Merge tag 'rpmsg-v4.20' of git://github.com/andersson/remoteproc
[sfrench/cifs-2.6.git] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/nmi.h>
28 #include <linux/smpboot.h>
29 #include <linux/relay.h>
30 #include <linux/slab.h>
31 #include <linux/percpu-rwsem.h>
32
33 #include <trace/events/power.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/cpuhp.h>
36
37 #include "smpboot.h"
38
39 /**
40  * cpuhp_cpu_state - Per cpu hotplug state storage
41  * @state:      The current cpu state
42  * @target:     The target state
43  * @thread:     Pointer to the hotplug thread
44  * @should_run: Thread should execute
45  * @rollback:   Perform a rollback
46  * @single:     Single callback invocation
47  * @bringup:    Single callback bringup or teardown selector
48  * @cb_state:   The state for a single callback (install/uninstall)
49  * @result:     Result of the operation
50  * @done_up:    Signal completion to the issuer of the task for cpu-up
51  * @done_down:  Signal completion to the issuer of the task for cpu-down
52  */
53 struct cpuhp_cpu_state {
54         enum cpuhp_state        state;
55         enum cpuhp_state        target;
56         enum cpuhp_state        fail;
57 #ifdef CONFIG_SMP
58         struct task_struct      *thread;
59         bool                    should_run;
60         bool                    rollback;
61         bool                    single;
62         bool                    bringup;
63         bool                    booted_once;
64         struct hlist_node       *node;
65         struct hlist_node       *last;
66         enum cpuhp_state        cb_state;
67         int                     result;
68         struct completion       done_up;
69         struct completion       done_down;
70 #endif
71 };
72
73 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
74         .fail = CPUHP_INVALID,
75 };
76
77 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
78 static struct lockdep_map cpuhp_state_up_map =
79         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
80 static struct lockdep_map cpuhp_state_down_map =
81         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
82
83
84 static inline void cpuhp_lock_acquire(bool bringup)
85 {
86         lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
87 }
88
89 static inline void cpuhp_lock_release(bool bringup)
90 {
91         lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
92 }
93 #else
94
95 static inline void cpuhp_lock_acquire(bool bringup) { }
96 static inline void cpuhp_lock_release(bool bringup) { }
97
98 #endif
99
100 /**
101  * cpuhp_step - Hotplug state machine step
102  * @name:       Name of the step
103  * @startup:    Startup function of the step
104  * @teardown:   Teardown function of the step
105  * @cant_stop:  Bringup/teardown can't be stopped at this step
106  */
107 struct cpuhp_step {
108         const char              *name;
109         union {
110                 int             (*single)(unsigned int cpu);
111                 int             (*multi)(unsigned int cpu,
112                                          struct hlist_node *node);
113         } startup;
114         union {
115                 int             (*single)(unsigned int cpu);
116                 int             (*multi)(unsigned int cpu,
117                                          struct hlist_node *node);
118         } teardown;
119         struct hlist_head       list;
120         bool                    cant_stop;
121         bool                    multi_instance;
122 };
123
124 static DEFINE_MUTEX(cpuhp_state_mutex);
125 static struct cpuhp_step cpuhp_hp_states[];
126
127 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
128 {
129         return cpuhp_hp_states + state;
130 }
131
132 /**
133  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
134  * @cpu:        The cpu for which the callback should be invoked
135  * @state:      The state to do callbacks for
136  * @bringup:    True if the bringup callback should be invoked
137  * @node:       For multi-instance, do a single entry callback for install/remove
138  * @lastp:      For multi-instance rollback, remember how far we got
139  *
140  * Called from cpu hotplug and from the state register machinery.
141  */
142 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
143                                  bool bringup, struct hlist_node *node,
144                                  struct hlist_node **lastp)
145 {
146         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
147         struct cpuhp_step *step = cpuhp_get_step(state);
148         int (*cbm)(unsigned int cpu, struct hlist_node *node);
149         int (*cb)(unsigned int cpu);
150         int ret, cnt;
151
152         if (st->fail == state) {
153                 st->fail = CPUHP_INVALID;
154
155                 if (!(bringup ? step->startup.single : step->teardown.single))
156                         return 0;
157
158                 return -EAGAIN;
159         }
160
161         if (!step->multi_instance) {
162                 WARN_ON_ONCE(lastp && *lastp);
163                 cb = bringup ? step->startup.single : step->teardown.single;
164                 if (!cb)
165                         return 0;
166                 trace_cpuhp_enter(cpu, st->target, state, cb);
167                 ret = cb(cpu);
168                 trace_cpuhp_exit(cpu, st->state, state, ret);
169                 return ret;
170         }
171         cbm = bringup ? step->startup.multi : step->teardown.multi;
172         if (!cbm)
173                 return 0;
174
175         /* Single invocation for instance add/remove */
176         if (node) {
177                 WARN_ON_ONCE(lastp && *lastp);
178                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
179                 ret = cbm(cpu, node);
180                 trace_cpuhp_exit(cpu, st->state, state, ret);
181                 return ret;
182         }
183
184         /* State transition. Invoke on all instances */
185         cnt = 0;
186         hlist_for_each(node, &step->list) {
187                 if (lastp && node == *lastp)
188                         break;
189
190                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
191                 ret = cbm(cpu, node);
192                 trace_cpuhp_exit(cpu, st->state, state, ret);
193                 if (ret) {
194                         if (!lastp)
195                                 goto err;
196
197                         *lastp = node;
198                         return ret;
199                 }
200                 cnt++;
201         }
202         if (lastp)
203                 *lastp = NULL;
204         return 0;
205 err:
206         /* Rollback the instances if one failed */
207         cbm = !bringup ? step->startup.multi : step->teardown.multi;
208         if (!cbm)
209                 return ret;
210
211         hlist_for_each(node, &step->list) {
212                 if (!cnt--)
213                         break;
214
215                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
216                 ret = cbm(cpu, node);
217                 trace_cpuhp_exit(cpu, st->state, state, ret);
218                 /*
219                  * Rollback must not fail,
220                  */
221                 WARN_ON_ONCE(ret);
222         }
223         return ret;
224 }
225
226 #ifdef CONFIG_SMP
227 static bool cpuhp_is_ap_state(enum cpuhp_state state)
228 {
229         /*
230          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
231          * purposes as that state is handled explicitly in cpu_down.
232          */
233         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
234 }
235
236 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
237 {
238         struct completion *done = bringup ? &st->done_up : &st->done_down;
239         wait_for_completion(done);
240 }
241
242 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
243 {
244         struct completion *done = bringup ? &st->done_up : &st->done_down;
245         complete(done);
246 }
247
248 /*
249  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
250  */
251 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
252 {
253         return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
254 }
255
256 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
257 static DEFINE_MUTEX(cpu_add_remove_lock);
258 bool cpuhp_tasks_frozen;
259 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
260
261 /*
262  * The following two APIs (cpu_maps_update_begin/done) must be used when
263  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
264  */
265 void cpu_maps_update_begin(void)
266 {
267         mutex_lock(&cpu_add_remove_lock);
268 }
269
270 void cpu_maps_update_done(void)
271 {
272         mutex_unlock(&cpu_add_remove_lock);
273 }
274
275 /*
276  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
277  * Should always be manipulated under cpu_add_remove_lock
278  */
279 static int cpu_hotplug_disabled;
280
281 #ifdef CONFIG_HOTPLUG_CPU
282
283 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
284
285 void cpus_read_lock(void)
286 {
287         percpu_down_read(&cpu_hotplug_lock);
288 }
289 EXPORT_SYMBOL_GPL(cpus_read_lock);
290
291 int cpus_read_trylock(void)
292 {
293         return percpu_down_read_trylock(&cpu_hotplug_lock);
294 }
295 EXPORT_SYMBOL_GPL(cpus_read_trylock);
296
297 void cpus_read_unlock(void)
298 {
299         percpu_up_read(&cpu_hotplug_lock);
300 }
301 EXPORT_SYMBOL_GPL(cpus_read_unlock);
302
303 void cpus_write_lock(void)
304 {
305         percpu_down_write(&cpu_hotplug_lock);
306 }
307
308 void cpus_write_unlock(void)
309 {
310         percpu_up_write(&cpu_hotplug_lock);
311 }
312
313 void lockdep_assert_cpus_held(void)
314 {
315         percpu_rwsem_assert_held(&cpu_hotplug_lock);
316 }
317
318 static void lockdep_acquire_cpus_lock(void)
319 {
320         rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_);
321 }
322
323 static void lockdep_release_cpus_lock(void)
324 {
325         rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_);
326 }
327
328 /*
329  * Wait for currently running CPU hotplug operations to complete (if any) and
330  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
331  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
332  * hotplug path before performing hotplug operations. So acquiring that lock
333  * guarantees mutual exclusion from any currently running hotplug operations.
334  */
335 void cpu_hotplug_disable(void)
336 {
337         cpu_maps_update_begin();
338         cpu_hotplug_disabled++;
339         cpu_maps_update_done();
340 }
341 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
342
343 static void __cpu_hotplug_enable(void)
344 {
345         if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
346                 return;
347         cpu_hotplug_disabled--;
348 }
349
350 void cpu_hotplug_enable(void)
351 {
352         cpu_maps_update_begin();
353         __cpu_hotplug_enable();
354         cpu_maps_update_done();
355 }
356 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
357
358 #else
359
360 static void lockdep_acquire_cpus_lock(void)
361 {
362 }
363
364 static void lockdep_release_cpus_lock(void)
365 {
366 }
367
368 #endif  /* CONFIG_HOTPLUG_CPU */
369
370 #ifdef CONFIG_HOTPLUG_SMT
371 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
372 EXPORT_SYMBOL_GPL(cpu_smt_control);
373
374 static bool cpu_smt_available __read_mostly;
375
376 void __init cpu_smt_disable(bool force)
377 {
378         if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
379                 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
380                 return;
381
382         if (force) {
383                 pr_info("SMT: Force disabled\n");
384                 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
385         } else {
386                 pr_info("SMT: disabled\n");
387                 cpu_smt_control = CPU_SMT_DISABLED;
388         }
389 }
390
391 /*
392  * The decision whether SMT is supported can only be done after the full
393  * CPU identification. Called from architecture code before non boot CPUs
394  * are brought up.
395  */
396 void __init cpu_smt_check_topology_early(void)
397 {
398         if (!topology_smt_supported())
399                 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
400 }
401
402 /*
403  * If SMT was disabled by BIOS, detect it here, after the CPUs have been
404  * brought online. This ensures the smt/l1tf sysfs entries are consistent
405  * with reality. cpu_smt_available is set to true during the bringup of non
406  * boot CPUs when a SMT sibling is detected. Note, this may overwrite
407  * cpu_smt_control's previous setting.
408  */
409 void __init cpu_smt_check_topology(void)
410 {
411         if (!cpu_smt_available)
412                 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
413 }
414
415 static int __init smt_cmdline_disable(char *str)
416 {
417         cpu_smt_disable(str && !strcmp(str, "force"));
418         return 0;
419 }
420 early_param("nosmt", smt_cmdline_disable);
421
422 static inline bool cpu_smt_allowed(unsigned int cpu)
423 {
424         if (topology_is_primary_thread(cpu))
425                 return true;
426
427         /*
428          * If the CPU is not a 'primary' thread and the booted_once bit is
429          * set then the processor has SMT support. Store this information
430          * for the late check of SMT support in cpu_smt_check_topology().
431          */
432         if (per_cpu(cpuhp_state, cpu).booted_once)
433                 cpu_smt_available = true;
434
435         if (cpu_smt_control == CPU_SMT_ENABLED)
436                 return true;
437
438         /*
439          * On x86 it's required to boot all logical CPUs at least once so
440          * that the init code can get a chance to set CR4.MCE on each
441          * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
442          * core will shutdown the machine.
443          */
444         return !per_cpu(cpuhp_state, cpu).booted_once;
445 }
446 #else
447 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
448 #endif
449
450 static inline enum cpuhp_state
451 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
452 {
453         enum cpuhp_state prev_state = st->state;
454
455         st->rollback = false;
456         st->last = NULL;
457
458         st->target = target;
459         st->single = false;
460         st->bringup = st->state < target;
461
462         return prev_state;
463 }
464
465 static inline void
466 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
467 {
468         st->rollback = true;
469
470         /*
471          * If we have st->last we need to undo partial multi_instance of this
472          * state first. Otherwise start undo at the previous state.
473          */
474         if (!st->last) {
475                 if (st->bringup)
476                         st->state--;
477                 else
478                         st->state++;
479         }
480
481         st->target = prev_state;
482         st->bringup = !st->bringup;
483 }
484
485 /* Regular hotplug invocation of the AP hotplug thread */
486 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
487 {
488         if (!st->single && st->state == st->target)
489                 return;
490
491         st->result = 0;
492         /*
493          * Make sure the above stores are visible before should_run becomes
494          * true. Paired with the mb() above in cpuhp_thread_fun()
495          */
496         smp_mb();
497         st->should_run = true;
498         wake_up_process(st->thread);
499         wait_for_ap_thread(st, st->bringup);
500 }
501
502 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
503 {
504         enum cpuhp_state prev_state;
505         int ret;
506
507         prev_state = cpuhp_set_state(st, target);
508         __cpuhp_kick_ap(st);
509         if ((ret = st->result)) {
510                 cpuhp_reset_state(st, prev_state);
511                 __cpuhp_kick_ap(st);
512         }
513
514         return ret;
515 }
516
517 static int bringup_wait_for_ap(unsigned int cpu)
518 {
519         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
520
521         /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
522         wait_for_ap_thread(st, true);
523         if (WARN_ON_ONCE((!cpu_online(cpu))))
524                 return -ECANCELED;
525
526         /* Unpark the stopper thread and the hotplug thread of the target cpu */
527         stop_machine_unpark(cpu);
528         kthread_unpark(st->thread);
529
530         /*
531          * SMT soft disabling on X86 requires to bring the CPU out of the
532          * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
533          * CPU marked itself as booted_once in cpu_notify_starting() so the
534          * cpu_smt_allowed() check will now return false if this is not the
535          * primary sibling.
536          */
537         if (!cpu_smt_allowed(cpu))
538                 return -ECANCELED;
539
540         if (st->target <= CPUHP_AP_ONLINE_IDLE)
541                 return 0;
542
543         return cpuhp_kick_ap(st, st->target);
544 }
545
546 static int bringup_cpu(unsigned int cpu)
547 {
548         struct task_struct *idle = idle_thread_get(cpu);
549         int ret;
550
551         /*
552          * Some architectures have to walk the irq descriptors to
553          * setup the vector space for the cpu which comes online.
554          * Prevent irq alloc/free across the bringup.
555          */
556         irq_lock_sparse();
557
558         /* Arch-specific enabling code. */
559         ret = __cpu_up(cpu, idle);
560         irq_unlock_sparse();
561         if (ret)
562                 return ret;
563         return bringup_wait_for_ap(cpu);
564 }
565
566 /*
567  * Hotplug state machine related functions
568  */
569
570 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
571 {
572         for (st->state--; st->state > st->target; st->state--)
573                 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
574 }
575
576 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
577                               enum cpuhp_state target)
578 {
579         enum cpuhp_state prev_state = st->state;
580         int ret = 0;
581
582         while (st->state < target) {
583                 st->state++;
584                 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
585                 if (ret) {
586                         st->target = prev_state;
587                         undo_cpu_up(cpu, st);
588                         break;
589                 }
590         }
591         return ret;
592 }
593
594 /*
595  * The cpu hotplug threads manage the bringup and teardown of the cpus
596  */
597 static void cpuhp_create(unsigned int cpu)
598 {
599         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
600
601         init_completion(&st->done_up);
602         init_completion(&st->done_down);
603 }
604
605 static int cpuhp_should_run(unsigned int cpu)
606 {
607         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
608
609         return st->should_run;
610 }
611
612 /*
613  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
614  * callbacks when a state gets [un]installed at runtime.
615  *
616  * Each invocation of this function by the smpboot thread does a single AP
617  * state callback.
618  *
619  * It has 3 modes of operation:
620  *  - single: runs st->cb_state
621  *  - up:     runs ++st->state, while st->state < st->target
622  *  - down:   runs st->state--, while st->state > st->target
623  *
624  * When complete or on error, should_run is cleared and the completion is fired.
625  */
626 static void cpuhp_thread_fun(unsigned int cpu)
627 {
628         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
629         bool bringup = st->bringup;
630         enum cpuhp_state state;
631
632         if (WARN_ON_ONCE(!st->should_run))
633                 return;
634
635         /*
636          * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
637          * that if we see ->should_run we also see the rest of the state.
638          */
639         smp_mb();
640
641         /*
642          * The BP holds the hotplug lock, but we're now running on the AP,
643          * ensure that anybody asserting the lock is held, will actually find
644          * it so.
645          */
646         lockdep_acquire_cpus_lock();
647         cpuhp_lock_acquire(bringup);
648
649         if (st->single) {
650                 state = st->cb_state;
651                 st->should_run = false;
652         } else {
653                 if (bringup) {
654                         st->state++;
655                         state = st->state;
656                         st->should_run = (st->state < st->target);
657                         WARN_ON_ONCE(st->state > st->target);
658                 } else {
659                         state = st->state;
660                         st->state--;
661                         st->should_run = (st->state > st->target);
662                         WARN_ON_ONCE(st->state < st->target);
663                 }
664         }
665
666         WARN_ON_ONCE(!cpuhp_is_ap_state(state));
667
668         if (cpuhp_is_atomic_state(state)) {
669                 local_irq_disable();
670                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
671                 local_irq_enable();
672
673                 /*
674                  * STARTING/DYING must not fail!
675                  */
676                 WARN_ON_ONCE(st->result);
677         } else {
678                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
679         }
680
681         if (st->result) {
682                 /*
683                  * If we fail on a rollback, we're up a creek without no
684                  * paddle, no way forward, no way back. We loose, thanks for
685                  * playing.
686                  */
687                 WARN_ON_ONCE(st->rollback);
688                 st->should_run = false;
689         }
690
691         cpuhp_lock_release(bringup);
692         lockdep_release_cpus_lock();
693
694         if (!st->should_run)
695                 complete_ap_thread(st, bringup);
696 }
697
698 /* Invoke a single callback on a remote cpu */
699 static int
700 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
701                          struct hlist_node *node)
702 {
703         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
704         int ret;
705
706         if (!cpu_online(cpu))
707                 return 0;
708
709         cpuhp_lock_acquire(false);
710         cpuhp_lock_release(false);
711
712         cpuhp_lock_acquire(true);
713         cpuhp_lock_release(true);
714
715         /*
716          * If we are up and running, use the hotplug thread. For early calls
717          * we invoke the thread function directly.
718          */
719         if (!st->thread)
720                 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
721
722         st->rollback = false;
723         st->last = NULL;
724
725         st->node = node;
726         st->bringup = bringup;
727         st->cb_state = state;
728         st->single = true;
729
730         __cpuhp_kick_ap(st);
731
732         /*
733          * If we failed and did a partial, do a rollback.
734          */
735         if ((ret = st->result) && st->last) {
736                 st->rollback = true;
737                 st->bringup = !bringup;
738
739                 __cpuhp_kick_ap(st);
740         }
741
742         /*
743          * Clean up the leftovers so the next hotplug operation wont use stale
744          * data.
745          */
746         st->node = st->last = NULL;
747         return ret;
748 }
749
750 static int cpuhp_kick_ap_work(unsigned int cpu)
751 {
752         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
753         enum cpuhp_state prev_state = st->state;
754         int ret;
755
756         cpuhp_lock_acquire(false);
757         cpuhp_lock_release(false);
758
759         cpuhp_lock_acquire(true);
760         cpuhp_lock_release(true);
761
762         trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
763         ret = cpuhp_kick_ap(st, st->target);
764         trace_cpuhp_exit(cpu, st->state, prev_state, ret);
765
766         return ret;
767 }
768
769 static struct smp_hotplug_thread cpuhp_threads = {
770         .store                  = &cpuhp_state.thread,
771         .create                 = &cpuhp_create,
772         .thread_should_run      = cpuhp_should_run,
773         .thread_fn              = cpuhp_thread_fun,
774         .thread_comm            = "cpuhp/%u",
775         .selfparking            = true,
776 };
777
778 void __init cpuhp_threads_init(void)
779 {
780         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
781         kthread_unpark(this_cpu_read(cpuhp_state.thread));
782 }
783
784 #ifdef CONFIG_HOTPLUG_CPU
785 /**
786  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
787  * @cpu: a CPU id
788  *
789  * This function walks all processes, finds a valid mm struct for each one and
790  * then clears a corresponding bit in mm's cpumask.  While this all sounds
791  * trivial, there are various non-obvious corner cases, which this function
792  * tries to solve in a safe manner.
793  *
794  * Also note that the function uses a somewhat relaxed locking scheme, so it may
795  * be called only for an already offlined CPU.
796  */
797 void clear_tasks_mm_cpumask(int cpu)
798 {
799         struct task_struct *p;
800
801         /*
802          * This function is called after the cpu is taken down and marked
803          * offline, so its not like new tasks will ever get this cpu set in
804          * their mm mask. -- Peter Zijlstra
805          * Thus, we may use rcu_read_lock() here, instead of grabbing
806          * full-fledged tasklist_lock.
807          */
808         WARN_ON(cpu_online(cpu));
809         rcu_read_lock();
810         for_each_process(p) {
811                 struct task_struct *t;
812
813                 /*
814                  * Main thread might exit, but other threads may still have
815                  * a valid mm. Find one.
816                  */
817                 t = find_lock_task_mm(p);
818                 if (!t)
819                         continue;
820                 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
821                 task_unlock(t);
822         }
823         rcu_read_unlock();
824 }
825
826 /* Take this CPU down. */
827 static int take_cpu_down(void *_param)
828 {
829         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
830         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
831         int err, cpu = smp_processor_id();
832         int ret;
833
834         /* Ensure this CPU doesn't handle any more interrupts. */
835         err = __cpu_disable();
836         if (err < 0)
837                 return err;
838
839         /*
840          * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
841          * do this step again.
842          */
843         WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
844         st->state--;
845         /* Invoke the former CPU_DYING callbacks */
846         for (; st->state > target; st->state--) {
847                 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
848                 /*
849                  * DYING must not fail!
850                  */
851                 WARN_ON_ONCE(ret);
852         }
853
854         /* Give up timekeeping duties */
855         tick_handover_do_timer();
856         /* Park the stopper thread */
857         stop_machine_park(cpu);
858         return 0;
859 }
860
861 static int takedown_cpu(unsigned int cpu)
862 {
863         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
864         int err;
865
866         /* Park the smpboot threads */
867         kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
868
869         /*
870          * Prevent irq alloc/free while the dying cpu reorganizes the
871          * interrupt affinities.
872          */
873         irq_lock_sparse();
874
875         /*
876          * So now all preempt/rcu users must observe !cpu_active().
877          */
878         err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
879         if (err) {
880                 /* CPU refused to die */
881                 irq_unlock_sparse();
882                 /* Unpark the hotplug thread so we can rollback there */
883                 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
884                 return err;
885         }
886         BUG_ON(cpu_online(cpu));
887
888         /*
889          * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
890          * all runnable tasks from the CPU, there's only the idle task left now
891          * that the migration thread is done doing the stop_machine thing.
892          *
893          * Wait for the stop thread to go away.
894          */
895         wait_for_ap_thread(st, false);
896         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
897
898         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
899         irq_unlock_sparse();
900
901         hotplug_cpu__broadcast_tick_pull(cpu);
902         /* This actually kills the CPU. */
903         __cpu_die(cpu);
904
905         tick_cleanup_dead_cpu(cpu);
906         rcutree_migrate_callbacks(cpu);
907         return 0;
908 }
909
910 static void cpuhp_complete_idle_dead(void *arg)
911 {
912         struct cpuhp_cpu_state *st = arg;
913
914         complete_ap_thread(st, false);
915 }
916
917 void cpuhp_report_idle_dead(void)
918 {
919         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
920
921         BUG_ON(st->state != CPUHP_AP_OFFLINE);
922         rcu_report_dead(smp_processor_id());
923         st->state = CPUHP_AP_IDLE_DEAD;
924         /*
925          * We cannot call complete after rcu_report_dead() so we delegate it
926          * to an online cpu.
927          */
928         smp_call_function_single(cpumask_first(cpu_online_mask),
929                                  cpuhp_complete_idle_dead, st, 0);
930 }
931
932 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
933 {
934         for (st->state++; st->state < st->target; st->state++)
935                 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
936 }
937
938 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
939                                 enum cpuhp_state target)
940 {
941         enum cpuhp_state prev_state = st->state;
942         int ret = 0;
943
944         for (; st->state > target; st->state--) {
945                 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
946                 if (ret) {
947                         st->target = prev_state;
948                         if (st->state < prev_state)
949                                 undo_cpu_down(cpu, st);
950                         break;
951                 }
952         }
953         return ret;
954 }
955
956 /* Requires cpu_add_remove_lock to be held */
957 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
958                            enum cpuhp_state target)
959 {
960         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
961         int prev_state, ret = 0;
962
963         if (num_online_cpus() == 1)
964                 return -EBUSY;
965
966         if (!cpu_present(cpu))
967                 return -EINVAL;
968
969         cpus_write_lock();
970
971         cpuhp_tasks_frozen = tasks_frozen;
972
973         prev_state = cpuhp_set_state(st, target);
974         /*
975          * If the current CPU state is in the range of the AP hotplug thread,
976          * then we need to kick the thread.
977          */
978         if (st->state > CPUHP_TEARDOWN_CPU) {
979                 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
980                 ret = cpuhp_kick_ap_work(cpu);
981                 /*
982                  * The AP side has done the error rollback already. Just
983                  * return the error code..
984                  */
985                 if (ret)
986                         goto out;
987
988                 /*
989                  * We might have stopped still in the range of the AP hotplug
990                  * thread. Nothing to do anymore.
991                  */
992                 if (st->state > CPUHP_TEARDOWN_CPU)
993                         goto out;
994
995                 st->target = target;
996         }
997         /*
998          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
999          * to do the further cleanups.
1000          */
1001         ret = cpuhp_down_callbacks(cpu, st, target);
1002         if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1003                 cpuhp_reset_state(st, prev_state);
1004                 __cpuhp_kick_ap(st);
1005         }
1006
1007 out:
1008         cpus_write_unlock();
1009         /*
1010          * Do post unplug cleanup. This is still protected against
1011          * concurrent CPU hotplug via cpu_add_remove_lock.
1012          */
1013         lockup_detector_cleanup();
1014         return ret;
1015 }
1016
1017 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1018 {
1019         if (cpu_hotplug_disabled)
1020                 return -EBUSY;
1021         return _cpu_down(cpu, 0, target);
1022 }
1023
1024 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1025 {
1026         int err;
1027
1028         cpu_maps_update_begin();
1029         err = cpu_down_maps_locked(cpu, target);
1030         cpu_maps_update_done();
1031         return err;
1032 }
1033
1034 int cpu_down(unsigned int cpu)
1035 {
1036         return do_cpu_down(cpu, CPUHP_OFFLINE);
1037 }
1038 EXPORT_SYMBOL(cpu_down);
1039
1040 #else
1041 #define takedown_cpu            NULL
1042 #endif /*CONFIG_HOTPLUG_CPU*/
1043
1044 /**
1045  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1046  * @cpu: cpu that just started
1047  *
1048  * It must be called by the arch code on the new cpu, before the new cpu
1049  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1050  */
1051 void notify_cpu_starting(unsigned int cpu)
1052 {
1053         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1054         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1055         int ret;
1056
1057         rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
1058         st->booted_once = true;
1059         while (st->state < target) {
1060                 st->state++;
1061                 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1062                 /*
1063                  * STARTING must not fail!
1064                  */
1065                 WARN_ON_ONCE(ret);
1066         }
1067 }
1068
1069 /*
1070  * Called from the idle task. Wake up the controlling task which brings the
1071  * stopper and the hotplug thread of the upcoming CPU up and then delegates
1072  * the rest of the online bringup to the hotplug thread.
1073  */
1074 void cpuhp_online_idle(enum cpuhp_state state)
1075 {
1076         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1077
1078         /* Happens for the boot cpu */
1079         if (state != CPUHP_AP_ONLINE_IDLE)
1080                 return;
1081
1082         st->state = CPUHP_AP_ONLINE_IDLE;
1083         complete_ap_thread(st, true);
1084 }
1085
1086 /* Requires cpu_add_remove_lock to be held */
1087 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1088 {
1089         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1090         struct task_struct *idle;
1091         int ret = 0;
1092
1093         cpus_write_lock();
1094
1095         if (!cpu_present(cpu)) {
1096                 ret = -EINVAL;
1097                 goto out;
1098         }
1099
1100         /*
1101          * The caller of do_cpu_up might have raced with another
1102          * caller. Ignore it for now.
1103          */
1104         if (st->state >= target)
1105                 goto out;
1106
1107         if (st->state == CPUHP_OFFLINE) {
1108                 /* Let it fail before we try to bring the cpu up */
1109                 idle = idle_thread_get(cpu);
1110                 if (IS_ERR(idle)) {
1111                         ret = PTR_ERR(idle);
1112                         goto out;
1113                 }
1114         }
1115
1116         cpuhp_tasks_frozen = tasks_frozen;
1117
1118         cpuhp_set_state(st, target);
1119         /*
1120          * If the current CPU state is in the range of the AP hotplug thread,
1121          * then we need to kick the thread once more.
1122          */
1123         if (st->state > CPUHP_BRINGUP_CPU) {
1124                 ret = cpuhp_kick_ap_work(cpu);
1125                 /*
1126                  * The AP side has done the error rollback already. Just
1127                  * return the error code..
1128                  */
1129                 if (ret)
1130                         goto out;
1131         }
1132
1133         /*
1134          * Try to reach the target state. We max out on the BP at
1135          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1136          * responsible for bringing it up to the target state.
1137          */
1138         target = min((int)target, CPUHP_BRINGUP_CPU);
1139         ret = cpuhp_up_callbacks(cpu, st, target);
1140 out:
1141         cpus_write_unlock();
1142         return ret;
1143 }
1144
1145 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1146 {
1147         int err = 0;
1148
1149         if (!cpu_possible(cpu)) {
1150                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1151                        cpu);
1152 #if defined(CONFIG_IA64)
1153                 pr_err("please check additional_cpus= boot parameter\n");
1154 #endif
1155                 return -EINVAL;
1156         }
1157
1158         err = try_online_node(cpu_to_node(cpu));
1159         if (err)
1160                 return err;
1161
1162         cpu_maps_update_begin();
1163
1164         if (cpu_hotplug_disabled) {
1165                 err = -EBUSY;
1166                 goto out;
1167         }
1168         if (!cpu_smt_allowed(cpu)) {
1169                 err = -EPERM;
1170                 goto out;
1171         }
1172
1173         err = _cpu_up(cpu, 0, target);
1174 out:
1175         cpu_maps_update_done();
1176         return err;
1177 }
1178
1179 int cpu_up(unsigned int cpu)
1180 {
1181         return do_cpu_up(cpu, CPUHP_ONLINE);
1182 }
1183 EXPORT_SYMBOL_GPL(cpu_up);
1184
1185 #ifdef CONFIG_PM_SLEEP_SMP
1186 static cpumask_var_t frozen_cpus;
1187
1188 int freeze_secondary_cpus(int primary)
1189 {
1190         int cpu, error = 0;
1191
1192         cpu_maps_update_begin();
1193         if (!cpu_online(primary))
1194                 primary = cpumask_first(cpu_online_mask);
1195         /*
1196          * We take down all of the non-boot CPUs in one shot to avoid races
1197          * with the userspace trying to use the CPU hotplug at the same time
1198          */
1199         cpumask_clear(frozen_cpus);
1200
1201         pr_info("Disabling non-boot CPUs ...\n");
1202         for_each_online_cpu(cpu) {
1203                 if (cpu == primary)
1204                         continue;
1205                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1206                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1207                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1208                 if (!error)
1209                         cpumask_set_cpu(cpu, frozen_cpus);
1210                 else {
1211                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
1212                         break;
1213                 }
1214         }
1215
1216         if (!error)
1217                 BUG_ON(num_online_cpus() > 1);
1218         else
1219                 pr_err("Non-boot CPUs are not disabled\n");
1220
1221         /*
1222          * Make sure the CPUs won't be enabled by someone else. We need to do
1223          * this even in case of failure as all disable_nonboot_cpus() users are
1224          * supposed to do enable_nonboot_cpus() on the failure path.
1225          */
1226         cpu_hotplug_disabled++;
1227
1228         cpu_maps_update_done();
1229         return error;
1230 }
1231
1232 void __weak arch_enable_nonboot_cpus_begin(void)
1233 {
1234 }
1235
1236 void __weak arch_enable_nonboot_cpus_end(void)
1237 {
1238 }
1239
1240 void enable_nonboot_cpus(void)
1241 {
1242         int cpu, error;
1243
1244         /* Allow everyone to use the CPU hotplug again */
1245         cpu_maps_update_begin();
1246         __cpu_hotplug_enable();
1247         if (cpumask_empty(frozen_cpus))
1248                 goto out;
1249
1250         pr_info("Enabling non-boot CPUs ...\n");
1251
1252         arch_enable_nonboot_cpus_begin();
1253
1254         for_each_cpu(cpu, frozen_cpus) {
1255                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1256                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1257                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1258                 if (!error) {
1259                         pr_info("CPU%d is up\n", cpu);
1260                         continue;
1261                 }
1262                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1263         }
1264
1265         arch_enable_nonboot_cpus_end();
1266
1267         cpumask_clear(frozen_cpus);
1268 out:
1269         cpu_maps_update_done();
1270 }
1271
1272 static int __init alloc_frozen_cpus(void)
1273 {
1274         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1275                 return -ENOMEM;
1276         return 0;
1277 }
1278 core_initcall(alloc_frozen_cpus);
1279
1280 /*
1281  * When callbacks for CPU hotplug notifications are being executed, we must
1282  * ensure that the state of the system with respect to the tasks being frozen
1283  * or not, as reported by the notification, remains unchanged *throughout the
1284  * duration* of the execution of the callbacks.
1285  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1286  *
1287  * This synchronization is implemented by mutually excluding regular CPU
1288  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1289  * Hibernate notifications.
1290  */
1291 static int
1292 cpu_hotplug_pm_callback(struct notifier_block *nb,
1293                         unsigned long action, void *ptr)
1294 {
1295         switch (action) {
1296
1297         case PM_SUSPEND_PREPARE:
1298         case PM_HIBERNATION_PREPARE:
1299                 cpu_hotplug_disable();
1300                 break;
1301
1302         case PM_POST_SUSPEND:
1303         case PM_POST_HIBERNATION:
1304                 cpu_hotplug_enable();
1305                 break;
1306
1307         default:
1308                 return NOTIFY_DONE;
1309         }
1310
1311         return NOTIFY_OK;
1312 }
1313
1314
1315 static int __init cpu_hotplug_pm_sync_init(void)
1316 {
1317         /*
1318          * cpu_hotplug_pm_callback has higher priority than x86
1319          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1320          * to disable cpu hotplug to avoid cpu hotplug race.
1321          */
1322         pm_notifier(cpu_hotplug_pm_callback, 0);
1323         return 0;
1324 }
1325 core_initcall(cpu_hotplug_pm_sync_init);
1326
1327 #endif /* CONFIG_PM_SLEEP_SMP */
1328
1329 int __boot_cpu_id;
1330
1331 #endif /* CONFIG_SMP */
1332
1333 /* Boot processor state steps */
1334 static struct cpuhp_step cpuhp_hp_states[] = {
1335         [CPUHP_OFFLINE] = {
1336                 .name                   = "offline",
1337                 .startup.single         = NULL,
1338                 .teardown.single        = NULL,
1339         },
1340 #ifdef CONFIG_SMP
1341         [CPUHP_CREATE_THREADS]= {
1342                 .name                   = "threads:prepare",
1343                 .startup.single         = smpboot_create_threads,
1344                 .teardown.single        = NULL,
1345                 .cant_stop              = true,
1346         },
1347         [CPUHP_PERF_PREPARE] = {
1348                 .name                   = "perf:prepare",
1349                 .startup.single         = perf_event_init_cpu,
1350                 .teardown.single        = perf_event_exit_cpu,
1351         },
1352         [CPUHP_WORKQUEUE_PREP] = {
1353                 .name                   = "workqueue:prepare",
1354                 .startup.single         = workqueue_prepare_cpu,
1355                 .teardown.single        = NULL,
1356         },
1357         [CPUHP_HRTIMERS_PREPARE] = {
1358                 .name                   = "hrtimers:prepare",
1359                 .startup.single         = hrtimers_prepare_cpu,
1360                 .teardown.single        = hrtimers_dead_cpu,
1361         },
1362         [CPUHP_SMPCFD_PREPARE] = {
1363                 .name                   = "smpcfd:prepare",
1364                 .startup.single         = smpcfd_prepare_cpu,
1365                 .teardown.single        = smpcfd_dead_cpu,
1366         },
1367         [CPUHP_RELAY_PREPARE] = {
1368                 .name                   = "relay:prepare",
1369                 .startup.single         = relay_prepare_cpu,
1370                 .teardown.single        = NULL,
1371         },
1372         [CPUHP_SLAB_PREPARE] = {
1373                 .name                   = "slab:prepare",
1374                 .startup.single         = slab_prepare_cpu,
1375                 .teardown.single        = slab_dead_cpu,
1376         },
1377         [CPUHP_RCUTREE_PREP] = {
1378                 .name                   = "RCU/tree:prepare",
1379                 .startup.single         = rcutree_prepare_cpu,
1380                 .teardown.single        = rcutree_dead_cpu,
1381         },
1382         /*
1383          * On the tear-down path, timers_dead_cpu() must be invoked
1384          * before blk_mq_queue_reinit_notify() from notify_dead(),
1385          * otherwise a RCU stall occurs.
1386          */
1387         [CPUHP_TIMERS_PREPARE] = {
1388                 .name                   = "timers:prepare",
1389                 .startup.single         = timers_prepare_cpu,
1390                 .teardown.single        = timers_dead_cpu,
1391         },
1392         /* Kicks the plugged cpu into life */
1393         [CPUHP_BRINGUP_CPU] = {
1394                 .name                   = "cpu:bringup",
1395                 .startup.single         = bringup_cpu,
1396                 .teardown.single        = NULL,
1397                 .cant_stop              = true,
1398         },
1399         /* Final state before CPU kills itself */
1400         [CPUHP_AP_IDLE_DEAD] = {
1401                 .name                   = "idle:dead",
1402         },
1403         /*
1404          * Last state before CPU enters the idle loop to die. Transient state
1405          * for synchronization.
1406          */
1407         [CPUHP_AP_OFFLINE] = {
1408                 .name                   = "ap:offline",
1409                 .cant_stop              = true,
1410         },
1411         /* First state is scheduler control. Interrupts are disabled */
1412         [CPUHP_AP_SCHED_STARTING] = {
1413                 .name                   = "sched:starting",
1414                 .startup.single         = sched_cpu_starting,
1415                 .teardown.single        = sched_cpu_dying,
1416         },
1417         [CPUHP_AP_RCUTREE_DYING] = {
1418                 .name                   = "RCU/tree:dying",
1419                 .startup.single         = NULL,
1420                 .teardown.single        = rcutree_dying_cpu,
1421         },
1422         [CPUHP_AP_SMPCFD_DYING] = {
1423                 .name                   = "smpcfd:dying",
1424                 .startup.single         = NULL,
1425                 .teardown.single        = smpcfd_dying_cpu,
1426         },
1427         /* Entry state on starting. Interrupts enabled from here on. Transient
1428          * state for synchronsization */
1429         [CPUHP_AP_ONLINE] = {
1430                 .name                   = "ap:online",
1431         },
1432         /*
1433          * Handled on controll processor until the plugged processor manages
1434          * this itself.
1435          */
1436         [CPUHP_TEARDOWN_CPU] = {
1437                 .name                   = "cpu:teardown",
1438                 .startup.single         = NULL,
1439                 .teardown.single        = takedown_cpu,
1440                 .cant_stop              = true,
1441         },
1442         /* Handle smpboot threads park/unpark */
1443         [CPUHP_AP_SMPBOOT_THREADS] = {
1444                 .name                   = "smpboot/threads:online",
1445                 .startup.single         = smpboot_unpark_threads,
1446                 .teardown.single        = smpboot_park_threads,
1447         },
1448         [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1449                 .name                   = "irq/affinity:online",
1450                 .startup.single         = irq_affinity_online_cpu,
1451                 .teardown.single        = NULL,
1452         },
1453         [CPUHP_AP_PERF_ONLINE] = {
1454                 .name                   = "perf:online",
1455                 .startup.single         = perf_event_init_cpu,
1456                 .teardown.single        = perf_event_exit_cpu,
1457         },
1458         [CPUHP_AP_WATCHDOG_ONLINE] = {
1459                 .name                   = "lockup_detector:online",
1460                 .startup.single         = lockup_detector_online_cpu,
1461                 .teardown.single        = lockup_detector_offline_cpu,
1462         },
1463         [CPUHP_AP_WORKQUEUE_ONLINE] = {
1464                 .name                   = "workqueue:online",
1465                 .startup.single         = workqueue_online_cpu,
1466                 .teardown.single        = workqueue_offline_cpu,
1467         },
1468         [CPUHP_AP_RCUTREE_ONLINE] = {
1469                 .name                   = "RCU/tree:online",
1470                 .startup.single         = rcutree_online_cpu,
1471                 .teardown.single        = rcutree_offline_cpu,
1472         },
1473 #endif
1474         /*
1475          * The dynamically registered state space is here
1476          */
1477
1478 #ifdef CONFIG_SMP
1479         /* Last state is scheduler control setting the cpu active */
1480         [CPUHP_AP_ACTIVE] = {
1481                 .name                   = "sched:active",
1482                 .startup.single         = sched_cpu_activate,
1483                 .teardown.single        = sched_cpu_deactivate,
1484         },
1485 #endif
1486
1487         /* CPU is fully up and running. */
1488         [CPUHP_ONLINE] = {
1489                 .name                   = "online",
1490                 .startup.single         = NULL,
1491                 .teardown.single        = NULL,
1492         },
1493 };
1494
1495 /* Sanity check for callbacks */
1496 static int cpuhp_cb_check(enum cpuhp_state state)
1497 {
1498         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1499                 return -EINVAL;
1500         return 0;
1501 }
1502
1503 /*
1504  * Returns a free for dynamic slot assignment of the Online state. The states
1505  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1506  * by having no name assigned.
1507  */
1508 static int cpuhp_reserve_state(enum cpuhp_state state)
1509 {
1510         enum cpuhp_state i, end;
1511         struct cpuhp_step *step;
1512
1513         switch (state) {
1514         case CPUHP_AP_ONLINE_DYN:
1515                 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1516                 end = CPUHP_AP_ONLINE_DYN_END;
1517                 break;
1518         case CPUHP_BP_PREPARE_DYN:
1519                 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1520                 end = CPUHP_BP_PREPARE_DYN_END;
1521                 break;
1522         default:
1523                 return -EINVAL;
1524         }
1525
1526         for (i = state; i <= end; i++, step++) {
1527                 if (!step->name)
1528                         return i;
1529         }
1530         WARN(1, "No more dynamic states available for CPU hotplug\n");
1531         return -ENOSPC;
1532 }
1533
1534 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1535                                  int (*startup)(unsigned int cpu),
1536                                  int (*teardown)(unsigned int cpu),
1537                                  bool multi_instance)
1538 {
1539         /* (Un)Install the callbacks for further cpu hotplug operations */
1540         struct cpuhp_step *sp;
1541         int ret = 0;
1542
1543         /*
1544          * If name is NULL, then the state gets removed.
1545          *
1546          * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1547          * the first allocation from these dynamic ranges, so the removal
1548          * would trigger a new allocation and clear the wrong (already
1549          * empty) state, leaving the callbacks of the to be cleared state
1550          * dangling, which causes wreckage on the next hotplug operation.
1551          */
1552         if (name && (state == CPUHP_AP_ONLINE_DYN ||
1553                      state == CPUHP_BP_PREPARE_DYN)) {
1554                 ret = cpuhp_reserve_state(state);
1555                 if (ret < 0)
1556                         return ret;
1557                 state = ret;
1558         }
1559         sp = cpuhp_get_step(state);
1560         if (name && sp->name)
1561                 return -EBUSY;
1562
1563         sp->startup.single = startup;
1564         sp->teardown.single = teardown;
1565         sp->name = name;
1566         sp->multi_instance = multi_instance;
1567         INIT_HLIST_HEAD(&sp->list);
1568         return ret;
1569 }
1570
1571 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1572 {
1573         return cpuhp_get_step(state)->teardown.single;
1574 }
1575
1576 /*
1577  * Call the startup/teardown function for a step either on the AP or
1578  * on the current CPU.
1579  */
1580 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1581                             struct hlist_node *node)
1582 {
1583         struct cpuhp_step *sp = cpuhp_get_step(state);
1584         int ret;
1585
1586         /*
1587          * If there's nothing to do, we done.
1588          * Relies on the union for multi_instance.
1589          */
1590         if ((bringup && !sp->startup.single) ||
1591             (!bringup && !sp->teardown.single))
1592                 return 0;
1593         /*
1594          * The non AP bound callbacks can fail on bringup. On teardown
1595          * e.g. module removal we crash for now.
1596          */
1597 #ifdef CONFIG_SMP
1598         if (cpuhp_is_ap_state(state))
1599                 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1600         else
1601                 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1602 #else
1603         ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1604 #endif
1605         BUG_ON(ret && !bringup);
1606         return ret;
1607 }
1608
1609 /*
1610  * Called from __cpuhp_setup_state on a recoverable failure.
1611  *
1612  * Note: The teardown callbacks for rollback are not allowed to fail!
1613  */
1614 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1615                                    struct hlist_node *node)
1616 {
1617         int cpu;
1618
1619         /* Roll back the already executed steps on the other cpus */
1620         for_each_present_cpu(cpu) {
1621                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1622                 int cpustate = st->state;
1623
1624                 if (cpu >= failedcpu)
1625                         break;
1626
1627                 /* Did we invoke the startup call on that cpu ? */
1628                 if (cpustate >= state)
1629                         cpuhp_issue_call(cpu, state, false, node);
1630         }
1631 }
1632
1633 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1634                                           struct hlist_node *node,
1635                                           bool invoke)
1636 {
1637         struct cpuhp_step *sp;
1638         int cpu;
1639         int ret;
1640
1641         lockdep_assert_cpus_held();
1642
1643         sp = cpuhp_get_step(state);
1644         if (sp->multi_instance == false)
1645                 return -EINVAL;
1646
1647         mutex_lock(&cpuhp_state_mutex);
1648
1649         if (!invoke || !sp->startup.multi)
1650                 goto add_node;
1651
1652         /*
1653          * Try to call the startup callback for each present cpu
1654          * depending on the hotplug state of the cpu.
1655          */
1656         for_each_present_cpu(cpu) {
1657                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1658                 int cpustate = st->state;
1659
1660                 if (cpustate < state)
1661                         continue;
1662
1663                 ret = cpuhp_issue_call(cpu, state, true, node);
1664                 if (ret) {
1665                         if (sp->teardown.multi)
1666                                 cpuhp_rollback_install(cpu, state, node);
1667                         goto unlock;
1668                 }
1669         }
1670 add_node:
1671         ret = 0;
1672         hlist_add_head(node, &sp->list);
1673 unlock:
1674         mutex_unlock(&cpuhp_state_mutex);
1675         return ret;
1676 }
1677
1678 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1679                                bool invoke)
1680 {
1681         int ret;
1682
1683         cpus_read_lock();
1684         ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1685         cpus_read_unlock();
1686         return ret;
1687 }
1688 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1689
1690 /**
1691  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1692  * @state:              The state to setup
1693  * @invoke:             If true, the startup function is invoked for cpus where
1694  *                      cpu state >= @state
1695  * @startup:            startup callback function
1696  * @teardown:           teardown callback function
1697  * @multi_instance:     State is set up for multiple instances which get
1698  *                      added afterwards.
1699  *
1700  * The caller needs to hold cpus read locked while calling this function.
1701  * Returns:
1702  *   On success:
1703  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1704  *      0 for all other states
1705  *   On failure: proper (negative) error code
1706  */
1707 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1708                                    const char *name, bool invoke,
1709                                    int (*startup)(unsigned int cpu),
1710                                    int (*teardown)(unsigned int cpu),
1711                                    bool multi_instance)
1712 {
1713         int cpu, ret = 0;
1714         bool dynstate;
1715
1716         lockdep_assert_cpus_held();
1717
1718         if (cpuhp_cb_check(state) || !name)
1719                 return -EINVAL;
1720
1721         mutex_lock(&cpuhp_state_mutex);
1722
1723         ret = cpuhp_store_callbacks(state, name, startup, teardown,
1724                                     multi_instance);
1725
1726         dynstate = state == CPUHP_AP_ONLINE_DYN;
1727         if (ret > 0 && dynstate) {
1728                 state = ret;
1729                 ret = 0;
1730         }
1731
1732         if (ret || !invoke || !startup)
1733                 goto out;
1734
1735         /*
1736          * Try to call the startup callback for each present cpu
1737          * depending on the hotplug state of the cpu.
1738          */
1739         for_each_present_cpu(cpu) {
1740                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1741                 int cpustate = st->state;
1742
1743                 if (cpustate < state)
1744                         continue;
1745
1746                 ret = cpuhp_issue_call(cpu, state, true, NULL);
1747                 if (ret) {
1748                         if (teardown)
1749                                 cpuhp_rollback_install(cpu, state, NULL);
1750                         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1751                         goto out;
1752                 }
1753         }
1754 out:
1755         mutex_unlock(&cpuhp_state_mutex);
1756         /*
1757          * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1758          * dynamically allocated state in case of success.
1759          */
1760         if (!ret && dynstate)
1761                 return state;
1762         return ret;
1763 }
1764 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1765
1766 int __cpuhp_setup_state(enum cpuhp_state state,
1767                         const char *name, bool invoke,
1768                         int (*startup)(unsigned int cpu),
1769                         int (*teardown)(unsigned int cpu),
1770                         bool multi_instance)
1771 {
1772         int ret;
1773
1774         cpus_read_lock();
1775         ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1776                                              teardown, multi_instance);
1777         cpus_read_unlock();
1778         return ret;
1779 }
1780 EXPORT_SYMBOL(__cpuhp_setup_state);
1781
1782 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1783                                   struct hlist_node *node, bool invoke)
1784 {
1785         struct cpuhp_step *sp = cpuhp_get_step(state);
1786         int cpu;
1787
1788         BUG_ON(cpuhp_cb_check(state));
1789
1790         if (!sp->multi_instance)
1791                 return -EINVAL;
1792
1793         cpus_read_lock();
1794         mutex_lock(&cpuhp_state_mutex);
1795
1796         if (!invoke || !cpuhp_get_teardown_cb(state))
1797                 goto remove;
1798         /*
1799          * Call the teardown callback for each present cpu depending
1800          * on the hotplug state of the cpu. This function is not
1801          * allowed to fail currently!
1802          */
1803         for_each_present_cpu(cpu) {
1804                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1805                 int cpustate = st->state;
1806
1807                 if (cpustate >= state)
1808                         cpuhp_issue_call(cpu, state, false, node);
1809         }
1810
1811 remove:
1812         hlist_del(node);
1813         mutex_unlock(&cpuhp_state_mutex);
1814         cpus_read_unlock();
1815
1816         return 0;
1817 }
1818 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1819
1820 /**
1821  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1822  * @state:      The state to remove
1823  * @invoke:     If true, the teardown function is invoked for cpus where
1824  *              cpu state >= @state
1825  *
1826  * The caller needs to hold cpus read locked while calling this function.
1827  * The teardown callback is currently not allowed to fail. Think
1828  * about module removal!
1829  */
1830 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1831 {
1832         struct cpuhp_step *sp = cpuhp_get_step(state);
1833         int cpu;
1834
1835         BUG_ON(cpuhp_cb_check(state));
1836
1837         lockdep_assert_cpus_held();
1838
1839         mutex_lock(&cpuhp_state_mutex);
1840         if (sp->multi_instance) {
1841                 WARN(!hlist_empty(&sp->list),
1842                      "Error: Removing state %d which has instances left.\n",
1843                      state);
1844                 goto remove;
1845         }
1846
1847         if (!invoke || !cpuhp_get_teardown_cb(state))
1848                 goto remove;
1849
1850         /*
1851          * Call the teardown callback for each present cpu depending
1852          * on the hotplug state of the cpu. This function is not
1853          * allowed to fail currently!
1854          */
1855         for_each_present_cpu(cpu) {
1856                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1857                 int cpustate = st->state;
1858
1859                 if (cpustate >= state)
1860                         cpuhp_issue_call(cpu, state, false, NULL);
1861         }
1862 remove:
1863         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1864         mutex_unlock(&cpuhp_state_mutex);
1865 }
1866 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1867
1868 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1869 {
1870         cpus_read_lock();
1871         __cpuhp_remove_state_cpuslocked(state, invoke);
1872         cpus_read_unlock();
1873 }
1874 EXPORT_SYMBOL(__cpuhp_remove_state);
1875
1876 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1877 static ssize_t show_cpuhp_state(struct device *dev,
1878                                 struct device_attribute *attr, char *buf)
1879 {
1880         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1881
1882         return sprintf(buf, "%d\n", st->state);
1883 }
1884 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1885
1886 static ssize_t write_cpuhp_target(struct device *dev,
1887                                   struct device_attribute *attr,
1888                                   const char *buf, size_t count)
1889 {
1890         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1891         struct cpuhp_step *sp;
1892         int target, ret;
1893
1894         ret = kstrtoint(buf, 10, &target);
1895         if (ret)
1896                 return ret;
1897
1898 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1899         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1900                 return -EINVAL;
1901 #else
1902         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1903                 return -EINVAL;
1904 #endif
1905
1906         ret = lock_device_hotplug_sysfs();
1907         if (ret)
1908                 return ret;
1909
1910         mutex_lock(&cpuhp_state_mutex);
1911         sp = cpuhp_get_step(target);
1912         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1913         mutex_unlock(&cpuhp_state_mutex);
1914         if (ret)
1915                 goto out;
1916
1917         if (st->state < target)
1918                 ret = do_cpu_up(dev->id, target);
1919         else
1920                 ret = do_cpu_down(dev->id, target);
1921 out:
1922         unlock_device_hotplug();
1923         return ret ? ret : count;
1924 }
1925
1926 static ssize_t show_cpuhp_target(struct device *dev,
1927                                  struct device_attribute *attr, char *buf)
1928 {
1929         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1930
1931         return sprintf(buf, "%d\n", st->target);
1932 }
1933 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1934
1935
1936 static ssize_t write_cpuhp_fail(struct device *dev,
1937                                 struct device_attribute *attr,
1938                                 const char *buf, size_t count)
1939 {
1940         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1941         struct cpuhp_step *sp;
1942         int fail, ret;
1943
1944         ret = kstrtoint(buf, 10, &fail);
1945         if (ret)
1946                 return ret;
1947
1948         /*
1949          * Cannot fail STARTING/DYING callbacks.
1950          */
1951         if (cpuhp_is_atomic_state(fail))
1952                 return -EINVAL;
1953
1954         /*
1955          * Cannot fail anything that doesn't have callbacks.
1956          */
1957         mutex_lock(&cpuhp_state_mutex);
1958         sp = cpuhp_get_step(fail);
1959         if (!sp->startup.single && !sp->teardown.single)
1960                 ret = -EINVAL;
1961         mutex_unlock(&cpuhp_state_mutex);
1962         if (ret)
1963                 return ret;
1964
1965         st->fail = fail;
1966
1967         return count;
1968 }
1969
1970 static ssize_t show_cpuhp_fail(struct device *dev,
1971                                struct device_attribute *attr, char *buf)
1972 {
1973         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1974
1975         return sprintf(buf, "%d\n", st->fail);
1976 }
1977
1978 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1979
1980 static struct attribute *cpuhp_cpu_attrs[] = {
1981         &dev_attr_state.attr,
1982         &dev_attr_target.attr,
1983         &dev_attr_fail.attr,
1984         NULL
1985 };
1986
1987 static const struct attribute_group cpuhp_cpu_attr_group = {
1988         .attrs = cpuhp_cpu_attrs,
1989         .name = "hotplug",
1990         NULL
1991 };
1992
1993 static ssize_t show_cpuhp_states(struct device *dev,
1994                                  struct device_attribute *attr, char *buf)
1995 {
1996         ssize_t cur, res = 0;
1997         int i;
1998
1999         mutex_lock(&cpuhp_state_mutex);
2000         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2001                 struct cpuhp_step *sp = cpuhp_get_step(i);
2002
2003                 if (sp->name) {
2004                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2005                         buf += cur;
2006                         res += cur;
2007                 }
2008         }
2009         mutex_unlock(&cpuhp_state_mutex);
2010         return res;
2011 }
2012 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2013
2014 static struct attribute *cpuhp_cpu_root_attrs[] = {
2015         &dev_attr_states.attr,
2016         NULL
2017 };
2018
2019 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2020         .attrs = cpuhp_cpu_root_attrs,
2021         .name = "hotplug",
2022         NULL
2023 };
2024
2025 #ifdef CONFIG_HOTPLUG_SMT
2026
2027 static const char *smt_states[] = {
2028         [CPU_SMT_ENABLED]               = "on",
2029         [CPU_SMT_DISABLED]              = "off",
2030         [CPU_SMT_FORCE_DISABLED]        = "forceoff",
2031         [CPU_SMT_NOT_SUPPORTED]         = "notsupported",
2032 };
2033
2034 static ssize_t
2035 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2036 {
2037         return snprintf(buf, PAGE_SIZE - 2, "%s\n", smt_states[cpu_smt_control]);
2038 }
2039
2040 static void cpuhp_offline_cpu_device(unsigned int cpu)
2041 {
2042         struct device *dev = get_cpu_device(cpu);
2043
2044         dev->offline = true;
2045         /* Tell user space about the state change */
2046         kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2047 }
2048
2049 static void cpuhp_online_cpu_device(unsigned int cpu)
2050 {
2051         struct device *dev = get_cpu_device(cpu);
2052
2053         dev->offline = false;
2054         /* Tell user space about the state change */
2055         kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2056 }
2057
2058 /*
2059  * Architectures that need SMT-specific errata handling during SMT hotplug
2060  * should override this.
2061  */
2062 void __weak arch_smt_update(void) { };
2063
2064 static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2065 {
2066         int cpu, ret = 0;
2067
2068         cpu_maps_update_begin();
2069         for_each_online_cpu(cpu) {
2070                 if (topology_is_primary_thread(cpu))
2071                         continue;
2072                 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2073                 if (ret)
2074                         break;
2075                 /*
2076                  * As this needs to hold the cpu maps lock it's impossible
2077                  * to call device_offline() because that ends up calling
2078                  * cpu_down() which takes cpu maps lock. cpu maps lock
2079                  * needs to be held as this might race against in kernel
2080                  * abusers of the hotplug machinery (thermal management).
2081                  *
2082                  * So nothing would update device:offline state. That would
2083                  * leave the sysfs entry stale and prevent onlining after
2084                  * smt control has been changed to 'off' again. This is
2085                  * called under the sysfs hotplug lock, so it is properly
2086                  * serialized against the regular offline usage.
2087                  */
2088                 cpuhp_offline_cpu_device(cpu);
2089         }
2090         if (!ret) {
2091                 cpu_smt_control = ctrlval;
2092                 arch_smt_update();
2093         }
2094         cpu_maps_update_done();
2095         return ret;
2096 }
2097
2098 static int cpuhp_smt_enable(void)
2099 {
2100         int cpu, ret = 0;
2101
2102         cpu_maps_update_begin();
2103         cpu_smt_control = CPU_SMT_ENABLED;
2104         arch_smt_update();
2105         for_each_present_cpu(cpu) {
2106                 /* Skip online CPUs and CPUs on offline nodes */
2107                 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2108                         continue;
2109                 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2110                 if (ret)
2111                         break;
2112                 /* See comment in cpuhp_smt_disable() */
2113                 cpuhp_online_cpu_device(cpu);
2114         }
2115         cpu_maps_update_done();
2116         return ret;
2117 }
2118
2119 static ssize_t
2120 store_smt_control(struct device *dev, struct device_attribute *attr,
2121                   const char *buf, size_t count)
2122 {
2123         int ctrlval, ret;
2124
2125         if (sysfs_streq(buf, "on"))
2126                 ctrlval = CPU_SMT_ENABLED;
2127         else if (sysfs_streq(buf, "off"))
2128                 ctrlval = CPU_SMT_DISABLED;
2129         else if (sysfs_streq(buf, "forceoff"))
2130                 ctrlval = CPU_SMT_FORCE_DISABLED;
2131         else
2132                 return -EINVAL;
2133
2134         if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2135                 return -EPERM;
2136
2137         if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2138                 return -ENODEV;
2139
2140         ret = lock_device_hotplug_sysfs();
2141         if (ret)
2142                 return ret;
2143
2144         if (ctrlval != cpu_smt_control) {
2145                 switch (ctrlval) {
2146                 case CPU_SMT_ENABLED:
2147                         ret = cpuhp_smt_enable();
2148                         break;
2149                 case CPU_SMT_DISABLED:
2150                 case CPU_SMT_FORCE_DISABLED:
2151                         ret = cpuhp_smt_disable(ctrlval);
2152                         break;
2153                 }
2154         }
2155
2156         unlock_device_hotplug();
2157         return ret ? ret : count;
2158 }
2159 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2160
2161 static ssize_t
2162 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2163 {
2164         bool active = topology_max_smt_threads() > 1;
2165
2166         return snprintf(buf, PAGE_SIZE - 2, "%d\n", active);
2167 }
2168 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2169
2170 static struct attribute *cpuhp_smt_attrs[] = {
2171         &dev_attr_control.attr,
2172         &dev_attr_active.attr,
2173         NULL
2174 };
2175
2176 static const struct attribute_group cpuhp_smt_attr_group = {
2177         .attrs = cpuhp_smt_attrs,
2178         .name = "smt",
2179         NULL
2180 };
2181
2182 static int __init cpu_smt_state_init(void)
2183 {
2184         return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2185                                   &cpuhp_smt_attr_group);
2186 }
2187
2188 #else
2189 static inline int cpu_smt_state_init(void) { return 0; }
2190 #endif
2191
2192 static int __init cpuhp_sysfs_init(void)
2193 {
2194         int cpu, ret;
2195
2196         ret = cpu_smt_state_init();
2197         if (ret)
2198                 return ret;
2199
2200         ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2201                                  &cpuhp_cpu_root_attr_group);
2202         if (ret)
2203                 return ret;
2204
2205         for_each_possible_cpu(cpu) {
2206                 struct device *dev = get_cpu_device(cpu);
2207
2208                 if (!dev)
2209                         continue;
2210                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2211                 if (ret)
2212                         return ret;
2213         }
2214         return 0;
2215 }
2216 device_initcall(cpuhp_sysfs_init);
2217 #endif
2218
2219 /*
2220  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2221  * represents all NR_CPUS bits binary values of 1<<nr.
2222  *
2223  * It is used by cpumask_of() to get a constant address to a CPU
2224  * mask value that has a single bit set only.
2225  */
2226
2227 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2228 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
2229 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2230 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2231 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2232
2233 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2234
2235         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
2236         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
2237 #if BITS_PER_LONG > 32
2238         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
2239         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
2240 #endif
2241 };
2242 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2243
2244 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2245 EXPORT_SYMBOL(cpu_all_bits);
2246
2247 #ifdef CONFIG_INIT_ALL_POSSIBLE
2248 struct cpumask __cpu_possible_mask __read_mostly
2249         = {CPU_BITS_ALL};
2250 #else
2251 struct cpumask __cpu_possible_mask __read_mostly;
2252 #endif
2253 EXPORT_SYMBOL(__cpu_possible_mask);
2254
2255 struct cpumask __cpu_online_mask __read_mostly;
2256 EXPORT_SYMBOL(__cpu_online_mask);
2257
2258 struct cpumask __cpu_present_mask __read_mostly;
2259 EXPORT_SYMBOL(__cpu_present_mask);
2260
2261 struct cpumask __cpu_active_mask __read_mostly;
2262 EXPORT_SYMBOL(__cpu_active_mask);
2263
2264 void init_cpu_present(const struct cpumask *src)
2265 {
2266         cpumask_copy(&__cpu_present_mask, src);
2267 }
2268
2269 void init_cpu_possible(const struct cpumask *src)
2270 {
2271         cpumask_copy(&__cpu_possible_mask, src);
2272 }
2273
2274 void init_cpu_online(const struct cpumask *src)
2275 {
2276         cpumask_copy(&__cpu_online_mask, src);
2277 }
2278
2279 /*
2280  * Activate the first processor.
2281  */
2282 void __init boot_cpu_init(void)
2283 {
2284         int cpu = smp_processor_id();
2285
2286         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2287         set_cpu_online(cpu, true);
2288         set_cpu_active(cpu, true);
2289         set_cpu_present(cpu, true);
2290         set_cpu_possible(cpu, true);
2291
2292 #ifdef CONFIG_SMP
2293         __boot_cpu_id = cpu;
2294 #endif
2295 }
2296
2297 /*
2298  * Must be called _AFTER_ setting up the per_cpu areas
2299  */
2300 void __init boot_cpu_hotplug_init(void)
2301 {
2302 #ifdef CONFIG_SMP
2303         this_cpu_write(cpuhp_state.booted_once, true);
2304 #endif
2305         this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2306 }