Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[sfrench/cifs-2.6.git] / kernel / cgroup.c
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60 #include <linux/atomic.h>
61 #include <linux/cpuset.h>
62 #include <linux/proc_ns.h>
63 #include <linux/nsproxy.h>
64 #include <linux/proc_ns.h>
65 #include <net/sock.h>
66
67 /*
68  * pidlists linger the following amount before being destroyed.  The goal
69  * is avoiding frequent destruction in the middle of consecutive read calls
70  * Expiring in the middle is a performance problem not a correctness one.
71  * 1 sec should be enough.
72  */
73 #define CGROUP_PIDLIST_DESTROY_DELAY    HZ
74
75 #define CGROUP_FILE_NAME_MAX            (MAX_CGROUP_TYPE_NAMELEN +      \
76                                          MAX_CFTYPE_NAME + 2)
77
78 /*
79  * cgroup_mutex is the master lock.  Any modification to cgroup or its
80  * hierarchy must be performed while holding it.
81  *
82  * css_set_lock protects task->cgroups pointer, the list of css_set
83  * objects, and the chain of tasks off each css_set.
84  *
85  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
86  * cgroup.h can use them for lockdep annotations.
87  */
88 #ifdef CONFIG_PROVE_RCU
89 DEFINE_MUTEX(cgroup_mutex);
90 DEFINE_SPINLOCK(css_set_lock);
91 EXPORT_SYMBOL_GPL(cgroup_mutex);
92 EXPORT_SYMBOL_GPL(css_set_lock);
93 #else
94 static DEFINE_MUTEX(cgroup_mutex);
95 static DEFINE_SPINLOCK(css_set_lock);
96 #endif
97
98 /*
99  * Protects cgroup_idr and css_idr so that IDs can be released without
100  * grabbing cgroup_mutex.
101  */
102 static DEFINE_SPINLOCK(cgroup_idr_lock);
103
104 /*
105  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
106  * against file removal/re-creation across css hiding.
107  */
108 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
109
110 /*
111  * Protects cgroup_subsys->release_agent_path.  Modifying it also requires
112  * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock.
113  */
114 static DEFINE_SPINLOCK(release_agent_path_lock);
115
116 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
117
118 #define cgroup_assert_mutex_or_rcu_locked()                             \
119         RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
120                            !lockdep_is_held(&cgroup_mutex),             \
121                            "cgroup_mutex or RCU read lock required");
122
123 /*
124  * cgroup destruction makes heavy use of work items and there can be a lot
125  * of concurrent destructions.  Use a separate workqueue so that cgroup
126  * destruction work items don't end up filling up max_active of system_wq
127  * which may lead to deadlock.
128  */
129 static struct workqueue_struct *cgroup_destroy_wq;
130
131 /*
132  * pidlist destructions need to be flushed on cgroup destruction.  Use a
133  * separate workqueue as flush domain.
134  */
135 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
136
137 /* generate an array of cgroup subsystem pointers */
138 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
139 static struct cgroup_subsys *cgroup_subsys[] = {
140 #include <linux/cgroup_subsys.h>
141 };
142 #undef SUBSYS
143
144 /* array of cgroup subsystem names */
145 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
146 static const char *cgroup_subsys_name[] = {
147 #include <linux/cgroup_subsys.h>
148 };
149 #undef SUBSYS
150
151 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
152 #define SUBSYS(_x)                                                              \
153         DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);                 \
154         DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);                  \
155         EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);                      \
156         EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
157 #include <linux/cgroup_subsys.h>
158 #undef SUBSYS
159
160 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
161 static struct static_key_true *cgroup_subsys_enabled_key[] = {
162 #include <linux/cgroup_subsys.h>
163 };
164 #undef SUBSYS
165
166 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
167 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
168 #include <linux/cgroup_subsys.h>
169 };
170 #undef SUBSYS
171
172 /*
173  * The default hierarchy, reserved for the subsystems that are otherwise
174  * unattached - it never has more than a single cgroup, and all tasks are
175  * part of that cgroup.
176  */
177 struct cgroup_root cgrp_dfl_root;
178 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
179
180 /*
181  * The default hierarchy always exists but is hidden until mounted for the
182  * first time.  This is for backward compatibility.
183  */
184 static bool cgrp_dfl_visible;
185
186 /* Controllers blocked by the commandline in v1 */
187 static u16 cgroup_no_v1_mask;
188
189 /* some controllers are not supported in the default hierarchy */
190 static u16 cgrp_dfl_inhibit_ss_mask;
191
192 /* some controllers are implicitly enabled on the default hierarchy */
193 static unsigned long cgrp_dfl_implicit_ss_mask;
194
195 /* The list of hierarchy roots */
196
197 static LIST_HEAD(cgroup_roots);
198 static int cgroup_root_count;
199
200 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
201 static DEFINE_IDR(cgroup_hierarchy_idr);
202
203 /*
204  * Assign a monotonically increasing serial number to csses.  It guarantees
205  * cgroups with bigger numbers are newer than those with smaller numbers.
206  * Also, as csses are always appended to the parent's ->children list, it
207  * guarantees that sibling csses are always sorted in the ascending serial
208  * number order on the list.  Protected by cgroup_mutex.
209  */
210 static u64 css_serial_nr_next = 1;
211
212 /*
213  * These bitmask flags indicate whether tasks in the fork and exit paths have
214  * fork/exit handlers to call. This avoids us having to do extra work in the
215  * fork/exit path to check which subsystems have fork/exit callbacks.
216  */
217 static u16 have_fork_callback __read_mostly;
218 static u16 have_exit_callback __read_mostly;
219 static u16 have_free_callback __read_mostly;
220
221 /* cgroup namespace for init task */
222 struct cgroup_namespace init_cgroup_ns = {
223         .count          = { .counter = 2, },
224         .user_ns        = &init_user_ns,
225         .ns.ops         = &cgroupns_operations,
226         .ns.inum        = PROC_CGROUP_INIT_INO,
227         .root_cset      = &init_css_set,
228 };
229
230 /* Ditto for the can_fork callback. */
231 static u16 have_canfork_callback __read_mostly;
232
233 static struct file_system_type cgroup2_fs_type;
234 static struct cftype cgroup_dfl_base_files[];
235 static struct cftype cgroup_legacy_base_files[];
236
237 static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
238 static void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
239 static int cgroup_apply_control(struct cgroup *cgrp);
240 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
241 static void css_task_iter_advance(struct css_task_iter *it);
242 static int cgroup_destroy_locked(struct cgroup *cgrp);
243 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
244                                               struct cgroup_subsys *ss);
245 static void css_release(struct percpu_ref *ref);
246 static void kill_css(struct cgroup_subsys_state *css);
247 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
248                               struct cgroup *cgrp, struct cftype cfts[],
249                               bool is_add);
250
251 /**
252  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
253  * @ssid: subsys ID of interest
254  *
255  * cgroup_subsys_enabled() can only be used with literal subsys names which
256  * is fine for individual subsystems but unsuitable for cgroup core.  This
257  * is slower static_key_enabled() based test indexed by @ssid.
258  */
259 static bool cgroup_ssid_enabled(int ssid)
260 {
261         if (CGROUP_SUBSYS_COUNT == 0)
262                 return false;
263
264         return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
265 }
266
267 static bool cgroup_ssid_no_v1(int ssid)
268 {
269         return cgroup_no_v1_mask & (1 << ssid);
270 }
271
272 /**
273  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
274  * @cgrp: the cgroup of interest
275  *
276  * The default hierarchy is the v2 interface of cgroup and this function
277  * can be used to test whether a cgroup is on the default hierarchy for
278  * cases where a subsystem should behave differnetly depending on the
279  * interface version.
280  *
281  * The set of behaviors which change on the default hierarchy are still
282  * being determined and the mount option is prefixed with __DEVEL__.
283  *
284  * List of changed behaviors:
285  *
286  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
287  *   and "name" are disallowed.
288  *
289  * - When mounting an existing superblock, mount options should match.
290  *
291  * - Remount is disallowed.
292  *
293  * - rename(2) is disallowed.
294  *
295  * - "tasks" is removed.  Everything should be at process granularity.  Use
296  *   "cgroup.procs" instead.
297  *
298  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
299  *   recycled inbetween reads.
300  *
301  * - "release_agent" and "notify_on_release" are removed.  Replacement
302  *   notification mechanism will be implemented.
303  *
304  * - "cgroup.clone_children" is removed.
305  *
306  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
307  *   and its descendants contain no task; otherwise, 1.  The file also
308  *   generates kernfs notification which can be monitored through poll and
309  *   [di]notify when the value of the file changes.
310  *
311  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
312  *   take masks of ancestors with non-empty cpus/mems, instead of being
313  *   moved to an ancestor.
314  *
315  * - cpuset: a task can be moved into an empty cpuset, and again it takes
316  *   masks of ancestors.
317  *
318  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
319  *   is not created.
320  *
321  * - blkcg: blk-throttle becomes properly hierarchical.
322  *
323  * - debug: disallowed on the default hierarchy.
324  */
325 static bool cgroup_on_dfl(const struct cgroup *cgrp)
326 {
327         return cgrp->root == &cgrp_dfl_root;
328 }
329
330 /* IDR wrappers which synchronize using cgroup_idr_lock */
331 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
332                             gfp_t gfp_mask)
333 {
334         int ret;
335
336         idr_preload(gfp_mask);
337         spin_lock_bh(&cgroup_idr_lock);
338         ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
339         spin_unlock_bh(&cgroup_idr_lock);
340         idr_preload_end();
341         return ret;
342 }
343
344 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
345 {
346         void *ret;
347
348         spin_lock_bh(&cgroup_idr_lock);
349         ret = idr_replace(idr, ptr, id);
350         spin_unlock_bh(&cgroup_idr_lock);
351         return ret;
352 }
353
354 static void cgroup_idr_remove(struct idr *idr, int id)
355 {
356         spin_lock_bh(&cgroup_idr_lock);
357         idr_remove(idr, id);
358         spin_unlock_bh(&cgroup_idr_lock);
359 }
360
361 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
362 {
363         struct cgroup_subsys_state *parent_css = cgrp->self.parent;
364
365         if (parent_css)
366                 return container_of(parent_css, struct cgroup, self);
367         return NULL;
368 }
369
370 /* subsystems visibly enabled on a cgroup */
371 static u16 cgroup_control(struct cgroup *cgrp)
372 {
373         struct cgroup *parent = cgroup_parent(cgrp);
374         u16 root_ss_mask = cgrp->root->subsys_mask;
375
376         if (parent)
377                 return parent->subtree_control;
378
379         if (cgroup_on_dfl(cgrp))
380                 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
381                                   cgrp_dfl_implicit_ss_mask);
382         return root_ss_mask;
383 }
384
385 /* subsystems enabled on a cgroup */
386 static u16 cgroup_ss_mask(struct cgroup *cgrp)
387 {
388         struct cgroup *parent = cgroup_parent(cgrp);
389
390         if (parent)
391                 return parent->subtree_ss_mask;
392
393         return cgrp->root->subsys_mask;
394 }
395
396 /**
397  * cgroup_css - obtain a cgroup's css for the specified subsystem
398  * @cgrp: the cgroup of interest
399  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
400  *
401  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
402  * function must be called either under cgroup_mutex or rcu_read_lock() and
403  * the caller is responsible for pinning the returned css if it wants to
404  * keep accessing it outside the said locks.  This function may return
405  * %NULL if @cgrp doesn't have @subsys_id enabled.
406  */
407 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
408                                               struct cgroup_subsys *ss)
409 {
410         if (ss)
411                 return rcu_dereference_check(cgrp->subsys[ss->id],
412                                         lockdep_is_held(&cgroup_mutex));
413         else
414                 return &cgrp->self;
415 }
416
417 /**
418  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
419  * @cgrp: the cgroup of interest
420  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
421  *
422  * Similar to cgroup_css() but returns the effective css, which is defined
423  * as the matching css of the nearest ancestor including self which has @ss
424  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
425  * function is guaranteed to return non-NULL css.
426  */
427 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
428                                                 struct cgroup_subsys *ss)
429 {
430         lockdep_assert_held(&cgroup_mutex);
431
432         if (!ss)
433                 return &cgrp->self;
434
435         /*
436          * This function is used while updating css associations and thus
437          * can't test the csses directly.  Test ss_mask.
438          */
439         while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
440                 cgrp = cgroup_parent(cgrp);
441                 if (!cgrp)
442                         return NULL;
443         }
444
445         return cgroup_css(cgrp, ss);
446 }
447
448 /**
449  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
450  * @cgrp: the cgroup of interest
451  * @ss: the subsystem of interest
452  *
453  * Find and get the effective css of @cgrp for @ss.  The effective css is
454  * defined as the matching css of the nearest ancestor including self which
455  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
456  * the root css is returned, so this function always returns a valid css.
457  * The returned css must be put using css_put().
458  */
459 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
460                                              struct cgroup_subsys *ss)
461 {
462         struct cgroup_subsys_state *css;
463
464         rcu_read_lock();
465
466         do {
467                 css = cgroup_css(cgrp, ss);
468
469                 if (css && css_tryget_online(css))
470                         goto out_unlock;
471                 cgrp = cgroup_parent(cgrp);
472         } while (cgrp);
473
474         css = init_css_set.subsys[ss->id];
475         css_get(css);
476 out_unlock:
477         rcu_read_unlock();
478         return css;
479 }
480
481 /* convenient tests for these bits */
482 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
483 {
484         return !(cgrp->self.flags & CSS_ONLINE);
485 }
486
487 static void cgroup_get(struct cgroup *cgrp)
488 {
489         WARN_ON_ONCE(cgroup_is_dead(cgrp));
490         css_get(&cgrp->self);
491 }
492
493 static bool cgroup_tryget(struct cgroup *cgrp)
494 {
495         return css_tryget(&cgrp->self);
496 }
497
498 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
499 {
500         struct cgroup *cgrp = of->kn->parent->priv;
501         struct cftype *cft = of_cft(of);
502
503         /*
504          * This is open and unprotected implementation of cgroup_css().
505          * seq_css() is only called from a kernfs file operation which has
506          * an active reference on the file.  Because all the subsystem
507          * files are drained before a css is disassociated with a cgroup,
508          * the matching css from the cgroup's subsys table is guaranteed to
509          * be and stay valid until the enclosing operation is complete.
510          */
511         if (cft->ss)
512                 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
513         else
514                 return &cgrp->self;
515 }
516 EXPORT_SYMBOL_GPL(of_css);
517
518 static int notify_on_release(const struct cgroup *cgrp)
519 {
520         return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
521 }
522
523 /**
524  * for_each_css - iterate all css's of a cgroup
525  * @css: the iteration cursor
526  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
527  * @cgrp: the target cgroup to iterate css's of
528  *
529  * Should be called under cgroup_[tree_]mutex.
530  */
531 #define for_each_css(css, ssid, cgrp)                                   \
532         for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)        \
533                 if (!((css) = rcu_dereference_check(                    \
534                                 (cgrp)->subsys[(ssid)],                 \
535                                 lockdep_is_held(&cgroup_mutex)))) { }   \
536                 else
537
538 /**
539  * for_each_e_css - iterate all effective css's of a cgroup
540  * @css: the iteration cursor
541  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
542  * @cgrp: the target cgroup to iterate css's of
543  *
544  * Should be called under cgroup_[tree_]mutex.
545  */
546 #define for_each_e_css(css, ssid, cgrp)                                 \
547         for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)        \
548                 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
549                         ;                                               \
550                 else
551
552 /**
553  * for_each_subsys - iterate all enabled cgroup subsystems
554  * @ss: the iteration cursor
555  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
556  */
557 #define for_each_subsys(ss, ssid)                                       \
558         for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT &&                \
559              (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
560
561 /**
562  * do_each_subsys_mask - filter for_each_subsys with a bitmask
563  * @ss: the iteration cursor
564  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
565  * @ss_mask: the bitmask
566  *
567  * The block will only run for cases where the ssid-th bit (1 << ssid) of
568  * @ss_mask is set.
569  */
570 #define do_each_subsys_mask(ss, ssid, ss_mask) do {                     \
571         unsigned long __ss_mask = (ss_mask);                            \
572         if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
573                 (ssid) = 0;                                             \
574                 break;                                                  \
575         }                                                               \
576         for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {       \
577                 (ss) = cgroup_subsys[ssid];                             \
578                 {
579
580 #define while_each_subsys_mask()                                        \
581                 }                                                       \
582         }                                                               \
583 } while (false)
584
585 /* iterate across the hierarchies */
586 #define for_each_root(root)                                             \
587         list_for_each_entry((root), &cgroup_roots, root_list)
588
589 /* iterate over child cgrps, lock should be held throughout iteration */
590 #define cgroup_for_each_live_child(child, cgrp)                         \
591         list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
592                 if (({ lockdep_assert_held(&cgroup_mutex);              \
593                        cgroup_is_dead(child); }))                       \
594                         ;                                               \
595                 else
596
597 /* walk live descendants in preorder */
598 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)          \
599         css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))  \
600                 if (({ lockdep_assert_held(&cgroup_mutex);              \
601                        (dsct) = (d_css)->cgroup;                        \
602                        cgroup_is_dead(dsct); }))                        \
603                         ;                                               \
604                 else
605
606 /* walk live descendants in postorder */
607 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)         \
608         css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
609                 if (({ lockdep_assert_held(&cgroup_mutex);              \
610                        (dsct) = (d_css)->cgroup;                        \
611                        cgroup_is_dead(dsct); }))                        \
612                         ;                                               \
613                 else
614
615 static void cgroup_release_agent(struct work_struct *work);
616 static void check_for_release(struct cgroup *cgrp);
617
618 /*
619  * A cgroup can be associated with multiple css_sets as different tasks may
620  * belong to different cgroups on different hierarchies.  In the other
621  * direction, a css_set is naturally associated with multiple cgroups.
622  * This M:N relationship is represented by the following link structure
623  * which exists for each association and allows traversing the associations
624  * from both sides.
625  */
626 struct cgrp_cset_link {
627         /* the cgroup and css_set this link associates */
628         struct cgroup           *cgrp;
629         struct css_set          *cset;
630
631         /* list of cgrp_cset_links anchored at cgrp->cset_links */
632         struct list_head        cset_link;
633
634         /* list of cgrp_cset_links anchored at css_set->cgrp_links */
635         struct list_head        cgrp_link;
636 };
637
638 /*
639  * The default css_set - used by init and its children prior to any
640  * hierarchies being mounted. It contains a pointer to the root state
641  * for each subsystem. Also used to anchor the list of css_sets. Not
642  * reference-counted, to improve performance when child cgroups
643  * haven't been created.
644  */
645 struct css_set init_css_set = {
646         .refcount               = ATOMIC_INIT(1),
647         .cgrp_links             = LIST_HEAD_INIT(init_css_set.cgrp_links),
648         .tasks                  = LIST_HEAD_INIT(init_css_set.tasks),
649         .mg_tasks               = LIST_HEAD_INIT(init_css_set.mg_tasks),
650         .mg_preload_node        = LIST_HEAD_INIT(init_css_set.mg_preload_node),
651         .mg_node                = LIST_HEAD_INIT(init_css_set.mg_node),
652         .task_iters             = LIST_HEAD_INIT(init_css_set.task_iters),
653 };
654
655 static int css_set_count        = 1;    /* 1 for init_css_set */
656
657 /**
658  * css_set_populated - does a css_set contain any tasks?
659  * @cset: target css_set
660  */
661 static bool css_set_populated(struct css_set *cset)
662 {
663         lockdep_assert_held(&css_set_lock);
664
665         return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
666 }
667
668 /**
669  * cgroup_update_populated - updated populated count of a cgroup
670  * @cgrp: the target cgroup
671  * @populated: inc or dec populated count
672  *
673  * One of the css_sets associated with @cgrp is either getting its first
674  * task or losing the last.  Update @cgrp->populated_cnt accordingly.  The
675  * count is propagated towards root so that a given cgroup's populated_cnt
676  * is zero iff the cgroup and all its descendants don't contain any tasks.
677  *
678  * @cgrp's interface file "cgroup.populated" is zero if
679  * @cgrp->populated_cnt is zero and 1 otherwise.  When @cgrp->populated_cnt
680  * changes from or to zero, userland is notified that the content of the
681  * interface file has changed.  This can be used to detect when @cgrp and
682  * its descendants become populated or empty.
683  */
684 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
685 {
686         lockdep_assert_held(&css_set_lock);
687
688         do {
689                 bool trigger;
690
691                 if (populated)
692                         trigger = !cgrp->populated_cnt++;
693                 else
694                         trigger = !--cgrp->populated_cnt;
695
696                 if (!trigger)
697                         break;
698
699                 check_for_release(cgrp);
700                 cgroup_file_notify(&cgrp->events_file);
701
702                 cgrp = cgroup_parent(cgrp);
703         } while (cgrp);
704 }
705
706 /**
707  * css_set_update_populated - update populated state of a css_set
708  * @cset: target css_set
709  * @populated: whether @cset is populated or depopulated
710  *
711  * @cset is either getting the first task or losing the last.  Update the
712  * ->populated_cnt of all associated cgroups accordingly.
713  */
714 static void css_set_update_populated(struct css_set *cset, bool populated)
715 {
716         struct cgrp_cset_link *link;
717
718         lockdep_assert_held(&css_set_lock);
719
720         list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
721                 cgroup_update_populated(link->cgrp, populated);
722 }
723
724 /**
725  * css_set_move_task - move a task from one css_set to another
726  * @task: task being moved
727  * @from_cset: css_set @task currently belongs to (may be NULL)
728  * @to_cset: new css_set @task is being moved to (may be NULL)
729  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
730  *
731  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
732  * css_set, @from_cset can be NULL.  If @task is being disassociated
733  * instead of moved, @to_cset can be NULL.
734  *
735  * This function automatically handles populated_cnt updates and
736  * css_task_iter adjustments but the caller is responsible for managing
737  * @from_cset and @to_cset's reference counts.
738  */
739 static void css_set_move_task(struct task_struct *task,
740                               struct css_set *from_cset, struct css_set *to_cset,
741                               bool use_mg_tasks)
742 {
743         lockdep_assert_held(&css_set_lock);
744
745         if (to_cset && !css_set_populated(to_cset))
746                 css_set_update_populated(to_cset, true);
747
748         if (from_cset) {
749                 struct css_task_iter *it, *pos;
750
751                 WARN_ON_ONCE(list_empty(&task->cg_list));
752
753                 /*
754                  * @task is leaving, advance task iterators which are
755                  * pointing to it so that they can resume at the next
756                  * position.  Advancing an iterator might remove it from
757                  * the list, use safe walk.  See css_task_iter_advance*()
758                  * for details.
759                  */
760                 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
761                                          iters_node)
762                         if (it->task_pos == &task->cg_list)
763                                 css_task_iter_advance(it);
764
765                 list_del_init(&task->cg_list);
766                 if (!css_set_populated(from_cset))
767                         css_set_update_populated(from_cset, false);
768         } else {
769                 WARN_ON_ONCE(!list_empty(&task->cg_list));
770         }
771
772         if (to_cset) {
773                 /*
774                  * We are synchronized through cgroup_threadgroup_rwsem
775                  * against PF_EXITING setting such that we can't race
776                  * against cgroup_exit() changing the css_set to
777                  * init_css_set and dropping the old one.
778                  */
779                 WARN_ON_ONCE(task->flags & PF_EXITING);
780
781                 rcu_assign_pointer(task->cgroups, to_cset);
782                 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
783                                                              &to_cset->tasks);
784         }
785 }
786
787 /*
788  * hash table for cgroup groups. This improves the performance to find
789  * an existing css_set. This hash doesn't (currently) take into
790  * account cgroups in empty hierarchies.
791  */
792 #define CSS_SET_HASH_BITS       7
793 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
794
795 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
796 {
797         unsigned long key = 0UL;
798         struct cgroup_subsys *ss;
799         int i;
800
801         for_each_subsys(ss, i)
802                 key += (unsigned long)css[i];
803         key = (key >> 16) ^ key;
804
805         return key;
806 }
807
808 static void put_css_set_locked(struct css_set *cset)
809 {
810         struct cgrp_cset_link *link, *tmp_link;
811         struct cgroup_subsys *ss;
812         int ssid;
813
814         lockdep_assert_held(&css_set_lock);
815
816         if (!atomic_dec_and_test(&cset->refcount))
817                 return;
818
819         /* This css_set is dead. unlink it and release cgroup and css refs */
820         for_each_subsys(ss, ssid) {
821                 list_del(&cset->e_cset_node[ssid]);
822                 css_put(cset->subsys[ssid]);
823         }
824         hash_del(&cset->hlist);
825         css_set_count--;
826
827         list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
828                 list_del(&link->cset_link);
829                 list_del(&link->cgrp_link);
830                 if (cgroup_parent(link->cgrp))
831                         cgroup_put(link->cgrp);
832                 kfree(link);
833         }
834
835         kfree_rcu(cset, rcu_head);
836 }
837
838 static void put_css_set(struct css_set *cset)
839 {
840         unsigned long flags;
841
842         /*
843          * Ensure that the refcount doesn't hit zero while any readers
844          * can see it. Similar to atomic_dec_and_lock(), but for an
845          * rwlock
846          */
847         if (atomic_add_unless(&cset->refcount, -1, 1))
848                 return;
849
850         spin_lock_irqsave(&css_set_lock, flags);
851         put_css_set_locked(cset);
852         spin_unlock_irqrestore(&css_set_lock, flags);
853 }
854
855 /*
856  * refcounted get/put for css_set objects
857  */
858 static inline void get_css_set(struct css_set *cset)
859 {
860         atomic_inc(&cset->refcount);
861 }
862
863 /**
864  * compare_css_sets - helper function for find_existing_css_set().
865  * @cset: candidate css_set being tested
866  * @old_cset: existing css_set for a task
867  * @new_cgrp: cgroup that's being entered by the task
868  * @template: desired set of css pointers in css_set (pre-calculated)
869  *
870  * Returns true if "cset" matches "old_cset" except for the hierarchy
871  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
872  */
873 static bool compare_css_sets(struct css_set *cset,
874                              struct css_set *old_cset,
875                              struct cgroup *new_cgrp,
876                              struct cgroup_subsys_state *template[])
877 {
878         struct list_head *l1, *l2;
879
880         /*
881          * On the default hierarchy, there can be csets which are
882          * associated with the same set of cgroups but different csses.
883          * Let's first ensure that csses match.
884          */
885         if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
886                 return false;
887
888         /*
889          * Compare cgroup pointers in order to distinguish between
890          * different cgroups in hierarchies.  As different cgroups may
891          * share the same effective css, this comparison is always
892          * necessary.
893          */
894         l1 = &cset->cgrp_links;
895         l2 = &old_cset->cgrp_links;
896         while (1) {
897                 struct cgrp_cset_link *link1, *link2;
898                 struct cgroup *cgrp1, *cgrp2;
899
900                 l1 = l1->next;
901                 l2 = l2->next;
902                 /* See if we reached the end - both lists are equal length. */
903                 if (l1 == &cset->cgrp_links) {
904                         BUG_ON(l2 != &old_cset->cgrp_links);
905                         break;
906                 } else {
907                         BUG_ON(l2 == &old_cset->cgrp_links);
908                 }
909                 /* Locate the cgroups associated with these links. */
910                 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
911                 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
912                 cgrp1 = link1->cgrp;
913                 cgrp2 = link2->cgrp;
914                 /* Hierarchies should be linked in the same order. */
915                 BUG_ON(cgrp1->root != cgrp2->root);
916
917                 /*
918                  * If this hierarchy is the hierarchy of the cgroup
919                  * that's changing, then we need to check that this
920                  * css_set points to the new cgroup; if it's any other
921                  * hierarchy, then this css_set should point to the
922                  * same cgroup as the old css_set.
923                  */
924                 if (cgrp1->root == new_cgrp->root) {
925                         if (cgrp1 != new_cgrp)
926                                 return false;
927                 } else {
928                         if (cgrp1 != cgrp2)
929                                 return false;
930                 }
931         }
932         return true;
933 }
934
935 /**
936  * find_existing_css_set - init css array and find the matching css_set
937  * @old_cset: the css_set that we're using before the cgroup transition
938  * @cgrp: the cgroup that we're moving into
939  * @template: out param for the new set of csses, should be clear on entry
940  */
941 static struct css_set *find_existing_css_set(struct css_set *old_cset,
942                                         struct cgroup *cgrp,
943                                         struct cgroup_subsys_state *template[])
944 {
945         struct cgroup_root *root = cgrp->root;
946         struct cgroup_subsys *ss;
947         struct css_set *cset;
948         unsigned long key;
949         int i;
950
951         /*
952          * Build the set of subsystem state objects that we want to see in the
953          * new css_set. while subsystems can change globally, the entries here
954          * won't change, so no need for locking.
955          */
956         for_each_subsys(ss, i) {
957                 if (root->subsys_mask & (1UL << i)) {
958                         /*
959                          * @ss is in this hierarchy, so we want the
960                          * effective css from @cgrp.
961                          */
962                         template[i] = cgroup_e_css(cgrp, ss);
963                 } else {
964                         /*
965                          * @ss is not in this hierarchy, so we don't want
966                          * to change the css.
967                          */
968                         template[i] = old_cset->subsys[i];
969                 }
970         }
971
972         key = css_set_hash(template);
973         hash_for_each_possible(css_set_table, cset, hlist, key) {
974                 if (!compare_css_sets(cset, old_cset, cgrp, template))
975                         continue;
976
977                 /* This css_set matches what we need */
978                 return cset;
979         }
980
981         /* No existing cgroup group matched */
982         return NULL;
983 }
984
985 static void free_cgrp_cset_links(struct list_head *links_to_free)
986 {
987         struct cgrp_cset_link *link, *tmp_link;
988
989         list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
990                 list_del(&link->cset_link);
991                 kfree(link);
992         }
993 }
994
995 /**
996  * allocate_cgrp_cset_links - allocate cgrp_cset_links
997  * @count: the number of links to allocate
998  * @tmp_links: list_head the allocated links are put on
999  *
1000  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1001  * through ->cset_link.  Returns 0 on success or -errno.
1002  */
1003 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1004 {
1005         struct cgrp_cset_link *link;
1006         int i;
1007
1008         INIT_LIST_HEAD(tmp_links);
1009
1010         for (i = 0; i < count; i++) {
1011                 link = kzalloc(sizeof(*link), GFP_KERNEL);
1012                 if (!link) {
1013                         free_cgrp_cset_links(tmp_links);
1014                         return -ENOMEM;
1015                 }
1016                 list_add(&link->cset_link, tmp_links);
1017         }
1018         return 0;
1019 }
1020
1021 /**
1022  * link_css_set - a helper function to link a css_set to a cgroup
1023  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1024  * @cset: the css_set to be linked
1025  * @cgrp: the destination cgroup
1026  */
1027 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1028                          struct cgroup *cgrp)
1029 {
1030         struct cgrp_cset_link *link;
1031
1032         BUG_ON(list_empty(tmp_links));
1033
1034         if (cgroup_on_dfl(cgrp))
1035                 cset->dfl_cgrp = cgrp;
1036
1037         link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1038         link->cset = cset;
1039         link->cgrp = cgrp;
1040
1041         /*
1042          * Always add links to the tail of the lists so that the lists are
1043          * in choronological order.
1044          */
1045         list_move_tail(&link->cset_link, &cgrp->cset_links);
1046         list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1047
1048         if (cgroup_parent(cgrp))
1049                 cgroup_get(cgrp);
1050 }
1051
1052 /**
1053  * find_css_set - return a new css_set with one cgroup updated
1054  * @old_cset: the baseline css_set
1055  * @cgrp: the cgroup to be updated
1056  *
1057  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1058  * substituted into the appropriate hierarchy.
1059  */
1060 static struct css_set *find_css_set(struct css_set *old_cset,
1061                                     struct cgroup *cgrp)
1062 {
1063         struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1064         struct css_set *cset;
1065         struct list_head tmp_links;
1066         struct cgrp_cset_link *link;
1067         struct cgroup_subsys *ss;
1068         unsigned long key;
1069         int ssid;
1070
1071         lockdep_assert_held(&cgroup_mutex);
1072
1073         /* First see if we already have a cgroup group that matches
1074          * the desired set */
1075         spin_lock_irq(&css_set_lock);
1076         cset = find_existing_css_set(old_cset, cgrp, template);
1077         if (cset)
1078                 get_css_set(cset);
1079         spin_unlock_irq(&css_set_lock);
1080
1081         if (cset)
1082                 return cset;
1083
1084         cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1085         if (!cset)
1086                 return NULL;
1087
1088         /* Allocate all the cgrp_cset_link objects that we'll need */
1089         if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1090                 kfree(cset);
1091                 return NULL;
1092         }
1093
1094         atomic_set(&cset->refcount, 1);
1095         INIT_LIST_HEAD(&cset->cgrp_links);
1096         INIT_LIST_HEAD(&cset->tasks);
1097         INIT_LIST_HEAD(&cset->mg_tasks);
1098         INIT_LIST_HEAD(&cset->mg_preload_node);
1099         INIT_LIST_HEAD(&cset->mg_node);
1100         INIT_LIST_HEAD(&cset->task_iters);
1101         INIT_HLIST_NODE(&cset->hlist);
1102
1103         /* Copy the set of subsystem state objects generated in
1104          * find_existing_css_set() */
1105         memcpy(cset->subsys, template, sizeof(cset->subsys));
1106
1107         spin_lock_irq(&css_set_lock);
1108         /* Add reference counts and links from the new css_set. */
1109         list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1110                 struct cgroup *c = link->cgrp;
1111
1112                 if (c->root == cgrp->root)
1113                         c = cgrp;
1114                 link_css_set(&tmp_links, cset, c);
1115         }
1116
1117         BUG_ON(!list_empty(&tmp_links));
1118
1119         css_set_count++;
1120
1121         /* Add @cset to the hash table */
1122         key = css_set_hash(cset->subsys);
1123         hash_add(css_set_table, &cset->hlist, key);
1124
1125         for_each_subsys(ss, ssid) {
1126                 struct cgroup_subsys_state *css = cset->subsys[ssid];
1127
1128                 list_add_tail(&cset->e_cset_node[ssid],
1129                               &css->cgroup->e_csets[ssid]);
1130                 css_get(css);
1131         }
1132
1133         spin_unlock_irq(&css_set_lock);
1134
1135         return cset;
1136 }
1137
1138 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1139 {
1140         struct cgroup *root_cgrp = kf_root->kn->priv;
1141
1142         return root_cgrp->root;
1143 }
1144
1145 static int cgroup_init_root_id(struct cgroup_root *root)
1146 {
1147         int id;
1148
1149         lockdep_assert_held(&cgroup_mutex);
1150
1151         id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1152         if (id < 0)
1153                 return id;
1154
1155         root->hierarchy_id = id;
1156         return 0;
1157 }
1158
1159 static void cgroup_exit_root_id(struct cgroup_root *root)
1160 {
1161         lockdep_assert_held(&cgroup_mutex);
1162
1163         if (root->hierarchy_id) {
1164                 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1165                 root->hierarchy_id = 0;
1166         }
1167 }
1168
1169 static void cgroup_free_root(struct cgroup_root *root)
1170 {
1171         if (root) {
1172                 /* hierarchy ID should already have been released */
1173                 WARN_ON_ONCE(root->hierarchy_id);
1174
1175                 idr_destroy(&root->cgroup_idr);
1176                 kfree(root);
1177         }
1178 }
1179
1180 static void cgroup_destroy_root(struct cgroup_root *root)
1181 {
1182         struct cgroup *cgrp = &root->cgrp;
1183         struct cgrp_cset_link *link, *tmp_link;
1184
1185         cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1186
1187         BUG_ON(atomic_read(&root->nr_cgrps));
1188         BUG_ON(!list_empty(&cgrp->self.children));
1189
1190         /* Rebind all subsystems back to the default hierarchy */
1191         WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1192
1193         /*
1194          * Release all the links from cset_links to this hierarchy's
1195          * root cgroup
1196          */
1197         spin_lock_irq(&css_set_lock);
1198
1199         list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1200                 list_del(&link->cset_link);
1201                 list_del(&link->cgrp_link);
1202                 kfree(link);
1203         }
1204
1205         spin_unlock_irq(&css_set_lock);
1206
1207         if (!list_empty(&root->root_list)) {
1208                 list_del(&root->root_list);
1209                 cgroup_root_count--;
1210         }
1211
1212         cgroup_exit_root_id(root);
1213
1214         mutex_unlock(&cgroup_mutex);
1215
1216         kernfs_destroy_root(root->kf_root);
1217         cgroup_free_root(root);
1218 }
1219
1220 /*
1221  * look up cgroup associated with current task's cgroup namespace on the
1222  * specified hierarchy
1223  */
1224 static struct cgroup *
1225 current_cgns_cgroup_from_root(struct cgroup_root *root)
1226 {
1227         struct cgroup *res = NULL;
1228         struct css_set *cset;
1229
1230         lockdep_assert_held(&css_set_lock);
1231
1232         rcu_read_lock();
1233
1234         cset = current->nsproxy->cgroup_ns->root_cset;
1235         if (cset == &init_css_set) {
1236                 res = &root->cgrp;
1237         } else {
1238                 struct cgrp_cset_link *link;
1239
1240                 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1241                         struct cgroup *c = link->cgrp;
1242
1243                         if (c->root == root) {
1244                                 res = c;
1245                                 break;
1246                         }
1247                 }
1248         }
1249         rcu_read_unlock();
1250
1251         BUG_ON(!res);
1252         return res;
1253 }
1254
1255 /* look up cgroup associated with given css_set on the specified hierarchy */
1256 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1257                                             struct cgroup_root *root)
1258 {
1259         struct cgroup *res = NULL;
1260
1261         lockdep_assert_held(&cgroup_mutex);
1262         lockdep_assert_held(&css_set_lock);
1263
1264         if (cset == &init_css_set) {
1265                 res = &root->cgrp;
1266         } else {
1267                 struct cgrp_cset_link *link;
1268
1269                 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1270                         struct cgroup *c = link->cgrp;
1271
1272                         if (c->root == root) {
1273                                 res = c;
1274                                 break;
1275                         }
1276                 }
1277         }
1278
1279         BUG_ON(!res);
1280         return res;
1281 }
1282
1283 /*
1284  * Return the cgroup for "task" from the given hierarchy. Must be
1285  * called with cgroup_mutex and css_set_lock held.
1286  */
1287 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1288                                             struct cgroup_root *root)
1289 {
1290         /*
1291          * No need to lock the task - since we hold cgroup_mutex the
1292          * task can't change groups, so the only thing that can happen
1293          * is that it exits and its css is set back to init_css_set.
1294          */
1295         return cset_cgroup_from_root(task_css_set(task), root);
1296 }
1297
1298 /*
1299  * A task must hold cgroup_mutex to modify cgroups.
1300  *
1301  * Any task can increment and decrement the count field without lock.
1302  * So in general, code holding cgroup_mutex can't rely on the count
1303  * field not changing.  However, if the count goes to zero, then only
1304  * cgroup_attach_task() can increment it again.  Because a count of zero
1305  * means that no tasks are currently attached, therefore there is no
1306  * way a task attached to that cgroup can fork (the other way to
1307  * increment the count).  So code holding cgroup_mutex can safely
1308  * assume that if the count is zero, it will stay zero. Similarly, if
1309  * a task holds cgroup_mutex on a cgroup with zero count, it
1310  * knows that the cgroup won't be removed, as cgroup_rmdir()
1311  * needs that mutex.
1312  *
1313  * A cgroup can only be deleted if both its 'count' of using tasks
1314  * is zero, and its list of 'children' cgroups is empty.  Since all
1315  * tasks in the system use _some_ cgroup, and since there is always at
1316  * least one task in the system (init, pid == 1), therefore, root cgroup
1317  * always has either children cgroups and/or using tasks.  So we don't
1318  * need a special hack to ensure that root cgroup cannot be deleted.
1319  *
1320  * P.S.  One more locking exception.  RCU is used to guard the
1321  * update of a tasks cgroup pointer by cgroup_attach_task()
1322  */
1323
1324 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1325 static const struct file_operations proc_cgroupstats_operations;
1326
1327 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1328                               char *buf)
1329 {
1330         struct cgroup_subsys *ss = cft->ss;
1331
1332         if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1333             !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1334                 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1335                          cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1336                          cft->name);
1337         else
1338                 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1339         return buf;
1340 }
1341
1342 /**
1343  * cgroup_file_mode - deduce file mode of a control file
1344  * @cft: the control file in question
1345  *
1346  * S_IRUGO for read, S_IWUSR for write.
1347  */
1348 static umode_t cgroup_file_mode(const struct cftype *cft)
1349 {
1350         umode_t mode = 0;
1351
1352         if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1353                 mode |= S_IRUGO;
1354
1355         if (cft->write_u64 || cft->write_s64 || cft->write) {
1356                 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1357                         mode |= S_IWUGO;
1358                 else
1359                         mode |= S_IWUSR;
1360         }
1361
1362         return mode;
1363 }
1364
1365 /**
1366  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1367  * @subtree_control: the new subtree_control mask to consider
1368  * @this_ss_mask: available subsystems
1369  *
1370  * On the default hierarchy, a subsystem may request other subsystems to be
1371  * enabled together through its ->depends_on mask.  In such cases, more
1372  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1373  *
1374  * This function calculates which subsystems need to be enabled if
1375  * @subtree_control is to be applied while restricted to @this_ss_mask.
1376  */
1377 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1378 {
1379         u16 cur_ss_mask = subtree_control;
1380         struct cgroup_subsys *ss;
1381         int ssid;
1382
1383         lockdep_assert_held(&cgroup_mutex);
1384
1385         cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1386
1387         while (true) {
1388                 u16 new_ss_mask = cur_ss_mask;
1389
1390                 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1391                         new_ss_mask |= ss->depends_on;
1392                 } while_each_subsys_mask();
1393
1394                 /*
1395                  * Mask out subsystems which aren't available.  This can
1396                  * happen only if some depended-upon subsystems were bound
1397                  * to non-default hierarchies.
1398                  */
1399                 new_ss_mask &= this_ss_mask;
1400
1401                 if (new_ss_mask == cur_ss_mask)
1402                         break;
1403                 cur_ss_mask = new_ss_mask;
1404         }
1405
1406         return cur_ss_mask;
1407 }
1408
1409 /**
1410  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1411  * @kn: the kernfs_node being serviced
1412  *
1413  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1414  * the method finishes if locking succeeded.  Note that once this function
1415  * returns the cgroup returned by cgroup_kn_lock_live() may become
1416  * inaccessible any time.  If the caller intends to continue to access the
1417  * cgroup, it should pin it before invoking this function.
1418  */
1419 static void cgroup_kn_unlock(struct kernfs_node *kn)
1420 {
1421         struct cgroup *cgrp;
1422
1423         if (kernfs_type(kn) == KERNFS_DIR)
1424                 cgrp = kn->priv;
1425         else
1426                 cgrp = kn->parent->priv;
1427
1428         mutex_unlock(&cgroup_mutex);
1429
1430         kernfs_unbreak_active_protection(kn);
1431         cgroup_put(cgrp);
1432 }
1433
1434 /**
1435  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1436  * @kn: the kernfs_node being serviced
1437  * @drain_offline: perform offline draining on the cgroup
1438  *
1439  * This helper is to be used by a cgroup kernfs method currently servicing
1440  * @kn.  It breaks the active protection, performs cgroup locking and
1441  * verifies that the associated cgroup is alive.  Returns the cgroup if
1442  * alive; otherwise, %NULL.  A successful return should be undone by a
1443  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1444  * cgroup is drained of offlining csses before return.
1445  *
1446  * Any cgroup kernfs method implementation which requires locking the
1447  * associated cgroup should use this helper.  It avoids nesting cgroup
1448  * locking under kernfs active protection and allows all kernfs operations
1449  * including self-removal.
1450  */
1451 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn,
1452                                           bool drain_offline)
1453 {
1454         struct cgroup *cgrp;
1455
1456         if (kernfs_type(kn) == KERNFS_DIR)
1457                 cgrp = kn->priv;
1458         else
1459                 cgrp = kn->parent->priv;
1460
1461         /*
1462          * We're gonna grab cgroup_mutex which nests outside kernfs
1463          * active_ref.  cgroup liveliness check alone provides enough
1464          * protection against removal.  Ensure @cgrp stays accessible and
1465          * break the active_ref protection.
1466          */
1467         if (!cgroup_tryget(cgrp))
1468                 return NULL;
1469         kernfs_break_active_protection(kn);
1470
1471         if (drain_offline)
1472                 cgroup_lock_and_drain_offline(cgrp);
1473         else
1474                 mutex_lock(&cgroup_mutex);
1475
1476         if (!cgroup_is_dead(cgrp))
1477                 return cgrp;
1478
1479         cgroup_kn_unlock(kn);
1480         return NULL;
1481 }
1482
1483 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1484 {
1485         char name[CGROUP_FILE_NAME_MAX];
1486
1487         lockdep_assert_held(&cgroup_mutex);
1488
1489         if (cft->file_offset) {
1490                 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1491                 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1492
1493                 spin_lock_irq(&cgroup_file_kn_lock);
1494                 cfile->kn = NULL;
1495                 spin_unlock_irq(&cgroup_file_kn_lock);
1496         }
1497
1498         kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1499 }
1500
1501 /**
1502  * css_clear_dir - remove subsys files in a cgroup directory
1503  * @css: taget css
1504  */
1505 static void css_clear_dir(struct cgroup_subsys_state *css)
1506 {
1507         struct cgroup *cgrp = css->cgroup;
1508         struct cftype *cfts;
1509
1510         if (!(css->flags & CSS_VISIBLE))
1511                 return;
1512
1513         css->flags &= ~CSS_VISIBLE;
1514
1515         list_for_each_entry(cfts, &css->ss->cfts, node)
1516                 cgroup_addrm_files(css, cgrp, cfts, false);
1517 }
1518
1519 /**
1520  * css_populate_dir - create subsys files in a cgroup directory
1521  * @css: target css
1522  *
1523  * On failure, no file is added.
1524  */
1525 static int css_populate_dir(struct cgroup_subsys_state *css)
1526 {
1527         struct cgroup *cgrp = css->cgroup;
1528         struct cftype *cfts, *failed_cfts;
1529         int ret;
1530
1531         if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1532                 return 0;
1533
1534         if (!css->ss) {
1535                 if (cgroup_on_dfl(cgrp))
1536                         cfts = cgroup_dfl_base_files;
1537                 else
1538                         cfts = cgroup_legacy_base_files;
1539
1540                 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1541         }
1542
1543         list_for_each_entry(cfts, &css->ss->cfts, node) {
1544                 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1545                 if (ret < 0) {
1546                         failed_cfts = cfts;
1547                         goto err;
1548                 }
1549         }
1550
1551         css->flags |= CSS_VISIBLE;
1552
1553         return 0;
1554 err:
1555         list_for_each_entry(cfts, &css->ss->cfts, node) {
1556                 if (cfts == failed_cfts)
1557                         break;
1558                 cgroup_addrm_files(css, cgrp, cfts, false);
1559         }
1560         return ret;
1561 }
1562
1563 static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1564 {
1565         struct cgroup *dcgrp = &dst_root->cgrp;
1566         struct cgroup_subsys *ss;
1567         int ssid, i, ret;
1568
1569         lockdep_assert_held(&cgroup_mutex);
1570
1571         do_each_subsys_mask(ss, ssid, ss_mask) {
1572                 /*
1573                  * If @ss has non-root csses attached to it, can't move.
1574                  * If @ss is an implicit controller, it is exempt from this
1575                  * rule and can be stolen.
1576                  */
1577                 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1578                     !ss->implicit_on_dfl)
1579                         return -EBUSY;
1580
1581                 /* can't move between two non-dummy roots either */
1582                 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1583                         return -EBUSY;
1584         } while_each_subsys_mask();
1585
1586         do_each_subsys_mask(ss, ssid, ss_mask) {
1587                 struct cgroup_root *src_root = ss->root;
1588                 struct cgroup *scgrp = &src_root->cgrp;
1589                 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1590                 struct css_set *cset;
1591
1592                 WARN_ON(!css || cgroup_css(dcgrp, ss));
1593
1594                 /* disable from the source */
1595                 src_root->subsys_mask &= ~(1 << ssid);
1596                 WARN_ON(cgroup_apply_control(scgrp));
1597                 cgroup_finalize_control(scgrp, 0);
1598
1599                 /* rebind */
1600                 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1601                 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1602                 ss->root = dst_root;
1603                 css->cgroup = dcgrp;
1604
1605                 spin_lock_irq(&css_set_lock);
1606                 hash_for_each(css_set_table, i, cset, hlist)
1607                         list_move_tail(&cset->e_cset_node[ss->id],
1608                                        &dcgrp->e_csets[ss->id]);
1609                 spin_unlock_irq(&css_set_lock);
1610
1611                 /* default hierarchy doesn't enable controllers by default */
1612                 dst_root->subsys_mask |= 1 << ssid;
1613                 if (dst_root == &cgrp_dfl_root) {
1614                         static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1615                 } else {
1616                         dcgrp->subtree_control |= 1 << ssid;
1617                         static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1618                 }
1619
1620                 ret = cgroup_apply_control(dcgrp);
1621                 if (ret)
1622                         pr_warn("partial failure to rebind %s controller (err=%d)\n",
1623                                 ss->name, ret);
1624
1625                 if (ss->bind)
1626                         ss->bind(css);
1627         } while_each_subsys_mask();
1628
1629         kernfs_activate(dcgrp->kn);
1630         return 0;
1631 }
1632
1633 static int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1634                             struct kernfs_root *kf_root)
1635 {
1636         int len = 0;
1637         char *buf = NULL;
1638         struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1639         struct cgroup *ns_cgroup;
1640
1641         buf = kmalloc(PATH_MAX, GFP_KERNEL);
1642         if (!buf)
1643                 return -ENOMEM;
1644
1645         spin_lock_irq(&css_set_lock);
1646         ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1647         len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1648         spin_unlock_irq(&css_set_lock);
1649
1650         if (len >= PATH_MAX)
1651                 len = -ERANGE;
1652         else if (len > 0) {
1653                 seq_escape(sf, buf, " \t\n\\");
1654                 len = 0;
1655         }
1656         kfree(buf);
1657         return len;
1658 }
1659
1660 static int cgroup_show_options(struct seq_file *seq,
1661                                struct kernfs_root *kf_root)
1662 {
1663         struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1664         struct cgroup_subsys *ss;
1665         int ssid;
1666
1667         if (root != &cgrp_dfl_root)
1668                 for_each_subsys(ss, ssid)
1669                         if (root->subsys_mask & (1 << ssid))
1670                                 seq_show_option(seq, ss->legacy_name, NULL);
1671         if (root->flags & CGRP_ROOT_NOPREFIX)
1672                 seq_puts(seq, ",noprefix");
1673         if (root->flags & CGRP_ROOT_XATTR)
1674                 seq_puts(seq, ",xattr");
1675
1676         spin_lock(&release_agent_path_lock);
1677         if (strlen(root->release_agent_path))
1678                 seq_show_option(seq, "release_agent",
1679                                 root->release_agent_path);
1680         spin_unlock(&release_agent_path_lock);
1681
1682         if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1683                 seq_puts(seq, ",clone_children");
1684         if (strlen(root->name))
1685                 seq_show_option(seq, "name", root->name);
1686         return 0;
1687 }
1688
1689 struct cgroup_sb_opts {
1690         u16 subsys_mask;
1691         unsigned int flags;
1692         char *release_agent;
1693         bool cpuset_clone_children;
1694         char *name;
1695         /* User explicitly requested empty subsystem */
1696         bool none;
1697 };
1698
1699 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1700 {
1701         char *token, *o = data;
1702         bool all_ss = false, one_ss = false;
1703         u16 mask = U16_MAX;
1704         struct cgroup_subsys *ss;
1705         int nr_opts = 0;
1706         int i;
1707
1708 #ifdef CONFIG_CPUSETS
1709         mask = ~((u16)1 << cpuset_cgrp_id);
1710 #endif
1711
1712         memset(opts, 0, sizeof(*opts));
1713
1714         while ((token = strsep(&o, ",")) != NULL) {
1715                 nr_opts++;
1716
1717                 if (!*token)
1718                         return -EINVAL;
1719                 if (!strcmp(token, "none")) {
1720                         /* Explicitly have no subsystems */
1721                         opts->none = true;
1722                         continue;
1723                 }
1724                 if (!strcmp(token, "all")) {
1725                         /* Mutually exclusive option 'all' + subsystem name */
1726                         if (one_ss)
1727                                 return -EINVAL;
1728                         all_ss = true;
1729                         continue;
1730                 }
1731                 if (!strcmp(token, "noprefix")) {
1732                         opts->flags |= CGRP_ROOT_NOPREFIX;
1733                         continue;
1734                 }
1735                 if (!strcmp(token, "clone_children")) {
1736                         opts->cpuset_clone_children = true;
1737                         continue;
1738                 }
1739                 if (!strcmp(token, "xattr")) {
1740                         opts->flags |= CGRP_ROOT_XATTR;
1741                         continue;
1742                 }
1743                 if (!strncmp(token, "release_agent=", 14)) {
1744                         /* Specifying two release agents is forbidden */
1745                         if (opts->release_agent)
1746                                 return -EINVAL;
1747                         opts->release_agent =
1748                                 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1749                         if (!opts->release_agent)
1750                                 return -ENOMEM;
1751                         continue;
1752                 }
1753                 if (!strncmp(token, "name=", 5)) {
1754                         const char *name = token + 5;
1755                         /* Can't specify an empty name */
1756                         if (!strlen(name))
1757                                 return -EINVAL;
1758                         /* Must match [\w.-]+ */
1759                         for (i = 0; i < strlen(name); i++) {
1760                                 char c = name[i];
1761                                 if (isalnum(c))
1762                                         continue;
1763                                 if ((c == '.') || (c == '-') || (c == '_'))
1764                                         continue;
1765                                 return -EINVAL;
1766                         }
1767                         /* Specifying two names is forbidden */
1768                         if (opts->name)
1769                                 return -EINVAL;
1770                         opts->name = kstrndup(name,
1771                                               MAX_CGROUP_ROOT_NAMELEN - 1,
1772                                               GFP_KERNEL);
1773                         if (!opts->name)
1774                                 return -ENOMEM;
1775
1776                         continue;
1777                 }
1778
1779                 for_each_subsys(ss, i) {
1780                         if (strcmp(token, ss->legacy_name))
1781                                 continue;
1782                         if (!cgroup_ssid_enabled(i))
1783                                 continue;
1784                         if (cgroup_ssid_no_v1(i))
1785                                 continue;
1786
1787                         /* Mutually exclusive option 'all' + subsystem name */
1788                         if (all_ss)
1789                                 return -EINVAL;
1790                         opts->subsys_mask |= (1 << i);
1791                         one_ss = true;
1792
1793                         break;
1794                 }
1795                 if (i == CGROUP_SUBSYS_COUNT)
1796                         return -ENOENT;
1797         }
1798
1799         /*
1800          * If the 'all' option was specified select all the subsystems,
1801          * otherwise if 'none', 'name=' and a subsystem name options were
1802          * not specified, let's default to 'all'
1803          */
1804         if (all_ss || (!one_ss && !opts->none && !opts->name))
1805                 for_each_subsys(ss, i)
1806                         if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
1807                                 opts->subsys_mask |= (1 << i);
1808
1809         /*
1810          * We either have to specify by name or by subsystems. (So all
1811          * empty hierarchies must have a name).
1812          */
1813         if (!opts->subsys_mask && !opts->name)
1814                 return -EINVAL;
1815
1816         /*
1817          * Option noprefix was introduced just for backward compatibility
1818          * with the old cpuset, so we allow noprefix only if mounting just
1819          * the cpuset subsystem.
1820          */
1821         if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1822                 return -EINVAL;
1823
1824         /* Can't specify "none" and some subsystems */
1825         if (opts->subsys_mask && opts->none)
1826                 return -EINVAL;
1827
1828         return 0;
1829 }
1830
1831 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1832 {
1833         int ret = 0;
1834         struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1835         struct cgroup_sb_opts opts;
1836         u16 added_mask, removed_mask;
1837
1838         if (root == &cgrp_dfl_root) {
1839                 pr_err("remount is not allowed\n");
1840                 return -EINVAL;
1841         }
1842
1843         cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1844
1845         /* See what subsystems are wanted */
1846         ret = parse_cgroupfs_options(data, &opts);
1847         if (ret)
1848                 goto out_unlock;
1849
1850         if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1851                 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1852                         task_tgid_nr(current), current->comm);
1853
1854         added_mask = opts.subsys_mask & ~root->subsys_mask;
1855         removed_mask = root->subsys_mask & ~opts.subsys_mask;
1856
1857         /* Don't allow flags or name to change at remount */
1858         if ((opts.flags ^ root->flags) ||
1859             (opts.name && strcmp(opts.name, root->name))) {
1860                 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1861                        opts.flags, opts.name ?: "", root->flags, root->name);
1862                 ret = -EINVAL;
1863                 goto out_unlock;
1864         }
1865
1866         /* remounting is not allowed for populated hierarchies */
1867         if (!list_empty(&root->cgrp.self.children)) {
1868                 ret = -EBUSY;
1869                 goto out_unlock;
1870         }
1871
1872         ret = rebind_subsystems(root, added_mask);
1873         if (ret)
1874                 goto out_unlock;
1875
1876         WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1877
1878         if (opts.release_agent) {
1879                 spin_lock(&release_agent_path_lock);
1880                 strcpy(root->release_agent_path, opts.release_agent);
1881                 spin_unlock(&release_agent_path_lock);
1882         }
1883  out_unlock:
1884         kfree(opts.release_agent);
1885         kfree(opts.name);
1886         mutex_unlock(&cgroup_mutex);
1887         return ret;
1888 }
1889
1890 /*
1891  * To reduce the fork() overhead for systems that are not actually using
1892  * their cgroups capability, we don't maintain the lists running through
1893  * each css_set to its tasks until we see the list actually used - in other
1894  * words after the first mount.
1895  */
1896 static bool use_task_css_set_links __read_mostly;
1897
1898 static void cgroup_enable_task_cg_lists(void)
1899 {
1900         struct task_struct *p, *g;
1901
1902         spin_lock_irq(&css_set_lock);
1903
1904         if (use_task_css_set_links)
1905                 goto out_unlock;
1906
1907         use_task_css_set_links = true;
1908
1909         /*
1910          * We need tasklist_lock because RCU is not safe against
1911          * while_each_thread(). Besides, a forking task that has passed
1912          * cgroup_post_fork() without seeing use_task_css_set_links = 1
1913          * is not guaranteed to have its child immediately visible in the
1914          * tasklist if we walk through it with RCU.
1915          */
1916         read_lock(&tasklist_lock);
1917         do_each_thread(g, p) {
1918                 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1919                              task_css_set(p) != &init_css_set);
1920
1921                 /*
1922                  * We should check if the process is exiting, otherwise
1923                  * it will race with cgroup_exit() in that the list
1924                  * entry won't be deleted though the process has exited.
1925                  * Do it while holding siglock so that we don't end up
1926                  * racing against cgroup_exit().
1927                  *
1928                  * Interrupts were already disabled while acquiring
1929                  * the css_set_lock, so we do not need to disable it
1930                  * again when acquiring the sighand->siglock here.
1931                  */
1932                 spin_lock(&p->sighand->siglock);
1933                 if (!(p->flags & PF_EXITING)) {
1934                         struct css_set *cset = task_css_set(p);
1935
1936                         if (!css_set_populated(cset))
1937                                 css_set_update_populated(cset, true);
1938                         list_add_tail(&p->cg_list, &cset->tasks);
1939                         get_css_set(cset);
1940                 }
1941                 spin_unlock(&p->sighand->siglock);
1942         } while_each_thread(g, p);
1943         read_unlock(&tasklist_lock);
1944 out_unlock:
1945         spin_unlock_irq(&css_set_lock);
1946 }
1947
1948 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1949 {
1950         struct cgroup_subsys *ss;
1951         int ssid;
1952
1953         INIT_LIST_HEAD(&cgrp->self.sibling);
1954         INIT_LIST_HEAD(&cgrp->self.children);
1955         INIT_LIST_HEAD(&cgrp->cset_links);
1956         INIT_LIST_HEAD(&cgrp->pidlists);
1957         mutex_init(&cgrp->pidlist_mutex);
1958         cgrp->self.cgroup = cgrp;
1959         cgrp->self.flags |= CSS_ONLINE;
1960
1961         for_each_subsys(ss, ssid)
1962                 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1963
1964         init_waitqueue_head(&cgrp->offline_waitq);
1965         INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1966 }
1967
1968 static void init_cgroup_root(struct cgroup_root *root,
1969                              struct cgroup_sb_opts *opts)
1970 {
1971         struct cgroup *cgrp = &root->cgrp;
1972
1973         INIT_LIST_HEAD(&root->root_list);
1974         atomic_set(&root->nr_cgrps, 1);
1975         cgrp->root = root;
1976         init_cgroup_housekeeping(cgrp);
1977         idr_init(&root->cgroup_idr);
1978
1979         root->flags = opts->flags;
1980         if (opts->release_agent)
1981                 strcpy(root->release_agent_path, opts->release_agent);
1982         if (opts->name)
1983                 strcpy(root->name, opts->name);
1984         if (opts->cpuset_clone_children)
1985                 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1986 }
1987
1988 static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1989 {
1990         LIST_HEAD(tmp_links);
1991         struct cgroup *root_cgrp = &root->cgrp;
1992         struct css_set *cset;
1993         int i, ret;
1994
1995         lockdep_assert_held(&cgroup_mutex);
1996
1997         ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1998         if (ret < 0)
1999                 goto out;
2000         root_cgrp->id = ret;
2001         root_cgrp->ancestor_ids[0] = ret;
2002
2003         ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
2004                               GFP_KERNEL);
2005         if (ret)
2006                 goto out;
2007
2008         /*
2009          * We're accessing css_set_count without locking css_set_lock here,
2010          * but that's OK - it can only be increased by someone holding
2011          * cgroup_lock, and that's us.  Later rebinding may disable
2012          * controllers on the default hierarchy and thus create new csets,
2013          * which can't be more than the existing ones.  Allocate 2x.
2014          */
2015         ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2016         if (ret)
2017                 goto cancel_ref;
2018
2019         ret = cgroup_init_root_id(root);
2020         if (ret)
2021                 goto cancel_ref;
2022
2023         root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
2024                                            KERNFS_ROOT_CREATE_DEACTIVATED,
2025                                            root_cgrp);
2026         if (IS_ERR(root->kf_root)) {
2027                 ret = PTR_ERR(root->kf_root);
2028                 goto exit_root_id;
2029         }
2030         root_cgrp->kn = root->kf_root->kn;
2031
2032         ret = css_populate_dir(&root_cgrp->self);
2033         if (ret)
2034                 goto destroy_root;
2035
2036         ret = rebind_subsystems(root, ss_mask);
2037         if (ret)
2038                 goto destroy_root;
2039
2040         /*
2041          * There must be no failure case after here, since rebinding takes
2042          * care of subsystems' refcounts, which are explicitly dropped in
2043          * the failure exit path.
2044          */
2045         list_add(&root->root_list, &cgroup_roots);
2046         cgroup_root_count++;
2047
2048         /*
2049          * Link the root cgroup in this hierarchy into all the css_set
2050          * objects.
2051          */
2052         spin_lock_irq(&css_set_lock);
2053         hash_for_each(css_set_table, i, cset, hlist) {
2054                 link_css_set(&tmp_links, cset, root_cgrp);
2055                 if (css_set_populated(cset))
2056                         cgroup_update_populated(root_cgrp, true);
2057         }
2058         spin_unlock_irq(&css_set_lock);
2059
2060         BUG_ON(!list_empty(&root_cgrp->self.children));
2061         BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2062
2063         kernfs_activate(root_cgrp->kn);
2064         ret = 0;
2065         goto out;
2066
2067 destroy_root:
2068         kernfs_destroy_root(root->kf_root);
2069         root->kf_root = NULL;
2070 exit_root_id:
2071         cgroup_exit_root_id(root);
2072 cancel_ref:
2073         percpu_ref_exit(&root_cgrp->self.refcnt);
2074 out:
2075         free_cgrp_cset_links(&tmp_links);
2076         return ret;
2077 }
2078
2079 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2080                          int flags, const char *unused_dev_name,
2081                          void *data)
2082 {
2083         bool is_v2 = fs_type == &cgroup2_fs_type;
2084         struct super_block *pinned_sb = NULL;
2085         struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2086         struct cgroup_subsys *ss;
2087         struct cgroup_root *root;
2088         struct cgroup_sb_opts opts;
2089         struct dentry *dentry;
2090         int ret;
2091         int i;
2092         bool new_sb;
2093
2094         get_cgroup_ns(ns);
2095
2096         /* Check if the caller has permission to mount. */
2097         if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2098                 put_cgroup_ns(ns);
2099                 return ERR_PTR(-EPERM);
2100         }
2101
2102         /*
2103          * The first time anyone tries to mount a cgroup, enable the list
2104          * linking each css_set to its tasks and fix up all existing tasks.
2105          */
2106         if (!use_task_css_set_links)
2107                 cgroup_enable_task_cg_lists();
2108
2109         if (is_v2) {
2110                 if (data) {
2111                         pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2112                         put_cgroup_ns(ns);
2113                         return ERR_PTR(-EINVAL);
2114                 }
2115                 cgrp_dfl_visible = true;
2116                 root = &cgrp_dfl_root;
2117                 cgroup_get(&root->cgrp);
2118                 goto out_mount;
2119         }
2120
2121         cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
2122
2123         /* First find the desired set of subsystems */
2124         ret = parse_cgroupfs_options(data, &opts);
2125         if (ret)
2126                 goto out_unlock;
2127
2128         /*
2129          * Destruction of cgroup root is asynchronous, so subsystems may
2130          * still be dying after the previous unmount.  Let's drain the
2131          * dying subsystems.  We just need to ensure that the ones
2132          * unmounted previously finish dying and don't care about new ones
2133          * starting.  Testing ref liveliness is good enough.
2134          */
2135         for_each_subsys(ss, i) {
2136                 if (!(opts.subsys_mask & (1 << i)) ||
2137                     ss->root == &cgrp_dfl_root)
2138                         continue;
2139
2140                 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2141                         mutex_unlock(&cgroup_mutex);
2142                         msleep(10);
2143                         ret = restart_syscall();
2144                         goto out_free;
2145                 }
2146                 cgroup_put(&ss->root->cgrp);
2147         }
2148
2149         for_each_root(root) {
2150                 bool name_match = false;
2151
2152                 if (root == &cgrp_dfl_root)
2153                         continue;
2154
2155                 /*
2156                  * If we asked for a name then it must match.  Also, if
2157                  * name matches but sybsys_mask doesn't, we should fail.
2158                  * Remember whether name matched.
2159                  */
2160                 if (opts.name) {
2161                         if (strcmp(opts.name, root->name))
2162                                 continue;
2163                         name_match = true;
2164                 }
2165
2166                 /*
2167                  * If we asked for subsystems (or explicitly for no
2168                  * subsystems) then they must match.
2169                  */
2170                 if ((opts.subsys_mask || opts.none) &&
2171                     (opts.subsys_mask != root->subsys_mask)) {
2172                         if (!name_match)
2173                                 continue;
2174                         ret = -EBUSY;
2175                         goto out_unlock;
2176                 }
2177
2178                 if (root->flags ^ opts.flags)
2179                         pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2180
2181                 /*
2182                  * We want to reuse @root whose lifetime is governed by its
2183                  * ->cgrp.  Let's check whether @root is alive and keep it
2184                  * that way.  As cgroup_kill_sb() can happen anytime, we
2185                  * want to block it by pinning the sb so that @root doesn't
2186                  * get killed before mount is complete.
2187                  *
2188                  * With the sb pinned, tryget_live can reliably indicate
2189                  * whether @root can be reused.  If it's being killed,
2190                  * drain it.  We can use wait_queue for the wait but this
2191                  * path is super cold.  Let's just sleep a bit and retry.
2192                  */
2193                 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2194                 if (IS_ERR(pinned_sb) ||
2195                     !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2196                         mutex_unlock(&cgroup_mutex);
2197                         if (!IS_ERR_OR_NULL(pinned_sb))
2198                                 deactivate_super(pinned_sb);
2199                         msleep(10);
2200                         ret = restart_syscall();
2201                         goto out_free;
2202                 }
2203
2204                 ret = 0;
2205                 goto out_unlock;
2206         }
2207
2208         /*
2209          * No such thing, create a new one.  name= matching without subsys
2210          * specification is allowed for already existing hierarchies but we
2211          * can't create new one without subsys specification.
2212          */
2213         if (!opts.subsys_mask && !opts.none) {
2214                 ret = -EINVAL;
2215                 goto out_unlock;
2216         }
2217
2218         /*
2219          * We know this subsystem has not yet been bound.  Users in a non-init
2220          * user namespace may only mount hierarchies with no bound subsystems,
2221          * i.e. 'none,name=user1'
2222          */
2223         if (!opts.none && !capable(CAP_SYS_ADMIN)) {
2224                 ret = -EPERM;
2225                 goto out_unlock;
2226         }
2227
2228         root = kzalloc(sizeof(*root), GFP_KERNEL);
2229         if (!root) {
2230                 ret = -ENOMEM;
2231                 goto out_unlock;
2232         }
2233
2234         init_cgroup_root(root, &opts);
2235
2236         ret = cgroup_setup_root(root, opts.subsys_mask);
2237         if (ret)
2238                 cgroup_free_root(root);
2239
2240 out_unlock:
2241         mutex_unlock(&cgroup_mutex);
2242 out_free:
2243         kfree(opts.release_agent);
2244         kfree(opts.name);
2245
2246         if (ret) {
2247                 put_cgroup_ns(ns);
2248                 return ERR_PTR(ret);
2249         }
2250 out_mount:
2251         dentry = kernfs_mount(fs_type, flags, root->kf_root,
2252                               is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2253                               &new_sb);
2254
2255         /*
2256          * In non-init cgroup namespace, instead of root cgroup's
2257          * dentry, we return the dentry corresponding to the
2258          * cgroupns->root_cgrp.
2259          */
2260         if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2261                 struct dentry *nsdentry;
2262                 struct cgroup *cgrp;
2263
2264                 mutex_lock(&cgroup_mutex);
2265                 spin_lock_irq(&css_set_lock);
2266
2267                 cgrp = cset_cgroup_from_root(ns->root_cset, root);
2268
2269                 spin_unlock_irq(&css_set_lock);
2270                 mutex_unlock(&cgroup_mutex);
2271
2272                 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2273                 dput(dentry);
2274                 dentry = nsdentry;
2275         }
2276
2277         if (IS_ERR(dentry) || !new_sb)
2278                 cgroup_put(&root->cgrp);
2279
2280         /*
2281          * If @pinned_sb, we're reusing an existing root and holding an
2282          * extra ref on its sb.  Mount is complete.  Put the extra ref.
2283          */
2284         if (pinned_sb) {
2285                 WARN_ON(new_sb);
2286                 deactivate_super(pinned_sb);
2287         }
2288
2289         put_cgroup_ns(ns);
2290         return dentry;
2291 }
2292
2293 static void cgroup_kill_sb(struct super_block *sb)
2294 {
2295         struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2296         struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2297
2298         /*
2299          * If @root doesn't have any mounts or children, start killing it.
2300          * This prevents new mounts by disabling percpu_ref_tryget_live().
2301          * cgroup_mount() may wait for @root's release.
2302          *
2303          * And don't kill the default root.
2304          */
2305         if (!list_empty(&root->cgrp.self.children) ||
2306             root == &cgrp_dfl_root)
2307                 cgroup_put(&root->cgrp);
2308         else
2309                 percpu_ref_kill(&root->cgrp.self.refcnt);
2310
2311         kernfs_kill_sb(sb);
2312 }
2313
2314 static struct file_system_type cgroup_fs_type = {
2315         .name = "cgroup",
2316         .mount = cgroup_mount,
2317         .kill_sb = cgroup_kill_sb,
2318         .fs_flags = FS_USERNS_MOUNT,
2319 };
2320
2321 static struct file_system_type cgroup2_fs_type = {
2322         .name = "cgroup2",
2323         .mount = cgroup_mount,
2324         .kill_sb = cgroup_kill_sb,
2325         .fs_flags = FS_USERNS_MOUNT,
2326 };
2327
2328 static char *cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2329                                    struct cgroup_namespace *ns)
2330 {
2331         struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2332         int ret;
2333
2334         ret = kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2335         if (ret < 0 || ret >= buflen)
2336                 return NULL;
2337         return buf;
2338 }
2339
2340 char *cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2341                      struct cgroup_namespace *ns)
2342 {
2343         char *ret;
2344
2345         mutex_lock(&cgroup_mutex);
2346         spin_lock_irq(&css_set_lock);
2347
2348         ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2349
2350         spin_unlock_irq(&css_set_lock);
2351         mutex_unlock(&cgroup_mutex);
2352
2353         return ret;
2354 }
2355 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2356
2357 /**
2358  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2359  * @task: target task
2360  * @buf: the buffer to write the path into
2361  * @buflen: the length of the buffer
2362  *
2363  * Determine @task's cgroup on the first (the one with the lowest non-zero
2364  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2365  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2366  * cgroup controller callbacks.
2367  *
2368  * Return value is the same as kernfs_path().
2369  */
2370 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2371 {
2372         struct cgroup_root *root;
2373         struct cgroup *cgrp;
2374         int hierarchy_id = 1;
2375         char *path = NULL;
2376
2377         mutex_lock(&cgroup_mutex);
2378         spin_lock_irq(&css_set_lock);
2379
2380         root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2381
2382         if (root) {
2383                 cgrp = task_cgroup_from_root(task, root);
2384                 path = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2385         } else {
2386                 /* if no hierarchy exists, everyone is in "/" */
2387                 if (strlcpy(buf, "/", buflen) < buflen)
2388                         path = buf;
2389         }
2390
2391         spin_unlock_irq(&css_set_lock);
2392         mutex_unlock(&cgroup_mutex);
2393         return path;
2394 }
2395 EXPORT_SYMBOL_GPL(task_cgroup_path);
2396
2397 /* used to track tasks and other necessary states during migration */
2398 struct cgroup_taskset {
2399         /* the src and dst cset list running through cset->mg_node */
2400         struct list_head        src_csets;
2401         struct list_head        dst_csets;
2402
2403         /* the subsys currently being processed */
2404         int                     ssid;
2405
2406         /*
2407          * Fields for cgroup_taskset_*() iteration.
2408          *
2409          * Before migration is committed, the target migration tasks are on
2410          * ->mg_tasks of the csets on ->src_csets.  After, on ->mg_tasks of
2411          * the csets on ->dst_csets.  ->csets point to either ->src_csets
2412          * or ->dst_csets depending on whether migration is committed.
2413          *
2414          * ->cur_csets and ->cur_task point to the current task position
2415          * during iteration.
2416          */
2417         struct list_head        *csets;
2418         struct css_set          *cur_cset;
2419         struct task_struct      *cur_task;
2420 };
2421
2422 #define CGROUP_TASKSET_INIT(tset)       (struct cgroup_taskset){        \
2423         .src_csets              = LIST_HEAD_INIT(tset.src_csets),       \
2424         .dst_csets              = LIST_HEAD_INIT(tset.dst_csets),       \
2425         .csets                  = &tset.src_csets,                      \
2426 }
2427
2428 /**
2429  * cgroup_taskset_add - try to add a migration target task to a taskset
2430  * @task: target task
2431  * @tset: target taskset
2432  *
2433  * Add @task, which is a migration target, to @tset.  This function becomes
2434  * noop if @task doesn't need to be migrated.  @task's css_set should have
2435  * been added as a migration source and @task->cg_list will be moved from
2436  * the css_set's tasks list to mg_tasks one.
2437  */
2438 static void cgroup_taskset_add(struct task_struct *task,
2439                                struct cgroup_taskset *tset)
2440 {
2441         struct css_set *cset;
2442
2443         lockdep_assert_held(&css_set_lock);
2444
2445         /* @task either already exited or can't exit until the end */
2446         if (task->flags & PF_EXITING)
2447                 return;
2448
2449         /* leave @task alone if post_fork() hasn't linked it yet */
2450         if (list_empty(&task->cg_list))
2451                 return;
2452
2453         cset = task_css_set(task);
2454         if (!cset->mg_src_cgrp)
2455                 return;
2456
2457         list_move_tail(&task->cg_list, &cset->mg_tasks);
2458         if (list_empty(&cset->mg_node))
2459                 list_add_tail(&cset->mg_node, &tset->src_csets);
2460         if (list_empty(&cset->mg_dst_cset->mg_node))
2461                 list_move_tail(&cset->mg_dst_cset->mg_node,
2462                                &tset->dst_csets);
2463 }
2464
2465 /**
2466  * cgroup_taskset_first - reset taskset and return the first task
2467  * @tset: taskset of interest
2468  * @dst_cssp: output variable for the destination css
2469  *
2470  * @tset iteration is initialized and the first task is returned.
2471  */
2472 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2473                                          struct cgroup_subsys_state **dst_cssp)
2474 {
2475         tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2476         tset->cur_task = NULL;
2477
2478         return cgroup_taskset_next(tset, dst_cssp);
2479 }
2480
2481 /**
2482  * cgroup_taskset_next - iterate to the next task in taskset
2483  * @tset: taskset of interest
2484  * @dst_cssp: output variable for the destination css
2485  *
2486  * Return the next task in @tset.  Iteration must have been initialized
2487  * with cgroup_taskset_first().
2488  */
2489 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2490                                         struct cgroup_subsys_state **dst_cssp)
2491 {
2492         struct css_set *cset = tset->cur_cset;
2493         struct task_struct *task = tset->cur_task;
2494
2495         while (&cset->mg_node != tset->csets) {
2496                 if (!task)
2497                         task = list_first_entry(&cset->mg_tasks,
2498                                                 struct task_struct, cg_list);
2499                 else
2500                         task = list_next_entry(task, cg_list);
2501
2502                 if (&task->cg_list != &cset->mg_tasks) {
2503                         tset->cur_cset = cset;
2504                         tset->cur_task = task;
2505
2506                         /*
2507                          * This function may be called both before and
2508                          * after cgroup_taskset_migrate().  The two cases
2509                          * can be distinguished by looking at whether @cset
2510                          * has its ->mg_dst_cset set.
2511                          */
2512                         if (cset->mg_dst_cset)
2513                                 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2514                         else
2515                                 *dst_cssp = cset->subsys[tset->ssid];
2516
2517                         return task;
2518                 }
2519
2520                 cset = list_next_entry(cset, mg_node);
2521                 task = NULL;
2522         }
2523
2524         return NULL;
2525 }
2526
2527 /**
2528  * cgroup_taskset_migrate - migrate a taskset
2529  * @tset: taget taskset
2530  * @root: cgroup root the migration is taking place on
2531  *
2532  * Migrate tasks in @tset as setup by migration preparation functions.
2533  * This function fails iff one of the ->can_attach callbacks fails and
2534  * guarantees that either all or none of the tasks in @tset are migrated.
2535  * @tset is consumed regardless of success.
2536  */
2537 static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2538                                   struct cgroup_root *root)
2539 {
2540         struct cgroup_subsys *ss;
2541         struct task_struct *task, *tmp_task;
2542         struct css_set *cset, *tmp_cset;
2543         int ssid, failed_ssid, ret;
2544
2545         /* methods shouldn't be called if no task is actually migrating */
2546         if (list_empty(&tset->src_csets))
2547                 return 0;
2548
2549         /* check that we can legitimately attach to the cgroup */
2550         do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2551                 if (ss->can_attach) {
2552                         tset->ssid = ssid;
2553                         ret = ss->can_attach(tset);
2554                         if (ret) {
2555                                 failed_ssid = ssid;
2556                                 goto out_cancel_attach;
2557                         }
2558                 }
2559         } while_each_subsys_mask();
2560
2561         /*
2562          * Now that we're guaranteed success, proceed to move all tasks to
2563          * the new cgroup.  There are no failure cases after here, so this
2564          * is the commit point.
2565          */
2566         spin_lock_irq(&css_set_lock);
2567         list_for_each_entry(cset, &tset->src_csets, mg_node) {
2568                 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2569                         struct css_set *from_cset = task_css_set(task);
2570                         struct css_set *to_cset = cset->mg_dst_cset;
2571
2572                         get_css_set(to_cset);
2573                         css_set_move_task(task, from_cset, to_cset, true);
2574                         put_css_set_locked(from_cset);
2575                 }
2576         }
2577         spin_unlock_irq(&css_set_lock);
2578
2579         /*
2580          * Migration is committed, all target tasks are now on dst_csets.
2581          * Nothing is sensitive to fork() after this point.  Notify
2582          * controllers that migration is complete.
2583          */
2584         tset->csets = &tset->dst_csets;
2585
2586         do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2587                 if (ss->attach) {
2588                         tset->ssid = ssid;
2589                         ss->attach(tset);
2590                 }
2591         } while_each_subsys_mask();
2592
2593         ret = 0;
2594         goto out_release_tset;
2595
2596 out_cancel_attach:
2597         do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2598                 if (ssid == failed_ssid)
2599                         break;
2600                 if (ss->cancel_attach) {
2601                         tset->ssid = ssid;
2602                         ss->cancel_attach(tset);
2603                 }
2604         } while_each_subsys_mask();
2605 out_release_tset:
2606         spin_lock_irq(&css_set_lock);
2607         list_splice_init(&tset->dst_csets, &tset->src_csets);
2608         list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2609                 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2610                 list_del_init(&cset->mg_node);
2611         }
2612         spin_unlock_irq(&css_set_lock);
2613         return ret;
2614 }
2615
2616 /**
2617  * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2618  * @dst_cgrp: destination cgroup to test
2619  *
2620  * On the default hierarchy, except for the root, subtree_control must be
2621  * zero for migration destination cgroups with tasks so that child cgroups
2622  * don't compete against tasks.
2623  */
2624 static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
2625 {
2626         return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
2627                 !dst_cgrp->subtree_control;
2628 }
2629
2630 /**
2631  * cgroup_migrate_finish - cleanup after attach
2632  * @preloaded_csets: list of preloaded css_sets
2633  *
2634  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2635  * those functions for details.
2636  */
2637 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2638 {
2639         struct css_set *cset, *tmp_cset;
2640
2641         lockdep_assert_held(&cgroup_mutex);
2642
2643         spin_lock_irq(&css_set_lock);
2644         list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2645                 cset->mg_src_cgrp = NULL;
2646                 cset->mg_dst_cgrp = NULL;
2647                 cset->mg_dst_cset = NULL;
2648                 list_del_init(&cset->mg_preload_node);
2649                 put_css_set_locked(cset);
2650         }
2651         spin_unlock_irq(&css_set_lock);
2652 }
2653
2654 /**
2655  * cgroup_migrate_add_src - add a migration source css_set
2656  * @src_cset: the source css_set to add
2657  * @dst_cgrp: the destination cgroup
2658  * @preloaded_csets: list of preloaded css_sets
2659  *
2660  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2661  * @src_cset and add it to @preloaded_csets, which should later be cleaned
2662  * up by cgroup_migrate_finish().
2663  *
2664  * This function may be called without holding cgroup_threadgroup_rwsem
2665  * even if the target is a process.  Threads may be created and destroyed
2666  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2667  * into play and the preloaded css_sets are guaranteed to cover all
2668  * migrations.
2669  */
2670 static void cgroup_migrate_add_src(struct css_set *src_cset,
2671                                    struct cgroup *dst_cgrp,
2672                                    struct list_head *preloaded_csets)
2673 {
2674         struct cgroup *src_cgrp;
2675
2676         lockdep_assert_held(&cgroup_mutex);
2677         lockdep_assert_held(&css_set_lock);
2678
2679         /*
2680          * If ->dead, @src_set is associated with one or more dead cgroups
2681          * and doesn't contain any migratable tasks.  Ignore it early so
2682          * that the rest of migration path doesn't get confused by it.
2683          */
2684         if (src_cset->dead)
2685                 return;
2686
2687         src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2688
2689         if (!list_empty(&src_cset->mg_preload_node))
2690                 return;
2691
2692         WARN_ON(src_cset->mg_src_cgrp);
2693         WARN_ON(src_cset->mg_dst_cgrp);
2694         WARN_ON(!list_empty(&src_cset->mg_tasks));
2695         WARN_ON(!list_empty(&src_cset->mg_node));
2696
2697         src_cset->mg_src_cgrp = src_cgrp;
2698         src_cset->mg_dst_cgrp = dst_cgrp;
2699         get_css_set(src_cset);
2700         list_add(&src_cset->mg_preload_node, preloaded_csets);
2701 }
2702
2703 /**
2704  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2705  * @preloaded_csets: list of preloaded source css_sets
2706  *
2707  * Tasks are about to be moved and all the source css_sets have been
2708  * preloaded to @preloaded_csets.  This function looks up and pins all
2709  * destination css_sets, links each to its source, and append them to
2710  * @preloaded_csets.
2711  *
2712  * This function must be called after cgroup_migrate_add_src() has been
2713  * called on each migration source css_set.  After migration is performed
2714  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2715  * @preloaded_csets.
2716  */
2717 static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets)
2718 {
2719         LIST_HEAD(csets);
2720         struct css_set *src_cset, *tmp_cset;
2721
2722         lockdep_assert_held(&cgroup_mutex);
2723
2724         /* look up the dst cset for each src cset and link it to src */
2725         list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2726                 struct css_set *dst_cset;
2727
2728                 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2729                 if (!dst_cset)
2730                         goto err;
2731
2732                 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2733
2734                 /*
2735                  * If src cset equals dst, it's noop.  Drop the src.
2736                  * cgroup_migrate() will skip the cset too.  Note that we
2737                  * can't handle src == dst as some nodes are used by both.
2738                  */
2739                 if (src_cset == dst_cset) {
2740                         src_cset->mg_src_cgrp = NULL;
2741                         src_cset->mg_dst_cgrp = NULL;
2742                         list_del_init(&src_cset->mg_preload_node);
2743                         put_css_set(src_cset);
2744                         put_css_set(dst_cset);
2745                         continue;
2746                 }
2747
2748                 src_cset->mg_dst_cset = dst_cset;
2749
2750                 if (list_empty(&dst_cset->mg_preload_node))
2751                         list_add(&dst_cset->mg_preload_node, &csets);
2752                 else
2753                         put_css_set(dst_cset);
2754         }
2755
2756         list_splice_tail(&csets, preloaded_csets);
2757         return 0;
2758 err:
2759         cgroup_migrate_finish(&csets);
2760         return -ENOMEM;
2761 }
2762
2763 /**
2764  * cgroup_migrate - migrate a process or task to a cgroup
2765  * @leader: the leader of the process or the task to migrate
2766  * @threadgroup: whether @leader points to the whole process or a single task
2767  * @root: cgroup root migration is taking place on
2768  *
2769  * Migrate a process or task denoted by @leader.  If migrating a process,
2770  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2771  * responsible for invoking cgroup_migrate_add_src() and
2772  * cgroup_migrate_prepare_dst() on the targets before invoking this
2773  * function and following up with cgroup_migrate_finish().
2774  *
2775  * As long as a controller's ->can_attach() doesn't fail, this function is
2776  * guaranteed to succeed.  This means that, excluding ->can_attach()
2777  * failure, when migrating multiple targets, the success or failure can be
2778  * decided for all targets by invoking group_migrate_prepare_dst() before
2779  * actually starting migrating.
2780  */
2781 static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2782                           struct cgroup_root *root)
2783 {
2784         struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2785         struct task_struct *task;
2786
2787         /*
2788          * Prevent freeing of tasks while we take a snapshot. Tasks that are
2789          * already PF_EXITING could be freed from underneath us unless we
2790          * take an rcu_read_lock.
2791          */
2792         spin_lock_irq(&css_set_lock);
2793         rcu_read_lock();
2794         task = leader;
2795         do {
2796                 cgroup_taskset_add(task, &tset);
2797                 if (!threadgroup)
2798                         break;
2799         } while_each_thread(leader, task);
2800         rcu_read_unlock();
2801         spin_unlock_irq(&css_set_lock);
2802
2803         return cgroup_taskset_migrate(&tset, root);
2804 }
2805
2806 /**
2807  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2808  * @dst_cgrp: the cgroup to attach to
2809  * @leader: the task or the leader of the threadgroup to be attached
2810  * @threadgroup: attach the whole threadgroup?
2811  *
2812  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2813  */
2814 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2815                               struct task_struct *leader, bool threadgroup)
2816 {
2817         LIST_HEAD(preloaded_csets);
2818         struct task_struct *task;
2819         int ret;
2820
2821         if (!cgroup_may_migrate_to(dst_cgrp))
2822                 return -EBUSY;
2823
2824         /* look up all src csets */
2825         spin_lock_irq(&css_set_lock);
2826         rcu_read_lock();
2827         task = leader;
2828         do {
2829                 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2830                                        &preloaded_csets);
2831                 if (!threadgroup)
2832                         break;
2833         } while_each_thread(leader, task);
2834         rcu_read_unlock();
2835         spin_unlock_irq(&css_set_lock);
2836
2837         /* prepare dst csets and commit */
2838         ret = cgroup_migrate_prepare_dst(&preloaded_csets);
2839         if (!ret)
2840                 ret = cgroup_migrate(leader, threadgroup, dst_cgrp->root);
2841
2842         cgroup_migrate_finish(&preloaded_csets);
2843         return ret;
2844 }
2845
2846 static int cgroup_procs_write_permission(struct task_struct *task,
2847                                          struct cgroup *dst_cgrp,
2848                                          struct kernfs_open_file *of)
2849 {
2850         const struct cred *cred = current_cred();
2851         const struct cred *tcred = get_task_cred(task);
2852         int ret = 0;
2853
2854         /*
2855          * even if we're attaching all tasks in the thread group, we only
2856          * need to check permissions on one of them.
2857          */
2858         if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2859             !uid_eq(cred->euid, tcred->uid) &&
2860             !uid_eq(cred->euid, tcred->suid))
2861                 ret = -EACCES;
2862
2863         if (!ret && cgroup_on_dfl(dst_cgrp)) {
2864                 struct super_block *sb = of->file->f_path.dentry->d_sb;
2865                 struct cgroup *cgrp;
2866                 struct inode *inode;
2867
2868                 spin_lock_irq(&css_set_lock);
2869                 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2870                 spin_unlock_irq(&css_set_lock);
2871
2872                 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2873                         cgrp = cgroup_parent(cgrp);
2874
2875                 ret = -ENOMEM;
2876                 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2877                 if (inode) {
2878                         ret = inode_permission(inode, MAY_WRITE);
2879                         iput(inode);
2880                 }
2881         }
2882
2883         put_cred(tcred);
2884         return ret;
2885 }
2886
2887 /*
2888  * Find the task_struct of the task to attach by vpid and pass it along to the
2889  * function to attach either it or all tasks in its threadgroup. Will lock
2890  * cgroup_mutex and threadgroup.
2891  */
2892 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2893                                     size_t nbytes, loff_t off, bool threadgroup)
2894 {
2895         struct task_struct *tsk;
2896         struct cgroup_subsys *ss;
2897         struct cgroup *cgrp;
2898         pid_t pid;
2899         int ssid, ret;
2900
2901         if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2902                 return -EINVAL;
2903
2904         cgrp = cgroup_kn_lock_live(of->kn, false);
2905         if (!cgrp)
2906                 return -ENODEV;
2907
2908         percpu_down_write(&cgroup_threadgroup_rwsem);
2909         rcu_read_lock();
2910         if (pid) {
2911                 tsk = find_task_by_vpid(pid);
2912                 if (!tsk) {
2913                         ret = -ESRCH;
2914                         goto out_unlock_rcu;
2915                 }
2916         } else {
2917                 tsk = current;
2918         }
2919
2920         if (threadgroup)
2921                 tsk = tsk->group_leader;
2922
2923         /*
2924          * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2925          * trapped in a cpuset, or RT worker may be born in a cgroup
2926          * with no rt_runtime allocated.  Just say no.
2927          */
2928         if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2929                 ret = -EINVAL;
2930                 goto out_unlock_rcu;
2931         }
2932
2933         get_task_struct(tsk);
2934         rcu_read_unlock();
2935
2936         ret = cgroup_procs_write_permission(tsk, cgrp, of);
2937         if (!ret)
2938                 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2939
2940         put_task_struct(tsk);
2941         goto out_unlock_threadgroup;
2942
2943 out_unlock_rcu:
2944         rcu_read_unlock();
2945 out_unlock_threadgroup:
2946         percpu_up_write(&cgroup_threadgroup_rwsem);
2947         for_each_subsys(ss, ssid)
2948                 if (ss->post_attach)
2949                         ss->post_attach();
2950         cgroup_kn_unlock(of->kn);
2951         return ret ?: nbytes;
2952 }
2953
2954 /**
2955  * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2956  * @from: attach to all cgroups of a given task
2957  * @tsk: the task to be attached
2958  */
2959 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2960 {
2961         struct cgroup_root *root;
2962         int retval = 0;
2963
2964         mutex_lock(&cgroup_mutex);
2965         for_each_root(root) {
2966                 struct cgroup *from_cgrp;
2967
2968                 if (root == &cgrp_dfl_root)
2969                         continue;
2970
2971                 spin_lock_irq(&css_set_lock);
2972                 from_cgrp = task_cgroup_from_root(from, root);
2973                 spin_unlock_irq(&css_set_lock);
2974
2975                 retval = cgroup_attach_task(from_cgrp, tsk, false);
2976                 if (retval)
2977                         break;
2978         }
2979         mutex_unlock(&cgroup_mutex);
2980
2981         return retval;
2982 }
2983 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2984
2985 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2986                                   char *buf, size_t nbytes, loff_t off)
2987 {
2988         return __cgroup_procs_write(of, buf, nbytes, off, false);
2989 }
2990
2991 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2992                                   char *buf, size_t nbytes, loff_t off)
2993 {
2994         return __cgroup_procs_write(of, buf, nbytes, off, true);
2995 }
2996
2997 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2998                                           char *buf, size_t nbytes, loff_t off)
2999 {
3000         struct cgroup *cgrp;
3001
3002         BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
3003
3004         cgrp = cgroup_kn_lock_live(of->kn, false);
3005         if (!cgrp)
3006                 return -ENODEV;
3007         spin_lock(&release_agent_path_lock);
3008         strlcpy(cgrp->root->release_agent_path, strstrip(buf),
3009                 sizeof(cgrp->root->release_agent_path));
3010         spin_unlock(&release_agent_path_lock);
3011         cgroup_kn_unlock(of->kn);
3012         return nbytes;
3013 }
3014
3015 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
3016 {
3017         struct cgroup *cgrp = seq_css(seq)->cgroup;
3018
3019         spin_lock(&release_agent_path_lock);
3020         seq_puts(seq, cgrp->root->release_agent_path);
3021         spin_unlock(&release_agent_path_lock);
3022         seq_putc(seq, '\n');
3023         return 0;
3024 }
3025
3026 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
3027 {
3028         seq_puts(seq, "0\n");
3029         return 0;
3030 }
3031
3032 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
3033 {
3034         struct cgroup_subsys *ss;
3035         bool printed = false;
3036         int ssid;
3037
3038         do_each_subsys_mask(ss, ssid, ss_mask) {
3039                 if (printed)
3040                         seq_putc(seq, ' ');
3041                 seq_printf(seq, "%s", ss->name);
3042                 printed = true;
3043         } while_each_subsys_mask();
3044         if (printed)
3045                 seq_putc(seq, '\n');
3046 }
3047
3048 /* show controllers which are enabled from the parent */
3049 static int cgroup_controllers_show(struct seq_file *seq, void *v)
3050 {
3051         struct cgroup *cgrp = seq_css(seq)->cgroup;
3052
3053         cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3054         return 0;
3055 }
3056
3057 /* show controllers which are enabled for a given cgroup's children */
3058 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3059 {
3060         struct cgroup *cgrp = seq_css(seq)->cgroup;
3061
3062         cgroup_print_ss_mask(seq, cgrp->subtree_control);
3063         return 0;
3064 }
3065
3066 /**
3067  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3068  * @cgrp: root of the subtree to update csses for
3069  *
3070  * @cgrp's control masks have changed and its subtree's css associations
3071  * need to be updated accordingly.  This function looks up all css_sets
3072  * which are attached to the subtree, creates the matching updated css_sets
3073  * and migrates the tasks to the new ones.
3074  */
3075 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3076 {
3077         LIST_HEAD(preloaded_csets);
3078         struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
3079         struct cgroup_subsys_state *d_css;
3080         struct cgroup *dsct;
3081         struct css_set *src_cset;
3082         int ret;
3083
3084         lockdep_assert_held(&cgroup_mutex);
3085
3086         percpu_down_write(&cgroup_threadgroup_rwsem);
3087
3088         /* look up all csses currently attached to @cgrp's subtree */
3089         spin_lock_irq(&css_set_lock);
3090         cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3091                 struct cgrp_cset_link *link;
3092
3093                 list_for_each_entry(link, &dsct->cset_links, cset_link)
3094                         cgroup_migrate_add_src(link->cset, dsct,
3095                                                &preloaded_csets);
3096         }
3097         spin_unlock_irq(&css_set_lock);
3098
3099         /* NULL dst indicates self on default hierarchy */
3100         ret = cgroup_migrate_prepare_dst(&preloaded_csets);
3101         if (ret)
3102                 goto out_finish;
3103
3104         spin_lock_irq(&css_set_lock);
3105         list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
3106                 struct task_struct *task, *ntask;
3107
3108                 /* src_csets precede dst_csets, break on the first dst_cset */
3109                 if (!src_cset->mg_src_cgrp)
3110                         break;
3111
3112                 /* all tasks in src_csets need to be migrated */
3113                 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3114                         cgroup_taskset_add(task, &tset);
3115         }
3116         spin_unlock_irq(&css_set_lock);
3117
3118         ret = cgroup_taskset_migrate(&tset, cgrp->root);
3119 out_finish:
3120         cgroup_migrate_finish(&preloaded_csets);
3121         percpu_up_write(&cgroup_threadgroup_rwsem);
3122         return ret;
3123 }
3124
3125 /**
3126  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3127  * @cgrp: root of the target subtree
3128  *
3129  * Because css offlining is asynchronous, userland may try to re-enable a
3130  * controller while the previous css is still around.  This function grabs
3131  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3132  */
3133 static void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3134         __acquires(&cgroup_mutex)
3135 {
3136         struct cgroup *dsct;
3137         struct cgroup_subsys_state *d_css;
3138         struct cgroup_subsys *ss;
3139         int ssid;
3140
3141 restart:
3142         mutex_lock(&cgroup_mutex);
3143
3144         cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3145                 for_each_subsys(ss, ssid) {
3146                         struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3147                         DEFINE_WAIT(wait);
3148
3149                         if (!css || !percpu_ref_is_dying(&css->refcnt))
3150                                 continue;
3151
3152                         cgroup_get(dsct);
3153                         prepare_to_wait(&dsct->offline_waitq, &wait,
3154                                         TASK_UNINTERRUPTIBLE);
3155
3156                         mutex_unlock(&cgroup_mutex);
3157                         schedule();
3158                         finish_wait(&dsct->offline_waitq, &wait);
3159
3160                         cgroup_put(dsct);
3161                         goto restart;
3162                 }
3163         }
3164 }
3165
3166 /**
3167  * cgroup_save_control - save control masks of a subtree
3168  * @cgrp: root of the target subtree
3169  *
3170  * Save ->subtree_control and ->subtree_ss_mask to the respective old_
3171  * prefixed fields for @cgrp's subtree including @cgrp itself.
3172  */
3173 static void cgroup_save_control(struct cgroup *cgrp)
3174 {
3175         struct cgroup *dsct;
3176         struct cgroup_subsys_state *d_css;
3177
3178         cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3179                 dsct->old_subtree_control = dsct->subtree_control;
3180                 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3181         }
3182 }
3183
3184 /**
3185  * cgroup_propagate_control - refresh control masks of a subtree
3186  * @cgrp: root of the target subtree
3187  *
3188  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3189  * ->subtree_control and propagate controller availability through the
3190  * subtree so that descendants don't have unavailable controllers enabled.
3191  */
3192 static void cgroup_propagate_control(struct cgroup *cgrp)
3193 {
3194         struct cgroup *dsct;
3195         struct cgroup_subsys_state *d_css;
3196
3197         cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3198                 dsct->subtree_control &= cgroup_control(dsct);
3199                 dsct->subtree_ss_mask =
3200                         cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3201                                                     cgroup_ss_mask(dsct));
3202         }
3203 }
3204
3205 /**
3206  * cgroup_restore_control - restore control masks of a subtree
3207  * @cgrp: root of the target subtree
3208  *
3209  * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
3210  * prefixed fields for @cgrp's subtree including @cgrp itself.
3211  */
3212 static void cgroup_restore_control(struct cgroup *cgrp)
3213 {
3214         struct cgroup *dsct;
3215         struct cgroup_subsys_state *d_css;
3216
3217         cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3218                 dsct->subtree_control = dsct->old_subtree_control;
3219                 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3220         }
3221 }
3222
3223 static bool css_visible(struct cgroup_subsys_state *css)
3224 {
3225         struct cgroup_subsys *ss = css->ss;
3226         struct cgroup *cgrp = css->cgroup;
3227
3228         if (cgroup_control(cgrp) & (1 << ss->id))
3229                 return true;
3230         if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3231                 return false;
3232         return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3233 }
3234
3235 /**
3236  * cgroup_apply_control_enable - enable or show csses according to control
3237  * @cgrp: root of the target subtree
3238  *
3239  * Walk @cgrp's subtree and create new csses or make the existing ones
3240  * visible.  A css is created invisible if it's being implicitly enabled
3241  * through dependency.  An invisible css is made visible when the userland
3242  * explicitly enables it.
3243  *
3244  * Returns 0 on success, -errno on failure.  On failure, csses which have
3245  * been processed already aren't cleaned up.  The caller is responsible for
3246  * cleaning up with cgroup_apply_control_disble().
3247  */
3248 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3249 {
3250         struct cgroup *dsct;
3251         struct cgroup_subsys_state *d_css;
3252         struct cgroup_subsys *ss;
3253         int ssid, ret;
3254
3255         cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3256                 for_each_subsys(ss, ssid) {
3257                         struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3258
3259                         WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3260
3261                         if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3262                                 continue;
3263
3264                         if (!css) {
3265                                 css = css_create(dsct, ss);
3266                                 if (IS_ERR(css))
3267                                         return PTR_ERR(css);
3268                         }
3269
3270                         if (css_visible(css)) {
3271                                 ret = css_populate_dir(css);
3272                                 if (ret)
3273                                         return ret;
3274                         }
3275                 }
3276         }
3277
3278         return 0;
3279 }
3280
3281 /**
3282  * cgroup_apply_control_disable - kill or hide csses according to control
3283  * @cgrp: root of the target subtree
3284  *
3285  * Walk @cgrp's subtree and kill and hide csses so that they match
3286  * cgroup_ss_mask() and cgroup_visible_mask().
3287  *
3288  * A css is hidden when the userland requests it to be disabled while other
3289  * subsystems are still depending on it.  The css must not actively control
3290  * resources and be in the vanilla state if it's made visible again later.
3291  * Controllers which may be depended upon should provide ->css_reset() for
3292  * this purpose.
3293  */
3294 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3295 {
3296         struct cgroup *dsct;
3297         struct cgroup_subsys_state *d_css;
3298         struct cgroup_subsys *ss;
3299         int ssid;
3300
3301         cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3302                 for_each_subsys(ss, ssid) {
3303                         struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3304
3305                         WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3306
3307                         if (!css)
3308                                 continue;
3309
3310                         if (css->parent &&
3311                             !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3312                                 kill_css(css);
3313                         } else if (!css_visible(css)) {
3314                                 css_clear_dir(css);
3315                                 if (ss->css_reset)
3316                                         ss->css_reset(css);
3317                         }
3318                 }
3319         }
3320 }
3321
3322 /**
3323  * cgroup_apply_control - apply control mask updates to the subtree
3324  * @cgrp: root of the target subtree
3325  *
3326  * subsystems can be enabled and disabled in a subtree using the following
3327  * steps.
3328  *
3329  * 1. Call cgroup_save_control() to stash the current state.
3330  * 2. Update ->subtree_control masks in the subtree as desired.
3331  * 3. Call cgroup_apply_control() to apply the changes.
3332  * 4. Optionally perform other related operations.
3333  * 5. Call cgroup_finalize_control() to finish up.
3334  *
3335  * This function implements step 3 and propagates the mask changes
3336  * throughout @cgrp's subtree, updates csses accordingly and perform
3337  * process migrations.
3338  */
3339 static int cgroup_apply_control(struct cgroup *cgrp)
3340 {
3341         int ret;
3342
3343         cgroup_propagate_control(cgrp);
3344
3345         ret = cgroup_apply_control_enable(cgrp);
3346         if (ret)
3347                 return ret;
3348
3349         /*
3350          * At this point, cgroup_e_css() results reflect the new csses
3351          * making the following cgroup_update_dfl_csses() properly update
3352          * css associations of all tasks in the subtree.
3353          */
3354         ret = cgroup_update_dfl_csses(cgrp);
3355         if (ret)
3356                 return ret;
3357
3358         return 0;
3359 }
3360
3361 /**
3362  * cgroup_finalize_control - finalize control mask update
3363  * @cgrp: root of the target subtree
3364  * @ret: the result of the update
3365  *
3366  * Finalize control mask update.  See cgroup_apply_control() for more info.
3367  */
3368 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3369 {
3370         if (ret) {
3371                 cgroup_restore_control(cgrp);
3372                 cgroup_propagate_control(cgrp);
3373         }
3374
3375         cgroup_apply_control_disable(cgrp);
3376 }
3377
3378 /* change the enabled child controllers for a cgroup in the default hierarchy */
3379 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3380                                             char *buf, size_t nbytes,
3381                                             loff_t off)
3382 {
3383         u16 enable = 0, disable = 0;
3384         struct cgroup *cgrp, *child;
3385         struct cgroup_subsys *ss;
3386         char *tok;
3387         int ssid, ret;
3388
3389         /*
3390          * Parse input - space separated list of subsystem names prefixed
3391          * with either + or -.
3392          */
3393         buf = strstrip(buf);
3394         while ((tok = strsep(&buf, " "))) {
3395                 if (tok[0] == '\0')
3396                         continue;
3397                 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3398                         if (!cgroup_ssid_enabled(ssid) ||
3399                             strcmp(tok + 1, ss->name))
3400                                 continue;
3401
3402                         if (*tok == '+') {
3403                                 enable |= 1 << ssid;
3404                                 disable &= ~(1 << ssid);
3405                         } else if (*tok == '-') {
3406                                 disable |= 1 << ssid;
3407                                 enable &= ~(1 << ssid);
3408                         } else {
3409                                 return -EINVAL;
3410                         }
3411                         break;
3412                 } while_each_subsys_mask();
3413                 if (ssid == CGROUP_SUBSYS_COUNT)
3414                         return -EINVAL;
3415         }
3416
3417         cgrp = cgroup_kn_lock_live(of->kn, true);
3418         if (!cgrp)
3419                 return -ENODEV;
3420
3421         for_each_subsys(ss, ssid) {
3422                 if (enable & (1 << ssid)) {
3423                         if (cgrp->subtree_control & (1 << ssid)) {
3424                                 enable &= ~(1 << ssid);
3425                                 continue;
3426                         }
3427
3428                         if (!(cgroup_control(cgrp) & (1 << ssid))) {
3429                                 ret = -ENOENT;
3430                                 goto out_unlock;
3431                         }
3432                 } else if (disable & (1 << ssid)) {
3433                         if (!(cgrp->subtree_control & (1 << ssid))) {
3434                                 disable &= ~(1 << ssid);
3435                                 continue;
3436                         }
3437
3438                         /* a child has it enabled? */
3439                         cgroup_for_each_live_child(child, cgrp) {
3440                                 if (child->subtree_control & (1 << ssid)) {
3441                                         ret = -EBUSY;
3442                                         goto out_unlock;
3443                                 }
3444                         }
3445                 }
3446         }
3447
3448         if (!enable && !disable) {
3449                 ret = 0;
3450                 goto out_unlock;
3451         }
3452
3453         /*
3454          * Except for the root, subtree_control must be zero for a cgroup
3455          * with tasks so that child cgroups don't compete against tasks.
3456          */
3457         if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
3458                 ret = -EBUSY;
3459                 goto out_unlock;
3460         }
3461
3462         /* save and update control masks and prepare csses */
3463         cgroup_save_control(cgrp);
3464
3465         cgrp->subtree_control |= enable;
3466         cgrp->subtree_control &= ~disable;
3467
3468         ret = cgroup_apply_control(cgrp);
3469
3470         cgroup_finalize_control(cgrp, ret);
3471
3472         kernfs_activate(cgrp->kn);
3473         ret = 0;
3474 out_unlock:
3475         cgroup_kn_unlock(of->kn);
3476         return ret ?: nbytes;
3477 }
3478
3479 static int cgroup_events_show(struct seq_file *seq, void *v)
3480 {
3481         seq_printf(seq, "populated %d\n",
3482                    cgroup_is_populated(seq_css(seq)->cgroup));
3483         return 0;
3484 }
3485
3486 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3487                                  size_t nbytes, loff_t off)
3488 {
3489         struct cgroup *cgrp = of->kn->parent->priv;
3490         struct cftype *cft = of->kn->priv;
3491         struct cgroup_subsys_state *css;
3492         int ret;
3493
3494         if (cft->write)
3495                 return cft->write(of, buf, nbytes, off);
3496
3497         /*
3498          * kernfs guarantees that a file isn't deleted with operations in
3499          * flight, which means that the matching css is and stays alive and
3500          * doesn't need to be pinned.  The RCU locking is not necessary
3501          * either.  It's just for the convenience of using cgroup_css().
3502          */
3503         rcu_read_lock();
3504         css = cgroup_css(cgrp, cft->ss);
3505         rcu_read_unlock();
3506
3507         if (cft->write_u64) {
3508                 unsigned long long v;
3509                 ret = kstrtoull(buf, 0, &v);
3510                 if (!ret)
3511                         ret = cft->write_u64(css, cft, v);
3512         } else if (cft->write_s64) {
3513                 long long v;
3514                 ret = kstrtoll(buf, 0, &v);
3515                 if (!ret)
3516                         ret = cft->write_s64(css, cft, v);
3517         } else {
3518                 ret = -EINVAL;
3519         }
3520
3521         return ret ?: nbytes;
3522 }
3523
3524 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3525 {
3526         return seq_cft(seq)->seq_start(seq, ppos);
3527 }
3528
3529 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3530 {
3531         return seq_cft(seq)->seq_next(seq, v, ppos);
3532 }
3533
3534 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3535 {
3536         seq_cft(seq)->seq_stop(seq, v);
3537 }
3538
3539 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3540 {
3541         struct cftype *cft = seq_cft(m);
3542         struct cgroup_subsys_state *css = seq_css(m);
3543
3544         if (cft->seq_show)
3545                 return cft->seq_show(m, arg);
3546
3547         if (cft->read_u64)
3548                 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3549         else if (cft->read_s64)
3550                 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3551         else
3552                 return -EINVAL;
3553         return 0;
3554 }
3555
3556 static struct kernfs_ops cgroup_kf_single_ops = {
3557         .atomic_write_len       = PAGE_SIZE,
3558         .write                  = cgroup_file_write,
3559         .seq_show               = cgroup_seqfile_show,
3560 };
3561
3562 static struct kernfs_ops cgroup_kf_ops = {
3563         .atomic_write_len       = PAGE_SIZE,
3564         .write                  = cgroup_file_write,
3565         .seq_start              = cgroup_seqfile_start,
3566         .seq_next               = cgroup_seqfile_next,
3567         .seq_stop               = cgroup_seqfile_stop,
3568         .seq_show               = cgroup_seqfile_show,
3569 };
3570
3571 /*
3572  * cgroup_rename - Only allow simple rename of directories in place.
3573  */
3574 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3575                          const char *new_name_str)
3576 {
3577         struct cgroup *cgrp = kn->priv;
3578         int ret;
3579
3580         if (kernfs_type(kn) != KERNFS_DIR)
3581                 return -ENOTDIR;
3582         if (kn->parent != new_parent)
3583                 return -EIO;
3584
3585         /*
3586          * This isn't a proper migration and its usefulness is very
3587          * limited.  Disallow on the default hierarchy.
3588          */
3589         if (cgroup_on_dfl(cgrp))
3590                 return -EPERM;
3591
3592         /*
3593          * We're gonna grab cgroup_mutex which nests outside kernfs
3594          * active_ref.  kernfs_rename() doesn't require active_ref
3595          * protection.  Break them before grabbing cgroup_mutex.
3596          */
3597         kernfs_break_active_protection(new_parent);
3598         kernfs_break_active_protection(kn);
3599
3600         mutex_lock(&cgroup_mutex);
3601
3602         ret = kernfs_rename(kn, new_parent, new_name_str);
3603
3604         mutex_unlock(&cgroup_mutex);
3605
3606         kernfs_unbreak_active_protection(kn);
3607         kernfs_unbreak_active_protection(new_parent);
3608         return ret;
3609 }
3610
3611 /* set uid and gid of cgroup dirs and files to that of the creator */
3612 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3613 {
3614         struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3615                                .ia_uid = current_fsuid(),
3616                                .ia_gid = current_fsgid(), };
3617
3618         if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3619             gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3620                 return 0;
3621
3622         return kernfs_setattr(kn, &iattr);
3623 }
3624
3625 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3626                            struct cftype *cft)
3627 {
3628         char name[CGROUP_FILE_NAME_MAX];
3629         struct kernfs_node *kn;
3630         struct lock_class_key *key = NULL;
3631         int ret;
3632
3633 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3634         key = &cft->lockdep_key;
3635 #endif
3636         kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3637                                   cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3638                                   NULL, key);
3639         if (IS_ERR(kn))
3640                 return PTR_ERR(kn);
3641
3642         ret = cgroup_kn_set_ugid(kn);
3643         if (ret) {
3644                 kernfs_remove(kn);
3645                 return ret;
3646         }
3647
3648         if (cft->file_offset) {
3649                 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3650
3651                 spin_lock_irq(&cgroup_file_kn_lock);
3652                 cfile->kn = kn;
3653                 spin_unlock_irq(&cgroup_file_kn_lock);
3654         }
3655
3656         return 0;
3657 }
3658
3659 /**
3660  * cgroup_addrm_files - add or remove files to a cgroup directory
3661  * @css: the target css
3662  * @cgrp: the target cgroup (usually css->cgroup)
3663  * @cfts: array of cftypes to be added
3664  * @is_add: whether to add or remove
3665  *
3666  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3667  * For removals, this function never fails.
3668  */
3669 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3670                               struct cgroup *cgrp, struct cftype cfts[],
3671                               bool is_add)
3672 {
3673         struct cftype *cft, *cft_end = NULL;
3674         int ret = 0;
3675
3676         lockdep_assert_held(&cgroup_mutex);
3677
3678 restart:
3679         for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3680                 /* does cft->flags tell us to skip this file on @cgrp? */
3681                 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3682                         continue;
3683                 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3684                         continue;
3685                 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3686                         continue;
3687                 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3688                         continue;
3689
3690                 if (is_add) {
3691                         ret = cgroup_add_file(css, cgrp, cft);
3692                         if (ret) {
3693                                 pr_warn("%s: failed to add %s, err=%d\n",
3694                                         __func__, cft->name, ret);
3695                                 cft_end = cft;
3696                                 is_add = false;
3697                                 goto restart;
3698                         }
3699                 } else {
3700                         cgroup_rm_file(cgrp, cft);
3701                 }
3702         }
3703         return ret;
3704 }
3705
3706 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3707 {
3708         LIST_HEAD(pending);
3709         struct cgroup_subsys *ss = cfts[0].ss;
3710         struct cgroup *root = &ss->root->cgrp;
3711         struct cgroup_subsys_state *css;
3712         int ret = 0;
3713
3714         lockdep_assert_held(&cgroup_mutex);
3715
3716         /* add/rm files for all cgroups created before */
3717         css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3718                 struct cgroup *cgrp = css->cgroup;
3719
3720                 if (!(css->flags & CSS_VISIBLE))
3721                         continue;
3722
3723                 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3724                 if (ret)
3725                         break;
3726         }
3727
3728         if (is_add && !ret)
3729                 kernfs_activate(root->kn);
3730         return ret;
3731 }
3732
3733 static void cgroup_exit_cftypes(struct cftype *cfts)
3734 {
3735         struct cftype *cft;
3736
3737         for (cft = cfts; cft->name[0] != '\0'; cft++) {
3738                 /* free copy for custom atomic_write_len, see init_cftypes() */
3739                 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3740                         kfree(cft->kf_ops);
3741                 cft->kf_ops = NULL;
3742                 cft->ss = NULL;
3743
3744                 /* revert flags set by cgroup core while adding @cfts */
3745                 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3746         }
3747 }
3748
3749 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3750 {
3751         struct cftype *cft;
3752
3753         for (cft = cfts; cft->name[0] != '\0'; cft++) {
3754                 struct kernfs_ops *kf_ops;
3755
3756                 WARN_ON(cft->ss || cft->kf_ops);
3757
3758                 if (cft->seq_start)
3759                         kf_ops = &cgroup_kf_ops;
3760                 else
3761                         kf_ops = &cgroup_kf_single_ops;
3762
3763                 /*
3764                  * Ugh... if @cft wants a custom max_write_len, we need to
3765                  * make a copy of kf_ops to set its atomic_write_len.
3766                  */
3767                 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3768                         kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3769                         if (!kf_ops) {
3770                                 cgroup_exit_cftypes(cfts);
3771                                 return -ENOMEM;
3772                         }
3773                         kf_ops->atomic_write_len = cft->max_write_len;
3774                 }
3775
3776                 cft->kf_ops = kf_ops;
3777                 cft->ss = ss;
3778         }
3779
3780         return 0;
3781 }
3782
3783 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3784 {
3785         lockdep_assert_held(&cgroup_mutex);
3786
3787         if (!cfts || !cfts[0].ss)
3788                 return -ENOENT;
3789
3790         list_del(&cfts->node);
3791         cgroup_apply_cftypes(cfts, false);
3792         cgroup_exit_cftypes(cfts);
3793         return 0;
3794 }
3795
3796 /**
3797  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3798  * @cfts: zero-length name terminated array of cftypes
3799  *
3800  * Unregister @cfts.  Files described by @cfts are removed from all
3801  * existing cgroups and all future cgroups won't have them either.  This
3802  * function can be called anytime whether @cfts' subsys is attached or not.
3803  *
3804  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3805  * registered.
3806  */
3807 int cgroup_rm_cftypes(struct cftype *cfts)
3808 {
3809         int ret;
3810
3811         mutex_lock(&cgroup_mutex);
3812         ret = cgroup_rm_cftypes_locked(cfts);
3813         mutex_unlock(&cgroup_mutex);
3814         return ret;
3815 }
3816
3817 /**
3818  * cgroup_add_cftypes - add an array of cftypes to a subsystem
3819  * @ss: target cgroup subsystem
3820  * @cfts: zero-length name terminated array of cftypes
3821  *
3822  * Register @cfts to @ss.  Files described by @cfts are created for all
3823  * existing cgroups to which @ss is attached and all future cgroups will
3824  * have them too.  This function can be called anytime whether @ss is
3825  * attached or not.
3826  *
3827  * Returns 0 on successful registration, -errno on failure.  Note that this
3828  * function currently returns 0 as long as @cfts registration is successful
3829  * even if some file creation attempts on existing cgroups fail.
3830  */
3831 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3832 {
3833         int ret;
3834
3835         if (!cgroup_ssid_enabled(ss->id))
3836                 return 0;
3837
3838         if (!cfts || cfts[0].name[0] == '\0')
3839                 return 0;
3840
3841         ret = cgroup_init_cftypes(ss, cfts);
3842         if (ret)
3843                 return ret;
3844
3845         mutex_lock(&cgroup_mutex);
3846
3847         list_add_tail(&cfts->node, &ss->cfts);
3848         ret = cgroup_apply_cftypes(cfts, true);
3849         if (ret)
3850                 cgroup_rm_cftypes_locked(cfts);
3851
3852         mutex_unlock(&cgroup_mutex);
3853         return ret;
3854 }
3855
3856 /**
3857  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3858  * @ss: target cgroup subsystem
3859  * @cfts: zero-length name terminated array of cftypes
3860  *
3861  * Similar to cgroup_add_cftypes() but the added files are only used for
3862  * the default hierarchy.
3863  */
3864 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3865 {
3866         struct cftype *cft;
3867
3868         for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3869                 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3870         return cgroup_add_cftypes(ss, cfts);
3871 }
3872
3873 /**
3874  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3875  * @ss: target cgroup subsystem
3876  * @cfts: zero-length name terminated array of cftypes
3877  *
3878  * Similar to cgroup_add_cftypes() but the added files are only used for
3879  * the legacy hierarchies.
3880  */
3881 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3882 {
3883         struct cftype *cft;
3884
3885         for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3886                 cft->flags |= __CFTYPE_NOT_ON_DFL;
3887         return cgroup_add_cftypes(ss, cfts);
3888 }
3889
3890 /**
3891  * cgroup_file_notify - generate a file modified event for a cgroup_file
3892  * @cfile: target cgroup_file
3893  *
3894  * @cfile must have been obtained by setting cftype->file_offset.
3895  */
3896 void cgroup_file_notify(struct cgroup_file *cfile)
3897 {
3898         unsigned long flags;
3899
3900         spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3901         if (cfile->kn)
3902                 kernfs_notify(cfile->kn);
3903         spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3904 }
3905
3906 /**
3907  * cgroup_task_count - count the number of tasks in a cgroup.
3908  * @cgrp: the cgroup in question
3909  *
3910  * Return the number of tasks in the cgroup.
3911  */
3912 static int cgroup_task_count(const struct cgroup *cgrp)
3913 {
3914         int count = 0;
3915         struct cgrp_cset_link *link;
3916
3917         spin_lock_irq(&css_set_lock);
3918         list_for_each_entry(link, &cgrp->cset_links, cset_link)
3919                 count += atomic_read(&link->cset->refcount);
3920         spin_unlock_irq(&css_set_lock);
3921         return count;
3922 }
3923
3924 /**
3925  * css_next_child - find the next child of a given css
3926  * @pos: the current position (%NULL to initiate traversal)
3927  * @parent: css whose children to walk
3928  *
3929  * This function returns the next child of @parent and should be called
3930  * under either cgroup_mutex or RCU read lock.  The only requirement is
3931  * that @parent and @pos are accessible.  The next sibling is guaranteed to
3932  * be returned regardless of their states.
3933  *
3934  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3935  * css which finished ->css_online() is guaranteed to be visible in the
3936  * future iterations and will stay visible until the last reference is put.
3937  * A css which hasn't finished ->css_online() or already finished
3938  * ->css_offline() may show up during traversal.  It's each subsystem's
3939  * responsibility to synchronize against on/offlining.
3940  */
3941 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3942                                            struct cgroup_subsys_state *parent)
3943 {
3944         struct cgroup_subsys_state *next;
3945
3946         cgroup_assert_mutex_or_rcu_locked();
3947
3948         /*
3949          * @pos could already have been unlinked from the sibling list.
3950          * Once a cgroup is removed, its ->sibling.next is no longer
3951          * updated when its next sibling changes.  CSS_RELEASED is set when
3952          * @pos is taken off list, at which time its next pointer is valid,
3953          * and, as releases are serialized, the one pointed to by the next
3954          * pointer is guaranteed to not have started release yet.  This
3955          * implies that if we observe !CSS_RELEASED on @pos in this RCU
3956          * critical section, the one pointed to by its next pointer is
3957          * guaranteed to not have finished its RCU grace period even if we
3958          * have dropped rcu_read_lock() inbetween iterations.
3959          *
3960          * If @pos has CSS_RELEASED set, its next pointer can't be
3961          * dereferenced; however, as each css is given a monotonically
3962          * increasing unique serial number and always appended to the
3963          * sibling list, the next one can be found by walking the parent's
3964          * children until the first css with higher serial number than
3965          * @pos's.  While this path can be slower, it happens iff iteration
3966          * races against release and the race window is very small.
3967          */
3968         if (!pos) {
3969                 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3970         } else if (likely(!(pos->flags & CSS_RELEASED))) {
3971                 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3972         } else {
3973                 list_for_each_entry_rcu(next, &parent->children, sibling)
3974                         if (next->serial_nr > pos->serial_nr)
3975                                 break;
3976         }
3977
3978         /*
3979          * @next, if not pointing to the head, can be dereferenced and is
3980          * the next sibling.
3981          */
3982         if (&next->sibling != &parent->children)
3983                 return next;
3984         return NULL;
3985 }
3986
3987 /**
3988  * css_next_descendant_pre - find the next descendant for pre-order walk
3989  * @pos: the current position (%NULL to initiate traversal)
3990  * @root: css whose descendants to walk
3991  *
3992  * To be used by css_for_each_descendant_pre().  Find the next descendant
3993  * to visit for pre-order traversal of @root's descendants.  @root is
3994  * included in the iteration and the first node to be visited.
3995  *
3996  * While this function requires cgroup_mutex or RCU read locking, it
3997  * doesn't require the whole traversal to be contained in a single critical
3998  * section.  This function will return the correct next descendant as long
3999  * as both @pos and @root are accessible and @pos is a descendant of @root.
4000  *
4001  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4002  * css which finished ->css_online() is guaranteed to be visible in the
4003  * future iterations and will stay visible until the last reference is put.
4004  * A css which hasn't finished ->css_online() or already finished
4005  * ->css_offline() may show up during traversal.  It's each subsystem's
4006  * responsibility to synchronize against on/offlining.
4007  */
4008 struct cgroup_subsys_state *
4009 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4010                         struct cgroup_subsys_state *root)
4011 {
4012         struct cgroup_subsys_state *next;
4013
4014         cgroup_assert_mutex_or_rcu_locked();
4015
4016         /* if first iteration, visit @root */
4017         if (!pos)
4018                 return root;
4019
4020         /* visit the first child if exists */
4021         next = css_next_child(NULL, pos);
4022         if (next)
4023                 return next;
4024
4025         /* no child, visit my or the closest ancestor's next sibling */
4026         while (pos != root) {
4027                 next = css_next_child(pos, pos->parent);
4028                 if (next)
4029                         return next;
4030                 pos = pos->parent;
4031         }
4032
4033         return NULL;
4034 }
4035
4036 /**
4037  * css_rightmost_descendant - return the rightmost descendant of a css
4038  * @pos: css of interest
4039  *
4040  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4041  * is returned.  This can be used during pre-order traversal to skip
4042  * subtree of @pos.
4043  *
4044  * While this function requires cgroup_mutex or RCU read locking, it
4045  * doesn't require the whole traversal to be contained in a single critical
4046  * section.  This function will return the correct rightmost descendant as
4047  * long as @pos is accessible.
4048  */
4049 struct cgroup_subsys_state *
4050 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4051 {
4052         struct cgroup_subsys_state *last, *tmp;
4053
4054         cgroup_assert_mutex_or_rcu_locked();
4055
4056         do {
4057                 last = pos;
4058                 /* ->prev isn't RCU safe, walk ->next till the end */
4059                 pos = NULL;
4060                 css_for_each_child(tmp, last)
4061                         pos = tmp;
4062         } while (pos);
4063
4064         return last;
4065 }
4066
4067 static struct cgroup_subsys_state *
4068 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4069 {
4070         struct cgroup_subsys_state *last;
4071
4072         do {
4073                 last = pos;
4074                 pos = css_next_child(NULL, pos);
4075         } while (pos);
4076
4077         return last;
4078 }
4079
4080 /**
4081  * css_next_descendant_post - find the next descendant for post-order walk
4082  * @pos: the current position (%NULL to initiate traversal)
4083  * @root: css whose descendants to walk
4084  *
4085  * To be used by css_for_each_descendant_post().  Find the next descendant
4086  * to visit for post-order traversal of @root's descendants.  @root is
4087  * included in the iteration and the last node to be visited.
4088  *
4089  * While this function requires cgroup_mutex or RCU read locking, it
4090  * doesn't require the whole traversal to be contained in a single critical
4091  * section.  This function will return the correct next descendant as long
4092  * as both @pos and @cgroup are accessible and @pos is a descendant of
4093  * @cgroup.
4094  *
4095  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4096  * css which finished ->css_online() is guaranteed to be visible in the
4097  * future iterations and will stay visible until the last reference is put.
4098  * A css which hasn't finished ->css_online() or already finished
4099  * ->css_offline() may show up during traversal.  It's each subsystem's
4100  * responsibility to synchronize against on/offlining.
4101  */
4102 struct cgroup_subsys_state *
4103 css_next_descendant_post(struct cgroup_subsys_state *pos,
4104                          struct cgroup_subsys_state *root)
4105 {
4106         struct cgroup_subsys_state *next;
4107
4108         cgroup_assert_mutex_or_rcu_locked();
4109
4110         /* if first iteration, visit leftmost descendant which may be @root */
4111         if (!pos)
4112                 return css_leftmost_descendant(root);
4113
4114         /* if we visited @root, we're done */
4115         if (pos == root)
4116                 return NULL;
4117
4118         /* if there's an unvisited sibling, visit its leftmost descendant */
4119         next = css_next_child(pos, pos->parent);
4120         if (next)
4121                 return css_leftmost_descendant(next);
4122
4123         /* no sibling left, visit parent */
4124         return pos->parent;
4125 }
4126
4127 /**
4128  * css_has_online_children - does a css have online children
4129  * @css: the target css
4130  *
4131  * Returns %true if @css has any online children; otherwise, %false.  This
4132  * function can be called from any context but the caller is responsible
4133  * for synchronizing against on/offlining as necessary.
4134  */
4135 bool css_has_online_children(struct cgroup_subsys_state *css)
4136 {
4137         struct cgroup_subsys_state *child;
4138         bool ret = false;
4139
4140         rcu_read_lock();
4141         css_for_each_child(child, css) {
4142                 if (child->flags & CSS_ONLINE) {
4143                         ret = true;
4144                         break;
4145                 }
4146         }
4147         rcu_read_unlock();
4148         return ret;
4149 }
4150
4151 /**
4152  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4153  * @it: the iterator to advance
4154  *
4155  * Advance @it to the next css_set to walk.
4156  */
4157 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4158 {
4159         struct list_head *l = it->cset_pos;
4160         struct cgrp_cset_link *link;
4161         struct css_set *cset;
4162
4163         lockdep_assert_held(&css_set_lock);
4164
4165         /* Advance to the next non-empty css_set */
4166         do {
4167                 l = l->next;
4168                 if (l == it->cset_head) {
4169                         it->cset_pos = NULL;
4170                         it->task_pos = NULL;
4171                         return;
4172                 }
4173
4174                 if (it->ss) {
4175                         cset = container_of(l, struct css_set,
4176                                             e_cset_node[it->ss->id]);
4177                 } else {
4178                         link = list_entry(l, struct cgrp_cset_link, cset_link);
4179                         cset = link->cset;
4180                 }
4181         } while (!css_set_populated(cset));
4182
4183         it->cset_pos = l;
4184
4185         if (!list_empty(&cset->tasks))
4186                 it->task_pos = cset->tasks.next;
4187         else
4188                 it->task_pos = cset->mg_tasks.next;
4189
4190         it->tasks_head = &cset->tasks;
4191         it->mg_tasks_head = &cset->mg_tasks;
4192
4193         /*
4194          * We don't keep css_sets locked across iteration steps and thus
4195          * need to take steps to ensure that iteration can be resumed after
4196          * the lock is re-acquired.  Iteration is performed at two levels -
4197          * css_sets and tasks in them.
4198          *
4199          * Once created, a css_set never leaves its cgroup lists, so a
4200          * pinned css_set is guaranteed to stay put and we can resume
4201          * iteration afterwards.
4202          *
4203          * Tasks may leave @cset across iteration steps.  This is resolved
4204          * by registering each iterator with the css_set currently being
4205          * walked and making css_set_move_task() advance iterators whose
4206          * next task is leaving.
4207          */
4208         if (it->cur_cset) {
4209                 list_del(&it->iters_node);
4210                 put_css_set_locked(it->cur_cset);
4211         }
4212         get_css_set(cset);
4213         it->cur_cset = cset;
4214         list_add(&it->iters_node, &cset->task_iters);
4215 }
4216
4217 static void css_task_iter_advance(struct css_task_iter *it)
4218 {
4219         struct list_head *l = it->task_pos;
4220
4221         lockdep_assert_held(&css_set_lock);
4222         WARN_ON_ONCE(!l);
4223
4224         /*
4225          * Advance iterator to find next entry.  cset->tasks is consumed
4226          * first and then ->mg_tasks.  After ->mg_tasks, we move onto the
4227          * next cset.
4228          */
4229         l = l->next;
4230
4231         if (l == it->tasks_head)
4232                 l = it->mg_tasks_head->next;
4233
4234         if (l == it->mg_tasks_head)
4235                 css_task_iter_advance_css_set(it);
4236         else
4237                 it->task_pos = l;
4238 }
4239
4240 /**
4241  * css_task_iter_start - initiate task iteration
4242  * @css: the css to walk tasks of
4243  * @it: the task iterator to use
4244  *
4245  * Initiate iteration through the tasks of @css.  The caller can call
4246  * css_task_iter_next() to walk through the tasks until the function
4247  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4248  * called.
4249  */
4250 void css_task_iter_start(struct cgroup_subsys_state *css,
4251                          struct css_task_iter *it)
4252 {
4253         /* no one should try to iterate before mounting cgroups */
4254         WARN_ON_ONCE(!use_task_css_set_links);
4255
4256         memset(it, 0, sizeof(*it));
4257
4258         spin_lock_irq(&css_set_lock);
4259
4260         it->ss = css->ss;
4261
4262         if (it->ss)
4263                 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4264         else
4265                 it->cset_pos = &css->cgroup->cset_links;
4266
4267         it->cset_head = it->cset_pos;
4268
4269         css_task_iter_advance_css_set(it);
4270
4271         spin_unlock_irq(&css_set_lock);
4272 }
4273
4274 /**
4275  * css_task_iter_next - return the next task for the iterator
4276  * @it: the task iterator being iterated
4277  *
4278  * The "next" function for task iteration.  @it should have been
4279  * initialized via css_task_iter_start().  Returns NULL when the iteration
4280  * reaches the end.
4281  */
4282 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4283 {
4284         if (it->cur_task) {
4285                 put_task_struct(it->cur_task);
4286                 it->cur_task = NULL;
4287         }
4288
4289         spin_lock_irq(&css_set_lock);
4290
4291         if (it->task_pos) {
4292                 it->cur_task = list_entry(it->task_pos, struct task_struct,
4293                                           cg_list);
4294                 get_task_struct(it->cur_task);
4295                 css_task_iter_advance(it);
4296         }
4297
4298         spin_unlock_irq(&css_set_lock);
4299
4300         return it->cur_task;
4301 }
4302
4303 /**
4304  * css_task_iter_end - finish task iteration
4305  * @it: the task iterator to finish
4306  *
4307  * Finish task iteration started by css_task_iter_start().
4308  */
4309 void css_task_iter_end(struct css_task_iter *it)
4310 {
4311         if (it->cur_cset) {
4312                 spin_lock_irq(&css_set_lock);
4313                 list_del(&it->iters_node);
4314                 put_css_set_locked(it->cur_cset);
4315                 spin_unlock_irq(&css_set_lock);
4316         }
4317
4318         if (it->cur_task)
4319                 put_task_struct(it->cur_task);
4320 }
4321
4322 /**
4323  * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4324  * @to: cgroup to which the tasks will be moved
4325  * @from: cgroup in which the tasks currently reside
4326  *
4327  * Locking rules between cgroup_post_fork() and the migration path
4328  * guarantee that, if a task is forking while being migrated, the new child
4329  * is guaranteed to be either visible in the source cgroup after the
4330  * parent's migration is complete or put into the target cgroup.  No task
4331  * can slip out of migration through forking.
4332  */
4333 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
4334 {
4335         LIST_HEAD(preloaded_csets);
4336         struct cgrp_cset_link *link;
4337         struct css_task_iter it;
4338         struct task_struct *task;
4339         int ret;
4340
4341         if (!cgroup_may_migrate_to(to))
4342                 return -EBUSY;
4343
4344         mutex_lock(&cgroup_mutex);
4345
4346         /* all tasks in @from are being moved, all csets are source */
4347         spin_lock_irq(&css_set_lock);
4348         list_for_each_entry(link, &from->cset_links, cset_link)
4349                 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
4350         spin_unlock_irq(&css_set_lock);
4351
4352         ret = cgroup_migrate_prepare_dst(&preloaded_csets);
4353         if (ret)
4354                 goto out_err;
4355
4356         /*
4357          * Migrate tasks one-by-one until @from is empty.  This fails iff
4358          * ->can_attach() fails.
4359          */
4360         do {
4361                 css_task_iter_start(&from->self, &it);
4362                 task = css_task_iter_next(&it);
4363                 if (task)
4364                         get_task_struct(task);
4365                 css_task_iter_end(&it);
4366
4367                 if (task) {
4368                         ret = cgroup_migrate(task, false, to->root);
4369                         put_task_struct(task);
4370                 }
4371         } while (task && !ret);
4372 out_err:
4373         cgroup_migrate_finish(&preloaded_csets);
4374         mutex_unlock(&cgroup_mutex);
4375         return ret;
4376 }
4377
4378 /*
4379  * Stuff for reading the 'tasks'/'procs' files.
4380  *
4381  * Reading this file can return large amounts of data if a cgroup has
4382  * *lots* of attached tasks. So it may need several calls to read(),
4383  * but we cannot guarantee that the information we produce is correct
4384  * unless we produce it entirely atomically.
4385  *
4386  */
4387
4388 /* which pidlist file are we talking about? */
4389 enum cgroup_filetype {
4390         CGROUP_FILE_PROCS,
4391         CGROUP_FILE_TASKS,
4392 };
4393
4394 /*
4395  * A pidlist is a list of pids that virtually represents the contents of one
4396  * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4397  * a pair (one each for procs, tasks) for each pid namespace that's relevant
4398  * to the cgroup.
4399  */
4400 struct cgroup_pidlist {
4401         /*
4402          * used to find which pidlist is wanted. doesn't change as long as
4403          * this particular list stays in the list.
4404         */
4405         struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4406         /* array of xids */
4407         pid_t *list;
4408         /* how many elements the above list has */
4409         int length;
4410         /* each of these stored in a list by its cgroup */
4411         struct list_head links;
4412         /* pointer to the cgroup we belong to, for list removal purposes */
4413         struct cgroup *owner;
4414         /* for delayed destruction */
4415         struct delayed_work destroy_dwork;
4416 };
4417
4418 /*
4419  * The following two functions "fix" the issue where there are more pids
4420  * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4421  * TODO: replace with a kernel-wide solution to this problem
4422  */
4423 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4424 static void *pidlist_allocate(int count)
4425 {
4426         if (PIDLIST_TOO_LARGE(count))
4427                 return vmalloc(count * sizeof(pid_t));
4428         else
4429                 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4430 }
4431
4432 static void pidlist_free(void *p)
4433 {
4434         kvfree(p);
4435 }
4436
4437 /*
4438  * Used to destroy all pidlists lingering waiting for destroy timer.  None
4439  * should be left afterwards.
4440  */
4441 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4442 {
4443         struct cgroup_pidlist *l, *tmp_l;
4444
4445         mutex_lock(&cgrp->pidlist_mutex);
4446         list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4447                 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4448         mutex_unlock(&cgrp->pidlist_mutex);
4449
4450         flush_workqueue(cgroup_pidlist_destroy_wq);
4451         BUG_ON(!list_empty(&cgrp->pidlists));
4452 }
4453
4454 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4455 {
4456         struct delayed_work *dwork = to_delayed_work(work);
4457         struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4458                                                 destroy_dwork);
4459         struct cgroup_pidlist *tofree = NULL;
4460
4461         mutex_lock(&l->owner->pidlist_mutex);
4462
4463         /*
4464          * Destroy iff we didn't get queued again.  The state won't change
4465          * as destroy_dwork can only be queued while locked.
4466          */
4467         if (!delayed_work_pending(dwork)) {
4468                 list_del(&l->links);
4469                 pidlist_free(l->list);
4470                 put_pid_ns(l->key.ns);
4471                 tofree = l;
4472         }
4473
4474         mutex_unlock(&l->owner->pidlist_mutex);
4475         kfree(tofree);
4476 }
4477
4478 /*
4479  * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4480  * Returns the number of unique elements.
4481  */
4482 static int pidlist_uniq(pid_t *list, int length)
4483 {
4484         int src, dest = 1;
4485
4486         /*
4487          * we presume the 0th element is unique, so i starts at 1. trivial
4488          * edge cases first; no work needs to be done for either
4489          */
4490         if (length == 0 || length == 1)
4491                 return length;
4492         /* src and dest walk down the list; dest counts unique elements */
4493         for (src = 1; src < length; src++) {
4494                 /* find next unique element */
4495                 while (list[src] == list[src-1]) {
4496                         src++;
4497                         if (src == length)
4498                                 goto after;
4499                 }
4500                 /* dest always points to where the next unique element goes */
4501                 list[dest] = list[src];
4502                 dest++;
4503         }
4504 after:
4505         return dest;
4506 }
4507
4508 /*
4509  * The two pid files - task and cgroup.procs - guaranteed that the result
4510  * is sorted, which forced this whole pidlist fiasco.  As pid order is
4511  * different per namespace, each namespace needs differently sorted list,
4512  * making it impossible to use, for example, single rbtree of member tasks
4513  * sorted by task pointer.  As pidlists can be fairly large, allocating one
4514  * per open file is dangerous, so cgroup had to implement shared pool of
4515  * pidlists keyed by cgroup and namespace.
4516  *
4517  * All this extra complexity was caused by the original implementation
4518  * committing to an entirely unnecessary property.  In the long term, we
4519  * want to do away with it.  Explicitly scramble sort order if on the
4520  * default hierarchy so that no such expectation exists in the new
4521  * interface.
4522  *
4523  * Scrambling is done by swapping every two consecutive bits, which is
4524  * non-identity one-to-one mapping which disturbs sort order sufficiently.
4525  */
4526 static pid_t pid_fry(pid_t pid)
4527 {
4528         unsigned a = pid & 0x55555555;
4529         unsigned b = pid & 0xAAAAAAAA;
4530
4531         return (a << 1) | (b >> 1);
4532 }
4533
4534 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4535 {
4536         if (cgroup_on_dfl(cgrp))
4537                 return pid_fry(pid);
4538         else
4539                 return pid;
4540 }
4541
4542 static int cmppid(const void *a, const void *b)
4543 {
4544         return *(pid_t *)a - *(pid_t *)b;
4545 }
4546
4547 static int fried_cmppid(const void *a, const void *b)
4548 {
4549         return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4550 }
4551
4552 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4553                                                   enum cgroup_filetype type)
4554 {
4555         struct cgroup_pidlist *l;
4556         /* don't need task_nsproxy() if we're looking at ourself */
4557         struct pid_namespace *ns = task_active_pid_ns(current);
4558
4559         lockdep_assert_held(&cgrp->pidlist_mutex);
4560
4561         list_for_each_entry(l, &cgrp->pidlists, links)
4562                 if (l->key.type == type && l->key.ns == ns)
4563                         return l;
4564         return NULL;
4565 }
4566
4567 /*
4568  * find the appropriate pidlist for our purpose (given procs vs tasks)
4569  * returns with the lock on that pidlist already held, and takes care
4570  * of the use count, or returns NULL with no locks held if we're out of
4571  * memory.
4572  */
4573 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4574                                                 enum cgroup_filetype type)
4575 {
4576         struct cgroup_pidlist *l;
4577
4578         lockdep_assert_held(&cgrp->pidlist_mutex);
4579
4580         l = cgroup_pidlist_find(cgrp, type);
4581         if (l)
4582                 return l;
4583
4584         /* entry not found; create a new one */
4585         l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4586         if (!l)
4587                 return l;
4588
4589         INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4590         l->key.type = type;
4591         /* don't need task_nsproxy() if we're looking at ourself */
4592         l->key.ns = get_pid_ns(task_active_pid_ns(current));
4593         l->owner = cgrp;
4594         list_add(&l->links, &cgrp->pidlists);
4595         return l;
4596 }
4597
4598 /*
4599  * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4600  */
4601 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4602                               struct cgroup_pidlist **lp)
4603 {
4604         pid_t *array;
4605         int length;
4606         int pid, n = 0; /* used for populating the array */
4607         struct css_task_iter it;
4608         struct task_struct *tsk;
4609         struct cgroup_pidlist *l;
4610
4611         lockdep_assert_held(&cgrp->pidlist_mutex);
4612
4613         /*
4614          * If cgroup gets more users after we read count, we won't have
4615          * enough space - tough.  This race is indistinguishable to the
4616          * caller from the case that the additional cgroup users didn't
4617          * show up until sometime later on.
4618          */
4619         length = cgroup_task_count(cgrp);
4620         array = pidlist_allocate(length);
4621         if (!array)
4622                 return -ENOMEM;
4623         /* now, populate the array */
4624         css_task_iter_start(&cgrp->self, &it);
4625         while ((tsk = css_task_iter_next(&it))) {
4626                 if (unlikely(n == length))
4627                         break;
4628                 /* get tgid or pid for procs or tasks file respectively */
4629                 if (type == CGROUP_FILE_PROCS)
4630                         pid = task_tgid_vnr(tsk);
4631                 else
4632                         pid = task_pid_vnr(tsk);
4633                 if (pid > 0) /* make sure to only use valid results */
4634                         array[n++] = pid;
4635         }
4636         css_task_iter_end(&it);
4637         length = n;
4638         /* now sort & (if procs) strip out duplicates */
4639         if (cgroup_on_dfl(cgrp))
4640                 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4641         else
4642                 sort(array, length, sizeof(pid_t), cmppid, NULL);
4643         if (type == CGROUP_FILE_PROCS)
4644                 length = pidlist_uniq(array, length);
4645
4646         l = cgroup_pidlist_find_create(cgrp, type);
4647         if (!l) {
4648                 pidlist_free(array);
4649                 return -ENOMEM;
4650         }
4651
4652         /* store array, freeing old if necessary */
4653         pidlist_free(l->list);
4654         l->list = array;
4655         l->length = length;
4656         *lp = l;
4657         return 0;
4658 }
4659
4660 /**
4661  * cgroupstats_build - build and fill cgroupstats
4662  * @stats: cgroupstats to fill information into
4663  * @dentry: A dentry entry belonging to the cgroup for which stats have
4664  * been requested.
4665  *
4666  * Build and fill cgroupstats so that taskstats can export it to user
4667  * space.
4668  */
4669 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4670 {
4671         struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4672         struct cgroup *cgrp;
4673         struct css_task_iter it;
4674         struct task_struct *tsk;
4675
4676         /* it should be kernfs_node belonging to cgroupfs and is a directory */
4677         if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4678             kernfs_type(kn) != KERNFS_DIR)
4679                 return -EINVAL;
4680
4681         mutex_lock(&cgroup_mutex);
4682
4683         /*
4684          * We aren't being called from kernfs and there's no guarantee on
4685          * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
4686          * @kn->priv is RCU safe.  Let's do the RCU dancing.
4687          */
4688         rcu_read_lock();
4689         cgrp = rcu_dereference(kn->priv);
4690         if (!cgrp || cgroup_is_dead(cgrp)) {
4691                 rcu_read_unlock();
4692                 mutex_unlock(&cgroup_mutex);
4693                 return -ENOENT;
4694         }
4695         rcu_read_unlock();
4696
4697         css_task_iter_start(&cgrp->self, &it);
4698         while ((tsk = css_task_iter_next(&it))) {
4699                 switch (tsk->state) {
4700                 case TASK_RUNNING:
4701                         stats->nr_running++;
4702                         break;
4703                 case TASK_INTERRUPTIBLE:
4704                         stats->nr_sleeping++;
4705                         break;
4706                 case TASK_UNINTERRUPTIBLE:
4707                         stats->nr_uninterruptible++;
4708                         break;
4709                 case TASK_STOPPED:
4710                         stats->nr_stopped++;
4711                         break;
4712                 default:
4713                         if (delayacct_is_task_waiting_on_io(tsk))
4714                                 stats->nr_io_wait++;
4715                         break;
4716                 }
4717         }
4718         css_task_iter_end(&it);
4719
4720         mutex_unlock(&cgroup_mutex);
4721         return 0;
4722 }
4723
4724
4725 /*
4726  * seq_file methods for the tasks/procs files. The seq_file position is the
4727  * next pid to display; the seq_file iterator is a pointer to the pid
4728  * in the cgroup->l->list array.
4729  */
4730
4731 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4732 {
4733         /*
4734          * Initially we receive a position value that corresponds to
4735          * one more than the last pid shown (or 0 on the first call or
4736          * after a seek to the start). Use a binary-search to find the
4737          * next pid to display, if any
4738          */
4739         struct kernfs_open_file *of = s->private;
4740         struct cgroup *cgrp = seq_css(s)->cgroup;
4741         struct cgroup_pidlist *l;
4742         enum cgroup_filetype type = seq_cft(s)->private;
4743         int index = 0, pid = *pos;
4744         int *iter, ret;
4745
4746         mutex_lock(&cgrp->pidlist_mutex);
4747
4748         /*
4749          * !NULL @of->priv indicates that this isn't the first start()
4750          * after open.  If the matching pidlist is around, we can use that.
4751          * Look for it.  Note that @of->priv can't be used directly.  It
4752          * could already have been destroyed.
4753          */
4754         if (of->priv)
4755                 of->priv = cgroup_pidlist_find(cgrp, type);
4756
4757         /*
4758          * Either this is the first start() after open or the matching
4759          * pidlist has been destroyed inbetween.  Create a new one.
4760          */
4761         if (!of->priv) {
4762                 ret = pidlist_array_load(cgrp, type,
4763                                          (struct cgroup_pidlist **)&of->priv);
4764                 if (ret)
4765                         return ERR_PTR(ret);
4766         }
4767         l = of->priv;
4768
4769         if (pid) {
4770                 int end = l->length;
4771
4772                 while (index < end) {
4773                         int mid = (index + end) / 2;
4774                         if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4775                                 index = mid;
4776                                 break;
4777                         } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4778                                 index = mid + 1;
4779                         else
4780                                 end = mid;
4781                 }
4782         }
4783         /* If we're off the end of the array, we're done */
4784         if (index >= l->length)
4785                 return NULL;
4786         /* Update the abstract position to be the actual pid that we found */
4787         iter = l->list + index;
4788         *pos = cgroup_pid_fry(cgrp, *iter);
4789         return iter;
4790 }
4791
4792 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4793 {
4794         struct kernfs_open_file *of = s->private;
4795         struct cgroup_pidlist *l = of->priv;
4796
4797         if (l)
4798                 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4799                                  CGROUP_PIDLIST_DESTROY_DELAY);
4800         mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4801 }
4802
4803 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4804 {
4805         struct kernfs_open_file *of = s->private;
4806         struct cgroup_pidlist *l = of->priv;
4807         pid_t *p = v;
4808         pid_t *end = l->list + l->length;
4809         /*
4810          * Advance to the next pid in the array. If this goes off the
4811          * end, we're done
4812          */
4813         p++;
4814         if (p >= end) {
4815                 return NULL;
4816         } else {
4817                 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4818                 return p;
4819         }
4820 }
4821
4822 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4823 {
4824         seq_printf(s, "%d\n", *(int *)v);
4825
4826         return 0;
4827 }
4828
4829 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4830                                          struct cftype *cft)
4831 {
4832         return notify_on_release(css->cgroup);
4833 }
4834
4835 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4836                                           struct cftype *cft, u64 val)
4837 {
4838         if (val)
4839                 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4840         else
4841                 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4842         return 0;
4843 }
4844
4845 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4846                                       struct cftype *cft)
4847 {
4848         return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4849 }
4850
4851 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4852                                        struct cftype *cft, u64 val)
4853 {
4854         if (val)
4855                 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4856         else
4857                 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4858         return 0;
4859 }
4860
4861 /* cgroup core interface files for the default hierarchy */
4862 static struct cftype cgroup_dfl_base_files[] = {
4863         {
4864                 .name = "cgroup.procs",
4865                 .file_offset = offsetof(struct cgroup, procs_file),
4866                 .seq_start = cgroup_pidlist_start,
4867                 .seq_next = cgroup_pidlist_next,
4868                 .seq_stop = cgroup_pidlist_stop,
4869                 .seq_show = cgroup_pidlist_show,
4870                 .private = CGROUP_FILE_PROCS,
4871                 .write = cgroup_procs_write,
4872         },
4873         {
4874                 .name = "cgroup.controllers",
4875                 .seq_show = cgroup_controllers_show,
4876         },
4877         {
4878                 .name = "cgroup.subtree_control",
4879                 .seq_show = cgroup_subtree_control_show,
4880                 .write = cgroup_subtree_control_write,
4881         },
4882         {
4883                 .name = "cgroup.events",
4884                 .flags = CFTYPE_NOT_ON_ROOT,
4885                 .file_offset = offsetof(struct cgroup, events_file),
4886                 .seq_show = cgroup_events_show,
4887         },
4888         { }     /* terminate */
4889 };
4890
4891 /* cgroup core interface files for the legacy hierarchies */
4892 static struct cftype cgroup_legacy_base_files[] = {
4893         {
4894                 .name = "cgroup.procs",
4895                 .seq_start = cgroup_pidlist_start,
4896                 .seq_next = cgroup_pidlist_next,
4897                 .seq_stop = cgroup_pidlist_stop,
4898                 .seq_show = cgroup_pidlist_show,
4899                 .private = CGROUP_FILE_PROCS,
4900                 .write = cgroup_procs_write,
4901         },
4902         {
4903                 .name = "cgroup.clone_children",
4904                 .read_u64 = cgroup_clone_children_read,
4905                 .write_u64 = cgroup_clone_children_write,
4906         },
4907         {
4908                 .name = "cgroup.sane_behavior",
4909                 .flags = CFTYPE_ONLY_ON_ROOT,
4910                 .seq_show = cgroup_sane_behavior_show,
4911         },
4912         {
4913                 .name = "tasks",
4914                 .seq_start = cgroup_pidlist_start,
4915                 .seq_next = cgroup_pidlist_next,
4916                 .seq_stop = cgroup_pidlist_stop,
4917                 .seq_show = cgroup_pidlist_show,
4918                 .private = CGROUP_FILE_TASKS,
4919                 .write = cgroup_tasks_write,
4920         },
4921         {
4922                 .name = "notify_on_release",
4923                 .read_u64 = cgroup_read_notify_on_release,
4924                 .write_u64 = cgroup_write_notify_on_release,
4925         },
4926         {
4927                 .name = "release_agent",
4928                 .flags = CFTYPE_ONLY_ON_ROOT,
4929                 .seq_show = cgroup_release_agent_show,
4930                 .write = cgroup_release_agent_write,
4931                 .max_write_len = PATH_MAX - 1,
4932         },
4933         { }     /* terminate */
4934 };
4935
4936 /*
4937  * css destruction is four-stage process.
4938  *
4939  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4940  *    Implemented in kill_css().
4941  *
4942  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4943  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4944  *    offlined by invoking offline_css().  After offlining, the base ref is
4945  *    put.  Implemented in css_killed_work_fn().
4946  *
4947  * 3. When the percpu_ref reaches zero, the only possible remaining
4948  *    accessors are inside RCU read sections.  css_release() schedules the
4949  *    RCU callback.
4950  *
4951  * 4. After the grace period, the css can be freed.  Implemented in
4952  *    css_free_work_fn().
4953  *
4954  * It is actually hairier because both step 2 and 4 require process context
4955  * and thus involve punting to css->destroy_work adding two additional
4956  * steps to the already complex sequence.
4957  */
4958 static void css_free_work_fn(struct work_struct *work)
4959 {
4960         struct cgroup_subsys_state *css =
4961                 container_of(work, struct cgroup_subsys_state, destroy_work);
4962         struct cgroup_subsys *ss = css->ss;
4963         struct cgroup *cgrp = css->cgroup;
4964
4965         percpu_ref_exit(&css->refcnt);
4966
4967         if (ss) {
4968                 /* css free path */
4969                 struct cgroup_subsys_state *parent = css->parent;
4970                 int id = css->id;
4971
4972                 ss->css_free(css);
4973                 cgroup_idr_remove(&ss->css_idr, id);
4974                 cgroup_put(cgrp);
4975
4976                 if (parent)
4977                         css_put(parent);
4978         } else {
4979                 /* cgroup free path */
4980                 atomic_dec(&cgrp->root->nr_cgrps);
4981                 cgroup_pidlist_destroy_all(cgrp);
4982                 cancel_work_sync(&cgrp->release_agent_work);
4983
4984                 if (cgroup_parent(cgrp)) {
4985                         /*
4986                          * We get a ref to the parent, and put the ref when
4987                          * this cgroup is being freed, so it's guaranteed
4988                          * that the parent won't be destroyed before its
4989                          * children.
4990                          */
4991                         cgroup_put(cgroup_parent(cgrp));
4992                         kernfs_put(cgrp->kn);
4993                         kfree(cgrp);
4994                 } else {
4995                         /*
4996                          * This is root cgroup's refcnt reaching zero,
4997                          * which indicates that the root should be
4998                          * released.
4999                          */
5000                         cgroup_destroy_root(cgrp->root);
5001                 }
5002         }
5003 }
5004
5005 static void css_free_rcu_fn(struct rcu_head *rcu_head)
5006 {
5007         struct cgroup_subsys_state *css =
5008                 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
5009
5010         INIT_WORK(&css->destroy_work, css_free_work_fn);
5011         queue_work(cgroup_destroy_wq, &css->destroy_work);
5012 }
5013
5014 static void css_release_work_fn(struct work_struct *work)
5015 {
5016         struct cgroup_subsys_state *css =
5017                 container_of(work, struct cgroup_subsys_state, destroy_work);
5018         struct cgroup_subsys *ss = css->ss;
5019         struct cgroup *cgrp = css->cgroup;
5020
5021         mutex_lock(&cgroup_mutex);
5022
5023         css->flags |= CSS_RELEASED;
5024         list_del_rcu(&css->sibling);
5025
5026         if (ss) {
5027                 /* css release path */
5028                 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5029                 if (ss->css_released)
5030                         ss->css_released(css);
5031         } else {
5032                 /* cgroup release path */
5033                 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
5034                 cgrp->id = -1;
5035
5036                 /*
5037                  * There are two control paths which try to determine
5038                  * cgroup from dentry without going through kernfs -
5039                  * cgroupstats_build() and css_tryget_online_from_dir().
5040                  * Those are supported by RCU protecting clearing of
5041                  * cgrp->kn->priv backpointer.
5042                  */
5043                 if (cgrp->kn)
5044                         RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5045                                          NULL);
5046         }
5047
5048         mutex_unlock(&cgroup_mutex);
5049
5050         call_rcu(&css->rcu_head, css_free_rcu_fn);
5051 }
5052
5053 static void css_release(struct percpu_ref *ref)
5054 {
5055         struct cgroup_subsys_state *css =
5056                 container_of(ref, struct cgroup_subsys_state, refcnt);
5057
5058         INIT_WORK(&css->destroy_work, css_release_work_fn);
5059         queue_work(cgroup_destroy_wq, &css->destroy_work);
5060 }
5061
5062 static void init_and_link_css(struct cgroup_subsys_state *css,
5063                               struct cgroup_subsys *ss, struct cgroup *cgrp)
5064 {
5065         lockdep_assert_held(&cgroup_mutex);
5066
5067         cgroup_get(cgrp);
5068
5069         memset(css, 0, sizeof(*css));
5070         css->cgroup = cgrp;
5071         css->ss = ss;
5072         css->id = -1;
5073         INIT_LIST_HEAD(&css->sibling);
5074         INIT_LIST_HEAD(&css->children);
5075         css->serial_nr = css_serial_nr_next++;
5076         atomic_set(&css->online_cnt, 0);
5077
5078         if (cgroup_parent(cgrp)) {
5079                 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5080                 css_get(css->parent);
5081         }
5082
5083         BUG_ON(cgroup_css(cgrp, ss));
5084 }
5085
5086 /* invoke ->css_online() on a new CSS and mark it online if successful */
5087 static int online_css(struct cgroup_subsys_state *css)
5088 {
5089         struct cgroup_subsys *ss = css->ss;
5090         int ret = 0;
5091
5092         lockdep_assert_held(&cgroup_mutex);
5093
5094         if (ss->css_online)
5095                 ret = ss->css_online(css);
5096         if (!ret) {
5097                 css->flags |= CSS_ONLINE;
5098                 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5099
5100                 atomic_inc(&css->online_cnt);
5101                 if (css->parent)
5102                         atomic_inc(&css->parent->online_cnt);
5103         }
5104         return ret;
5105 }
5106
5107 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5108 static void offline_css(struct cgroup_subsys_state *css)
5109 {
5110         struct cgroup_subsys *ss = css->ss;
5111
5112         lockdep_assert_held(&cgroup_mutex);
5113
5114         if (!(css->flags & CSS_ONLINE))
5115                 return;
5116
5117         if (ss->css_reset)
5118                 ss->css_reset(css);
5119
5120         if (ss->css_offline)
5121                 ss->css_offline(css);
5122
5123         css->flags &= ~CSS_ONLINE;
5124         RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5125
5126         wake_up_all(&css->cgroup->offline_waitq);
5127 }
5128
5129 /**
5130  * css_create - create a cgroup_subsys_state
5131  * @cgrp: the cgroup new css will be associated with
5132  * @ss: the subsys of new css
5133  *
5134  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5135  * css is online and installed in @cgrp.  This function doesn't create the
5136  * interface files.  Returns 0 on success, -errno on failure.
5137  */
5138 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5139                                               struct cgroup_subsys *ss)
5140 {
5141         struct cgroup *parent = cgroup_parent(cgrp);
5142         struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5143         struct cgroup_subsys_state *css;
5144         int err;
5145
5146         lockdep_assert_held(&cgroup_mutex);
5147
5148         css = ss->css_alloc(parent_css);
5149         if (IS_ERR(css))
5150                 return css;
5151
5152         init_and_link_css(css, ss, cgrp);
5153
5154         err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5155         if (err)
5156                 goto err_free_css;
5157
5158         err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5159         if (err < 0)
5160                 goto err_free_css;
5161         css->id = err;
5162
5163         /* @css is ready to be brought online now, make it visible */
5164         list_add_tail_rcu(&css->sibling, &parent_css->children);
5165         cgroup_idr_replace(&ss->css_idr, css, css->id);
5166
5167         err = online_css(css);
5168         if (err)
5169                 goto err_list_del;
5170
5171         if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5172             cgroup_parent(parent)) {
5173                 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5174                         current->comm, current->pid, ss->name);
5175                 if (!strcmp(ss->name, "memory"))
5176                         pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5177                 ss->warned_broken_hierarchy = true;
5178         }
5179
5180         return css;
5181
5182 err_list_del:
5183         list_del_rcu(&css->sibling);
5184 err_free_css:
5185         call_rcu(&css->rcu_head, css_free_rcu_fn);
5186         return ERR_PTR(err);
5187 }
5188
5189 static struct cgroup *cgroup_create(struct cgroup *parent)
5190 {
5191         struct cgroup_root *root = parent->root;
5192         struct cgroup *cgrp, *tcgrp;
5193         int level = parent->level + 1;
5194         int ret;
5195
5196         /* allocate the cgroup and its ID, 0 is reserved for the root */
5197         cgrp = kzalloc(sizeof(*cgrp) +
5198                        sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
5199         if (!cgrp)
5200                 return ERR_PTR(-ENOMEM);
5201
5202         ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5203         if (ret)
5204                 goto out_free_cgrp;
5205
5206         /*
5207          * Temporarily set the pointer to NULL, so idr_find() won't return
5208          * a half-baked cgroup.
5209          */
5210         cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
5211         if (cgrp->id < 0) {
5212                 ret = -ENOMEM;
5213                 goto out_cancel_ref;
5214         }
5215
5216         init_cgroup_housekeeping(cgrp);
5217
5218         cgrp->self.parent = &parent->self;
5219         cgrp->root = root;
5220         cgrp->level = level;
5221
5222         for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5223                 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
5224
5225         if (notify_on_release(parent))
5226                 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5227
5228         if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5229                 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5230
5231         cgrp->self.serial_nr = css_serial_nr_next++;
5232
5233         /* allocation complete, commit to creation */
5234         list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5235         atomic_inc(&root->nr_cgrps);
5236         cgroup_get(parent);
5237
5238         /*
5239          * @cgrp is now fully operational.  If something fails after this
5240          * point, it'll be released via the normal destruction path.
5241          */
5242         cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5243
5244         /*
5245          * On the default hierarchy, a child doesn't automatically inherit
5246          * subtree_control from the parent.  Each is configured manually.
5247          */
5248         if (!cgroup_on_dfl(cgrp))
5249                 cgrp->subtree_control = cgroup_control(cgrp);
5250
5251         cgroup_propagate_control(cgrp);
5252
5253         /* @cgrp doesn't have dir yet so the following will only create csses */
5254         ret = cgroup_apply_control_enable(cgrp);
5255         if (ret)
5256                 goto out_destroy;
5257
5258         return cgrp;
5259
5260 out_cancel_ref:
5261         percpu_ref_exit(&cgrp->self.refcnt);
5262 out_free_cgrp:
5263         kfree(cgrp);
5264         return ERR_PTR(ret);
5265 out_destroy:
5266         cgroup_destroy_locked(cgrp);
5267         return ERR_PTR(ret);
5268 }
5269
5270 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
5271                         umode_t mode)
5272 {
5273         struct cgroup *parent, *cgrp;
5274         struct kernfs_node *kn;
5275         int ret;
5276
5277         /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5278         if (strchr(name, '\n'))
5279                 return -EINVAL;
5280
5281         parent = cgroup_kn_lock_live(parent_kn, false);
5282         if (!parent)
5283                 return -ENODEV;
5284
5285         cgrp = cgroup_create(parent);
5286         if (IS_ERR(cgrp)) {
5287                 ret = PTR_ERR(cgrp);
5288                 goto out_unlock;
5289         }
5290
5291         /* create the directory */
5292         kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5293         if (IS_ERR(kn)) {
5294                 ret = PTR_ERR(kn);
5295                 goto out_destroy;
5296         }
5297         cgrp->kn = kn;
5298
5299         /*
5300          * This extra ref will be put in cgroup_free_fn() and guarantees
5301          * that @cgrp->kn is always accessible.
5302          */
5303         kernfs_get(kn);
5304
5305         ret = cgroup_kn_set_ugid(kn);
5306         if (ret)
5307                 goto out_destroy;
5308
5309         ret = css_populate_dir(&cgrp->self);
5310         if (ret)
5311                 goto out_destroy;
5312
5313         ret = cgroup_apply_control_enable(cgrp);
5314         if (ret)
5315                 goto out_destroy;
5316
5317         /* let's create and online css's */
5318         kernfs_activate(kn);
5319
5320         ret = 0;
5321         goto out_unlock;
5322
5323 out_destroy:
5324         cgroup_destroy_locked(cgrp);
5325 out_unlock:
5326         cgroup_kn_unlock(parent_kn);
5327         return ret;
5328 }
5329
5330 /*
5331  * This is called when the refcnt of a css is confirmed to be killed.
5332  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5333  * initate destruction and put the css ref from kill_css().
5334  */
5335 static void css_killed_work_fn(struct work_struct *work)
5336 {
5337         struct cgroup_subsys_state *css =
5338                 container_of(work, struct cgroup_subsys_state, destroy_work);
5339
5340         mutex_lock(&cgroup_mutex);
5341
5342         do {
5343                 offline_css(css);
5344                 css_put(css);
5345                 /* @css can't go away while we're holding cgroup_mutex */
5346                 css = css->parent;
5347         } while (css && atomic_dec_and_test(&css->online_cnt));
5348
5349         mutex_unlock(&cgroup_mutex);
5350 }
5351
5352 /* css kill confirmation processing requires process context, bounce */
5353 static void css_killed_ref_fn(struct percpu_ref *ref)
5354 {
5355         struct cgroup_subsys_state *css =
5356                 container_of(ref, struct cgroup_subsys_state, refcnt);
5357
5358         if (atomic_dec_and_test(&css->online_cnt)) {
5359                 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5360                 queue_work(cgroup_destroy_wq, &css->destroy_work);
5361         }
5362 }
5363
5364 /**
5365  * kill_css - destroy a css
5366  * @css: css to destroy
5367  *
5368  * This function initiates destruction of @css by removing cgroup interface
5369  * files and putting its base reference.  ->css_offline() will be invoked
5370  * asynchronously once css_tryget_online() is guaranteed to fail and when
5371  * the reference count reaches zero, @css will be released.
5372  */
5373 static void kill_css(struct cgroup_subsys_state *css)
5374 {
5375         lockdep_assert_held(&cgroup_mutex);
5376
5377         /*
5378          * This must happen before css is disassociated with its cgroup.
5379          * See seq_css() for details.
5380          */
5381         css_clear_dir(css);
5382
5383         /*
5384          * Killing would put the base ref, but we need to keep it alive
5385          * until after ->css_offline().
5386          */
5387         css_get(css);
5388
5389         /*
5390          * cgroup core guarantees that, by the time ->css_offline() is
5391          * invoked, no new css reference will be given out via
5392          * css_tryget_online().  We can't simply call percpu_ref_kill() and
5393          * proceed to offlining css's because percpu_ref_kill() doesn't
5394          * guarantee that the ref is seen as killed on all CPUs on return.
5395          *
5396          * Use percpu_ref_kill_and_confirm() to get notifications as each
5397          * css is confirmed to be seen as killed on all CPUs.
5398          */
5399         percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5400 }
5401
5402 /**
5403  * cgroup_destroy_locked - the first stage of cgroup destruction
5404  * @cgrp: cgroup to be destroyed
5405  *
5406  * css's make use of percpu refcnts whose killing latency shouldn't be
5407  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5408  * guarantee that css_tryget_online() won't succeed by the time
5409  * ->css_offline() is invoked.  To satisfy all the requirements,
5410  * destruction is implemented in the following two steps.
5411  *
5412  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5413  *     userland visible parts and start killing the percpu refcnts of
5414  *     css's.  Set up so that the next stage will be kicked off once all
5415  *     the percpu refcnts are confirmed to be killed.
5416  *
5417  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5418  *     rest of destruction.  Once all cgroup references are gone, the
5419  *     cgroup is RCU-freed.
5420  *
5421  * This function implements s1.  After this step, @cgrp is gone as far as
5422  * the userland is concerned and a new cgroup with the same name may be
5423  * created.  As cgroup doesn't care about the names internally, this
5424  * doesn't cause any problem.
5425  */
5426 static int cgroup_destroy_locked(struct cgroup *cgrp)
5427         __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5428 {
5429         struct cgroup_subsys_state *css;
5430         struct cgrp_cset_link *link;
5431         int ssid;
5432
5433         lockdep_assert_held(&cgroup_mutex);
5434
5435         /*
5436          * Only migration can raise populated from zero and we're already
5437          * holding cgroup_mutex.
5438          */
5439         if (cgroup_is_populated(cgrp))
5440                 return -EBUSY;
5441
5442         /*
5443          * Make sure there's no live children.  We can't test emptiness of
5444          * ->self.children as dead children linger on it while being
5445          * drained; otherwise, "rmdir parent/child parent" may fail.
5446          */
5447         if (css_has_online_children(&cgrp->self))
5448                 return -EBUSY;
5449
5450         /*
5451          * Mark @cgrp and the associated csets dead.  The former prevents
5452          * further task migration and child creation by disabling
5453          * cgroup_lock_live_group().  The latter makes the csets ignored by
5454          * the migration path.
5455          */
5456         cgrp->self.flags &= ~CSS_ONLINE;
5457
5458         spin_lock_irq(&css_set_lock);
5459         list_for_each_entry(link, &cgrp->cset_links, cset_link)
5460                 link->cset->dead = true;
5461         spin_unlock_irq(&css_set_lock);
5462
5463         /* initiate massacre of all css's */
5464         for_each_css(css, ssid, cgrp)
5465                 kill_css(css);
5466
5467         /*
5468          * Remove @cgrp directory along with the base files.  @cgrp has an
5469          * extra ref on its kn.
5470          */
5471         kernfs_remove(cgrp->kn);
5472
5473         check_for_release(cgroup_parent(cgrp));
5474
5475         /* put the base reference */
5476         percpu_ref_kill(&cgrp->self.refcnt);
5477
5478         return 0;
5479 };
5480
5481 static int cgroup_rmdir(struct kernfs_node *kn)
5482 {
5483         struct cgroup *cgrp;
5484         int ret = 0;
5485
5486         cgrp = cgroup_kn_lock_live(kn, false);
5487         if (!cgrp)
5488                 return 0;
5489
5490         ret = cgroup_destroy_locked(cgrp);
5491
5492         cgroup_kn_unlock(kn);
5493         return ret;
5494 }
5495
5496 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5497         .remount_fs             = cgroup_remount,
5498         .show_options           = cgroup_show_options,
5499         .mkdir                  = cgroup_mkdir,
5500         .rmdir                  = cgroup_rmdir,
5501         .rename                 = cgroup_rename,
5502         .show_path              = cgroup_show_path,
5503 };
5504
5505 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5506 {
5507         struct cgroup_subsys_state *css;
5508
5509         pr_debug("Initializing cgroup subsys %s\n", ss->name);
5510
5511         mutex_lock(&cgroup_mutex);
5512
5513         idr_init(&ss->css_idr);
5514         INIT_LIST_HEAD(&ss->cfts);
5515
5516         /* Create the root cgroup state for this subsystem */
5517         ss->root = &cgrp_dfl_root;
5518         css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5519         /* We don't handle early failures gracefully */
5520         BUG_ON(IS_ERR(css));
5521         init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5522
5523         /*
5524          * Root csses are never destroyed and we can't initialize
5525          * percpu_ref during early init.  Disable refcnting.
5526          */
5527         css->flags |= CSS_NO_REF;
5528
5529         if (early) {
5530                 /* allocation can't be done safely during early init */
5531                 css->id = 1;
5532         } else {
5533                 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5534                 BUG_ON(css->id < 0);
5535         }
5536
5537         /* Update the init_css_set to contain a subsys
5538          * pointer to this state - since the subsystem is
5539          * newly registered, all tasks and hence the
5540          * init_css_set is in the subsystem's root cgroup. */
5541         init_css_set.subsys[ss->id] = css;
5542
5543         have_fork_callback |= (bool)ss->fork << ss->id;
5544         have_exit_callback |= (bool)ss->exit << ss->id;
5545         have_free_callback |= (bool)ss->free << ss->id;
5546         have_canfork_callback |= (bool)ss->can_fork << ss->id;
5547
5548         /* At system boot, before all subsystems have been
5549          * registered, no tasks have been forked, so we don't
5550          * need to invoke fork callbacks here. */
5551         BUG_ON(!list_empty(&init_task.tasks));
5552
5553         BUG_ON(online_css(css));
5554
5555         mutex_unlock(&cgroup_mutex);
5556 }
5557
5558 /**
5559  * cgroup_init_early - cgroup initialization at system boot
5560  *
5561  * Initialize cgroups at system boot, and initialize any
5562  * subsystems that request early init.
5563  */
5564 int __init cgroup_init_early(void)
5565 {
5566         static struct cgroup_sb_opts __initdata opts;
5567         struct cgroup_subsys *ss;
5568         int i;
5569
5570         init_cgroup_root(&cgrp_dfl_root, &opts);
5571         cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5572
5573         RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5574
5575         for_each_subsys(ss, i) {
5576                 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5577                      "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5578                      i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5579                      ss->id, ss->name);
5580                 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5581                      "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5582
5583                 ss->id = i;
5584                 ss->name = cgroup_subsys_name[i];
5585                 if (!ss->legacy_name)
5586                         ss->legacy_name = cgroup_subsys_name[i];
5587
5588                 if (ss->early_init)
5589                         cgroup_init_subsys(ss, true);
5590         }
5591         return 0;
5592 }
5593
5594 static u16 cgroup_disable_mask __initdata;
5595
5596 /**
5597  * cgroup_init - cgroup initialization
5598  *
5599  * Register cgroup filesystem and /proc file, and initialize
5600  * any subsystems that didn't request early init.
5601  */
5602 int __init cgroup_init(void)
5603 {
5604         struct cgroup_subsys *ss;
5605         int ssid;
5606
5607         BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5608         BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5609         BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5610         BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5611
5612         get_user_ns(init_cgroup_ns.user_ns);
5613
5614         mutex_lock(&cgroup_mutex);
5615
5616         /*
5617          * Add init_css_set to the hash table so that dfl_root can link to
5618          * it during init.
5619          */
5620         hash_add(css_set_table, &init_css_set.hlist,
5621                  css_set_hash(init_css_set.subsys));
5622
5623         BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5624
5625         mutex_unlock(&cgroup_mutex);
5626
5627         for_each_subsys(ss, ssid) {
5628                 if (ss->early_init) {
5629                         struct cgroup_subsys_state *css =
5630                                 init_css_set.subsys[ss->id];
5631
5632                         css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5633                                                    GFP_KERNEL);
5634                         BUG_ON(css->id < 0);
5635                 } else {
5636                         cgroup_init_subsys(ss, false);
5637                 }
5638
5639                 list_add_tail(&init_css_set.e_cset_node[ssid],
5640                               &cgrp_dfl_root.cgrp.e_csets[ssid]);
5641
5642                 /*
5643                  * Setting dfl_root subsys_mask needs to consider the
5644                  * disabled flag and cftype registration needs kmalloc,
5645                  * both of which aren't available during early_init.
5646                  */
5647                 if (cgroup_disable_mask & (1 << ssid)) {
5648                         static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5649                         printk(KERN_INFO "Disabling %s control group subsystem\n",
5650                                ss->name);
5651                         continue;
5652                 }
5653
5654                 if (cgroup_ssid_no_v1(ssid))
5655                         printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5656                                ss->name);
5657
5658                 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5659
5660                 if (ss->implicit_on_dfl)
5661                         cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5662                 else if (!ss->dfl_cftypes)
5663                         cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5664
5665                 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5666                         WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5667                 } else {
5668                         WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5669                         WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5670                 }
5671
5672                 if (ss->bind)
5673                         ss->bind(init_css_set.subsys[ssid]);
5674         }
5675
5676         /* init_css_set.subsys[] has been updated, re-hash */
5677         hash_del(&init_css_set.hlist);
5678         hash_add(css_set_table, &init_css_set.hlist,
5679                  css_set_hash(init_css_set.subsys));
5680
5681         WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5682         WARN_ON(register_filesystem(&cgroup_fs_type));
5683         WARN_ON(register_filesystem(&cgroup2_fs_type));
5684         WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5685
5686         return 0;
5687 }
5688
5689 static int __init cgroup_wq_init(void)
5690 {
5691         /*
5692          * There isn't much point in executing destruction path in
5693          * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5694          * Use 1 for @max_active.
5695          *
5696          * We would prefer to do this in cgroup_init() above, but that
5697          * is called before init_workqueues(): so leave this until after.
5698          */
5699         cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5700         BUG_ON(!cgroup_destroy_wq);
5701
5702         /*
5703          * Used to destroy pidlists and separate to serve as flush domain.
5704          * Cap @max_active to 1 too.
5705          */
5706         cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5707                                                     0, 1);
5708         BUG_ON(!cgroup_pidlist_destroy_wq);
5709
5710         return 0;
5711 }
5712 core_initcall(cgroup_wq_init);
5713
5714 /*
5715  * proc_cgroup_show()
5716  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5717  *  - Used for /proc/<pid>/cgroup.
5718  */
5719 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5720                      struct pid *pid, struct task_struct *tsk)
5721 {
5722         char *buf, *path;
5723         int retval;
5724         struct cgroup_root *root;
5725
5726         retval = -ENOMEM;
5727         buf = kmalloc(PATH_MAX, GFP_KERNEL);
5728         if (!buf)
5729                 goto out;
5730
5731         mutex_lock(&cgroup_mutex);
5732         spin_lock_irq(&css_set_lock);
5733
5734         for_each_root(root) {
5735                 struct cgroup_subsys *ss;
5736                 struct cgroup *cgrp;
5737                 int ssid, count = 0;
5738
5739                 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5740                         continue;
5741
5742                 seq_printf(m, "%d:", root->hierarchy_id);
5743                 if (root != &cgrp_dfl_root)
5744                         for_each_subsys(ss, ssid)
5745                                 if (root->subsys_mask & (1 << ssid))
5746                                         seq_printf(m, "%s%s", count++ ? "," : "",
5747                                                    ss->legacy_name);
5748                 if (strlen(root->name))
5749                         seq_printf(m, "%sname=%s", count ? "," : "",
5750                                    root->name);
5751                 seq_putc(m, ':');
5752
5753                 cgrp = task_cgroup_from_root(tsk, root);
5754
5755                 /*
5756                  * On traditional hierarchies, all zombie tasks show up as
5757                  * belonging to the root cgroup.  On the default hierarchy,
5758                  * while a zombie doesn't show up in "cgroup.procs" and
5759                  * thus can't be migrated, its /proc/PID/cgroup keeps
5760                  * reporting the cgroup it belonged to before exiting.  If
5761                  * the cgroup is removed before the zombie is reaped,
5762                  * " (deleted)" is appended to the cgroup path.
5763                  */
5764                 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5765                         path = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5766                                                 current->nsproxy->cgroup_ns);
5767                         if (!path) {
5768                                 retval = -ENAMETOOLONG;
5769                                 goto out_unlock;
5770                         }
5771                 } else {
5772                         path = "/";
5773                 }
5774
5775                 seq_puts(m, path);
5776
5777                 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5778                         seq_puts(m, " (deleted)\n");
5779                 else
5780                         seq_putc(m, '\n');
5781         }
5782
5783         retval = 0;
5784 out_unlock:
5785         spin_unlock_irq(&css_set_lock);
5786         mutex_unlock(&cgroup_mutex);
5787         kfree(buf);
5788 out:
5789         return retval;
5790 }
5791
5792 /* Display information about each subsystem and each hierarchy */
5793 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5794 {
5795         struct cgroup_subsys *ss;
5796         int i;
5797
5798         seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5799         /*
5800          * ideally we don't want subsystems moving around while we do this.
5801          * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5802          * subsys/hierarchy state.
5803          */
5804         mutex_lock(&cgroup_mutex);
5805
5806         for_each_subsys(ss, i)
5807                 seq_printf(m, "%s\t%d\t%d\t%d\n",
5808                            ss->legacy_name, ss->root->hierarchy_id,
5809                            atomic_read(&ss->root->nr_cgrps),
5810                            cgroup_ssid_enabled(i));
5811
5812         mutex_unlock(&cgroup_mutex);
5813         return 0;
5814 }
5815
5816 static int cgroupstats_open(struct inode *inode, struct file *file)
5817 {
5818         return single_open(file, proc_cgroupstats_show, NULL);
5819 }
5820
5821 static const struct file_operations proc_cgroupstats_operations = {
5822         .open = cgroupstats_open,
5823         .read = seq_read,
5824         .llseek = seq_lseek,
5825         .release = single_release,
5826 };
5827
5828 /**
5829  * cgroup_fork - initialize cgroup related fields during copy_process()
5830  * @child: pointer to task_struct of forking parent process.
5831  *
5832  * A task is associated with the init_css_set until cgroup_post_fork()
5833  * attaches it to the parent's css_set.  Empty cg_list indicates that
5834  * @child isn't holding reference to its css_set.
5835  */
5836 void cgroup_fork(struct task_struct *child)
5837 {
5838         RCU_INIT_POINTER(child->cgroups, &init_css_set);
5839         INIT_LIST_HEAD(&child->cg_list);
5840 }
5841
5842 /**
5843  * cgroup_can_fork - called on a new task before the process is exposed
5844  * @child: the task in question.
5845  *
5846  * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5847  * returns an error, the fork aborts with that error code. This allows for
5848  * a cgroup subsystem to conditionally allow or deny new forks.
5849  */
5850 int cgroup_can_fork(struct task_struct *child)
5851 {
5852         struct cgroup_subsys *ss;
5853         int i, j, ret;
5854
5855         do_each_subsys_mask(ss, i, have_canfork_callback) {
5856                 ret = ss->can_fork(child);
5857                 if (ret)
5858                         goto out_revert;
5859         } while_each_subsys_mask();
5860
5861         return 0;
5862
5863 out_revert:
5864         for_each_subsys(ss, j) {
5865                 if (j >= i)
5866                         break;
5867                 if (ss->cancel_fork)
5868                         ss->cancel_fork(child);
5869         }
5870
5871         return ret;
5872 }
5873
5874 /**
5875  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5876  * @child: the task in question
5877  *
5878  * This calls the cancel_fork() callbacks if a fork failed *after*
5879  * cgroup_can_fork() succeded.
5880  */
5881 void cgroup_cancel_fork(struct task_struct *child)
5882 {
5883         struct cgroup_subsys *ss;
5884         int i;
5885
5886         for_each_subsys(ss, i)
5887                 if (ss->cancel_fork)
5888                         ss->cancel_fork(child);
5889 }
5890
5891 /**
5892  * cgroup_post_fork - called on a new task after adding it to the task list
5893  * @child: the task in question
5894  *
5895  * Adds the task to the list running through its css_set if necessary and
5896  * call the subsystem fork() callbacks.  Has to be after the task is
5897  * visible on the task list in case we race with the first call to
5898  * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5899  * list.
5900  */
5901 void cgroup_post_fork(struct task_struct *child)
5902 {
5903         struct cgroup_subsys *ss;
5904         int i;
5905
5906         /*
5907          * This may race against cgroup_enable_task_cg_lists().  As that
5908          * function sets use_task_css_set_links before grabbing
5909          * tasklist_lock and we just went through tasklist_lock to add
5910          * @child, it's guaranteed that either we see the set
5911          * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5912          * @child during its iteration.
5913          *
5914          * If we won the race, @child is associated with %current's
5915          * css_set.  Grabbing css_set_lock guarantees both that the
5916          * association is stable, and, on completion of the parent's
5917          * migration, @child is visible in the source of migration or
5918          * already in the destination cgroup.  This guarantee is necessary
5919          * when implementing operations which need to migrate all tasks of
5920          * a cgroup to another.
5921          *
5922          * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5923          * will remain in init_css_set.  This is safe because all tasks are
5924          * in the init_css_set before cg_links is enabled and there's no
5925          * operation which transfers all tasks out of init_css_set.
5926          */
5927         if (use_task_css_set_links) {
5928                 struct css_set *cset;
5929
5930                 spin_lock_irq(&css_set_lock);
5931                 cset = task_css_set(current);
5932                 if (list_empty(&child->cg_list)) {
5933                         get_css_set(cset);
5934                         css_set_move_task(child, NULL, cset, false);
5935                 }
5936                 spin_unlock_irq(&css_set_lock);
5937         }
5938
5939         /*
5940          * Call ss->fork().  This must happen after @child is linked on
5941          * css_set; otherwise, @child might change state between ->fork()
5942          * and addition to css_set.
5943          */
5944         do_each_subsys_mask(ss, i, have_fork_callback) {
5945                 ss->fork(child);
5946         } while_each_subsys_mask();
5947 }
5948
5949 /**
5950  * cgroup_exit - detach cgroup from exiting task
5951  * @tsk: pointer to task_struct of exiting process
5952  *
5953  * Description: Detach cgroup from @tsk and release it.
5954  *
5955  * Note that cgroups marked notify_on_release force every task in
5956  * them to take the global cgroup_mutex mutex when exiting.
5957  * This could impact scaling on very large systems.  Be reluctant to
5958  * use notify_on_release cgroups where very high task exit scaling
5959  * is required on large systems.
5960  *
5961  * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
5962  * call cgroup_exit() while the task is still competent to handle
5963  * notify_on_release(), then leave the task attached to the root cgroup in
5964  * each hierarchy for the remainder of its exit.  No need to bother with
5965  * init_css_set refcnting.  init_css_set never goes away and we can't race
5966  * with migration path - PF_EXITING is visible to migration path.
5967  */
5968 void cgroup_exit(struct task_struct *tsk)
5969 {
5970         struct cgroup_subsys *ss;
5971         struct css_set *cset;
5972         int i;
5973
5974         /*
5975          * Unlink from @tsk from its css_set.  As migration path can't race
5976          * with us, we can check css_set and cg_list without synchronization.
5977          */
5978         cset = task_css_set(tsk);
5979
5980         if (!list_empty(&tsk->cg_list)) {
5981                 spin_lock_irq(&css_set_lock);
5982                 css_set_move_task(tsk, cset, NULL, false);
5983                 spin_unlock_irq(&css_set_lock);
5984         } else {
5985                 get_css_set(cset);
5986         }
5987
5988         /* see cgroup_post_fork() for details */
5989         do_each_subsys_mask(ss, i, have_exit_callback) {
5990                 ss->exit(tsk);
5991         } while_each_subsys_mask();
5992 }
5993
5994 void cgroup_free(struct task_struct *task)
5995 {
5996         struct css_set *cset = task_css_set(task);
5997         struct cgroup_subsys *ss;
5998         int ssid;
5999
6000         do_each_subsys_mask(ss, ssid, have_free_callback) {
6001                 ss->free(task);
6002         } while_each_subsys_mask();
6003
6004         put_css_set(cset);
6005 }
6006
6007 static void check_for_release(struct cgroup *cgrp)
6008 {
6009         if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
6010             !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
6011                 schedule_work(&cgrp->release_agent_work);
6012 }
6013
6014 /*
6015  * Notify userspace when a cgroup is released, by running the
6016  * configured release agent with the name of the cgroup (path
6017  * relative to the root of cgroup file system) as the argument.
6018  *
6019  * Most likely, this user command will try to rmdir this cgroup.
6020  *
6021  * This races with the possibility that some other task will be
6022  * attached to this cgroup before it is removed, or that some other
6023  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
6024  * The presumed 'rmdir' will fail quietly if this cgroup is no longer
6025  * unused, and this cgroup will be reprieved from its death sentence,
6026  * to continue to serve a useful existence.  Next time it's released,
6027  * we will get notified again, if it still has 'notify_on_release' set.
6028  *
6029  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
6030  * means only wait until the task is successfully execve()'d.  The
6031  * separate release agent task is forked by call_usermodehelper(),
6032  * then control in this thread returns here, without waiting for the
6033  * release agent task.  We don't bother to wait because the caller of
6034  * this routine has no use for the exit status of the release agent
6035  * task, so no sense holding our caller up for that.
6036  */
6037 static void cgroup_release_agent(struct work_struct *work)
6038 {
6039         struct cgroup *cgrp =
6040                 container_of(work, struct cgroup, release_agent_work);
6041         char *pathbuf = NULL, *agentbuf = NULL, *path;
6042         char *argv[3], *envp[3];
6043
6044         mutex_lock(&cgroup_mutex);
6045
6046         pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
6047         agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
6048         if (!pathbuf || !agentbuf)
6049                 goto out;
6050
6051         spin_lock_irq(&css_set_lock);
6052         path = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
6053         spin_unlock_irq(&css_set_lock);
6054         if (!path)
6055                 goto out;
6056
6057         argv[0] = agentbuf;
6058         argv[1] = path;
6059         argv[2] = NULL;
6060
6061         /* minimal command environment */
6062         envp[0] = "HOME=/";
6063         envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
6064         envp[2] = NULL;
6065
6066         mutex_unlock(&cgroup_mutex);
6067         call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
6068         goto out_free;
6069 out:
6070         mutex_unlock(&cgroup_mutex);
6071 out_free:
6072         kfree(agentbuf);
6073         kfree(pathbuf);
6074 }
6075
6076 static int __init cgroup_disable(char *str)
6077 {
6078         struct cgroup_subsys *ss;
6079         char *token;
6080         int i;
6081
6082         while ((token = strsep(&str, ",")) != NULL) {
6083                 if (!*token)
6084                         continue;
6085
6086                 for_each_subsys(ss, i) {
6087                         if (strcmp(token, ss->name) &&
6088                             strcmp(token, ss->legacy_name))
6089                                 continue;
6090                         cgroup_disable_mask |= 1 << i;
6091                 }
6092         }
6093         return 1;
6094 }
6095 __setup("cgroup_disable=", cgroup_disable);
6096
6097 static int __init cgroup_no_v1(char *str)
6098 {
6099         struct cgroup_subsys *ss;
6100         char *token;
6101         int i;
6102
6103         while ((token = strsep(&str, ",")) != NULL) {
6104                 if (!*token)
6105                         continue;
6106
6107                 if (!strcmp(token, "all")) {
6108                         cgroup_no_v1_mask = U16_MAX;
6109                         break;
6110                 }
6111
6112                 for_each_subsys(ss, i) {
6113                         if (strcmp(token, ss->name) &&
6114                             strcmp(token, ss->legacy_name))
6115                                 continue;
6116
6117                         cgroup_no_v1_mask |= 1 << i;
6118                 }
6119         }
6120         return 1;
6121 }
6122 __setup("cgroup_no_v1=", cgroup_no_v1);
6123
6124 /**
6125  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6126  * @dentry: directory dentry of interest
6127  * @ss: subsystem of interest
6128  *
6129  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6130  * to get the corresponding css and return it.  If such css doesn't exist
6131  * or can't be pinned, an ERR_PTR value is returned.
6132  */
6133 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6134                                                        struct cgroup_subsys *ss)
6135 {
6136         struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6137         struct file_system_type *s_type = dentry->d_sb->s_type;
6138         struct cgroup_subsys_state *css = NULL;
6139         struct cgroup *cgrp;
6140
6141         /* is @dentry a cgroup dir? */
6142         if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6143             !kn || kernfs_type(kn) != KERNFS_DIR)
6144                 return ERR_PTR(-EBADF);
6145
6146         rcu_read_lock();
6147
6148         /*
6149          * This path doesn't originate from kernfs and @kn could already
6150          * have been or be removed at any point.  @kn->priv is RCU
6151          * protected for this access.  See css_release_work_fn() for details.
6152          */
6153         cgrp = rcu_dereference(kn->priv);
6154         if (cgrp)
6155                 css = cgroup_css(cgrp, ss);
6156
6157         if (!css || !css_tryget_online(css))
6158                 css = ERR_PTR(-ENOENT);
6159
6160         rcu_read_unlock();
6161         return css;
6162 }
6163
6164 /**
6165  * css_from_id - lookup css by id
6166  * @id: the cgroup id
6167  * @ss: cgroup subsys to be looked into
6168  *
6169  * Returns the css if there's valid one with @id, otherwise returns NULL.
6170  * Should be called under rcu_read_lock().
6171  */
6172 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6173 {
6174         WARN_ON_ONCE(!rcu_read_lock_held());
6175         return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
6176 }
6177
6178 /**
6179  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6180  * @path: path on the default hierarchy
6181  *
6182  * Find the cgroup at @path on the default hierarchy, increment its
6183  * reference count and return it.  Returns pointer to the found cgroup on
6184  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6185  * if @path points to a non-directory.
6186  */
6187 struct cgroup *cgroup_get_from_path(const char *path)
6188 {
6189         struct kernfs_node *kn;
6190         struct cgroup *cgrp;
6191
6192         mutex_lock(&cgroup_mutex);
6193
6194         kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6195         if (kn) {
6196                 if (kernfs_type(kn) == KERNFS_DIR) {
6197                         cgrp = kn->priv;
6198                         cgroup_get(cgrp);
6199                 } else {
6200                         cgrp = ERR_PTR(-ENOTDIR);
6201                 }
6202                 kernfs_put(kn);
6203         } else {
6204                 cgrp = ERR_PTR(-ENOENT);
6205         }
6206
6207         mutex_unlock(&cgroup_mutex);
6208         return cgrp;
6209 }
6210 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6211
6212 /*
6213  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6214  * definition in cgroup-defs.h.
6215  */
6216 #ifdef CONFIG_SOCK_CGROUP_DATA
6217
6218 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6219
6220 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6221 static bool cgroup_sk_alloc_disabled __read_mostly;
6222
6223 void cgroup_sk_alloc_disable(void)
6224 {
6225         if (cgroup_sk_alloc_disabled)
6226                 return;
6227         pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6228         cgroup_sk_alloc_disabled = true;
6229 }
6230
6231 #else
6232
6233 #define cgroup_sk_alloc_disabled        false
6234
6235 #endif
6236
6237 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6238 {
6239         if (cgroup_sk_alloc_disabled)
6240                 return;
6241
6242         rcu_read_lock();
6243
6244         while (true) {
6245                 struct css_set *cset;
6246
6247                 cset = task_css_set(current);
6248                 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6249                         skcd->val = (unsigned long)cset->dfl_cgrp;
6250                         break;
6251                 }
6252                 cpu_relax();
6253         }
6254
6255         rcu_read_unlock();
6256 }
6257
6258 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6259 {
6260         cgroup_put(sock_cgroup_ptr(skcd));
6261 }
6262
6263 #endif  /* CONFIG_SOCK_CGROUP_DATA */
6264
6265 /* cgroup namespaces */
6266
6267 static struct cgroup_namespace *alloc_cgroup_ns(void)
6268 {
6269         struct cgroup_namespace *new_ns;
6270         int ret;
6271
6272         new_ns = kzalloc(sizeof(struct cgroup_namespace), GFP_KERNEL);
6273         if (!new_ns)
6274                 return ERR_PTR(-ENOMEM);
6275         ret = ns_alloc_inum(&new_ns->ns);
6276         if (ret) {
6277                 kfree(new_ns);
6278                 return ERR_PTR(ret);
6279         }
6280         atomic_set(&new_ns->count, 1);
6281         new_ns->ns.ops = &cgroupns_operations;
6282         return new_ns;
6283 }
6284
6285 void free_cgroup_ns(struct cgroup_namespace *ns)
6286 {
6287         put_css_set(ns->root_cset);
6288         put_user_ns(ns->user_ns);
6289         ns_free_inum(&ns->ns);
6290         kfree(ns);
6291 }
6292 EXPORT_SYMBOL(free_cgroup_ns);
6293
6294 struct cgroup_namespace *copy_cgroup_ns(unsigned long flags,
6295                                         struct user_namespace *user_ns,
6296                                         struct cgroup_namespace *old_ns)
6297 {
6298         struct cgroup_namespace *new_ns;
6299         struct css_set *cset;
6300
6301         BUG_ON(!old_ns);
6302
6303         if (!(flags & CLONE_NEWCGROUP)) {
6304                 get_cgroup_ns(old_ns);
6305                 return old_ns;
6306         }
6307
6308         /* Allow only sysadmin to create cgroup namespace. */
6309         if (!ns_capable(user_ns, CAP_SYS_ADMIN))
6310                 return ERR_PTR(-EPERM);
6311
6312         mutex_lock(&cgroup_mutex);
6313         spin_lock_irq(&css_set_lock);
6314
6315         cset = task_css_set(current);
6316         get_css_set(cset);
6317
6318         spin_unlock_irq(&css_set_lock);
6319         mutex_unlock(&cgroup_mutex);
6320
6321         new_ns = alloc_cgroup_ns();
6322         if (IS_ERR(new_ns)) {
6323                 put_css_set(cset);
6324                 return new_ns;
6325         }
6326
6327         new_ns->user_ns = get_user_ns(user_ns);
6328         new_ns->root_cset = cset;
6329
6330         return new_ns;
6331 }
6332
6333 static inline struct cgroup_namespace *to_cg_ns(struct ns_common *ns)
6334 {
6335         return container_of(ns, struct cgroup_namespace, ns);
6336 }
6337
6338 static int cgroupns_install(struct nsproxy *nsproxy, struct ns_common *ns)
6339 {
6340         struct cgroup_namespace *cgroup_ns = to_cg_ns(ns);
6341
6342         if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN) ||
6343             !ns_capable(cgroup_ns->user_ns, CAP_SYS_ADMIN))
6344                 return -EPERM;
6345
6346         /* Don't need to do anything if we are attaching to our own cgroupns. */
6347         if (cgroup_ns == nsproxy->cgroup_ns)
6348                 return 0;
6349
6350         get_cgroup_ns(cgroup_ns);
6351         put_cgroup_ns(nsproxy->cgroup_ns);
6352         nsproxy->cgroup_ns = cgroup_ns;
6353
6354         return 0;
6355 }
6356
6357 static struct ns_common *cgroupns_get(struct task_struct *task)
6358 {
6359         struct cgroup_namespace *ns = NULL;
6360         struct nsproxy *nsproxy;
6361
6362         task_lock(task);
6363         nsproxy = task->nsproxy;
6364         if (nsproxy) {
6365                 ns = nsproxy->cgroup_ns;
6366                 get_cgroup_ns(ns);
6367         }
6368         task_unlock(task);
6369
6370         return ns ? &ns->ns : NULL;
6371 }
6372
6373 static void cgroupns_put(struct ns_common *ns)
6374 {
6375         put_cgroup_ns(to_cg_ns(ns));
6376 }
6377
6378 const struct proc_ns_operations cgroupns_operations = {
6379         .name           = "cgroup",
6380         .type           = CLONE_NEWCGROUP,
6381         .get            = cgroupns_get,
6382         .put            = cgroupns_put,
6383         .install        = cgroupns_install,
6384 };
6385
6386 static __init int cgroup_namespaces_init(void)
6387 {
6388         return 0;
6389 }
6390 subsys_initcall(cgroup_namespaces_init);
6391
6392 #ifdef CONFIG_CGROUP_DEBUG
6393 static struct cgroup_subsys_state *
6394 debug_css_alloc(struct cgroup_subsys_state *parent_css)
6395 {
6396         struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6397
6398         if (!css)
6399                 return ERR_PTR(-ENOMEM);
6400
6401         return css;
6402 }
6403
6404 static void debug_css_free(struct cgroup_subsys_state *css)
6405 {
6406         kfree(css);
6407 }
6408
6409 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6410                                 struct cftype *cft)
6411 {
6412         return cgroup_task_count(css->cgroup);
6413 }
6414
6415 static u64 current_css_set_read(struct cgroup_subsys_state *css,
6416                                 struct cftype *cft)
6417 {
6418         return (u64)(unsigned long)current->cgroups;
6419 }
6420
6421 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
6422                                          struct cftype *cft)
6423 {
6424         u64 count;
6425
6426         rcu_read_lock();
6427         count = atomic_read(&task_css_set(current)->refcount);
6428         rcu_read_unlock();
6429         return count;
6430 }
6431
6432 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
6433 {
6434         struct cgrp_cset_link *link;
6435         struct css_set *cset;
6436         char *name_buf;
6437
6438         name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6439         if (!name_buf)
6440                 return -ENOMEM;
6441
6442         spin_lock_irq(&css_set_lock);
6443         rcu_read_lock();
6444         cset = rcu_dereference(current->cgroups);
6445         list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
6446                 struct cgroup *c = link->cgrp;
6447
6448                 cgroup_name(c, name_buf, NAME_MAX + 1);
6449                 seq_printf(seq, "Root %d group %s\n",
6450                            c->root->hierarchy_id, name_buf);
6451         }
6452         rcu_read_unlock();
6453         spin_unlock_irq(&css_set_lock);
6454         kfree(name_buf);
6455         return 0;
6456 }
6457
6458 #define MAX_TASKS_SHOWN_PER_CSS 25
6459 static int cgroup_css_links_read(struct seq_file *seq, void *v)
6460 {
6461         struct cgroup_subsys_state *css = seq_css(seq);
6462         struct cgrp_cset_link *link;
6463
6464         spin_lock_irq(&css_set_lock);
6465         list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
6466                 struct css_set *cset = link->cset;
6467                 struct task_struct *task;
6468                 int count = 0;
6469
6470                 seq_printf(seq, "css_set %p\n", cset);
6471
6472                 list_for_each_entry(task, &cset->tasks, cg_list) {
6473                         if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6474                                 goto overflow;
6475                         seq_printf(seq, "  task %d\n", task_pid_vnr(task));
6476                 }
6477
6478                 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6479                         if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6480                                 goto overflow;
6481                         seq_printf(seq, "  task %d\n", task_pid_vnr(task));
6482                 }
6483                 continue;
6484         overflow:
6485                 seq_puts(seq, "  ...\n");
6486         }
6487         spin_unlock_irq(&css_set_lock);
6488         return 0;
6489 }
6490
6491 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
6492 {
6493         return (!cgroup_is_populated(css->cgroup) &&
6494                 !css_has_online_children(&css->cgroup->self));
6495 }
6496
6497 static struct cftype debug_files[] =  {
6498         {
6499                 .name = "taskcount",
6500                 .read_u64 = debug_taskcount_read,
6501         },
6502
6503         {
6504                 .name = "current_css_set",
6505                 .read_u64 = current_css_set_read,
6506         },
6507
6508         {
6509                 .name = "current_css_set_refcount",
6510                 .read_u64 = current_css_set_refcount_read,
6511         },
6512
6513         {
6514                 .name = "current_css_set_cg_links",
6515                 .seq_show = current_css_set_cg_links_read,
6516         },
6517
6518         {
6519                 .name = "cgroup_css_links",
6520                 .seq_show = cgroup_css_links_read,
6521         },
6522
6523         {
6524                 .name = "releasable",
6525                 .read_u64 = releasable_read,
6526         },
6527
6528         { }     /* terminate */
6529 };
6530
6531 struct cgroup_subsys debug_cgrp_subsys = {
6532         .css_alloc = debug_css_alloc,
6533         .css_free = debug_css_free,
6534         .legacy_cftypes = debug_files,
6535 };
6536 #endif /* CONFIG_CGROUP_DEBUG */