Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / kernel / dma / direct.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-direct.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-contiguous.h>
13 #include <linux/dma-noncoherent.h>
14 #include <linux/pfn.h>
15 #include <linux/set_memory.h>
16 #include <linux/swiotlb.h>
17
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but
20  * some use it for entirely different regions:
21  */
22 #ifndef ARCH_ZONE_DMA_BITS
23 #define ARCH_ZONE_DMA_BITS 24
24 #endif
25
26 /*
27  * For AMD SEV all DMA must be to unencrypted addresses.
28  */
29 static inline bool force_dma_unencrypted(void)
30 {
31         return sev_active();
32 }
33
34 static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size)
35 {
36         if (!dev->dma_mask) {
37                 dev_err_once(dev, "DMA map on device without dma_mask\n");
38         } else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) {
39                 dev_err_once(dev,
40                         "overflow %pad+%zu of DMA mask %llx bus mask %llx\n",
41                         &dma_addr, size, *dev->dma_mask, dev->bus_dma_mask);
42         }
43         WARN_ON_ONCE(1);
44 }
45
46 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
47                 phys_addr_t phys)
48 {
49         if (force_dma_unencrypted())
50                 return __phys_to_dma(dev, phys);
51         return phys_to_dma(dev, phys);
52 }
53
54 u64 dma_direct_get_required_mask(struct device *dev)
55 {
56         u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT);
57
58         if (dev->bus_dma_mask && dev->bus_dma_mask < max_dma)
59                 max_dma = dev->bus_dma_mask;
60
61         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
62 }
63
64 static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
65                 u64 *phys_mask)
66 {
67         if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask)
68                 dma_mask = dev->bus_dma_mask;
69
70         if (force_dma_unencrypted())
71                 *phys_mask = __dma_to_phys(dev, dma_mask);
72         else
73                 *phys_mask = dma_to_phys(dev, dma_mask);
74
75         /*
76          * Optimistically try the zone that the physical address mask falls
77          * into first.  If that returns memory that isn't actually addressable
78          * we will fallback to the next lower zone and try again.
79          *
80          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
81          * zones.
82          */
83         if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
84                 return GFP_DMA;
85         if (*phys_mask <= DMA_BIT_MASK(32))
86                 return GFP_DMA32;
87         return 0;
88 }
89
90 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
91 {
92         return phys_to_dma_direct(dev, phys) + size - 1 <=
93                         min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask);
94 }
95
96 struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
97                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
98 {
99         struct page *page = NULL;
100         u64 phys_mask;
101
102         if (attrs & DMA_ATTR_NO_WARN)
103                 gfp |= __GFP_NOWARN;
104
105         /* we always manually zero the memory once we are done: */
106         gfp &= ~__GFP_ZERO;
107         gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
108                         &phys_mask);
109 again:
110         page = dma_alloc_contiguous(dev, size, gfp);
111         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
112                 dma_free_contiguous(dev, page, size);
113                 page = NULL;
114
115                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
116                     phys_mask < DMA_BIT_MASK(64) &&
117                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
118                         gfp |= GFP_DMA32;
119                         goto again;
120                 }
121
122                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
123                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
124                         goto again;
125                 }
126         }
127
128         return page;
129 }
130
131 void *dma_direct_alloc_pages(struct device *dev, size_t size,
132                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
133 {
134         struct page *page;
135         void *ret;
136
137         page = __dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
138         if (!page)
139                 return NULL;
140
141         if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) {
142                 /* remove any dirty cache lines on the kernel alias */
143                 if (!PageHighMem(page))
144                         arch_dma_prep_coherent(page, size);
145                 /* return the page pointer as the opaque cookie */
146                 return page;
147         }
148
149         if (PageHighMem(page)) {
150                 /*
151                  * Depending on the cma= arguments and per-arch setup
152                  * dma_alloc_contiguous could return highmem pages.
153                  * Without remapping there is no way to return them here,
154                  * so log an error and fail.
155                  */
156                 dev_info(dev, "Rejecting highmem page from CMA.\n");
157                 __dma_direct_free_pages(dev, size, page);
158                 return NULL;
159         }
160
161         ret = page_address(page);
162         if (force_dma_unencrypted()) {
163                 set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
164                 *dma_handle = __phys_to_dma(dev, page_to_phys(page));
165         } else {
166                 *dma_handle = phys_to_dma(dev, page_to_phys(page));
167         }
168         memset(ret, 0, size);
169
170         if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
171             dma_alloc_need_uncached(dev, attrs)) {
172                 arch_dma_prep_coherent(page, size);
173                 ret = uncached_kernel_address(ret);
174         }
175
176         return ret;
177 }
178
179 void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page)
180 {
181         dma_free_contiguous(dev, page, size);
182 }
183
184 void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
185                 dma_addr_t dma_addr, unsigned long attrs)
186 {
187         unsigned int page_order = get_order(size);
188
189         if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) {
190                 /* cpu_addr is a struct page cookie, not a kernel address */
191                 __dma_direct_free_pages(dev, size, cpu_addr);
192                 return;
193         }
194
195         if (force_dma_unencrypted())
196                 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
197
198         if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
199             dma_alloc_need_uncached(dev, attrs))
200                 cpu_addr = cached_kernel_address(cpu_addr);
201         __dma_direct_free_pages(dev, size, virt_to_page(cpu_addr));
202 }
203
204 void *dma_direct_alloc(struct device *dev, size_t size,
205                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
206 {
207         if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
208             dma_alloc_need_uncached(dev, attrs))
209                 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
210         return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
211 }
212
213 void dma_direct_free(struct device *dev, size_t size,
214                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
215 {
216         if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
217             dma_alloc_need_uncached(dev, attrs))
218                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
219         else
220                 dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
221 }
222
223 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
224     defined(CONFIG_SWIOTLB)
225 void dma_direct_sync_single_for_device(struct device *dev,
226                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
227 {
228         phys_addr_t paddr = dma_to_phys(dev, addr);
229
230         if (unlikely(is_swiotlb_buffer(paddr)))
231                 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
232
233         if (!dev_is_dma_coherent(dev))
234                 arch_sync_dma_for_device(dev, paddr, size, dir);
235 }
236 EXPORT_SYMBOL(dma_direct_sync_single_for_device);
237
238 void dma_direct_sync_sg_for_device(struct device *dev,
239                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
240 {
241         struct scatterlist *sg;
242         int i;
243
244         for_each_sg(sgl, sg, nents, i) {
245                 if (unlikely(is_swiotlb_buffer(sg_phys(sg))))
246                         swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length,
247                                         dir, SYNC_FOR_DEVICE);
248
249                 if (!dev_is_dma_coherent(dev))
250                         arch_sync_dma_for_device(dev, sg_phys(sg), sg->length,
251                                         dir);
252         }
253 }
254 EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
255 #endif
256
257 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
258     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
259     defined(CONFIG_SWIOTLB)
260 void dma_direct_sync_single_for_cpu(struct device *dev,
261                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
262 {
263         phys_addr_t paddr = dma_to_phys(dev, addr);
264
265         if (!dev_is_dma_coherent(dev)) {
266                 arch_sync_dma_for_cpu(dev, paddr, size, dir);
267                 arch_sync_dma_for_cpu_all(dev);
268         }
269
270         if (unlikely(is_swiotlb_buffer(paddr)))
271                 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
272 }
273 EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
274
275 void dma_direct_sync_sg_for_cpu(struct device *dev,
276                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
277 {
278         struct scatterlist *sg;
279         int i;
280
281         for_each_sg(sgl, sg, nents, i) {
282                 if (!dev_is_dma_coherent(dev))
283                         arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
284         
285                 if (unlikely(is_swiotlb_buffer(sg_phys(sg))))
286                         swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length, dir,
287                                         SYNC_FOR_CPU);
288         }
289
290         if (!dev_is_dma_coherent(dev))
291                 arch_sync_dma_for_cpu_all(dev);
292 }
293 EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
294
295 void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
296                 size_t size, enum dma_data_direction dir, unsigned long attrs)
297 {
298         phys_addr_t phys = dma_to_phys(dev, addr);
299
300         if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
301                 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
302
303         if (unlikely(is_swiotlb_buffer(phys)))
304                 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
305 }
306 EXPORT_SYMBOL(dma_direct_unmap_page);
307
308 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
309                 int nents, enum dma_data_direction dir, unsigned long attrs)
310 {
311         struct scatterlist *sg;
312         int i;
313
314         for_each_sg(sgl, sg, nents, i)
315                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
316                              attrs);
317 }
318 EXPORT_SYMBOL(dma_direct_unmap_sg);
319 #endif
320
321 static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr,
322                 size_t size)
323 {
324         return swiotlb_force != SWIOTLB_FORCE &&
325                 dma_capable(dev, dma_addr, size);
326 }
327
328 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
329                 unsigned long offset, size_t size, enum dma_data_direction dir,
330                 unsigned long attrs)
331 {
332         phys_addr_t phys = page_to_phys(page) + offset;
333         dma_addr_t dma_addr = phys_to_dma(dev, phys);
334
335         if (unlikely(!dma_direct_possible(dev, dma_addr, size)) &&
336             !swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) {
337                 report_addr(dev, dma_addr, size);
338                 return DMA_MAPPING_ERROR;
339         }
340
341         if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
342                 arch_sync_dma_for_device(dev, phys, size, dir);
343         return dma_addr;
344 }
345 EXPORT_SYMBOL(dma_direct_map_page);
346
347 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
348                 enum dma_data_direction dir, unsigned long attrs)
349 {
350         int i;
351         struct scatterlist *sg;
352
353         for_each_sg(sgl, sg, nents, i) {
354                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
355                                 sg->offset, sg->length, dir, attrs);
356                 if (sg->dma_address == DMA_MAPPING_ERROR)
357                         goto out_unmap;
358                 sg_dma_len(sg) = sg->length;
359         }
360
361         return nents;
362
363 out_unmap:
364         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
365         return 0;
366 }
367 EXPORT_SYMBOL(dma_direct_map_sg);
368
369 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
370                 size_t size, enum dma_data_direction dir, unsigned long attrs)
371 {
372         dma_addr_t dma_addr = paddr;
373
374         if (unlikely(!dma_direct_possible(dev, dma_addr, size))) {
375                 report_addr(dev, dma_addr, size);
376                 return DMA_MAPPING_ERROR;
377         }
378
379         return dma_addr;
380 }
381 EXPORT_SYMBOL(dma_direct_map_resource);
382
383 /*
384  * Because 32-bit DMA masks are so common we expect every architecture to be
385  * able to satisfy them - either by not supporting more physical memory, or by
386  * providing a ZONE_DMA32.  If neither is the case, the architecture needs to
387  * use an IOMMU instead of the direct mapping.
388  */
389 int dma_direct_supported(struct device *dev, u64 mask)
390 {
391         u64 min_mask;
392
393         if (IS_ENABLED(CONFIG_ZONE_DMA))
394                 min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS);
395         else
396                 min_mask = DMA_BIT_MASK(32);
397
398         min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT);
399
400         /*
401          * This check needs to be against the actual bit mask value, so
402          * use __phys_to_dma() here so that the SME encryption mask isn't
403          * part of the check.
404          */
405         return mask >= __phys_to_dma(dev, min_mask);
406 }
407
408 size_t dma_direct_max_mapping_size(struct device *dev)
409 {
410         size_t size = SIZE_MAX;
411
412         /* If SWIOTLB is active, use its maximum mapping size */
413         if (is_swiotlb_active())
414                 size = swiotlb_max_mapping_size(dev);
415
416         return size;
417 }