x86/kprobes: Remove trampoline_handler() prototype
[sfrench/cifs-2.6.git] / kernel / dma / direct.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-direct.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-contiguous.h>
13 #include <linux/dma-noncoherent.h>
14 #include <linux/pfn.h>
15 #include <linux/set_memory.h>
16
17 /*
18  * Most architectures use ZONE_DMA for the first 16 Megabytes, but
19  * some use it for entirely different regions:
20  */
21 #ifndef ARCH_ZONE_DMA_BITS
22 #define ARCH_ZONE_DMA_BITS 24
23 #endif
24
25 /*
26  * For AMD SEV all DMA must be to unencrypted addresses.
27  */
28 static inline bool force_dma_unencrypted(void)
29 {
30         return sev_active();
31 }
32
33 static bool
34 check_addr(struct device *dev, dma_addr_t dma_addr, size_t size,
35                 const char *caller)
36 {
37         if (unlikely(dev && !dma_capable(dev, dma_addr, size))) {
38                 if (!dev->dma_mask) {
39                         dev_err(dev,
40                                 "%s: call on device without dma_mask\n",
41                                 caller);
42                         return false;
43                 }
44
45                 if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) {
46                         dev_err(dev,
47                                 "%s: overflow %pad+%zu of device mask %llx bus mask %llx\n",
48                                 caller, &dma_addr, size,
49                                 *dev->dma_mask, dev->bus_dma_mask);
50                 }
51                 return false;
52         }
53         return true;
54 }
55
56 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
57                 phys_addr_t phys)
58 {
59         if (force_dma_unencrypted())
60                 return __phys_to_dma(dev, phys);
61         return phys_to_dma(dev, phys);
62 }
63
64 u64 dma_direct_get_required_mask(struct device *dev)
65 {
66         u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT);
67
68         if (dev->bus_dma_mask && dev->bus_dma_mask < max_dma)
69                 max_dma = dev->bus_dma_mask;
70
71         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
72 }
73
74 static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
75                 u64 *phys_mask)
76 {
77         if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask)
78                 dma_mask = dev->bus_dma_mask;
79
80         if (force_dma_unencrypted())
81                 *phys_mask = __dma_to_phys(dev, dma_mask);
82         else
83                 *phys_mask = dma_to_phys(dev, dma_mask);
84
85         /*
86          * Optimistically try the zone that the physical address mask falls
87          * into first.  If that returns memory that isn't actually addressable
88          * we will fallback to the next lower zone and try again.
89          *
90          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
91          * zones.
92          */
93         if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
94                 return GFP_DMA;
95         if (*phys_mask <= DMA_BIT_MASK(32))
96                 return GFP_DMA32;
97         return 0;
98 }
99
100 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
101 {
102         return phys_to_dma_direct(dev, phys) + size - 1 <=
103                         min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask);
104 }
105
106 void *dma_direct_alloc_pages(struct device *dev, size_t size,
107                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
108 {
109         unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
110         int page_order = get_order(size);
111         struct page *page = NULL;
112         u64 phys_mask;
113         void *ret;
114
115         if (attrs & DMA_ATTR_NO_WARN)
116                 gfp |= __GFP_NOWARN;
117
118         /* we always manually zero the memory once we are done: */
119         gfp &= ~__GFP_ZERO;
120         gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
121                         &phys_mask);
122 again:
123         /* CMA can be used only in the context which permits sleeping */
124         if (gfpflags_allow_blocking(gfp)) {
125                 page = dma_alloc_from_contiguous(dev, count, page_order,
126                                                  gfp & __GFP_NOWARN);
127                 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
128                         dma_release_from_contiguous(dev, page, count);
129                         page = NULL;
130                 }
131         }
132         if (!page)
133                 page = alloc_pages_node(dev_to_node(dev), gfp, page_order);
134
135         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
136                 __free_pages(page, page_order);
137                 page = NULL;
138
139                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
140                     phys_mask < DMA_BIT_MASK(64) &&
141                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
142                         gfp |= GFP_DMA32;
143                         goto again;
144                 }
145
146                 if (IS_ENABLED(CONFIG_ZONE_DMA) &&
147                     phys_mask < DMA_BIT_MASK(32) && !(gfp & GFP_DMA)) {
148                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
149                         goto again;
150                 }
151         }
152
153         if (!page)
154                 return NULL;
155         ret = page_address(page);
156         if (force_dma_unencrypted()) {
157                 set_memory_decrypted((unsigned long)ret, 1 << page_order);
158                 *dma_handle = __phys_to_dma(dev, page_to_phys(page));
159         } else {
160                 *dma_handle = phys_to_dma(dev, page_to_phys(page));
161         }
162         memset(ret, 0, size);
163         return ret;
164 }
165
166 /*
167  * NOTE: this function must never look at the dma_addr argument, because we want
168  * to be able to use it as a helper for iommu implementations as well.
169  */
170 void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
171                 dma_addr_t dma_addr, unsigned long attrs)
172 {
173         unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
174         unsigned int page_order = get_order(size);
175
176         if (force_dma_unencrypted())
177                 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
178         if (!dma_release_from_contiguous(dev, virt_to_page(cpu_addr), count))
179                 free_pages((unsigned long)cpu_addr, page_order);
180 }
181
182 void *dma_direct_alloc(struct device *dev, size_t size,
183                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
184 {
185         if (!dev_is_dma_coherent(dev))
186                 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
187         return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
188 }
189
190 void dma_direct_free(struct device *dev, size_t size,
191                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
192 {
193         if (!dev_is_dma_coherent(dev))
194                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
195         else
196                 dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
197 }
198
199 static void dma_direct_sync_single_for_device(struct device *dev,
200                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
201 {
202         if (dev_is_dma_coherent(dev))
203                 return;
204         arch_sync_dma_for_device(dev, dma_to_phys(dev, addr), size, dir);
205 }
206
207 static void dma_direct_sync_sg_for_device(struct device *dev,
208                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
209 {
210         struct scatterlist *sg;
211         int i;
212
213         if (dev_is_dma_coherent(dev))
214                 return;
215
216         for_each_sg(sgl, sg, nents, i)
217                 arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir);
218 }
219
220 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
221     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
222 static void dma_direct_sync_single_for_cpu(struct device *dev,
223                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
224 {
225         if (dev_is_dma_coherent(dev))
226                 return;
227         arch_sync_dma_for_cpu(dev, dma_to_phys(dev, addr), size, dir);
228         arch_sync_dma_for_cpu_all(dev);
229 }
230
231 static void dma_direct_sync_sg_for_cpu(struct device *dev,
232                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
233 {
234         struct scatterlist *sg;
235         int i;
236
237         if (dev_is_dma_coherent(dev))
238                 return;
239
240         for_each_sg(sgl, sg, nents, i)
241                 arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
242         arch_sync_dma_for_cpu_all(dev);
243 }
244
245 static void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
246                 size_t size, enum dma_data_direction dir, unsigned long attrs)
247 {
248         if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
249                 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
250 }
251
252 static void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
253                 int nents, enum dma_data_direction dir, unsigned long attrs)
254 {
255         if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
256                 dma_direct_sync_sg_for_cpu(dev, sgl, nents, dir);
257 }
258 #endif
259
260 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
261                 unsigned long offset, size_t size, enum dma_data_direction dir,
262                 unsigned long attrs)
263 {
264         phys_addr_t phys = page_to_phys(page) + offset;
265         dma_addr_t dma_addr = phys_to_dma(dev, phys);
266
267         if (!check_addr(dev, dma_addr, size, __func__))
268                 return DIRECT_MAPPING_ERROR;
269
270         if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
271                 dma_direct_sync_single_for_device(dev, dma_addr, size, dir);
272         return dma_addr;
273 }
274
275 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
276                 enum dma_data_direction dir, unsigned long attrs)
277 {
278         int i;
279         struct scatterlist *sg;
280
281         for_each_sg(sgl, sg, nents, i) {
282                 BUG_ON(!sg_page(sg));
283
284                 sg_dma_address(sg) = phys_to_dma(dev, sg_phys(sg));
285                 if (!check_addr(dev, sg_dma_address(sg), sg->length, __func__))
286                         return 0;
287                 sg_dma_len(sg) = sg->length;
288         }
289
290         if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
291                 dma_direct_sync_sg_for_device(dev, sgl, nents, dir);
292         return nents;
293 }
294
295 /*
296  * Because 32-bit DMA masks are so common we expect every architecture to be
297  * able to satisfy them - either by not supporting more physical memory, or by
298  * providing a ZONE_DMA32.  If neither is the case, the architecture needs to
299  * use an IOMMU instead of the direct mapping.
300  */
301 int dma_direct_supported(struct device *dev, u64 mask)
302 {
303         u64 min_mask;
304
305         if (IS_ENABLED(CONFIG_ZONE_DMA))
306                 min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS);
307         else
308                 min_mask = DMA_BIT_MASK(32);
309
310         min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT);
311
312         return mask >= phys_to_dma(dev, min_mask);
313 }
314
315 int dma_direct_mapping_error(struct device *dev, dma_addr_t dma_addr)
316 {
317         return dma_addr == DIRECT_MAPPING_ERROR;
318 }
319
320 const struct dma_map_ops dma_direct_ops = {
321         .alloc                  = dma_direct_alloc,
322         .free                   = dma_direct_free,
323         .map_page               = dma_direct_map_page,
324         .map_sg                 = dma_direct_map_sg,
325 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE)
326         .sync_single_for_device = dma_direct_sync_single_for_device,
327         .sync_sg_for_device     = dma_direct_sync_sg_for_device,
328 #endif
329 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
330     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
331         .sync_single_for_cpu    = dma_direct_sync_single_for_cpu,
332         .sync_sg_for_cpu        = dma_direct_sync_sg_for_cpu,
333         .unmap_page             = dma_direct_unmap_page,
334         .unmap_sg               = dma_direct_unmap_sg,
335 #endif
336         .get_required_mask      = dma_direct_get_required_mask,
337         .dma_supported          = dma_direct_supported,
338         .mapping_error          = dma_direct_mapping_error,
339         .cache_sync             = arch_dma_cache_sync,
340 };
341 EXPORT_SYMBOL(dma_direct_ops);