vma->vm_start;
7618         }
7619
7620         return 0;
7621 }
7622
7623 /*
7624  * Update event's address range filters based on the
7625  * task's existing mappings, if any.
7626  */
7627 static void perf_event_addr_filters_apply(struct perf_event *event)
7628 {
7629         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7630         struct task_struct *task = READ_ONCE(event->ctx->task);
7631         struct perf_addr_filter *filter;
7632         struct mm_struct *mm = NULL;
7633         unsigned int count = 0;
7634         unsigned long flags;
7635
7636         /*
7637          * We may observe TASK_TOMBSTONE, which means that the event tear-down
7638          * will stop on the parent's child_mutex that our caller is also holding
7639          */
7640         if (task == TASK_TOMBSTONE)
7641                 return;
7642
7643         mm = get_task_mm(event->ctx->task);
7644         if (!mm)
7645                 goto restart;
7646
7647         down_read(&mm->mmap_sem);
7648
7649         raw_spin_lock_irqsave(&ifh->lock, flags);
7650         list_for_each_entry(filter, &ifh->list, entry) {
7651                 event->addr_filters_offs[count] = 0;
7652
7653                 if (perf_addr_filter_needs_mmap(filter))
7654                         event->addr_filters_offs[count] =
7655                                 perf_addr_filter_apply(filter, mm);
7656
7657                 count++;
7658         }
7659
7660         event->addr_filters_gen++;
7661         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7662
7663         up_read(&mm->mmap_sem);
7664
7665         mmput(mm);
7666
7667 restart:
7668         perf_event_restart(event);
7669 }
7670
7671 /*
7672  * Address range filtering: limiting the data to certain
7673  * instruction address ranges. Filters are ioctl()ed to us from
7674  * userspace as ascii strings.
7675  *
7676  * Filter string format:
7677  *
7678  * ACTION RANGE_SPEC
7679  * where ACTION is one of the
7680  *  * "filter": limit the trace to this region
7681  *  * "start": start tracing from this address
7682  *  * "stop": stop tracing at this address/region;
7683  * RANGE_SPEC is
7684  *  * for kernel addresses: <start address>[/<size>]
7685  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
7686  *
7687  * if <size> is not specified, the range is treated as a single address.
7688  */
7689 enum {
7690         IF_ACT_FILTER,
7691         IF_ACT_START,
7692         IF_ACT_STOP,
7693         IF_SRC_FILE,
7694         IF_SRC_KERNEL,
7695         IF_SRC_FILEADDR,
7696         IF_SRC_KERNELADDR,
7697 };
7698
7699 enum {
7700         IF_STATE_ACTION = 0,
7701         IF_STATE_SOURCE,
7702         IF_STATE_END,
7703 };
7704
7705 static const match_table_t if_tokens = {
7706         { IF_ACT_FILTER,        "filter" },
7707         { IF_ACT_START,         "start" },
7708         { IF_ACT_STOP,          "stop" },
7709         { IF_SRC_FILE,          "%u/%u@%s" },
7710         { IF_SRC_KERNEL,        "%u/%u" },
7711         { IF_SRC_FILEADDR,      "%u@%s" },
7712         { IF_SRC_KERNELADDR,    "%u" },
7713 };
7714
7715 /*
7716  * Address filter string parser
7717  */
7718 static int
7719 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7720                              struct list_head *filters)
7721 {
7722         struct perf_addr_filter *filter = NULL;
7723         char *start, *orig, *filename = NULL;
7724         struct path path;
7725         substring_t args[MAX_OPT_ARGS];
7726         int state = IF_STATE_ACTION, token;
7727         unsigned int kernel = 0;
7728         int ret = -EINVAL;
7729
7730         orig = fstr = kstrdup(fstr, GFP_KERNEL);
7731         if (!fstr)
7732                 return -ENOMEM;
7733
7734         while ((start = strsep(&fstr, " ,\n")) != NULL) {
7735                 ret = -EINVAL;
7736
7737                 if (!*start)
7738                         continue;
7739
7740                 /* filter definition begins */
7741                 if (state == IF_STATE_ACTION) {
7742                         filter = perf_addr_filter_new(event, filters);
7743                         if (!filter)
7744                                 goto fail;
7745                 }
7746
7747                 token = match_token(start, if_tokens, args);
7748                 switch (token) {
7749                 case IF_ACT_FILTER:
7750                 case IF_ACT_START:
7751                         filter->filter = 1;
7752
7753                 case IF_ACT_STOP:
7754                         if (state != IF_STATE_ACTION)
7755                                 goto fail;
7756
7757                         state = IF_STATE_SOURCE;
7758                         break;
7759
7760                 case IF_SRC_KERNELADDR:
7761                 case IF_SRC_KERNEL:
7762                         kernel = 1;
7763
7764                 case IF_SRC_FILEADDR:
7765                 case IF_SRC_FILE:
7766                         if (state != IF_STATE_SOURCE)
7767                                 goto fail;
7768
7769                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7770                                 filter->range = 1;
7771
7772                         *args[0].to = 0;
7773                         ret = kstrtoul(args[0].from, 0, &filter->offset);
7774                         if (ret)
7775                                 goto fail;
7776
7777                         if (filter->range) {
7778                                 *args[1].to = 0;
7779                                 ret = kstrtoul(args[1].from, 0, &filter->size);
7780                                 if (ret)
7781                                         goto fail;
7782                         }
7783
7784                         if (token == IF_SRC_FILE) {
7785                                 filename = match_strdup(&args[2]);
7786                                 if (!filename) {
7787                                         ret = -ENOMEM;
7788                                         goto fail;
7789                                 }
7790                         }
7791
7792                         state = IF_STATE_END;
7793                         break;
7794
7795                 default:
7796                         goto fail;
7797                 }
7798
7799                 /*
7800                  * Filter definition is fully parsed, validate and install it.
7801                  * Make sure that it doesn't contradict itself or the event's
7802                  * attribute.
7803                  */
7804                 if (state == IF_STATE_END) {
7805                         if (kernel && event->attr.exclude_kernel)
7806                                 goto fail;
7807
7808                         if (!kernel) {
7809                                 if (!filename)
7810                                         goto fail;
7811
7812                                 /* look up the path and grab its inode */
7813                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
7814                                 if (ret)
7815                                         goto fail_free_name;
7816
7817                                 filter->inode = igrab(d_inode(path.dentry));
7818                                 path_put(&path);
7819                                 kfree(filename);
7820                                 filename = NULL;
7821
7822                                 ret = -EINVAL;
7823                                 if (!filter->inode ||
7824                                     !S_ISREG(filter->inode->i_mode))
7825                                         /* free_filters_list() will iput() */
7826                                         goto fail;
7827                         }
7828
7829                         /* ready to consume more filters */
7830                         state = IF_STATE_ACTION;
7831                         filter = NULL;
7832                 }
7833         }
7834
7835         if (state != IF_STATE_ACTION)
7836                 goto fail;
7837
7838         kfree(orig);
7839
7840         return 0;
7841
7842 fail_free_name:
7843         kfree(filename);
7844 fail:
7845         free_filters_list(filters);
7846         kfree(orig);
7847
7848         return ret;
7849 }
7850
7851 static int
7852 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
7853 {
7854         LIST_HEAD(filters);
7855         int ret;
7856
7857         /*
7858          * Since this is called in perf_ioctl() path, we're already holding
7859          * ctx::mutex.
7860          */
7861         lockdep_assert_held(&event->ctx->mutex);
7862
7863         if (WARN_ON_ONCE(event->parent))
7864                 return -EINVAL;
7865
7866         /*
7867          * For now, we only support filtering in per-task events; doing so
7868          * for CPU-wide events requires additional context switching trickery,
7869          * since same object code will be mapped at different virtual
7870          * addresses in different processes.
7871          */
7872         if (!event->ctx->task)
7873                 return -EOPNOTSUPP;
7874
7875         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
7876         if (ret)
7877                 return ret;
7878
7879         ret = event->pmu->addr_filters_validate(&filters);
7880         if (ret) {
7881                 free_filters_list(&filters);
7882                 return ret;
7883         }
7884
7885         /* remove existing filters, if any */
7886         perf_addr_filters_splice(event, &filters);
7887
7888         /* install new filters */
7889         perf_event_for_each_child(event, perf_event_addr_filters_apply);
7890
7891         return ret;
7892 }
7893
7894 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7895 {
7896         char *filter_str;
7897         int ret = -EINVAL;
7898
7899         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
7900             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
7901             !has_addr_filter(event))
7902                 return -EINVAL;
7903
7904         filter_str = strndup_user(arg, PAGE_SIZE);
7905         if (IS_ERR(filter_str))
7906                 return PTR_ERR(filter_str);
7907
7908         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
7909             event->attr.type == PERF_TYPE_TRACEPOINT)
7910                 ret = ftrace_profile_set_filter(event, event->attr.config,
7911                                                 filter_str);
7912         else if (has_addr_filter(event))
7913                 ret = perf_event_set_addr_filter(event, filter_str);
7914
7915         kfree(filter_str);
7916         return ret;
7917 }
7918
7919 /*
7920  * hrtimer based swevent callback
7921  */
7922
7923 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7924 {
7925         enum hrtimer_restart ret = HRTIMER_RESTART;
7926         struct perf_sample_data data;
7927         struct pt_regs *regs;
7928         struct perf_event *event;
7929         u64 period;
7930
7931         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7932
7933         if (event->state != PERF_EVENT_STATE_ACTIVE)
7934                 return HRTIMER_NORESTART;
7935
7936         event->pmu->read(event);
7937
7938         perf_sample_data_init(&data, 0, event->hw.last_period);
7939         regs = get_irq_regs();
7940
7941         if (regs && !perf_exclude_event(event, regs)) {
7942                 if (!(event->attr.exclude_idle && is_idle_task(current)))
7943                         if (__perf_event_overflow(event, 1, &data, regs))
7944                                 ret = HRTIMER_NORESTART;
7945         }
7946
7947         period = max_t(u64, 10000, event->hw.sample_period);
7948         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7949
7950         return ret;
7951 }
7952
7953 static void perf_swevent_start_hrtimer(struct perf_event *event)
7954 {
7955         struct hw_perf_event *hwc = &event->hw;
7956         s64 period;
7957
7958         if (!is_sampling_event(event))
7959                 return;
7960
7961         period = local64_read(&hwc->period_left);
7962         if (period) {
7963                 if (period < 0)
7964                         period = 10000;
7965
7966                 local64_set(&hwc->period_left, 0);
7967         } else {
7968                 period = max_t(u64, 10000, hwc->sample_period);
7969         }
7970         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7971                       HRTIMER_MODE_REL_PINNED);
7972 }
7973
7974 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7975 {
7976         struct hw_perf_event *hwc = &event->hw;
7977
7978         if (is_sampling_event(event)) {
7979                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7980                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
7981
7982                 hrtimer_cancel(&hwc->hrtimer);
7983         }
7984 }
7985
7986 static void perf_swevent_init_hrtimer(struct perf_event *event)
7987 {
7988         struct hw_perf_event *hwc = &event->hw;
7989
7990         if (!is_sampling_event(event))
7991                 return;
7992
7993         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7994         hwc->hrtimer.function = perf_swevent_hrtimer;
7995
7996         /*
7997          * Since hrtimers have a fixed rate, we can do a static freq->period
7998          * mapping and avoid the whole period adjust feedback stuff.
7999          */
8000         if (event->attr.freq) {
8001                 long freq = event->attr.sample_freq;
8002
8003                 event->attr.sample_period = NSEC_PER_SEC / freq;
8004                 hwc->sample_period = event->attr.sample_period;
8005                 local64_set(&hwc->period_left, hwc->sample_period);
8006                 hwc->last_period = hwc->sample_period;
8007                 event->attr.freq = 0;
8008         }
8009 }
8010
8011 /*
8012  * Software event: cpu wall time clock
8013  */
8014
8015 static void cpu_clock_event_update(struct perf_event *event)
8016 {
8017         s64 prev;
8018         u64 now;
8019
8020         now = local_clock();
8021         prev = local64_xchg(&event->hw.prev_count, now);
8022         local64_add(now - prev, &event->count);
8023 }
8024
8025 static void cpu_clock_event_start(struct perf_event *event, int flags)
8026 {
8027         local64_set(&event->hw.prev_count, local_clock());
8028         perf_swevent_start_hrtimer(event);
8029 }
8030
8031 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8032 {
8033         perf_swevent_cancel_hrtimer(event);
8034         cpu_clock_event_update(event);
8035 }
8036
8037 static int cpu_clock_event_add(struct perf_event *event, int flags)
8038 {
8039         if (flags & PERF_EF_START)
8040                 cpu_clock_event_start(event, flags);
8041         perf_event_update_userpage(event);
8042
8043         return 0;
8044 }
8045
8046 static void cpu_clock_event_del(struct perf_event *event, int flags)
8047 {
8048         cpu_clock_event_stop(event, flags);
8049 }
8050
8051 static void cpu_clock_event_read(struct perf_event *event)
8052 {
8053         cpu_clock_event_update(event);
8054 }
8055
8056 static int cpu_clock_event_init(struct perf_event *event)
8057 {
8058         if (event->attr.type != PERF_TYPE_SOFTWARE)
8059                 return -ENOENT;
8060
8061         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8062                 return -ENOENT;
8063
8064         /*
8065          * no branch sampling for software events
8066          */
8067         if (has_branch_stack(event))
8068                 return -EOPNOTSUPP;
8069
8070         perf_swevent_init_hrtimer(event);
8071
8072         return 0;
8073 }
8074
8075 static struct pmu perf_cpu_clock = {
8076         .task_ctx_nr    = perf_sw_context,
8077
8078         .capabilities   = PERF_PMU_CAP_NO_NMI,
8079
8080         .event_init     = cpu_clock_event_init,
8081         .add            = cpu_clock_event_add,
8082         .del            = cpu_clock_event_del,
8083         .start          = cpu_clock_event_start,
8084         .stop           = cpu_clock_event_stop,
8085         .read           = cpu_clock_event_read,
8086 };
8087
8088 /*
8089  * Software event: task time clock
8090  */
8091
8092 static void task_clock_event_update(struct perf_event *event, u64 now)
8093 {
8094         u64 prev;
8095         s64 delta;
8096
8097         prev = local64_xchg(&event->hw.prev_count, now);
8098         delta = now - prev;
8099         local64_add(delta, &event->count);
8100 }
8101
8102 static void task_clock_event_start(struct perf_event *event, int flags)
8103 {
8104         local64_set(&event->hw.prev_count, event->ctx->time);
8105         perf_swevent_start_hrtimer(event);
8106 }
8107
8108 static void task_clock_event_stop(struct perf_event *event, int flags)
8109 {
8110         perf_swevent_cancel_hrtimer(event);
8111         task_clock_event_update(event, event->ctx->time);
8112 }
8113
8114 static int task_clock_event_add(struct perf_event *event, int flags)
8115 {
8116         if (flags & PERF_EF_START)
8117                 task_clock_event_start(event, flags);
8118         perf_event_update_userpage(event);
8119
8120         return 0;
8121 }
8122
8123 static void task_clock_event_del(struct perf_event *event, int flags)
8124 {
8125         task_clock_event_stop(event, PERF_EF_UPDATE);
8126 }
8127
8128 static void task_clock_event_read(struct perf_event *event)
8129 {
8130         u64 now = perf_clock();
8131         u64 delta = now - event->ctx->timestamp;
8132         u64 time = event->ctx->time + delta;
8133
8134         task_clock_event_update(event, time);
8135 }
8136
8137 static int task_clock_event_init(struct perf_event *event)
8138 {
8139         if (event->attr.type != PERF_TYPE_SOFTWARE)
8140                 return -ENOENT;
8141
8142         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8143                 return -ENOENT;
8144
8145         /*
8146          * no branch sampling for software events
8147          */
8148         if (has_branch_stack(event))
8149                 return -EOPNOTSUPP;
8150
8151         perf_swevent_init_hrtimer(event);
8152
8153         return 0;
8154 }
8155
8156 static struct pmu perf_task_clock = {
8157         .task_ctx_nr    = perf_sw_context,
8158
8159         .capabilities   = PERF_PMU_CAP_NO_NMI,
8160
8161         .event_init     = task_clock_event_init,
8162         .add            = task_clock_event_add,
8163         .del            = task_clock_event_del,
8164         .start          = task_clock_event_start,
8165         .stop           = task_clock_event_stop,
8166         .read           = task_clock_event_read,
8167 };
8168
8169 static void perf_pmu_nop_void(struct pmu *pmu)
8170 {
8171 }
8172
8173 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8174 {
8175 }
8176
8177 static int perf_pmu_nop_int(struct pmu *pmu)
8178 {
8179         return 0;
8180 }
8181
8182 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8183
8184 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8185 {
8186         __this_cpu_write(nop_txn_flags, flags);
8187
8188         if (flags & ~PERF_PMU_TXN_ADD)
8189                 return;
8190
8191         perf_pmu_disable(pmu);
8192 }
8193
8194 static int perf_pmu_commit_txn(struct pmu *pmu)
8195 {
8196         unsigned int flags = __this_cpu_read(nop_txn_flags);
8197
8198         __this_cpu_write(nop_txn_flags, 0);
8199
8200         if (flags & ~PERF_PMU_TXN_ADD)
8201                 return 0;
8202
8203         perf_pmu_enable(pmu);
8204         return 0;
8205 }
8206
8207 static void perf_pmu_cancel_txn(struct pmu *pmu)
8208 {
8209         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8210
8211         __this_cpu_write(nop_txn_flags, 0);
8212
8213         if (flags & ~PERF_PMU_TXN_ADD)
8214                 return;
8215
8216         perf_pmu_enable(pmu);
8217 }
8218
8219 static int perf_event_idx_default(struct perf_event *event)
8220 {
8221         return 0;
8222 }
8223
8224 /*
8225  * Ensures all contexts with the same task_ctx_nr have the same
8226  * pmu_cpu_context too.
8227  */
8228 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8229 {
8230         struct pmu *pmu;
8231
8232         if (ctxn < 0)
8233                 return NULL;
8234
8235         list_for_each_entry(pmu, &pmus, entry) {
8236                 if (pmu->task_ctx_nr == ctxn)
8237                         return pmu->pmu_cpu_context;
8238         }
8239
8240         return NULL;
8241 }
8242
8243 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8244 {
8245         int cpu;
8246
8247         for_each_possible_cpu(cpu) {
8248                 struct perf_cpu_context *cpuctx;
8249
8250                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8251
8252                 if (cpuctx->unique_pmu == old_pmu)
8253                         cpuctx->unique_pmu = pmu;
8254         }
8255 }
8256
8257 static void free_pmu_context(struct pmu *pmu)
8258 {
8259         struct pmu *i;
8260
8261         mutex_lock(&pmus_lock);
8262         /*
8263          * Like a real lame refcount.
8264          */
8265         list_for_each_entry(i, &pmus, entry) {
8266                 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8267                         update_pmu_context(i, pmu);
8268                         goto out;
8269                 }
8270         }
8271
8272         free_percpu(pmu->pmu_cpu_context);
8273 out:
8274         mutex_unlock(&pmus_lock);
8275 }
8276
8277 /*
8278  * Let userspace know that this PMU supports address range filtering:
8279  */
8280 static ssize_t nr_addr_filters_show(struct device *dev,
8281                                     struct device_attribute *attr,
8282                                     char *page)
8283 {
8284         struct pmu *pmu = dev_get_drvdata(dev);
8285
8286         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8287 }
8288 DEVICE_ATTR_RO(nr_addr_filters);
8289
8290 static struct idr pmu_idr;
8291
8292 static ssize_t
8293 type_show(struct device *dev, struct device_attribute *attr, char *page)
8294 {
8295         struct pmu *pmu = dev_get_drvdata(dev);
8296
8297         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8298 }
8299 static DEVICE_ATTR_RO(type);
8300
8301 static ssize_t
8302 perf_event_mux_interval_ms_show(struct device *dev,
8303                                 struct device_attribute *attr,
8304                                 char *page)
8305 {
8306         struct pmu *pmu = dev_get_drvdata(dev);
8307
8308         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8309 }
8310
8311 static DEFINE_MUTEX(mux_interval_mutex);
8312
8313 static ssize_t
8314 perf_event_mux_interval_ms_store(struct device *dev,
8315                                  struct device_attribute *attr,
8316                                  const char *buf, size_t count)
8317 {
8318         struct pmu *pmu = dev_get_drvdata(dev);
8319         int timer, cpu, ret;
8320
8321         ret = kstrtoint(buf, 0, &timer);
8322         if (ret)
8323                 return ret;
8324
8325         if (timer < 1)
8326                 return -EINVAL;
8327
8328         /* same value, noting to do */
8329         if (timer == pmu->hrtimer_interval_ms)
8330                 return count;
8331
8332         mutex_lock(&mux_interval_mutex);
8333         pmu->hrtimer_interval_ms = timer;
8334
8335         /* update all cpuctx for this PMU */
8336         get_online_cpus();
8337         for_each_online_cpu(cpu) {
8338                 struct perf_cpu_context *cpuctx;
8339                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8340                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8341
8342                 cpu_function_call(cpu,
8343                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8344         }
8345         put_online_cpus();
8346         mutex_unlock(&mux_interval_mutex);
8347
8348         return count;
8349 }
8350 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8351
8352 static struct attribute *pmu_dev_attrs[] = {
8353         &dev_attr_type.attr,
8354         &dev_attr_perf_event_mux_interval_ms.attr,
8355         NULL,
8356 };
8357 ATTRIBUTE_GROUPS(pmu_dev);
8358
8359 static int pmu_bus_running;
8360 static struct bus_type pmu_bus = {
8361         .name           = "event_source",
8362         .dev_groups     = pmu_dev_groups,
8363 };
8364
8365 static void pmu_dev_release(struct device *dev)
8366 {
8367         kfree(dev);
8368 }
8369
8370 static int pmu_dev_alloc(struct pmu *pmu)
8371 {
8372         int ret = -ENOMEM;
8373
8374         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8375         if (!pmu->dev)
8376                 goto out;
8377
8378         pmu->dev->groups = pmu->attr_groups;
8379         device_initialize(pmu->dev);
8380         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8381         if (ret)
8382                 goto free_dev;
8383
8384         dev_set_drvdata(pmu->dev, pmu);
8385         pmu->dev->bus = &pmu_bus;
8386         pmu->dev->release = pmu_dev_release;
8387         ret = device_add(pmu->dev);
8388         if (ret)
8389                 goto free_dev;
8390
8391         /* For PMUs with address filters, throw in an extra attribute: */
8392         if (pmu->nr_addr_filters)
8393                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8394
8395         if (ret)
8396                 goto del_dev;
8397
8398 out:
8399         return ret;
8400
8401 del_dev:
8402         device_del(pmu->dev);
8403
8404 free_dev:
8405         put_device(pmu->dev);
8406         goto out;
8407 }
8408
8409 static struct lock_class_key cpuctx_mutex;
8410 static struct lock_class_key cpuctx_lock;
8411
8412 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8413 {
8414         int cpu, ret;
8415
8416         mutex_lock(&pmus_lock);
8417         ret = -ENOMEM;
8418         pmu->pmu_disable_count = alloc_percpu(int);
8419         if (!pmu->pmu_disable_count)
8420                 goto unlock;
8421
8422         pmu->type = -1;
8423         if (!name)
8424                 goto skip_type;
8425         pmu->name = name;
8426
8427         if (type < 0) {
8428                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8429                 if (type < 0) {
8430                         ret = type;
8431                         goto free_pdc;
8432                 }
8433         }
8434         pmu->type = type;
8435
8436         if (pmu_bus_running) {
8437                 ret = pmu_dev_alloc(pmu);
8438                 if (ret)
8439                         goto free_idr;
8440         }
8441
8442 skip_type:
8443         if (pmu->task_ctx_nr == perf_hw_context) {
8444                 static int hw_context_taken = 0;
8445
8446                 /*
8447                  * Other than systems with heterogeneous CPUs, it never makes
8448                  * sense for two PMUs to share perf_hw_context. PMUs which are
8449                  * uncore must use perf_invalid_context.
8450                  */
8451                 if (WARN_ON_ONCE(hw_context_taken &&
8452                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8453                         pmu->task_ctx_nr = perf_invalid_context;
8454
8455                 hw_context_taken = 1;
8456         }
8457
8458         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8459         if (pmu->pmu_cpu_context)
8460                 goto got_cpu_context;
8461
8462         ret = -ENOMEM;
8463         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8464         if (!pmu->pmu_cpu_context)
8465                 goto free_dev;
8466
8467         for_each_possible_cpu(cpu) {
8468                 struct perf_cpu_context *cpuctx;
8469
8470                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8471                 __perf_event_init_context(&cpuctx->ctx);
8472                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8473                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8474                 cpuctx->ctx.pmu = pmu;
8475
8476                 __perf_mux_hrtimer_init(cpuctx, cpu);
8477
8478                 cpuctx->unique_pmu = pmu;
8479         }
8480
8481 got_cpu_context:
8482         if (!pmu->start_txn) {
8483                 if (pmu->pmu_enable) {
8484                         /*
8485                          * If we have pmu_enable/pmu_disable calls, install
8486                          * transaction stubs that use that to try and batch
8487                          * hardware accesses.
8488                          */
8489                         pmu->start_txn  = perf_pmu_start_txn;
8490                         pmu->commit_txn = perf_pmu_commit_txn;
8491                         pmu->cancel_txn = perf_pmu_cancel_txn;
8492                 } else {
8493                         pmu->start_txn  = perf_pmu_nop_txn;
8494                         pmu->commit_txn = perf_pmu_nop_int;
8495                         pmu->cancel_txn = perf_pmu_nop_void;
8496                 }
8497         }
8498
8499         if (!pmu->pmu_enable) {
8500                 pmu->pmu_enable  = perf_pmu_nop_void;
8501                 pmu->pmu_disable = perf_pmu_nop_void;
8502         }
8503
8504         if (!pmu->event_idx)
8505                 pmu->event_idx = perf_event_idx_default;
8506
8507         list_add_rcu(&pmu->entry, &pmus);
8508         atomic_set(&pmu->exclusive_cnt, 0);
8509         ret = 0;
8510 unlock:
8511         mutex_unlock(&pmus_lock);
8512
8513         return ret;
8514
8515 free_dev:
8516         device_del(pmu->dev);
8517         put_device(pmu->dev);
8518
8519 free_idr:
8520         if (pmu->type >= PERF_TYPE_MAX)
8521                 idr_remove(&pmu_idr, pmu->type);
8522
8523 free_pdc:
8524         free_percpu(pmu->pmu_disable_count);
8525         goto unlock;
8526 }
8527 EXPORT_SYMBOL_GPL(perf_pmu_register);
8528
8529 void perf_pmu_unregister(struct pmu *pmu)
8530 {
8531         mutex_lock(&pmus_lock);
8532         list_del_rcu(&pmu->entry);
8533         mutex_unlock(&pmus_lock);
8534
8535         /*
8536          * We dereference the pmu list under both SRCU and regular RCU, so
8537          * synchronize against both of those.
8538          */
8539         synchronize_srcu(&pmus_srcu);
8540         synchronize_rcu();
8541
8542         free_percpu(pmu->pmu_disable_count);
8543         if (pmu->type >= PERF_TYPE_MAX)
8544                 idr_remove(&pmu_idr, pmu->type);
8545         if (pmu->nr_addr_filters)
8546                 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8547         device_del(pmu->dev);
8548         put_device(pmu->dev);
8549         free_pmu_context(pmu);
8550 }
8551 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8552
8553 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8554 {
8555         struct perf_event_context *ctx = NULL;
8556         int ret;
8557
8558         if (!try_module_get(pmu->module))
8559                 return -ENODEV;
8560
8561         if (event->group_leader != event) {
8562                 /*
8563                  * This ctx->mutex can nest when we're called through
8564                  * inheritance. See the perf_event_ctx_lock_nested() comment.
8565                  */
8566                 ctx = perf_event_ctx_lock_nested(event->group_leader,
8567                                                  SINGLE_DEPTH_NESTING);
8568                 BUG_ON(!ctx);
8569         }
8570
8571         event->pmu = pmu;
8572         ret = pmu->event_init(event);
8573
8574         if (ctx)
8575                 perf_event_ctx_unlock(event->group_leader, ctx);
8576
8577         if (ret)
8578                 module_put(pmu->module);
8579
8580         return ret;
8581 }
8582
8583 static struct pmu *perf_init_event(struct perf_event *event)
8584 {
8585         struct pmu *pmu = NULL;
8586         int idx;
8587         int ret;
8588
8589         idx = srcu_read_lock(&pmus_srcu);
8590
8591         rcu_read_lock();
8592         pmu = idr_find(&pmu_idr, event->attr.type);
8593         rcu_read_unlock();
8594         if (pmu) {
8595                 ret = perf_try_init_event(pmu, event);
8596                 if (ret)
8597                         pmu = ERR_PTR(ret);
8598                 goto unlock;
8599         }
8600
8601         list_for_each_entry_rcu(pmu, &pmus, entry) {
8602                 ret = perf_try_init_event(pmu, event);
8603                 if (!ret)
8604                         goto unlock;
8605
8606                 if (ret != -ENOENT) {
8607                         pmu = ERR_PTR(ret);
8608                         goto unlock;
8609                 }
8610         }
8611         pmu = ERR_PTR(-ENOENT);
8612 unlock:
8613         srcu_read_unlock(&pmus_srcu, idx);
8614
8615         return pmu;
8616 }
8617
8618 static void account_event_cpu(struct perf_event *event, int cpu)
8619 {
8620         if (event->parent)
8621                 return;
8622
8623         if (is_cgroup_event(event))
8624                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8625 }
8626
8627 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8628 static void account_freq_event_nohz(void)
8629 {
8630 #ifdef CONFIG_NO_HZ_FULL
8631         /* Lock so we don't race with concurrent unaccount */
8632         spin_lock(&nr_freq_lock);
8633         if (atomic_inc_return(&nr_freq_events) == 1)
8634                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8635         spin_unlock(&nr_freq_lock);
8636 #endif
8637 }
8638
8639 static void account_freq_event(void)
8640 {
8641         if (tick_nohz_full_enabled())
8642                 account_freq_event_nohz();
8643         else
8644                 atomic_inc(&nr_freq_events);
8645 }
8646
8647
8648 static void account_event(struct perf_event *event)
8649 {
8650         bool inc = false;
8651
8652         if (event->parent)
8653                 return;
8654
8655         if (event->attach_state & PERF_ATTACH_TASK)
8656                 inc = true;
8657         if (event->attr.mmap || event->attr.mmap_data)
8658                 atomic_inc(&nr_mmap_events);
8659         if (event->attr.comm)
8660                 atomic_inc(&nr_comm_events);
8661         if (event->attr.task)
8662                 atomic_inc(&nr_task_events);
8663         if (event->attr.freq)
8664                 account_freq_event();
8665         if (event->attr.context_switch) {
8666                 atomic_inc(&nr_switch_events);
8667                 inc = true;
8668         }
8669         if (has_branch_stack(event))
8670                 inc = true;
8671         if (is_cgroup_event(event))
8672                 inc = true;
8673
8674         if (inc) {
8675                 if (atomic_inc_not_zero(&perf_sched_count))
8676                         goto enabled;
8677
8678                 mutex_lock(&perf_sched_mutex);
8679                 if (!atomic_read(&perf_sched_count)) {
8680                         static_branch_enable(&perf_sched_events);
8681                         /*
8682                          * Guarantee that all CPUs observe they key change and
8683                          * call the perf scheduling hooks before proceeding to
8684                          * install events that need them.
8685                          */
8686                         synchronize_sched();
8687                 }
8688                 /*
8689                  * Now that we have waited for the sync_sched(), allow further
8690                  * increments to by-pass the mutex.
8691                  */
8692                 atomic_inc(&perf_sched_count);
8693                 mutex_unlock(&perf_sched_mutex);
8694         }
8695 enabled:
8696
8697         account_event_cpu(event, event->cpu);
8698 }
8699
8700 /*
8701  * Allocate and initialize a event structure
8702  */
8703 static struct perf_event *
8704 perf_event_alloc(struct perf_event_attr *attr, int cpu,
8705                  struct task_struct *task,
8706                  struct perf_event *group_leader,
8707                  struct perf_event *parent_event,
8708                  perf_overflow_handler_t overflow_handler,
8709                  void *context, int cgroup_fd)
8710 {
8711         struct pmu *pmu;
8712         struct perf_event *event;
8713         struct hw_perf_event *hwc;
8714         long err = -EINVAL;
8715
8716         if ((unsigned)cpu >= nr_cpu_ids) {
8717                 if (!task || cpu != -1)
8718                         return ERR_PTR(-EINVAL);
8719         }
8720
8721         event = kzalloc(sizeof(*event), GFP_KERNEL);
8722         if (!event)
8723                 return ERR_PTR(-ENOMEM);
8724
8725         /*
8726          * Single events are their own group leaders, with an
8727          * empty sibling list:
8728          */
8729         if (!group_leader)
8730                 group_leader = event;
8731
8732         mutex_init(&event->child_mutex);
8733         INIT_LIST_HEAD(&event->child_list);
8734
8735         INIT_LIST_HEAD(&event->group_entry);
8736         INIT_LIST_HEAD(&event->event_entry);
8737         INIT_LIST_HEAD(&event->sibling_list);
8738         INIT_LIST_HEAD(&event->rb_entry);
8739         INIT_LIST_HEAD(&event->active_entry);
8740         INIT_LIST_HEAD(&event->addr_filters.list);
8741         INIT_HLIST_NODE(&event->hlist_entry);
8742
8743
8744         init_waitqueue_head(&event->waitq);
8745         init_irq_work(&event->pending, perf_pending_event);
8746
8747         mutex_init(&event->mmap_mutex);
8748         raw_spin_lock_init(&event->addr_filters.lock);
8749
8750         atomic_long_set(&event->refcount, 1);
8751         event->cpu              = cpu;
8752         event->attr             = *attr;
8753         event->group_leader     = group_leader;
8754         event->pmu              = NULL;
8755         event->oncpu            = -1;
8756
8757         event->parent           = parent_event;
8758
8759         event->ns               = get_pid_ns(task_active_pid_ns(current));
8760         event->id               = atomic64_inc_return(&perf_event_id);
8761
8762         event->state            = PERF_EVENT_STATE_INACTIVE;
8763
8764         if (task) {
8765                 event->attach_state = PERF_ATTACH_TASK;
8766                 /*
8767                  * XXX pmu::event_init needs to know what task to account to
8768                  * and we cannot use the ctx information because we need the
8769                  * pmu before we get a ctx.
8770                  */
8771                 event->hw.target = task;
8772         }
8773
8774         event->clock = &local_clock;
8775         if (parent_event)
8776                 event->clock = parent_event->clock;
8777
8778         if (!overflow_handler && parent_event) {
8779                 overflow_handler = parent_event->overflow_handler;
8780                 context = parent_event->overflow_handler_context;
8781         }
8782
8783         if (overflow_handler) {
8784                 event->overflow_handler = overflow_handler;
8785                 event->overflow_handler_context = context;
8786         } else if (is_write_backward(event)){
8787                 event->overflow_handler = perf_event_output_backward;
8788                 event->overflow_handler_context = NULL;
8789         } else {
8790                 event->overflow_handler = perf_event_output_forward;
8791                 event->overflow_handler_context = NULL;
8792         }
8793
8794         perf_event__state_init(event);
8795
8796         pmu = NULL;
8797
8798         hwc = &event->hw;
8799         hwc->sample_period = attr->sample_period;
8800         if (attr->freq && attr->sample_freq)
8801                 hwc->sample_period = 1;
8802         hwc->last_period = hwc->sample_period;
8803
8804         local64_set(&hwc->period_left, hwc->sample_period);
8805
8806         /*
8807          * we currently do not support PERF_FORMAT_GROUP on inherited events
8808          */
8809         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8810                 goto err_ns;
8811
8812         if (!has_branch_stack(event))
8813                 event->attr.branch_sample_type = 0;
8814
8815         if (cgroup_fd != -1) {
8816                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8817                 if (err)
8818                         goto err_ns;
8819         }
8820
8821         pmu = perf_init_event(event);
8822         if (!pmu)
8823                 goto err_ns;
8824         else if (IS_ERR(pmu)) {
8825                 err = PTR_ERR(pmu);
8826                 goto err_ns;
8827         }
8828
8829         err = exclusive_event_init(event);
8830         if (err)
8831                 goto err_pmu;
8832
8833         if (has_addr_filter(event)) {
8834                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
8835                                                    sizeof(unsigned long),
8836                                                    GFP_KERNEL);
8837                 if (!event->addr_filters_offs)
8838                         goto err_per_task;
8839
8840                 /* force hw sync on the address filters */
8841                 event->addr_filters_gen = 1;
8842         }
8843
8844         if (!event->parent) {
8845                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8846                         err = get_callchain_buffers(attr->sample_max_stack);
8847                         if (err)
8848                                 goto err_addr_filters;
8849                 }
8850         }
8851
8852         /* symmetric to unaccount_event() in _free_event() */
8853         account_event(event);
8854
8855         return event;
8856
8857 err_addr_filters:
8858         kfree(event->addr_filters_offs);
8859
8860 err_per_task:
8861         exclusive_event_destroy(event);
8862
8863 err_pmu:
8864         if (event->destroy)
8865                 event->destroy(event);
8866         module_put(pmu->module);
8867 err_ns:
8868         if (is_cgroup_event(event))
8869                 perf_detach_cgroup(event);
8870         if (event->ns)
8871                 put_pid_ns(event->ns);
8872         kfree(event);
8873
8874         return ERR_PTR(err);
8875 }
8876
8877 static int perf_copy_attr(struct perf_event_attr __user *uattr,
8878                           struct perf_event_attr *attr)
8879 {
8880         u32 size;
8881         int ret;
8882
8883         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8884                 return -EFAULT;
8885
8886         /*
8887          * zero the full structure, so that a short copy will be nice.
8888          */
8889         memset(attr, 0, sizeof(*attr));
8890
8891         ret = get_user(size, &uattr->size);
8892         if (ret)
8893                 return ret;
8894
8895         if (size > PAGE_SIZE)   /* silly large */
8896                 goto err_size;
8897
8898         if (!size)              /* abi compat */
8899                 size = PERF_ATTR_SIZE_VER0;
8900
8901         if (size < PERF_ATTR_SIZE_VER0)
8902                 goto err_size;
8903
8904         /*
8905          * If we're handed a bigger struct than we know of,
8906          * ensure all the unknown bits are 0 - i.e. new
8907          * user-space does not rely on any kernel feature
8908          * extensions we dont know about yet.
8909          */
8910         if (size > sizeof(*attr)) {
8911                 unsigned char __user *addr;
8912                 unsigned char __user *end;
8913                 unsigned char val;
8914
8915                 addr = (void __user *)uattr + sizeof(*attr);
8916                 end  = (void __user *)uattr + size;
8917
8918                 for (; addr < end; addr++) {
8919                         ret = get_user(val, addr);
8920                         if (ret)
8921                                 return ret;
8922                         if (val)
8923                                 goto err_size;
8924                 }
8925                 size = sizeof(*attr);
8926         }
8927
8928         ret = copy_from_user(attr, uattr, size);
8929         if (ret)
8930                 return -EFAULT;
8931
8932         if (attr->__reserved_1)
8933                 return -EINVAL;
8934
8935         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8936                 return -EINVAL;
8937
8938         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8939                 return -EINVAL;
8940
8941         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8942                 u64 mask = attr->branch_sample_type;
8943
8944                 /* only using defined bits */
8945                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8946                         return -EINVAL;
8947
8948                 /* at least one branch bit must be set */
8949                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8950                         return -EINVAL;
8951
8952                 /* propagate priv level, when not set for branch */
8953                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8954
8955                         /* exclude_kernel checked on syscall entry */
8956                         if (!attr->exclude_kernel)
8957                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8958
8959                         if (!attr->exclude_user)
8960                                 mask |= PERF_SAMPLE_BRANCH_USER;
8961
8962                         if (!attr->exclude_hv)
8963                                 mask |= PERF_SAMPLE_BRANCH_HV;
8964                         /*
8965                          * adjust user setting (for HW filter setup)
8966                          */
8967                         attr->branch_sample_type = mask;
8968                 }
8969                 /* privileged levels capture (kernel, hv): check permissions */
8970                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8971                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8972                         return -EACCES;
8973         }
8974
8975         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8976                 ret = perf_reg_validate(attr->sample_regs_user);
8977                 if (ret)
8978                         return ret;
8979         }
8980
8981         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8982                 if (!arch_perf_have_user_stack_dump())
8983                         return -ENOSYS;
8984
8985                 /*
8986                  * We have __u32 type for the size, but so far
8987                  * we can only use __u16 as maximum due to the
8988                  * __u16 sample size limit.
8989                  */
8990                 if (attr->sample_stack_user >= USHRT_MAX)
8991                         ret = -EINVAL;
8992                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8993                         ret = -EINVAL;
8994         }
8995
8996         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8997                 ret = perf_reg_validate(attr->sample_regs_intr);
8998 out:
8999         return ret;
9000
9001 err_size:
9002         put_user(sizeof(*attr), &uattr->size);
9003         ret = -E2BIG;
9004         goto out;
9005 }
9006
9007 static int
9008 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9009 {
9010         struct ring_buffer *rb = NULL;
9011         int ret = -EINVAL;
9012
9013         if (!output_event)
9014                 goto set;
9015
9016         /* don't allow circular references */
9017         if (event == output_event)
9018                 goto out;
9019
9020         /*
9021          * Don't allow cross-cpu buffers
9022          */
9023         if (output_event->cpu != event->cpu)
9024                 goto out;
9025
9026         /*
9027          * If its not a per-cpu rb, it must be the same task.
9028          */
9029         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9030                 goto out;
9031
9032         /*
9033          * Mixing clocks in the same buffer is trouble you don't need.
9034          */
9035         if (output_event->clock != event->clock)
9036                 goto out;
9037
9038         /*
9039          * Either writing ring buffer from beginning or from end.
9040          * Mixing is not allowed.
9041          */
9042         if (is_write_backward(output_event) != is_write_backward(event))
9043                 goto out;
9044
9045         /*
9046          * If both events generate aux data, they must be on the same PMU
9047          */
9048         if (has_aux(event) && has_aux(output_event) &&
9049             event->pmu != output_event->pmu)
9050                 goto out;
9051
9052 set:
9053         mutex_lock(&event->mmap_mutex);
9054         /* Can't redirect output if we've got an active mmap() */
9055         if (atomic_read(&event->mmap_count))
9056                 goto unlock;
9057
9058         if (output_event) {
9059                 /* get the rb we want to redirect to */
9060                 rb = ring_buffer_get(output_event);
9061                 if (!rb)
9062                         goto unlock;
9063         }
9064
9065         ring_buffer_attach(event, rb);
9066
9067         ret = 0;
9068 unlock:
9069         mutex_unlock(&event->mmap_mutex);
9070
9071 out:
9072         return ret;
9073 }
9074
9075 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9076 {
9077         if (b < a)
9078                 swap(a, b);
9079
9080         mutex_lock(a);
9081         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9082 }
9083
9084 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9085 {
9086         bool nmi_safe = false;
9087
9088         switch (clk_id) {
9089         case CLOCK_MONOTONIC:
9090                 event->clock = &ktime_get_mono_fast_ns;
9091                 nmi_safe = true;
9092                 break;
9093
9094         case CLOCK_MONOTONIC_RAW:
9095                 event->clock = &ktime_get_raw_fast_ns;
9096                 nmi_safe = true;
9097                 break;
9098
9099         case CLOCK_REALTIME:
9100                 event->clock = &ktime_get_real_ns;
9101                 break;
9102
9103         case CLOCK_BOOTTIME:
9104                 event->clock = &ktime_get_boot_ns;
9105                 break;
9106
9107         case CLOCK_TAI:
9108                 event->clock = &ktime_get_tai_ns;
9109                 break;
9110
9111         default:
9112                 return -EINVAL;
9113         }
9114
9115         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9116                 return -EINVAL;
9117
9118         return 0;
9119 }
9120
9121 /**
9122  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9123  *
9124  * @attr_uptr:  event_id type attributes for monitoring/sampling
9125  * @pid:                target pid
9126  * @cpu:                target cpu
9127  * @group_fd:           group leader event fd
9128  */
9129 SYSCALL_DEFINE5(perf_event_open,
9130                 struct perf_event_attr __user *, attr_uptr,
9131                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9132 {
9133         struct perf_event *group_leader = NULL, *output_event = NULL;
9134         struct perf_event *event, *sibling;
9135         struct perf_event_attr attr;
9136         struct perf_event_context *ctx, *uninitialized_var(gctx);
9137         struct file *event_file = NULL;
9138         struct fd group = {NULL, 0};
9139         struct task_struct *task = NULL;
9140         struct pmu *pmu;
9141         int event_fd;
9142         int move_group = 0;
9143         int err;
9144         int f_flags = O_RDWR;
9145         int cgroup_fd = -1;
9146
9147         /* for future expandability... */
9148         if (flags & ~PERF_FLAG_ALL)
9149                 return -EINVAL;
9150
9151         err = perf_copy_attr(attr_uptr, &attr);
9152         if (err)
9153                 return err;
9154
9155         if (!attr.exclude_kernel) {
9156                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9157                         return -EACCES;
9158         }
9159
9160         if (attr.freq) {
9161                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9162                         return -EINVAL;
9163         } else {
9164                 if (attr.sample_period & (1ULL << 63))
9165                         return -EINVAL;
9166         }
9167
9168         if (!attr.sample_max_stack)
9169                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9170
9171         /*
9172          * In cgroup mode, the pid argument is used to pass the fd
9173          * opened to the cgroup directory in cgroupfs. The cpu argument
9174          * designates the cpu on which to monitor threads from that
9175          * cgroup.
9176          */
9177         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9178                 return -EINVAL;
9179
9180         if (flags & PERF_FLAG_FD_CLOEXEC)
9181                 f_flags |= O_CLOEXEC;
9182
9183         event_fd = get_unused_fd_flags(f_flags);
9184         if (event_fd < 0)
9185                 return event_fd;
9186
9187         if (group_fd != -1) {
9188                 err = perf_fget_light(group_fd, &group);
9189                 if (err)
9190                         goto err_fd;
9191                 group_leader = group.file->private_data;
9192                 if (flags & PERF_FLAG_FD_OUTPUT)
9193                         output_event = group_leader;
9194                 if (flags & PERF_FLAG_FD_NO_GROUP)
9195                         group_leader = NULL;
9196         }
9197
9198         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9199                 task = find_lively_task_by_vpid(pid);
9200                 if (IS_ERR(task)) {
9201                         err = PTR_ERR(task);
9202                         goto err_group_fd;
9203                 }
9204         }
9205
9206         if (task && group_leader &&
9207             group_leader->attr.inherit != attr.inherit) {
9208                 err = -EINVAL;
9209                 goto err_task;
9210         }
9211
9212         get_online_cpus();
9213
9214         if (task) {
9215                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9216                 if (err)
9217                         goto err_cpus;
9218
9219                 /*
9220                  * Reuse ptrace permission checks for now.
9221                  *
9222                  * We must hold cred_guard_mutex across this and any potential
9223                  * perf_install_in_context() call for this new event to
9224                  * serialize against exec() altering our credentials (and the
9225                  * perf_event_exit_task() that could imply).
9226                  */
9227                 err = -EACCES;
9228                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9229                         goto err_cred;
9230         }
9231
9232         if (flags & PERF_FLAG_PID_CGROUP)
9233                 cgroup_fd = pid;
9234
9235         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9236                                  NULL, NULL, cgroup_fd);
9237         if (IS_ERR(event)) {
9238                 err = PTR_ERR(event);
9239                 goto err_cred;
9240         }
9241
9242         if (is_sampling_event(event)) {
9243                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9244                         err = -ENOTSUPP;
9245                         goto err_alloc;
9246                 }
9247         }
9248
9249         /*
9250          * Special case software events and allow them to be part of
9251          * any hardware group.
9252          */
9253         pmu = event->pmu;
9254
9255         if (attr.use_clockid) {
9256                 err = perf_event_set_clock(event, attr.clockid);
9257                 if (err)
9258                         goto err_alloc;
9259         }
9260
9261         if (group_leader &&
9262             (is_software_event(event) != is_software_event(group_leader))) {
9263                 if (is_software_event(event)) {
9264                         /*
9265                          * If event and group_leader are not both a software
9266                          * event, and event is, then group leader is not.
9267                          *
9268                          * Allow the addition of software events to !software
9269                          * groups, this is safe because software events never
9270                          * fail to schedule.
9271                          */
9272                         pmu = group_leader->pmu;
9273                 } else if (is_software_event(group_leader) &&
9274                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9275                         /*
9276                          * In case the group is a pure software group, and we
9277                          * try to add a hardware event, move the whole group to
9278                          * the hardware context.
9279                          */
9280                         move_group = 1;
9281                 }
9282         }
9283
9284         /*
9285          * Get the target context (task or percpu):
9286          */
9287         ctx = find_get_context(pmu, task, event);
9288         if (IS_ERR(ctx)) {
9289                 err = PTR_ERR(ctx);
9290                 goto err_alloc;
9291         }
9292
9293         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9294                 err = -EBUSY;
9295                 goto err_context;
9296         }
9297
9298         /*
9299          * Look up the group leader (we will attach this event to it):
9300          */
9301         if (group_leader) {
9302                 err = -EINVAL;
9303
9304                 /*
9305                  * Do not allow a recursive hierarchy (this new sibling
9306                  * becoming part of another group-sibling):
9307                  */
9308                 if (group_leader->group_leader != group_leader)
9309                         goto err_context;
9310
9311                 /* All events in a group should have the same clock */
9312                 if (group_leader->clock != event->clock)
9313                         goto err_context;
9314
9315                 /*
9316                  * Do not allow to attach to a group in a different
9317                  * task or CPU context:
9318                  */
9319                 if (move_group) {
9320                         /*
9321                          * Make sure we're both on the same task, or both
9322                          * per-cpu events.
9323                          */
9324                         if (group_leader->ctx->task != ctx->task)
9325                                 goto err_context;
9326
9327                         /*
9328                          * Make sure we're both events for the same CPU;
9329                          * grouping events for different CPUs is broken; since
9330                          * you can never concurrently schedule them anyhow.
9331                          */
9332                         if (group_leader->cpu != event->cpu)
9333                                 goto err_context;
9334                 } else {
9335                         if (group_leader->ctx != ctx)
9336                                 goto err_context;
9337                 }
9338
9339                 /*
9340                  * Only a group leader can be exclusive or pinned
9341                  */
9342                 if (attr.exclusive || attr.pinned)
9343                         goto err_context;
9344         }
9345
9346         if (output_event) {
9347                 err = perf_event_set_output(event, output_event);
9348                 if (err)
9349                         goto err_context;
9350         }
9351
9352         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9353                                         f_flags);
9354         if (IS_ERR(event_file)) {
9355                 err = PTR_ERR(event_file);
9356                 event_file = NULL;
9357                 goto err_context;
9358         }
9359
9360         if (move_group) {
9361                 gctx = group_leader->ctx;
9362                 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9363                 if (gctx->task == TASK_TOMBSTONE) {
9364                         err = -ESRCH;
9365                         goto err_locked;
9366                 }
9367         } else {
9368                 mutex_lock(&ctx->mutex);
9369         }
9370
9371         if (ctx->task == TASK_TOMBSTONE) {
9372                 err = -ESRCH;
9373                 goto err_locked;
9374         }
9375
9376         if (!perf_event_validate_size(event)) {
9377                 err = -E2BIG;
9378                 goto err_locked;
9379         }
9380
9381         /*
9382          * Must be under the same ctx::mutex as perf_install_in_context(),
9383          * because we need to serialize with concurrent event creation.
9384          */
9385         if (!exclusive_event_installable(event, ctx)) {
9386                 /* exclusive and group stuff are assumed mutually exclusive */
9387                 WARN_ON_ONCE(move_group);
9388
9389                 err = -EBUSY;
9390                 goto err_locked;
9391         }
9392
9393         WARN_ON_ONCE(ctx->parent_ctx);
9394
9395         /*
9396          * This is the point on no return; we cannot fail hereafter. This is
9397          * where we start modifying current state.
9398          */
9399
9400         if (move_group) {
9401                 /*
9402                  * See perf_event_ctx_lock() for comments on the details
9403                  * of swizzling perf_event::ctx.
9404                  */
9405                 perf_remove_from_context(group_leader, 0);
9406
9407                 list_for_each_entry(sibling, &group_leader->sibling_list,
9408                                     group_entry) {
9409                         perf_remove_from_context(sibling, 0);
9410                         put_ctx(gctx);
9411                 }
9412
9413                 /*
9414                  * Wait for everybody to stop referencing the events through
9415                  * the old lists, before installing it on new lists.
9416                  */
9417                 synchronize_rcu();
9418
9419                 /*
9420                  * Install the group siblings before the group leader.
9421                  *
9422                  * Because a group leader will try and install the entire group
9423                  * (through the sibling list, which is still in-tact), we can
9424                  * end up with siblings installed in the wrong context.
9425                  *
9426                  * By installing siblings first we NO-OP because they're not
9427                  * reachable through the group lists.
9428                  */
9429                 list_for_each_entry(sibling, &group_leader->sibling_list,
9430                                     group_entry) {
9431                         perf_event__state_init(sibling);
9432                         perf_install_in_context(ctx, sibling, sibling->cpu);
9433                         get_ctx(ctx);
9434                 }
9435
9436                 /*
9437                  * Removing from the context ends up with disabled
9438                  * event. What we want here is event in the initial
9439                  * startup state, ready to be add into new context.
9440                  */
9441                 perf_event__state_init(group_leader);
9442                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9443                 get_ctx(ctx);
9444
9445                 /*
9446                  * Now that all events are installed in @ctx, nothing
9447                  * references @gctx anymore, so drop the last reference we have
9448                  * on it.
9449                  */
9450                 put_ctx(gctx);
9451         }
9452
9453         /*
9454          * Precalculate sample_data sizes; do while holding ctx::mutex such
9455          * that we're serialized against further additions and before
9456          * perf_install_in_context() which is the point the event is active and
9457          * can use these values.
9458          */
9459         perf_event__header_size(event);
9460         perf_event__id_header_size(event);
9461
9462         event->owner = current;
9463
9464         perf_install_in_context(ctx, event, event->cpu);
9465         perf_unpin_context(ctx);
9466
9467         if (move_group)
9468                 mutex_unlock(&gctx->mutex);
9469         mutex_unlock(&ctx->mutex);
9470
9471         if (task) {
9472                 mutex_unlock(&task->signal->cred_guard_mutex);
9473                 put_task_struct(task);
9474         }
9475
9476         put_online_cpus();
9477
9478         mutex_lock(&current->perf_event_mutex);
9479         list_add_tail(&event->owner_entry, &current->perf_event_list);
9480         mutex_unlock(&current->perf_event_mutex);
9481
9482         /*
9483          * Drop the reference on the group_event after placing the
9484          * new event on the sibling_list. This ensures destruction
9485          * of the group leader will find the pointer to itself in
9486          * perf_group_detach().
9487          */
9488         fdput(group);
9489         fd_install(event_fd, event_file);
9490         return event_fd;
9491
9492 err_locked:
9493         if (move_group)
9494                 mutex_unlock(&gctx->mutex);
9495         mutex_unlock(&ctx->mutex);
9496 /* err_file: */
9497         fput(event_file);
9498 err_context:
9499         perf_unpin_context(ctx);
9500         put_ctx(ctx);
9501 err_alloc:
9502         /*
9503          * If event_file is set, the fput() above will have called ->release()
9504          * and that will take care of freeing the event.
9505          */
9506         if (!event_file)
9507                 free_event(event);
9508 err_cred:
9509         if (task)
9510                 mutex_unlock(&task->signal->cred_guard_mutex);
9511 err_cpus:
9512         put_online_cpus();
9513 err_task:
9514         if (task)
9515                 put_task_struct(task);
9516 err_group_fd:
9517         fdput(group);
9518 err_fd:
9519         put_unused_fd(event_fd);
9520         return err;
9521 }
9522
9523 /**
9524  * perf_event_create_kernel_counter
9525  *
9526  * @attr: attributes of the counter to create
9527  * @cpu: cpu in which the counter is bound
9528  * @task: task to profile (NULL for percpu)
9529  */
9530 struct perf_event *
9531 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9532                                  struct task_struct *task,
9533                                  perf_overflow_handler_t overflow_handler,
9534                                  void *context)
9535 {
9536         struct perf_event_context *ctx;
9537         struct perf_event *event;
9538         int err;
9539
9540         /*
9541          * Get the target context (task or percpu):
9542          */
9543
9544         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9545                                  overflow_handler, context, -1);
9546         if (IS_ERR(event)) {
9547                 err = PTR_ERR(event);
9548                 goto err;
9549         }
9550
9551         /* Mark owner so we could distinguish it from user events. */
9552         event->owner = TASK_TOMBSTONE;
9553
9554         ctx = find_get_context(event->pmu, task, event);
9555         if (IS_ERR(ctx)) {
9556                 err = PTR_ERR(ctx);
9557                 goto err_free;
9558         }
9559
9560         WARN_ON_ONCE(ctx->parent_ctx);
9561         mutex_lock(&ctx->mutex);
9562         if (ctx->task == TASK_TOMBSTONE) {
9563                 err = -ESRCH;
9564                 goto err_unlock;
9565         }
9566
9567         if (!exclusive_event_installable(event, ctx)) {
9568                 err = -EBUSY;
9569                 goto err_unlock;
9570         }
9571
9572         perf_install_in_context(ctx, event, cpu);
9573         perf_unpin_context(ctx);
9574         mutex_unlock(&ctx->mutex);
9575
9576         return event;
9577
9578 err_unlock:
9579         mutex_unlock(&ctx->mutex);
9580         perf_unpin_context(ctx);
9581         put_ctx(ctx);
9582 err_free:
9583         free_event(event);
9584 err:
9585         return ERR_PTR(err);
9586 }
9587 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9588
9589 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9590 {
9591         struct perf_event_context *src_ctx;
9592         struct perf_event_context *dst_ctx;
9593         struct perf_event *event, *tmp;
9594         LIST_HEAD(events);
9595
9596         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9597         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9598
9599         /*
9600          * See perf_event_ctx_lock() for comments on the details
9601          * of swizzling perf_event::ctx.
9602          */
9603         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9604         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9605                                  event_entry) {
9606                 perf_remove_from_context(event, 0);
9607                 unaccount_event_cpu(event, src_cpu);
9608                 put_ctx(src_ctx);
9609                 list_add(&event->migrate_entry, &events);
9610         }
9611
9612         /*
9613          * Wait for the events to quiesce before re-instating them.
9614          */
9615         synchronize_rcu();
9616
9617         /*
9618          * Re-instate events in 2 passes.
9619          *
9620          * Skip over group leaders and only install siblings on this first
9621          * pass, siblings will not get enabled without a leader, however a
9622          * leader will enable its siblings, even if those are still on the old
9623          * context.
9624          */
9625         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9626                 if (event->group_leader == event)
9627                         continue;
9628
9629                 list_del(&event->migrate_entry);
9630                 if (event->state >= PERF_EVENT_STATE_OFF)
9631                         event->state = PERF_EVENT_STATE_INACTIVE;
9632                 account_event_cpu(event, dst_cpu);
9633                 perf_install_in_context(dst_ctx, event, dst_cpu);
9634                 get_ctx(dst_ctx);
9635         }
9636
9637         /*
9638          * Once all the siblings are setup properly, install the group leaders
9639          * to make it go.
9640          */
9641         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9642                 list_del(&event->migrate_entry);
9643                 if (event->state >= PERF_EVENT_STATE_OFF)
9644                         event->state = PERF_EVENT_STATE_INACTIVE;
9645                 account_event_cpu(event, dst_cpu);
9646                 perf_install_in_context(dst_ctx, event, dst_cpu);
9647                 get_ctx(dst_ctx);
9648         }
9649         mutex_unlock(&dst_ctx->mutex);
9650         mutex_unlock(&src_ctx->mutex);
9651 }
9652 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9653
9654 static void sync_child_event(struct perf_event *child_event,
9655                                struct task_struct *child)
9656 {
9657         struct perf_event *parent_event = child_event->parent;
9658         u64 child_val;
9659
9660         if (child_event->attr.inherit_stat)
9661                 perf_event_read_event(child_event, child);
9662
9663         child_val = perf_event_count(child_event);
9664
9665         /*
9666          * Add back the child's count to the parent's count:
9667          */
9668         atomic64_add(child_val, &parent_event->child_count);
9669         atomic64_add(child_event->total_time_enabled,
9670                      &parent_event->child_total_time_enabled);
9671         atomic64_add(child_event->total_time_running,
9672                      &parent_event->child_total_time_running);
9673 }
9674
9675 static void
9676 perf_event_exit_event(struct perf_event *child_event,
9677                       struct perf_event_context *child_ctx,
9678                       struct task_struct *child)
9679 {
9680         struct perf_event *parent_event = child_event->parent;
9681
9682         /*
9683          * Do not destroy the 'original' grouping; because of the context
9684          * switch optimization the original events could've ended up in a
9685          * random child task.
9686          *
9687          * If we were to destroy the original group, all group related
9688          * operations would cease to function properly after this random
9689          * child dies.
9690          *
9691          * Do destroy all inherited groups, we don't care about those
9692          * and being thorough is better.
9693          */
9694         raw_spin_lock_irq(&child_ctx->lock);
9695         WARN_ON_ONCE(child_ctx->is_active);
9696
9697         if (parent_event)
9698                 perf_group_detach(child_event);
9699         list_del_event(child_event, child_ctx);
9700         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9701         raw_spin_unlock_irq(&child_ctx->lock);
9702
9703         /*
9704          * Parent events are governed by their filedesc, retain them.
9705          */
9706         if (!parent_event) {
9707                 perf_event_wakeup(child_event);
9708                 return;
9709         }
9710         /*
9711          * Child events can be cleaned up.
9712          */
9713
9714         sync_child_event(child_event, child);
9715
9716         /*
9717          * Remove this event from the parent's list
9718          */
9719         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9720         mutex_lock(&parent_event->child_mutex);
9721         list_del_init(&child_event->child_list);
9722         mutex_unlock(&parent_event->child_mutex);
9723
9724         /*
9725          * Kick perf_poll() for is_event_hup().
9726          */
9727         perf_event_wakeup(parent_event);
9728         free_event(child_event);
9729         put_event(parent_event);
9730 }
9731
9732 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9733 {
9734         struct perf_event_context *child_ctx, *clone_ctx = NULL;
9735         struct perf_event *child_event, *next;
9736
9737         WARN_ON_ONCE(child != current);
9738
9739         child_ctx = perf_pin_task_context(child, ctxn);
9740         if (!child_ctx)
9741                 return;
9742
9743         /*
9744          * In order to reduce the amount of tricky in ctx tear-down, we hold
9745          * ctx::mutex over the entire thing. This serializes against almost
9746          * everything that wants to access the ctx.
9747          *
9748          * The exception is sys_perf_event_open() /
9749          * perf_event_create_kernel_count() which does find_get_context()
9750          * without ctx::mutex (it cannot because of the move_group double mutex
9751          * lock thing). See the comments in perf_install_in_context().
9752          */
9753         mutex_lock(&child_ctx->mutex);
9754
9755         /*
9756          * In a single ctx::lock section, de-schedule the events and detach the
9757          * context from the task such that we cannot ever get it scheduled back
9758          * in.
9759          */
9760         raw_spin_lock_irq(&child_ctx->lock);
9761         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
9762
9763         /*
9764          * Now that the context is inactive, destroy the task <-> ctx relation
9765          * and mark the context dead.
9766          */
9767         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9768         put_ctx(child_ctx); /* cannot be last */
9769         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9770         put_task_struct(current); /* cannot be last */
9771
9772         clone_ctx = unclone_ctx(child_ctx);
9773         raw_spin_unlock_irq(&child_ctx->lock);
9774
9775         if (clone_ctx)
9776                 put_ctx(clone_ctx);
9777
9778         /*
9779          * Report the task dead after unscheduling the events so that we
9780          * won't get any samples after PERF_RECORD_EXIT. We can however still
9781          * get a few PERF_RECORD_READ events.
9782          */
9783         perf_event_task(child, child_ctx, 0);
9784
9785         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
9786                 perf_event_exit_event(child_event, child_ctx, child);
9787
9788         mutex_unlock(&child_ctx->mutex);
9789
9790         put_ctx(child_ctx);
9791 }
9792
9793 /*
9794  * When a child task exits, feed back event values to parent events.
9795  *
9796  * Can be called with cred_guard_mutex held when called from
9797  * install_exec_creds().
9798  */
9799 void perf_event_exit_task(struct task_struct *child)
9800 {
9801         struct perf_event *event, *tmp;
9802         int ctxn;
9803
9804         mutex_lock(&child->perf_event_mutex);
9805         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9806                                  owner_entry) {
9807                 list_del_init(&event->owner_entry);
9808
9809                 /*
9810                  * Ensure the list deletion is visible before we clear
9811                  * the owner, closes a race against perf_release() where
9812                  * we need to serialize on the owner->perf_event_mutex.
9813                  */
9814                 smp_store_release(&event->owner, NULL);
9815         }
9816         mutex_unlock(&child->perf_event_mutex);
9817
9818         for_each_task_context_nr(ctxn)
9819                 perf_event_exit_task_context(child, ctxn);
9820
9821         /*
9822          * The perf_event_exit_task_context calls perf_event_task
9823          * with child's task_ctx, which generates EXIT events for
9824          * child contexts and sets child->perf_event_ctxp[] to NULL.
9825          * At this point we need to send EXIT events to cpu contexts.
9826          */
9827         perf_event_task(child, NULL, 0);
9828 }
9829
9830 static void perf_free_event(struct perf_event *event,
9831                             struct perf_event_context *ctx)
9832 {
9833         struct perf_event *parent = event->parent;
9834
9835         if (WARN_ON_ONCE(!parent))
9836                 return;
9837
9838         mutex_lock(&parent->child_mutex);
9839         list_del_init(&event->child_list);
9840         mutex_unlock(&parent->child_mutex);
9841
9842         put_event(parent);
9843
9844         raw_spin_lock_irq(&ctx->lock);
9845         perf_group_detach(event);
9846         list_del_event(event, ctx);
9847         raw_spin_unlock_irq(&ctx->lock);
9848         free_event(event);
9849 }
9850
9851 /*
9852  * Free an unexposed, unused context as created by inheritance by
9853  * perf_event_init_task below, used by fork() in case of fail.
9854  *
9855  * Not all locks are strictly required, but take them anyway to be nice and
9856  * help out with the lockdep assertions.
9857  */
9858 void perf_event_free_task(struct task_struct *task)
9859 {
9860         struct perf_event_context *ctx;
9861         struct perf_event *event, *tmp;
9862         int ctxn;
9863
9864         for_each_task_context_nr(ctxn) {
9865                 ctx = task->perf_event_ctxp[ctxn];
9866                 if (!ctx)
9867                         continue;
9868
9869                 mutex_lock(&ctx->mutex);
9870 again:
9871                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9872                                 group_entry)
9873                         perf_free_event(event, ctx);
9874
9875                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9876                                 group_entry)
9877                         perf_free_event(event, ctx);
9878
9879                 if (!list_empty(&ctx->pinned_groups) ||
9880                                 !list_empty(&ctx->flexible_groups))
9881                         goto again;
9882
9883                 mutex_unlock(&ctx->mutex);
9884
9885                 put_ctx(ctx);
9886         }
9887 }
9888
9889 void perf_event_delayed_put(struct task_struct *task)
9890 {
9891         int ctxn;
9892
9893         for_each_task_context_nr(ctxn)
9894                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9895 }
9896
9897 struct file *perf_event_get(unsigned int fd)
9898 {
9899         struct file *file;
9900
9901         file = fget_raw(fd);
9902         if (!file)
9903                 return ERR_PTR(-EBADF);
9904
9905         if (file->f_op != &perf_fops) {
9906                 fput(file);
9907                 return ERR_PTR(-EBADF);
9908         }
9909
9910         return file;
9911 }
9912
9913 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9914 {
9915         if (!event)
9916                 return ERR_PTR(-EINVAL);
9917
9918         return &event->attr;
9919 }
9920
9921 /*
9922  * inherit a event from parent task to child task:
9923  */
9924 static struct perf_event *
9925 inherit_event(struct perf_event *parent_event,
9926               struct task_struct *parent,
9927               struct perf_event_context *parent_ctx,
9928               struct task_struct *child,
9929               struct perf_event *group_leader,
9930               struct perf_event_context *child_ctx)
9931 {
9932         enum perf_event_active_state parent_state = parent_event->state;
9933         struct perf_event *child_event;
9934         unsigned long flags;
9935
9936         /*
9937          * Instead of creating recursive hierarchies of events,
9938          * we link inherited events back to the original parent,
9939          * which has a filp for sure, which we use as the reference
9940          * count:
9941          */
9942         if (parent_event->parent)
9943                 parent_event = parent_event->parent;
9944
9945         child_event = perf_event_alloc(&parent_event->attr,
9946                                            parent_event->cpu,
9947                                            child,
9948                                            group_leader, parent_event,
9949                                            NULL, NULL, -1);
9950         if (IS_ERR(child_event))
9951                 return child_event;
9952
9953         /*
9954          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
9955          * must be under the same lock in order to serialize against
9956          * perf_event_release_kernel(), such that either we must observe
9957          * is_orphaned_event() or they will observe us on the child_list.
9958          */
9959         mutex_lock(&parent_event->child_mutex);
9960         if (is_orphaned_event(parent_event) ||
9961             !atomic_long_inc_not_zero(&parent_event->refcount)) {
9962                 mutex_unlock(&parent_event->child_mutex);
9963                 free_event(child_event);
9964                 return NULL;
9965         }
9966
9967         get_ctx(child_ctx);
9968
9969         /*
9970          * Make the child state follow the state of the parent event,
9971          * not its attr.disabled bit.  We hold the parent's mutex,
9972          * so we won't race with perf_event_{en, dis}able_family.
9973          */
9974         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
9975                 child_event->state = PERF_EVENT_STATE_INACTIVE;
9976         else
9977                 child_event->state = PERF_EVENT_STATE_OFF;
9978
9979         if (parent_event->attr.freq) {
9980                 u64 sample_period = parent_event->hw.sample_period;
9981                 struct hw_perf_event *hwc = &child_event->hw;
9982
9983                 hwc->sample_period = sample_period;
9984                 hwc->last_period   = sample_period;
9985
9986                 local64_set(&hwc->period_left, sample_period);
9987         }
9988
9989         child_event->ctx = child_ctx;
9990         child_event->overflow_handler = parent_event->overflow_handler;
9991         child_event->overflow_handler_context
9992                 = parent_event->overflow_handler_context;
9993
9994         /*
9995          * Precalculate sample_data sizes
9996          */
9997         perf_event__header_size(child_event);
9998         perf_event__id_header_size(child_event);
9999
10000         /*
10001          * Link it up in the child's context:
10002          */
10003         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10004         add_event_to_ctx(child_event, child_ctx);
10005         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10006
10007         /*
10008          * Link this into the parent event's child list
10009          */
10010         list_add_tail(&child_event->child_list, &parent_event->child_list);
10011         mutex_unlock(&parent_event->child_mutex);
10012
10013         return child_event;
10014 }
10015
10016 static int inherit_group(struct perf_event *parent_event,
10017               struct task_struct *parent,
10018               struct perf_event_context *parent_ctx,
10019               struct task_struct *child,
10020               struct perf_event_context *child_ctx)
10021 {
10022         struct perf_event *leader;
10023         struct perf_event *sub;
10024         struct perf_event *child_ctr;
10025
10026         leader = inherit_event(parent_event, parent, parent_ctx,
10027                                  child, NULL, child_ctx);
10028         if (IS_ERR(leader))
10029                 return PTR_ERR(leader);
10030         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10031                 child_ctr = inherit_event(sub, parent, parent_ctx,
10032                                             child, leader, child_ctx);
10033                 if (IS_ERR(child_ctr))
10034                         return PTR_ERR(child_ctr);
10035         }
10036         return 0;
10037 }
10038
10039 static int
10040 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10041                    struct perf_event_context *parent_ctx,
10042                    struct task_struct *child, int ctxn,
10043                    int *inherited_all)
10044 {
10045         int ret;
10046         struct perf_event_context *child_ctx;
10047
10048         if (!event->attr.inherit) {
10049                 *inherited_all = 0;
10050                 return 0;
10051         }
10052
10053         child_ctx = child->perf_event_ctxp[ctxn];
10054         if (!child_ctx) {
10055                 /*
10056                  * This is executed from the parent task context, so
10057                  * inherit events that have been marked for cloning.
10058                  * First allocate and initialize a context for the
10059                  * child.
10060                  */
10061
10062                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10063                 if (!child_ctx)
10064                         return -ENOMEM;
10065
10066                 child->perf_event_ctxp[ctxn] = child_ctx;
10067         }
10068
10069         ret = inherit_group(event, parent, parent_ctx,
10070                             child, child_ctx);
10071
10072         if (ret)
10073                 *inherited_all = 0;
10074
10075         return ret;
10076 }
10077
10078 /*
10079  * Initialize the perf_event context in task_struct
10080  */
10081 static int perf_event_init_context(struct task_struct *child, int ctxn)
10082 {
10083         struct perf_event_context *child_ctx, *parent_ctx;
10084         struct perf_event_context *cloned_ctx;
10085         struct perf_event *event;
10086         struct task_struct *parent = current;
10087         int inherited_all = 1;
10088         unsigned long flags;
10089         int ret = 0;
10090
10091         if (likely(!parent->perf_event_ctxp[ctxn]))
10092                 return 0;
10093
10094         /*
10095          * If the parent's context is a clone, pin it so it won't get
10096          * swapped under us.
10097          */
10098         parent_ctx = perf_pin_task_context(parent, ctxn);
10099         if (!parent_ctx)
10100                 return 0;
10101
10102         /*
10103          * No need to check if parent_ctx != NULL here; since we saw
10104          * it non-NULL earlier, the only reason for it to become NULL
10105          * is if we exit, and since we're currently in the middle of
10106          * a fork we can't be exiting at the same time.
10107          */
10108
10109         /*
10110          * Lock the parent list. No need to lock the child - not PID
10111          * hashed yet and not running, so nobody can access it.
10112          */
10113         mutex_lock(&parent_ctx->mutex);
10114
10115         /*
10116          * We dont have to disable NMIs - we are only looking at
10117          * the list, not manipulating it:
10118          */
10119         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10120                 ret = inherit_task_group(event, parent, parent_ctx,
10121                                          child, ctxn, &inherited_all);
10122                 if (ret)
10123                         break;
10124         }
10125
10126         /*
10127          * We can't hold ctx->lock when iterating the ->flexible_group list due
10128          * to allocations, but we need to prevent rotation because
10129          * rotate_ctx() will change the list from interrupt context.
10130          */
10131         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10132         parent_ctx->rotate_disable = 1;
10133         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10134
10135         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10136                 ret = inherit_task_group(event, parent, parent_ctx,
10137                                          child, ctxn, &inherited_all);
10138                 if (ret)
10139                         break;
10140         }
10141
10142         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10143         parent_ctx->rotate_disable = 0;
10144
10145         child_ctx = child->perf_event_ctxp[ctxn];
10146
10147         if (child_ctx && inherited_all) {
10148                 /*
10149                  * Mark the child context as a clone of the parent
10150                  * context, or of whatever the parent is a clone of.
10151                  *
10152                  * Note that if the parent is a clone, the holding of
10153                  * parent_ctx->lock avoids it from being uncloned.
10154                  */
10155                 cloned_ctx = parent_ctx->parent_ctx;
10156                 if (cloned_ctx) {
10157                         child_ctx->parent_ctx = cloned_ctx;
10158                         child_ctx->parent_gen = parent_ctx->parent_gen;
10159                 } else {
10160                         child_ctx->parent_ctx = parent_ctx;
10161                         child_ctx->parent_gen = parent_ctx->generation;
10162                 }
10163                 get_ctx(child_ctx->parent_ctx);
10164         }
10165
10166         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10167         mutex_unlock(&parent_ctx->mutex);
10168
10169         perf_unpin_context(parent_ctx);
10170         put_ctx(parent_ctx);
10171
10172         return ret;
10173 }
10174
10175 /*
10176  * Initialize the perf_event context in task_struct
10177  */
10178 int perf_event_init_task(struct task_struct *child)
10179 {
10180         int ctxn, ret;
10181
10182         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10183         mutex_init(&child->perf_event_mutex);
10184         INIT_LIST_HEAD(&child->perf_event_list);
10185
10186         for_each_task_context_nr(ctxn) {
10187                 ret = perf_event_init_context(child, ctxn);
10188                 if (ret) {
10189                         perf_event_free_task(child);
10190                         return ret;
10191                 }
10192         }
10193
10194         return 0;
10195 }
10196
10197 static void __init perf_event_init_all_cpus(void)
10198 {
10199         struct swevent_htable *swhash;
10200         int cpu;
10201
10202         for_each_possible_cpu(cpu) {
10203                 swhash = &per_cpu(swevent_htable, cpu);
10204                 mutex_init(&swhash->hlist_mutex);
10205                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10206         }
10207 }
10208
10209 static void perf_event_init_cpu(int cpu)
10210 {
10211         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10212
10213         mutex_lock(&swhash->hlist_mutex);
10214         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10215                 struct swevent_hlist *hlist;
10216
10217                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10218                 WARN_ON(!hlist);
10219                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10220         }
10221         mutex_unlock(&swhash->hlist_mutex);
10222 }
10223
10224 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10225 static void __perf_event_exit_context(void *__info)
10226 {
10227         struct perf_event_context *ctx = __info;
10228         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10229         struct perf_event *event;
10230
10231         raw_spin_lock(&ctx->lock);
10232         list_for_each_entry(event, &ctx->event_list, event_entry)
10233                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10234         raw_spin_unlock(&ctx->lock);
10235 }
10236
10237 static void perf_event_exit_cpu_context(int cpu)
10238 {
10239         struct perf_event_context *ctx;
10240         struct pmu *pmu;
10241         int idx;
10242
10243         idx = srcu_read_lock(&pmus_srcu);
10244         list_for_each_entry_rcu(pmu, &pmus, entry) {
10245                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10246
10247                 mutex_lock(&ctx->mutex);
10248                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10249                 mutex_unlock(&ctx->mutex);
10250         }
10251         srcu_read_unlock(&pmus_srcu, idx);
10252 }
10253
10254 static void perf_event_exit_cpu(int cpu)
10255 {
10256         perf_event_exit_cpu_context(cpu);
10257 }
10258 #else
10259 static inline void perf_event_exit_cpu(int cpu) { }
10260 #endif
10261
10262 static int
10263 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10264 {
10265         int cpu;
10266
10267         for_each_online_cpu(cpu)
10268                 perf_event_exit_cpu(cpu);
10269
10270         return NOTIFY_OK;
10271 }
10272
10273 /*
10274  * Run the perf reboot notifier at the very last possible moment so that
10275  * the generic watchdog code runs as long as possible.
10276  */
10277 static struct notifier_block perf_reboot_notifier = {
10278         .notifier_call = perf_reboot,
10279         .priority = INT_MIN,
10280 };
10281
10282 static int
10283 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
10284 {
10285         unsigned int cpu = (long)hcpu;
10286
10287         switch (action & ~CPU_TASKS_FROZEN) {
10288
10289         case CPU_UP_PREPARE:
10290                 /*
10291                  * This must be done before the CPU comes alive, because the
10292                  * moment we can run tasks we can encounter (software) events.
10293                  *
10294                  * Specifically, someone can have inherited events on kthreadd
10295                  * or a pre-existing worker thread that gets re-bound.
10296                  */
10297                 perf_event_init_cpu(cpu);
10298                 break;
10299
10300         case CPU_DOWN_PREPARE:
10301                 /*
10302                  * This must be done before the CPU dies because after that an
10303                  * active event might want to IPI the CPU and that'll not work
10304                  * so great for dead CPUs.
10305                  *
10306                  * XXX smp_call_function_single() return -ENXIO without a warn
10307                  * so we could possibly deal with this.
10308                  *
10309                  * This is safe against new events arriving because
10310                  * sys_perf_event_open() serializes against hotplug using
10311                  * get_online_cpus().
10312                  */
10313                 perf_event_exit_cpu(cpu);
10314                 break;
10315         default:
10316                 break;
10317         }
10318
10319         return NOTIFY_OK;
10320 }
10321
10322 void __init perf_event_init(void)
10323 {
10324         int ret;
10325
10326         idr_init(&pmu_idr);
10327
10328         perf_event_init_all_cpus();
10329         init_srcu_struct(&pmus_srcu);
10330         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10331         perf_pmu_register(&perf_cpu_clock, NULL, -1);
10332         perf_pmu_register(&perf_task_clock, NULL, -1);
10333         perf_tp_register();
10334         perf_cpu_notifier(perf_cpu_notify);
10335         register_reboot_notifier(&perf_reboot_notifier);
10336
10337         ret = init_hw_breakpoint();
10338         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10339
10340         /*
10341          * Build time assertion that we keep the data_head at the intended
10342          * location.  IOW, validation we got the __reserved[] size right.
10343          */
10344         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10345                      != 1024);
10346 }
10347
10348 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10349                               char *page)
10350 {
10351         struct perf_pmu_events_attr *pmu_attr =
10352                 container_of(attr, struct perf_pmu_events_attr, attr);
10353
10354         if (pmu_attr->event_str)
10355                 return sprintf(page, "%s\n", pmu_attr->event_str);
10356
10357         return 0;
10358 }
10359 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10360
10361 static int __init perf_event_sysfs_init(void)
10362 {
10363         struct pmu *pmu;
10364         int ret;
10365
10366         mutex_lock(&pmus_lock);
10367
10368         ret = bus_register(&pmu_bus);
10369         if (ret)
10370                 goto unlock;
10371
10372         list_for_each_entry(pmu, &pmus, entry) {
10373                 if (!pmu->name || pmu->type < 0)
10374                         continue;
10375
10376                 ret = pmu_dev_alloc(pmu);
10377                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10378         }
10379         pmu_bus_running = 1;
10380         ret = 0;
10381
10382 unlock:
10383         mutex_unlock(&pmus_lock);
10384
10385         return ret;
10386 }
10387 device_initcall(perf_event_sysfs_init);
10388
10389 #ifdef CONFIG_CGROUP_PERF
10390 static struct cgroup_subsys_state *
10391 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10392 {
10393         struct perf_cgroup *jc;
10394
10395         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10396         if (!jc)
10397                 return ERR_PTR(-ENOMEM);
10398
10399         jc->info = alloc_percpu(struct perf_cgroup_info);
10400         if (!jc->info) {
10401                 kfree(jc);
10402                 return ERR_PTR(-ENOMEM);
10403         }
10404
10405         return &jc->css;
10406 }
10407
10408 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10409 {
10410         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10411
10412         free_percpu(jc->info);
10413         kfree(jc);
10414 }
10415
10416 static int __perf_cgroup_move(void *info)
10417 {
10418         struct task_struct *task = info;
10419         rcu_read_lock();
10420         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10421         rcu_read_unlock();
10422         return 0;
10423 }
10424
10425 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10426 {
10427         struct task_struct *task;
10428         struct cgroup_subsys_state *css;
10429
10430         cgroup_taskset_for_each(task, css, tset)
10431                 task_function_call(task, __perf_cgroup_move, task);
10432 }
10433
10434 struct cgroup_subsys perf_event_cgrp_subsys = {
10435         .css_alloc      = perf_cgroup_css_alloc,
10436         .css_free       = perf_cgroup_css_free,
10437         .attach         = perf_cgroup_attach,
10438 };
10439 #endif /* CONFIG_CGROUP_PERF */