Merge branch 'regulator-5.2' into regulator-linus
[sfrench/cifs-2.6.git] / kernel / dma / direct.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-direct.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-contiguous.h>
13 #include <linux/dma-noncoherent.h>
14 #include <linux/pfn.h>
15 #include <linux/set_memory.h>
16 #include <linux/swiotlb.h>
17
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but
20  * some use it for entirely different regions:
21  */
22 #ifndef ARCH_ZONE_DMA_BITS
23 #define ARCH_ZONE_DMA_BITS 24
24 #endif
25
26 /*
27  * For AMD SEV all DMA must be to unencrypted addresses.
28  */
29 static inline bool force_dma_unencrypted(void)
30 {
31         return sev_active();
32 }
33
34 static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size)
35 {
36         if (!dev->dma_mask) {
37                 dev_err_once(dev, "DMA map on device without dma_mask\n");
38         } else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) {
39                 dev_err_once(dev,
40                         "overflow %pad+%zu of DMA mask %llx bus mask %llx\n",
41                         &dma_addr, size, *dev->dma_mask, dev->bus_dma_mask);
42         }
43         WARN_ON_ONCE(1);
44 }
45
46 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
47                 phys_addr_t phys)
48 {
49         if (force_dma_unencrypted())
50                 return __phys_to_dma(dev, phys);
51         return phys_to_dma(dev, phys);
52 }
53
54 u64 dma_direct_get_required_mask(struct device *dev)
55 {
56         u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT);
57
58         if (dev->bus_dma_mask && dev->bus_dma_mask < max_dma)
59                 max_dma = dev->bus_dma_mask;
60
61         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
62 }
63
64 static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
65                 u64 *phys_mask)
66 {
67         if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask)
68                 dma_mask = dev->bus_dma_mask;
69
70         if (force_dma_unencrypted())
71                 *phys_mask = __dma_to_phys(dev, dma_mask);
72         else
73                 *phys_mask = dma_to_phys(dev, dma_mask);
74
75         /*
76          * Optimistically try the zone that the physical address mask falls
77          * into first.  If that returns memory that isn't actually addressable
78          * we will fallback to the next lower zone and try again.
79          *
80          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
81          * zones.
82          */
83         if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
84                 return GFP_DMA;
85         if (*phys_mask <= DMA_BIT_MASK(32))
86                 return GFP_DMA32;
87         return 0;
88 }
89
90 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
91 {
92         return phys_to_dma_direct(dev, phys) + size - 1 <=
93                         min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask);
94 }
95
96 struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
97                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
98 {
99         unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
100         int page_order = get_order(size);
101         struct page *page = NULL;
102         u64 phys_mask;
103
104         if (attrs & DMA_ATTR_NO_WARN)
105                 gfp |= __GFP_NOWARN;
106
107         /* we always manually zero the memory once we are done: */
108         gfp &= ~__GFP_ZERO;
109         gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
110                         &phys_mask);
111 again:
112         /* CMA can be used only in the context which permits sleeping */
113         if (gfpflags_allow_blocking(gfp)) {
114                 page = dma_alloc_from_contiguous(dev, count, page_order,
115                                                  gfp & __GFP_NOWARN);
116                 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
117                         dma_release_from_contiguous(dev, page, count);
118                         page = NULL;
119                 }
120         }
121         if (!page)
122                 page = alloc_pages_node(dev_to_node(dev), gfp, page_order);
123
124         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
125                 __free_pages(page, page_order);
126                 page = NULL;
127
128                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
129                     phys_mask < DMA_BIT_MASK(64) &&
130                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
131                         gfp |= GFP_DMA32;
132                         goto again;
133                 }
134
135                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
136                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
137                         goto again;
138                 }
139         }
140
141         return page;
142 }
143
144 void *dma_direct_alloc_pages(struct device *dev, size_t size,
145                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
146 {
147         struct page *page;
148         void *ret;
149
150         page = __dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
151         if (!page)
152                 return NULL;
153
154         if (PageHighMem(page)) {
155                 /*
156                  * Depending on the cma= arguments and per-arch setup
157                  * dma_alloc_from_contiguous could return highmem pages.
158                  * Without remapping there is no way to return them here,
159                  * so log an error and fail.
160                  */
161                 dev_info(dev, "Rejecting highmem page from CMA.\n");
162                 __dma_direct_free_pages(dev, size, page);
163                 return NULL;
164         }
165
166         ret = page_address(page);
167         if (force_dma_unencrypted()) {
168                 set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
169                 *dma_handle = __phys_to_dma(dev, page_to_phys(page));
170         } else {
171                 *dma_handle = phys_to_dma(dev, page_to_phys(page));
172         }
173         memset(ret, 0, size);
174         return ret;
175 }
176
177 void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page)
178 {
179         unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
180
181         if (!dma_release_from_contiguous(dev, page, count))
182                 __free_pages(page, get_order(size));
183 }
184
185 void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
186                 dma_addr_t dma_addr, unsigned long attrs)
187 {
188         unsigned int page_order = get_order(size);
189
190         if (force_dma_unencrypted())
191                 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
192         __dma_direct_free_pages(dev, size, virt_to_page(cpu_addr));
193 }
194
195 void *dma_direct_alloc(struct device *dev, size_t size,
196                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
197 {
198         if (!dev_is_dma_coherent(dev))
199                 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
200         return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
201 }
202
203 void dma_direct_free(struct device *dev, size_t size,
204                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
205 {
206         if (!dev_is_dma_coherent(dev))
207                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
208         else
209                 dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
210 }
211
212 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
213     defined(CONFIG_SWIOTLB)
214 void dma_direct_sync_single_for_device(struct device *dev,
215                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
216 {
217         phys_addr_t paddr = dma_to_phys(dev, addr);
218
219         if (unlikely(is_swiotlb_buffer(paddr)))
220                 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
221
222         if (!dev_is_dma_coherent(dev))
223                 arch_sync_dma_for_device(dev, paddr, size, dir);
224 }
225 EXPORT_SYMBOL(dma_direct_sync_single_for_device);
226
227 void dma_direct_sync_sg_for_device(struct device *dev,
228                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
229 {
230         struct scatterlist *sg;
231         int i;
232
233         for_each_sg(sgl, sg, nents, i) {
234                 if (unlikely(is_swiotlb_buffer(sg_phys(sg))))
235                         swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length,
236                                         dir, SYNC_FOR_DEVICE);
237
238                 if (!dev_is_dma_coherent(dev))
239                         arch_sync_dma_for_device(dev, sg_phys(sg), sg->length,
240                                         dir);
241         }
242 }
243 EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
244 #endif
245
246 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
247     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
248     defined(CONFIG_SWIOTLB)
249 void dma_direct_sync_single_for_cpu(struct device *dev,
250                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
251 {
252         phys_addr_t paddr = dma_to_phys(dev, addr);
253
254         if (!dev_is_dma_coherent(dev)) {
255                 arch_sync_dma_for_cpu(dev, paddr, size, dir);
256                 arch_sync_dma_for_cpu_all(dev);
257         }
258
259         if (unlikely(is_swiotlb_buffer(paddr)))
260                 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
261 }
262 EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
263
264 void dma_direct_sync_sg_for_cpu(struct device *dev,
265                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
266 {
267         struct scatterlist *sg;
268         int i;
269
270         for_each_sg(sgl, sg, nents, i) {
271                 if (!dev_is_dma_coherent(dev))
272                         arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
273         
274                 if (unlikely(is_swiotlb_buffer(sg_phys(sg))))
275                         swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length, dir,
276                                         SYNC_FOR_CPU);
277         }
278
279         if (!dev_is_dma_coherent(dev))
280                 arch_sync_dma_for_cpu_all(dev);
281 }
282 EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
283
284 void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
285                 size_t size, enum dma_data_direction dir, unsigned long attrs)
286 {
287         phys_addr_t phys = dma_to_phys(dev, addr);
288
289         if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
290                 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
291
292         if (unlikely(is_swiotlb_buffer(phys)))
293                 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
294 }
295 EXPORT_SYMBOL(dma_direct_unmap_page);
296
297 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
298                 int nents, enum dma_data_direction dir, unsigned long attrs)
299 {
300         struct scatterlist *sg;
301         int i;
302
303         for_each_sg(sgl, sg, nents, i)
304                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
305                              attrs);
306 }
307 EXPORT_SYMBOL(dma_direct_unmap_sg);
308 #endif
309
310 static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr,
311                 size_t size)
312 {
313         return swiotlb_force != SWIOTLB_FORCE &&
314                 dma_capable(dev, dma_addr, size);
315 }
316
317 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
318                 unsigned long offset, size_t size, enum dma_data_direction dir,
319                 unsigned long attrs)
320 {
321         phys_addr_t phys = page_to_phys(page) + offset;
322         dma_addr_t dma_addr = phys_to_dma(dev, phys);
323
324         if (unlikely(!dma_direct_possible(dev, dma_addr, size)) &&
325             !swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) {
326                 report_addr(dev, dma_addr, size);
327                 return DMA_MAPPING_ERROR;
328         }
329
330         if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
331                 arch_sync_dma_for_device(dev, phys, size, dir);
332         return dma_addr;
333 }
334 EXPORT_SYMBOL(dma_direct_map_page);
335
336 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
337                 enum dma_data_direction dir, unsigned long attrs)
338 {
339         int i;
340         struct scatterlist *sg;
341
342         for_each_sg(sgl, sg, nents, i) {
343                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
344                                 sg->offset, sg->length, dir, attrs);
345                 if (sg->dma_address == DMA_MAPPING_ERROR)
346                         goto out_unmap;
347                 sg_dma_len(sg) = sg->length;
348         }
349
350         return nents;
351
352 out_unmap:
353         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
354         return 0;
355 }
356 EXPORT_SYMBOL(dma_direct_map_sg);
357
358 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
359                 size_t size, enum dma_data_direction dir, unsigned long attrs)
360 {
361         dma_addr_t dma_addr = paddr;
362
363         if (unlikely(!dma_direct_possible(dev, dma_addr, size))) {
364                 report_addr(dev, dma_addr, size);
365                 return DMA_MAPPING_ERROR;
366         }
367
368         return dma_addr;
369 }
370 EXPORT_SYMBOL(dma_direct_map_resource);
371
372 /*
373  * Because 32-bit DMA masks are so common we expect every architecture to be
374  * able to satisfy them - either by not supporting more physical memory, or by
375  * providing a ZONE_DMA32.  If neither is the case, the architecture needs to
376  * use an IOMMU instead of the direct mapping.
377  */
378 int dma_direct_supported(struct device *dev, u64 mask)
379 {
380         u64 min_mask;
381
382         if (IS_ENABLED(CONFIG_ZONE_DMA))
383                 min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS);
384         else
385                 min_mask = DMA_BIT_MASK(32);
386
387         min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT);
388
389         /*
390          * This check needs to be against the actual bit mask value, so
391          * use __phys_to_dma() here so that the SME encryption mask isn't
392          * part of the check.
393          */
394         return mask >= __phys_to_dma(dev, min_mask);
395 }
396
397 size_t dma_direct_max_mapping_size(struct device *dev)
398 {
399         size_t size = SIZE_MAX;
400
401         /* If SWIOTLB is active, use its maximum mapping size */
402         if (is_swiotlb_active())
403                 size = swiotlb_max_mapping_size(dev);
404
405         return size;
406 }