Merge branch 'asoc-5.4' into asoc-5.5
[sfrench/cifs-2.6.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78
79 #include "audit.h"
80
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
85
86 /* no execve audit message should be longer than this (userspace limits),
87  * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
89
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
92
93 /* number of audit rules */
94 int audit_n_rules;
95
96 /* determines whether we collect data for signals sent */
97 int audit_signals;
98
99 struct audit_aux_data {
100         struct audit_aux_data   *next;
101         int                     type;
102 };
103
104 #define AUDIT_AUX_IPCPERM       0
105
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS  16
108
109 struct audit_aux_data_pids {
110         struct audit_aux_data   d;
111         pid_t                   target_pid[AUDIT_AUX_PIDS];
112         kuid_t                  target_auid[AUDIT_AUX_PIDS];
113         kuid_t                  target_uid[AUDIT_AUX_PIDS];
114         unsigned int            target_sessionid[AUDIT_AUX_PIDS];
115         u32                     target_sid[AUDIT_AUX_PIDS];
116         char                    target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117         int                     pid_count;
118 };
119
120 struct audit_aux_data_bprm_fcaps {
121         struct audit_aux_data   d;
122         struct audit_cap_data   fcap;
123         unsigned int            fcap_ver;
124         struct audit_cap_data   old_pcap;
125         struct audit_cap_data   new_pcap;
126 };
127
128 struct audit_tree_refs {
129         struct audit_tree_refs *next;
130         struct audit_chunk *c[31];
131 };
132
133 static int audit_match_perm(struct audit_context *ctx, int mask)
134 {
135         unsigned n;
136         if (unlikely(!ctx))
137                 return 0;
138         n = ctx->major;
139
140         switch (audit_classify_syscall(ctx->arch, n)) {
141         case 0: /* native */
142                 if ((mask & AUDIT_PERM_WRITE) &&
143                      audit_match_class(AUDIT_CLASS_WRITE, n))
144                         return 1;
145                 if ((mask & AUDIT_PERM_READ) &&
146                      audit_match_class(AUDIT_CLASS_READ, n))
147                         return 1;
148                 if ((mask & AUDIT_PERM_ATTR) &&
149                      audit_match_class(AUDIT_CLASS_CHATTR, n))
150                         return 1;
151                 return 0;
152         case 1: /* 32bit on biarch */
153                 if ((mask & AUDIT_PERM_WRITE) &&
154                      audit_match_class(AUDIT_CLASS_WRITE_32, n))
155                         return 1;
156                 if ((mask & AUDIT_PERM_READ) &&
157                      audit_match_class(AUDIT_CLASS_READ_32, n))
158                         return 1;
159                 if ((mask & AUDIT_PERM_ATTR) &&
160                      audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161                         return 1;
162                 return 0;
163         case 2: /* open */
164                 return mask & ACC_MODE(ctx->argv[1]);
165         case 3: /* openat */
166                 return mask & ACC_MODE(ctx->argv[2]);
167         case 4: /* socketcall */
168                 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169         case 5: /* execve */
170                 return mask & AUDIT_PERM_EXEC;
171         default:
172                 return 0;
173         }
174 }
175
176 static int audit_match_filetype(struct audit_context *ctx, int val)
177 {
178         struct audit_names *n;
179         umode_t mode = (umode_t)val;
180
181         if (unlikely(!ctx))
182                 return 0;
183
184         list_for_each_entry(n, &ctx->names_list, list) {
185                 if ((n->ino != AUDIT_INO_UNSET) &&
186                     ((n->mode & S_IFMT) == mode))
187                         return 1;
188         }
189
190         return 0;
191 }
192
193 /*
194  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195  * ->first_trees points to its beginning, ->trees - to the current end of data.
196  * ->tree_count is the number of free entries in array pointed to by ->trees.
197  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
199  * it's going to remain 1-element for almost any setup) until we free context itself.
200  * References in it _are_ dropped - at the same time we free/drop aux stuff.
201  */
202
203 static void audit_set_auditable(struct audit_context *ctx)
204 {
205         if (!ctx->prio) {
206                 ctx->prio = 1;
207                 ctx->current_state = AUDIT_RECORD_CONTEXT;
208         }
209 }
210
211 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
212 {
213         struct audit_tree_refs *p = ctx->trees;
214         int left = ctx->tree_count;
215         if (likely(left)) {
216                 p->c[--left] = chunk;
217                 ctx->tree_count = left;
218                 return 1;
219         }
220         if (!p)
221                 return 0;
222         p = p->next;
223         if (p) {
224                 p->c[30] = chunk;
225                 ctx->trees = p;
226                 ctx->tree_count = 30;
227                 return 1;
228         }
229         return 0;
230 }
231
232 static int grow_tree_refs(struct audit_context *ctx)
233 {
234         struct audit_tree_refs *p = ctx->trees;
235         ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
236         if (!ctx->trees) {
237                 ctx->trees = p;
238                 return 0;
239         }
240         if (p)
241                 p->next = ctx->trees;
242         else
243                 ctx->first_trees = ctx->trees;
244         ctx->tree_count = 31;
245         return 1;
246 }
247
248 static void unroll_tree_refs(struct audit_context *ctx,
249                       struct audit_tree_refs *p, int count)
250 {
251         struct audit_tree_refs *q;
252         int n;
253         if (!p) {
254                 /* we started with empty chain */
255                 p = ctx->first_trees;
256                 count = 31;
257                 /* if the very first allocation has failed, nothing to do */
258                 if (!p)
259                         return;
260         }
261         n = count;
262         for (q = p; q != ctx->trees; q = q->next, n = 31) {
263                 while (n--) {
264                         audit_put_chunk(q->c[n]);
265                         q->c[n] = NULL;
266                 }
267         }
268         while (n-- > ctx->tree_count) {
269                 audit_put_chunk(q->c[n]);
270                 q->c[n] = NULL;
271         }
272         ctx->trees = p;
273         ctx->tree_count = count;
274 }
275
276 static void free_tree_refs(struct audit_context *ctx)
277 {
278         struct audit_tree_refs *p, *q;
279         for (p = ctx->first_trees; p; p = q) {
280                 q = p->next;
281                 kfree(p);
282         }
283 }
284
285 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
286 {
287         struct audit_tree_refs *p;
288         int n;
289         if (!tree)
290                 return 0;
291         /* full ones */
292         for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
293                 for (n = 0; n < 31; n++)
294                         if (audit_tree_match(p->c[n], tree))
295                                 return 1;
296         }
297         /* partial */
298         if (p) {
299                 for (n = ctx->tree_count; n < 31; n++)
300                         if (audit_tree_match(p->c[n], tree))
301                                 return 1;
302         }
303         return 0;
304 }
305
306 static int audit_compare_uid(kuid_t uid,
307                              struct audit_names *name,
308                              struct audit_field *f,
309                              struct audit_context *ctx)
310 {
311         struct audit_names *n;
312         int rc;
313  
314         if (name) {
315                 rc = audit_uid_comparator(uid, f->op, name->uid);
316                 if (rc)
317                         return rc;
318         }
319  
320         if (ctx) {
321                 list_for_each_entry(n, &ctx->names_list, list) {
322                         rc = audit_uid_comparator(uid, f->op, n->uid);
323                         if (rc)
324                                 return rc;
325                 }
326         }
327         return 0;
328 }
329
330 static int audit_compare_gid(kgid_t gid,
331                              struct audit_names *name,
332                              struct audit_field *f,
333                              struct audit_context *ctx)
334 {
335         struct audit_names *n;
336         int rc;
337  
338         if (name) {
339                 rc = audit_gid_comparator(gid, f->op, name->gid);
340                 if (rc)
341                         return rc;
342         }
343  
344         if (ctx) {
345                 list_for_each_entry(n, &ctx->names_list, list) {
346                         rc = audit_gid_comparator(gid, f->op, n->gid);
347                         if (rc)
348                                 return rc;
349                 }
350         }
351         return 0;
352 }
353
354 static int audit_field_compare(struct task_struct *tsk,
355                                const struct cred *cred,
356                                struct audit_field *f,
357                                struct audit_context *ctx,
358                                struct audit_names *name)
359 {
360         switch (f->val) {
361         /* process to file object comparisons */
362         case AUDIT_COMPARE_UID_TO_OBJ_UID:
363                 return audit_compare_uid(cred->uid, name, f, ctx);
364         case AUDIT_COMPARE_GID_TO_OBJ_GID:
365                 return audit_compare_gid(cred->gid, name, f, ctx);
366         case AUDIT_COMPARE_EUID_TO_OBJ_UID:
367                 return audit_compare_uid(cred->euid, name, f, ctx);
368         case AUDIT_COMPARE_EGID_TO_OBJ_GID:
369                 return audit_compare_gid(cred->egid, name, f, ctx);
370         case AUDIT_COMPARE_AUID_TO_OBJ_UID:
371                 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
372         case AUDIT_COMPARE_SUID_TO_OBJ_UID:
373                 return audit_compare_uid(cred->suid, name, f, ctx);
374         case AUDIT_COMPARE_SGID_TO_OBJ_GID:
375                 return audit_compare_gid(cred->sgid, name, f, ctx);
376         case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
377                 return audit_compare_uid(cred->fsuid, name, f, ctx);
378         case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
379                 return audit_compare_gid(cred->fsgid, name, f, ctx);
380         /* uid comparisons */
381         case AUDIT_COMPARE_UID_TO_AUID:
382                 return audit_uid_comparator(cred->uid, f->op,
383                                             audit_get_loginuid(tsk));
384         case AUDIT_COMPARE_UID_TO_EUID:
385                 return audit_uid_comparator(cred->uid, f->op, cred->euid);
386         case AUDIT_COMPARE_UID_TO_SUID:
387                 return audit_uid_comparator(cred->uid, f->op, cred->suid);
388         case AUDIT_COMPARE_UID_TO_FSUID:
389                 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
390         /* auid comparisons */
391         case AUDIT_COMPARE_AUID_TO_EUID:
392                 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
393                                             cred->euid);
394         case AUDIT_COMPARE_AUID_TO_SUID:
395                 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
396                                             cred->suid);
397         case AUDIT_COMPARE_AUID_TO_FSUID:
398                 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
399                                             cred->fsuid);
400         /* euid comparisons */
401         case AUDIT_COMPARE_EUID_TO_SUID:
402                 return audit_uid_comparator(cred->euid, f->op, cred->suid);
403         case AUDIT_COMPARE_EUID_TO_FSUID:
404                 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
405         /* suid comparisons */
406         case AUDIT_COMPARE_SUID_TO_FSUID:
407                 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
408         /* gid comparisons */
409         case AUDIT_COMPARE_GID_TO_EGID:
410                 return audit_gid_comparator(cred->gid, f->op, cred->egid);
411         case AUDIT_COMPARE_GID_TO_SGID:
412                 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
413         case AUDIT_COMPARE_GID_TO_FSGID:
414                 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
415         /* egid comparisons */
416         case AUDIT_COMPARE_EGID_TO_SGID:
417                 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
418         case AUDIT_COMPARE_EGID_TO_FSGID:
419                 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
420         /* sgid comparison */
421         case AUDIT_COMPARE_SGID_TO_FSGID:
422                 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
423         default:
424                 WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
425                 return 0;
426         }
427         return 0;
428 }
429
430 /* Determine if any context name data matches a rule's watch data */
431 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
432  * otherwise.
433  *
434  * If task_creation is true, this is an explicit indication that we are
435  * filtering a task rule at task creation time.  This and tsk == current are
436  * the only situations where tsk->cred may be accessed without an rcu read lock.
437  */
438 static int audit_filter_rules(struct task_struct *tsk,
439                               struct audit_krule *rule,
440                               struct audit_context *ctx,
441                               struct audit_names *name,
442                               enum audit_state *state,
443                               bool task_creation)
444 {
445         const struct cred *cred;
446         int i, need_sid = 1;
447         u32 sid;
448         unsigned int sessionid;
449
450         cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
451
452         for (i = 0; i < rule->field_count; i++) {
453                 struct audit_field *f = &rule->fields[i];
454                 struct audit_names *n;
455                 int result = 0;
456                 pid_t pid;
457
458                 switch (f->type) {
459                 case AUDIT_PID:
460                         pid = task_tgid_nr(tsk);
461                         result = audit_comparator(pid, f->op, f->val);
462                         break;
463                 case AUDIT_PPID:
464                         if (ctx) {
465                                 if (!ctx->ppid)
466                                         ctx->ppid = task_ppid_nr(tsk);
467                                 result = audit_comparator(ctx->ppid, f->op, f->val);
468                         }
469                         break;
470                 case AUDIT_EXE:
471                         result = audit_exe_compare(tsk, rule->exe);
472                         if (f->op == Audit_not_equal)
473                                 result = !result;
474                         break;
475                 case AUDIT_UID:
476                         result = audit_uid_comparator(cred->uid, f->op, f->uid);
477                         break;
478                 case AUDIT_EUID:
479                         result = audit_uid_comparator(cred->euid, f->op, f->uid);
480                         break;
481                 case AUDIT_SUID:
482                         result = audit_uid_comparator(cred->suid, f->op, f->uid);
483                         break;
484                 case AUDIT_FSUID:
485                         result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
486                         break;
487                 case AUDIT_GID:
488                         result = audit_gid_comparator(cred->gid, f->op, f->gid);
489                         if (f->op == Audit_equal) {
490                                 if (!result)
491                                         result = groups_search(cred->group_info, f->gid);
492                         } else if (f->op == Audit_not_equal) {
493                                 if (result)
494                                         result = !groups_search(cred->group_info, f->gid);
495                         }
496                         break;
497                 case AUDIT_EGID:
498                         result = audit_gid_comparator(cred->egid, f->op, f->gid);
499                         if (f->op == Audit_equal) {
500                                 if (!result)
501                                         result = groups_search(cred->group_info, f->gid);
502                         } else if (f->op == Audit_not_equal) {
503                                 if (result)
504                                         result = !groups_search(cred->group_info, f->gid);
505                         }
506                         break;
507                 case AUDIT_SGID:
508                         result = audit_gid_comparator(cred->sgid, f->op, f->gid);
509                         break;
510                 case AUDIT_FSGID:
511                         result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
512                         break;
513                 case AUDIT_SESSIONID:
514                         sessionid = audit_get_sessionid(tsk);
515                         result = audit_comparator(sessionid, f->op, f->val);
516                         break;
517                 case AUDIT_PERS:
518                         result = audit_comparator(tsk->personality, f->op, f->val);
519                         break;
520                 case AUDIT_ARCH:
521                         if (ctx)
522                                 result = audit_comparator(ctx->arch, f->op, f->val);
523                         break;
524
525                 case AUDIT_EXIT:
526                         if (ctx && ctx->return_valid)
527                                 result = audit_comparator(ctx->return_code, f->op, f->val);
528                         break;
529                 case AUDIT_SUCCESS:
530                         if (ctx && ctx->return_valid) {
531                                 if (f->val)
532                                         result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
533                                 else
534                                         result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
535                         }
536                         break;
537                 case AUDIT_DEVMAJOR:
538                         if (name) {
539                                 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
540                                     audit_comparator(MAJOR(name->rdev), f->op, f->val))
541                                         ++result;
542                         } else if (ctx) {
543                                 list_for_each_entry(n, &ctx->names_list, list) {
544                                         if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
545                                             audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
546                                                 ++result;
547                                                 break;
548                                         }
549                                 }
550                         }
551                         break;
552                 case AUDIT_DEVMINOR:
553                         if (name) {
554                                 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
555                                     audit_comparator(MINOR(name->rdev), f->op, f->val))
556                                         ++result;
557                         } else if (ctx) {
558                                 list_for_each_entry(n, &ctx->names_list, list) {
559                                         if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
560                                             audit_comparator(MINOR(n->rdev), f->op, f->val)) {
561                                                 ++result;
562                                                 break;
563                                         }
564                                 }
565                         }
566                         break;
567                 case AUDIT_INODE:
568                         if (name)
569                                 result = audit_comparator(name->ino, f->op, f->val);
570                         else if (ctx) {
571                                 list_for_each_entry(n, &ctx->names_list, list) {
572                                         if (audit_comparator(n->ino, f->op, f->val)) {
573                                                 ++result;
574                                                 break;
575                                         }
576                                 }
577                         }
578                         break;
579                 case AUDIT_OBJ_UID:
580                         if (name) {
581                                 result = audit_uid_comparator(name->uid, f->op, f->uid);
582                         } else if (ctx) {
583                                 list_for_each_entry(n, &ctx->names_list, list) {
584                                         if (audit_uid_comparator(n->uid, f->op, f->uid)) {
585                                                 ++result;
586                                                 break;
587                                         }
588                                 }
589                         }
590                         break;
591                 case AUDIT_OBJ_GID:
592                         if (name) {
593                                 result = audit_gid_comparator(name->gid, f->op, f->gid);
594                         } else if (ctx) {
595                                 list_for_each_entry(n, &ctx->names_list, list) {
596                                         if (audit_gid_comparator(n->gid, f->op, f->gid)) {
597                                                 ++result;
598                                                 break;
599                                         }
600                                 }
601                         }
602                         break;
603                 case AUDIT_WATCH:
604                         if (name) {
605                                 result = audit_watch_compare(rule->watch,
606                                                              name->ino,
607                                                              name->dev);
608                                 if (f->op == Audit_not_equal)
609                                         result = !result;
610                         }
611                         break;
612                 case AUDIT_DIR:
613                         if (ctx) {
614                                 result = match_tree_refs(ctx, rule->tree);
615                                 if (f->op == Audit_not_equal)
616                                         result = !result;
617                         }
618                         break;
619                 case AUDIT_LOGINUID:
620                         result = audit_uid_comparator(audit_get_loginuid(tsk),
621                                                       f->op, f->uid);
622                         break;
623                 case AUDIT_LOGINUID_SET:
624                         result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
625                         break;
626                 case AUDIT_SADDR_FAM:
627                         if (ctx->sockaddr)
628                                 result = audit_comparator(ctx->sockaddr->ss_family,
629                                                           f->op, f->val);
630                         break;
631                 case AUDIT_SUBJ_USER:
632                 case AUDIT_SUBJ_ROLE:
633                 case AUDIT_SUBJ_TYPE:
634                 case AUDIT_SUBJ_SEN:
635                 case AUDIT_SUBJ_CLR:
636                         /* NOTE: this may return negative values indicating
637                            a temporary error.  We simply treat this as a
638                            match for now to avoid losing information that
639                            may be wanted.   An error message will also be
640                            logged upon error */
641                         if (f->lsm_rule) {
642                                 if (need_sid) {
643                                         security_task_getsecid(tsk, &sid);
644                                         need_sid = 0;
645                                 }
646                                 result = security_audit_rule_match(sid, f->type,
647                                                                    f->op,
648                                                                    f->lsm_rule);
649                         }
650                         break;
651                 case AUDIT_OBJ_USER:
652                 case AUDIT_OBJ_ROLE:
653                 case AUDIT_OBJ_TYPE:
654                 case AUDIT_OBJ_LEV_LOW:
655                 case AUDIT_OBJ_LEV_HIGH:
656                         /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
657                            also applies here */
658                         if (f->lsm_rule) {
659                                 /* Find files that match */
660                                 if (name) {
661                                         result = security_audit_rule_match(
662                                                                 name->osid,
663                                                                 f->type,
664                                                                 f->op,
665                                                                 f->lsm_rule);
666                                 } else if (ctx) {
667                                         list_for_each_entry(n, &ctx->names_list, list) {
668                                                 if (security_audit_rule_match(
669                                                                 n->osid,
670                                                                 f->type,
671                                                                 f->op,
672                                                                 f->lsm_rule)) {
673                                                         ++result;
674                                                         break;
675                                                 }
676                                         }
677                                 }
678                                 /* Find ipc objects that match */
679                                 if (!ctx || ctx->type != AUDIT_IPC)
680                                         break;
681                                 if (security_audit_rule_match(ctx->ipc.osid,
682                                                               f->type, f->op,
683                                                               f->lsm_rule))
684                                         ++result;
685                         }
686                         break;
687                 case AUDIT_ARG0:
688                 case AUDIT_ARG1:
689                 case AUDIT_ARG2:
690                 case AUDIT_ARG3:
691                         if (ctx)
692                                 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
693                         break;
694                 case AUDIT_FILTERKEY:
695                         /* ignore this field for filtering */
696                         result = 1;
697                         break;
698                 case AUDIT_PERM:
699                         result = audit_match_perm(ctx, f->val);
700                         if (f->op == Audit_not_equal)
701                                 result = !result;
702                         break;
703                 case AUDIT_FILETYPE:
704                         result = audit_match_filetype(ctx, f->val);
705                         if (f->op == Audit_not_equal)
706                                 result = !result;
707                         break;
708                 case AUDIT_FIELD_COMPARE:
709                         result = audit_field_compare(tsk, cred, f, ctx, name);
710                         break;
711                 }
712                 if (!result)
713                         return 0;
714         }
715
716         if (ctx) {
717                 if (rule->prio <= ctx->prio)
718                         return 0;
719                 if (rule->filterkey) {
720                         kfree(ctx->filterkey);
721                         ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
722                 }
723                 ctx->prio = rule->prio;
724         }
725         switch (rule->action) {
726         case AUDIT_NEVER:
727                 *state = AUDIT_DISABLED;
728                 break;
729         case AUDIT_ALWAYS:
730                 *state = AUDIT_RECORD_CONTEXT;
731                 break;
732         }
733         return 1;
734 }
735
736 /* At process creation time, we can determine if system-call auditing is
737  * completely disabled for this task.  Since we only have the task
738  * structure at this point, we can only check uid and gid.
739  */
740 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
741 {
742         struct audit_entry *e;
743         enum audit_state   state;
744
745         rcu_read_lock();
746         list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
747                 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
748                                        &state, true)) {
749                         if (state == AUDIT_RECORD_CONTEXT)
750                                 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
751                         rcu_read_unlock();
752                         return state;
753                 }
754         }
755         rcu_read_unlock();
756         return AUDIT_BUILD_CONTEXT;
757 }
758
759 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
760 {
761         int word, bit;
762
763         if (val > 0xffffffff)
764                 return false;
765
766         word = AUDIT_WORD(val);
767         if (word >= AUDIT_BITMASK_SIZE)
768                 return false;
769
770         bit = AUDIT_BIT(val);
771
772         return rule->mask[word] & bit;
773 }
774
775 /* At syscall entry and exit time, this filter is called if the
776  * audit_state is not low enough that auditing cannot take place, but is
777  * also not high enough that we already know we have to write an audit
778  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
779  */
780 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
781                                              struct audit_context *ctx,
782                                              struct list_head *list)
783 {
784         struct audit_entry *e;
785         enum audit_state state;
786
787         if (auditd_test_task(tsk))
788                 return AUDIT_DISABLED;
789
790         rcu_read_lock();
791         list_for_each_entry_rcu(e, list, list) {
792                 if (audit_in_mask(&e->rule, ctx->major) &&
793                     audit_filter_rules(tsk, &e->rule, ctx, NULL,
794                                        &state, false)) {
795                         rcu_read_unlock();
796                         ctx->current_state = state;
797                         return state;
798                 }
799         }
800         rcu_read_unlock();
801         return AUDIT_BUILD_CONTEXT;
802 }
803
804 /*
805  * Given an audit_name check the inode hash table to see if they match.
806  * Called holding the rcu read lock to protect the use of audit_inode_hash
807  */
808 static int audit_filter_inode_name(struct task_struct *tsk,
809                                    struct audit_names *n,
810                                    struct audit_context *ctx) {
811         int h = audit_hash_ino((u32)n->ino);
812         struct list_head *list = &audit_inode_hash[h];
813         struct audit_entry *e;
814         enum audit_state state;
815
816         list_for_each_entry_rcu(e, list, list) {
817                 if (audit_in_mask(&e->rule, ctx->major) &&
818                     audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
819                         ctx->current_state = state;
820                         return 1;
821                 }
822         }
823         return 0;
824 }
825
826 /* At syscall exit time, this filter is called if any audit_names have been
827  * collected during syscall processing.  We only check rules in sublists at hash
828  * buckets applicable to the inode numbers in audit_names.
829  * Regarding audit_state, same rules apply as for audit_filter_syscall().
830  */
831 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
832 {
833         struct audit_names *n;
834
835         if (auditd_test_task(tsk))
836                 return;
837
838         rcu_read_lock();
839
840         list_for_each_entry(n, &ctx->names_list, list) {
841                 if (audit_filter_inode_name(tsk, n, ctx))
842                         break;
843         }
844         rcu_read_unlock();
845 }
846
847 static inline void audit_proctitle_free(struct audit_context *context)
848 {
849         kfree(context->proctitle.value);
850         context->proctitle.value = NULL;
851         context->proctitle.len = 0;
852 }
853
854 static inline void audit_free_module(struct audit_context *context)
855 {
856         if (context->type == AUDIT_KERN_MODULE) {
857                 kfree(context->module.name);
858                 context->module.name = NULL;
859         }
860 }
861 static inline void audit_free_names(struct audit_context *context)
862 {
863         struct audit_names *n, *next;
864
865         list_for_each_entry_safe(n, next, &context->names_list, list) {
866                 list_del(&n->list);
867                 if (n->name)
868                         putname(n->name);
869                 if (n->should_free)
870                         kfree(n);
871         }
872         context->name_count = 0;
873         path_put(&context->pwd);
874         context->pwd.dentry = NULL;
875         context->pwd.mnt = NULL;
876 }
877
878 static inline void audit_free_aux(struct audit_context *context)
879 {
880         struct audit_aux_data *aux;
881
882         while ((aux = context->aux)) {
883                 context->aux = aux->next;
884                 kfree(aux);
885         }
886         while ((aux = context->aux_pids)) {
887                 context->aux_pids = aux->next;
888                 kfree(aux);
889         }
890 }
891
892 static inline struct audit_context *audit_alloc_context(enum audit_state state)
893 {
894         struct audit_context *context;
895
896         context = kzalloc(sizeof(*context), GFP_KERNEL);
897         if (!context)
898                 return NULL;
899         context->state = state;
900         context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
901         INIT_LIST_HEAD(&context->killed_trees);
902         INIT_LIST_HEAD(&context->names_list);
903         return context;
904 }
905
906 /**
907  * audit_alloc - allocate an audit context block for a task
908  * @tsk: task
909  *
910  * Filter on the task information and allocate a per-task audit context
911  * if necessary.  Doing so turns on system call auditing for the
912  * specified task.  This is called from copy_process, so no lock is
913  * needed.
914  */
915 int audit_alloc(struct task_struct *tsk)
916 {
917         struct audit_context *context;
918         enum audit_state     state;
919         char *key = NULL;
920
921         if (likely(!audit_ever_enabled))
922                 return 0; /* Return if not auditing. */
923
924         state = audit_filter_task(tsk, &key);
925         if (state == AUDIT_DISABLED) {
926                 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
927                 return 0;
928         }
929
930         if (!(context = audit_alloc_context(state))) {
931                 kfree(key);
932                 audit_log_lost("out of memory in audit_alloc");
933                 return -ENOMEM;
934         }
935         context->filterkey = key;
936
937         audit_set_context(tsk, context);
938         set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
939         return 0;
940 }
941
942 static inline void audit_free_context(struct audit_context *context)
943 {
944         audit_free_module(context);
945         audit_free_names(context);
946         unroll_tree_refs(context, NULL, 0);
947         free_tree_refs(context);
948         audit_free_aux(context);
949         kfree(context->filterkey);
950         kfree(context->sockaddr);
951         audit_proctitle_free(context);
952         kfree(context);
953 }
954
955 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
956                                  kuid_t auid, kuid_t uid, unsigned int sessionid,
957                                  u32 sid, char *comm)
958 {
959         struct audit_buffer *ab;
960         char *ctx = NULL;
961         u32 len;
962         int rc = 0;
963
964         ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
965         if (!ab)
966                 return rc;
967
968         audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
969                          from_kuid(&init_user_ns, auid),
970                          from_kuid(&init_user_ns, uid), sessionid);
971         if (sid) {
972                 if (security_secid_to_secctx(sid, &ctx, &len)) {
973                         audit_log_format(ab, " obj=(none)");
974                         rc = 1;
975                 } else {
976                         audit_log_format(ab, " obj=%s", ctx);
977                         security_release_secctx(ctx, len);
978                 }
979         }
980         audit_log_format(ab, " ocomm=");
981         audit_log_untrustedstring(ab, comm);
982         audit_log_end(ab);
983
984         return rc;
985 }
986
987 static void audit_log_execve_info(struct audit_context *context,
988                                   struct audit_buffer **ab)
989 {
990         long len_max;
991         long len_rem;
992         long len_full;
993         long len_buf;
994         long len_abuf = 0;
995         long len_tmp;
996         bool require_data;
997         bool encode;
998         unsigned int iter;
999         unsigned int arg;
1000         char *buf_head;
1001         char *buf;
1002         const char __user *p = (const char __user *)current->mm->arg_start;
1003
1004         /* NOTE: this buffer needs to be large enough to hold all the non-arg
1005          *       data we put in the audit record for this argument (see the
1006          *       code below) ... at this point in time 96 is plenty */
1007         char abuf[96];
1008
1009         /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1010          *       current value of 7500 is not as important as the fact that it
1011          *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1012          *       room if we go over a little bit in the logging below */
1013         WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1014         len_max = MAX_EXECVE_AUDIT_LEN;
1015
1016         /* scratch buffer to hold the userspace args */
1017         buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1018         if (!buf_head) {
1019                 audit_panic("out of memory for argv string");
1020                 return;
1021         }
1022         buf = buf_head;
1023
1024         audit_log_format(*ab, "argc=%d", context->execve.argc);
1025
1026         len_rem = len_max;
1027         len_buf = 0;
1028         len_full = 0;
1029         require_data = true;
1030         encode = false;
1031         iter = 0;
1032         arg = 0;
1033         do {
1034                 /* NOTE: we don't ever want to trust this value for anything
1035                  *       serious, but the audit record format insists we
1036                  *       provide an argument length for really long arguments,
1037                  *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1038                  *       to use strncpy_from_user() to obtain this value for
1039                  *       recording in the log, although we don't use it
1040                  *       anywhere here to avoid a double-fetch problem */
1041                 if (len_full == 0)
1042                         len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1043
1044                 /* read more data from userspace */
1045                 if (require_data) {
1046                         /* can we make more room in the buffer? */
1047                         if (buf != buf_head) {
1048                                 memmove(buf_head, buf, len_buf);
1049                                 buf = buf_head;
1050                         }
1051
1052                         /* fetch as much as we can of the argument */
1053                         len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1054                                                     len_max - len_buf);
1055                         if (len_tmp == -EFAULT) {
1056                                 /* unable to copy from userspace */
1057                                 send_sig(SIGKILL, current, 0);
1058                                 goto out;
1059                         } else if (len_tmp == (len_max - len_buf)) {
1060                                 /* buffer is not large enough */
1061                                 require_data = true;
1062                                 /* NOTE: if we are going to span multiple
1063                                  *       buffers force the encoding so we stand
1064                                  *       a chance at a sane len_full value and
1065                                  *       consistent record encoding */
1066                                 encode = true;
1067                                 len_full = len_full * 2;
1068                                 p += len_tmp;
1069                         } else {
1070                                 require_data = false;
1071                                 if (!encode)
1072                                         encode = audit_string_contains_control(
1073                                                                 buf, len_tmp);
1074                                 /* try to use a trusted value for len_full */
1075                                 if (len_full < len_max)
1076                                         len_full = (encode ?
1077                                                     len_tmp * 2 : len_tmp);
1078                                 p += len_tmp + 1;
1079                         }
1080                         len_buf += len_tmp;
1081                         buf_head[len_buf] = '\0';
1082
1083                         /* length of the buffer in the audit record? */
1084                         len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1085                 }
1086
1087                 /* write as much as we can to the audit log */
1088                 if (len_buf >= 0) {
1089                         /* NOTE: some magic numbers here - basically if we
1090                          *       can't fit a reasonable amount of data into the
1091                          *       existing audit buffer, flush it and start with
1092                          *       a new buffer */
1093                         if ((sizeof(abuf) + 8) > len_rem) {
1094                                 len_rem = len_max;
1095                                 audit_log_end(*ab);
1096                                 *ab = audit_log_start(context,
1097                                                       GFP_KERNEL, AUDIT_EXECVE);
1098                                 if (!*ab)
1099                                         goto out;
1100                         }
1101
1102                         /* create the non-arg portion of the arg record */
1103                         len_tmp = 0;
1104                         if (require_data || (iter > 0) ||
1105                             ((len_abuf + sizeof(abuf)) > len_rem)) {
1106                                 if (iter == 0) {
1107                                         len_tmp += snprintf(&abuf[len_tmp],
1108                                                         sizeof(abuf) - len_tmp,
1109                                                         " a%d_len=%lu",
1110                                                         arg, len_full);
1111                                 }
1112                                 len_tmp += snprintf(&abuf[len_tmp],
1113                                                     sizeof(abuf) - len_tmp,
1114                                                     " a%d[%d]=", arg, iter++);
1115                         } else
1116                                 len_tmp += snprintf(&abuf[len_tmp],
1117                                                     sizeof(abuf) - len_tmp,
1118                                                     " a%d=", arg);
1119                         WARN_ON(len_tmp >= sizeof(abuf));
1120                         abuf[sizeof(abuf) - 1] = '\0';
1121
1122                         /* log the arg in the audit record */
1123                         audit_log_format(*ab, "%s", abuf);
1124                         len_rem -= len_tmp;
1125                         len_tmp = len_buf;
1126                         if (encode) {
1127                                 if (len_abuf > len_rem)
1128                                         len_tmp = len_rem / 2; /* encoding */
1129                                 audit_log_n_hex(*ab, buf, len_tmp);
1130                                 len_rem -= len_tmp * 2;
1131                                 len_abuf -= len_tmp * 2;
1132                         } else {
1133                                 if (len_abuf > len_rem)
1134                                         len_tmp = len_rem - 2; /* quotes */
1135                                 audit_log_n_string(*ab, buf, len_tmp);
1136                                 len_rem -= len_tmp + 2;
1137                                 /* don't subtract the "2" because we still need
1138                                  * to add quotes to the remaining string */
1139                                 len_abuf -= len_tmp;
1140                         }
1141                         len_buf -= len_tmp;
1142                         buf += len_tmp;
1143                 }
1144
1145                 /* ready to move to the next argument? */
1146                 if ((len_buf == 0) && !require_data) {
1147                         arg++;
1148                         iter = 0;
1149                         len_full = 0;
1150                         require_data = true;
1151                         encode = false;
1152                 }
1153         } while (arg < context->execve.argc);
1154
1155         /* NOTE: the caller handles the final audit_log_end() call */
1156
1157 out:
1158         kfree(buf_head);
1159 }
1160
1161 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1162                           kernel_cap_t *cap)
1163 {
1164         int i;
1165
1166         if (cap_isclear(*cap)) {
1167                 audit_log_format(ab, " %s=0", prefix);
1168                 return;
1169         }
1170         audit_log_format(ab, " %s=", prefix);
1171         CAP_FOR_EACH_U32(i)
1172                 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1173 }
1174
1175 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1176 {
1177         if (name->fcap_ver == -1) {
1178                 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1179                 return;
1180         }
1181         audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1182         audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1183         audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1184                          name->fcap.fE, name->fcap_ver,
1185                          from_kuid(&init_user_ns, name->fcap.rootid));
1186 }
1187
1188 static void show_special(struct audit_context *context, int *call_panic)
1189 {
1190         struct audit_buffer *ab;
1191         int i;
1192
1193         ab = audit_log_start(context, GFP_KERNEL, context->type);
1194         if (!ab)
1195                 return;
1196
1197         switch (context->type) {
1198         case AUDIT_SOCKETCALL: {
1199                 int nargs = context->socketcall.nargs;
1200                 audit_log_format(ab, "nargs=%d", nargs);
1201                 for (i = 0; i < nargs; i++)
1202                         audit_log_format(ab, " a%d=%lx", i,
1203                                 context->socketcall.args[i]);
1204                 break; }
1205         case AUDIT_IPC: {
1206                 u32 osid = context->ipc.osid;
1207
1208                 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1209                                  from_kuid(&init_user_ns, context->ipc.uid),
1210                                  from_kgid(&init_user_ns, context->ipc.gid),
1211                                  context->ipc.mode);
1212                 if (osid) {
1213                         char *ctx = NULL;
1214                         u32 len;
1215                         if (security_secid_to_secctx(osid, &ctx, &len)) {
1216                                 audit_log_format(ab, " osid=%u", osid);
1217                                 *call_panic = 1;
1218                         } else {
1219                                 audit_log_format(ab, " obj=%s", ctx);
1220                                 security_release_secctx(ctx, len);
1221                         }
1222                 }
1223                 if (context->ipc.has_perm) {
1224                         audit_log_end(ab);
1225                         ab = audit_log_start(context, GFP_KERNEL,
1226                                              AUDIT_IPC_SET_PERM);
1227                         if (unlikely(!ab))
1228                                 return;
1229                         audit_log_format(ab,
1230                                 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1231                                 context->ipc.qbytes,
1232                                 context->ipc.perm_uid,
1233                                 context->ipc.perm_gid,
1234                                 context->ipc.perm_mode);
1235                 }
1236                 break; }
1237         case AUDIT_MQ_OPEN:
1238                 audit_log_format(ab,
1239                         "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1240                         "mq_msgsize=%ld mq_curmsgs=%ld",
1241                         context->mq_open.oflag, context->mq_open.mode,
1242                         context->mq_open.attr.mq_flags,
1243                         context->mq_open.attr.mq_maxmsg,
1244                         context->mq_open.attr.mq_msgsize,
1245                         context->mq_open.attr.mq_curmsgs);
1246                 break;
1247         case AUDIT_MQ_SENDRECV:
1248                 audit_log_format(ab,
1249                         "mqdes=%d msg_len=%zd msg_prio=%u "
1250                         "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1251                         context->mq_sendrecv.mqdes,
1252                         context->mq_sendrecv.msg_len,
1253                         context->mq_sendrecv.msg_prio,
1254                         (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1255                         context->mq_sendrecv.abs_timeout.tv_nsec);
1256                 break;
1257         case AUDIT_MQ_NOTIFY:
1258                 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1259                                 context->mq_notify.mqdes,
1260                                 context->mq_notify.sigev_signo);
1261                 break;
1262         case AUDIT_MQ_GETSETATTR: {
1263                 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1264                 audit_log_format(ab,
1265                         "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1266                         "mq_curmsgs=%ld ",
1267                         context->mq_getsetattr.mqdes,
1268                         attr->mq_flags, attr->mq_maxmsg,
1269                         attr->mq_msgsize, attr->mq_curmsgs);
1270                 break; }
1271         case AUDIT_CAPSET:
1272                 audit_log_format(ab, "pid=%d", context->capset.pid);
1273                 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1274                 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1275                 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1276                 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1277                 break;
1278         case AUDIT_MMAP:
1279                 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1280                                  context->mmap.flags);
1281                 break;
1282         case AUDIT_EXECVE:
1283                 audit_log_execve_info(context, &ab);
1284                 break;
1285         case AUDIT_KERN_MODULE:
1286                 audit_log_format(ab, "name=");
1287                 if (context->module.name) {
1288                         audit_log_untrustedstring(ab, context->module.name);
1289                 } else
1290                         audit_log_format(ab, "(null)");
1291
1292                 break;
1293         }
1294         audit_log_end(ab);
1295 }
1296
1297 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1298 {
1299         char *end = proctitle + len - 1;
1300         while (end > proctitle && !isprint(*end))
1301                 end--;
1302
1303         /* catch the case where proctitle is only 1 non-print character */
1304         len = end - proctitle + 1;
1305         len -= isprint(proctitle[len-1]) == 0;
1306         return len;
1307 }
1308
1309 /*
1310  * audit_log_name - produce AUDIT_PATH record from struct audit_names
1311  * @context: audit_context for the task
1312  * @n: audit_names structure with reportable details
1313  * @path: optional path to report instead of audit_names->name
1314  * @record_num: record number to report when handling a list of names
1315  * @call_panic: optional pointer to int that will be updated if secid fails
1316  */
1317 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1318                     const struct path *path, int record_num, int *call_panic)
1319 {
1320         struct audit_buffer *ab;
1321
1322         ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1323         if (!ab)
1324                 return;
1325
1326         audit_log_format(ab, "item=%d", record_num);
1327
1328         if (path)
1329                 audit_log_d_path(ab, " name=", path);
1330         else if (n->name) {
1331                 switch (n->name_len) {
1332                 case AUDIT_NAME_FULL:
1333                         /* log the full path */
1334                         audit_log_format(ab, " name=");
1335                         audit_log_untrustedstring(ab, n->name->name);
1336                         break;
1337                 case 0:
1338                         /* name was specified as a relative path and the
1339                          * directory component is the cwd
1340                          */
1341                         audit_log_d_path(ab, " name=", &context->pwd);
1342                         break;
1343                 default:
1344                         /* log the name's directory component */
1345                         audit_log_format(ab, " name=");
1346                         audit_log_n_untrustedstring(ab, n->name->name,
1347                                                     n->name_len);
1348                 }
1349         } else
1350                 audit_log_format(ab, " name=(null)");
1351
1352         if (n->ino != AUDIT_INO_UNSET)
1353                 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1354                                  n->ino,
1355                                  MAJOR(n->dev),
1356                                  MINOR(n->dev),
1357                                  n->mode,
1358                                  from_kuid(&init_user_ns, n->uid),
1359                                  from_kgid(&init_user_ns, n->gid),
1360                                  MAJOR(n->rdev),
1361                                  MINOR(n->rdev));
1362         if (n->osid != 0) {
1363                 char *ctx = NULL;
1364                 u32 len;
1365
1366                 if (security_secid_to_secctx(
1367                         n->osid, &ctx, &len)) {
1368                         audit_log_format(ab, " osid=%u", n->osid);
1369                         if (call_panic)
1370                                 *call_panic = 2;
1371                 } else {
1372                         audit_log_format(ab, " obj=%s", ctx);
1373                         security_release_secctx(ctx, len);
1374                 }
1375         }
1376
1377         /* log the audit_names record type */
1378         switch (n->type) {
1379         case AUDIT_TYPE_NORMAL:
1380                 audit_log_format(ab, " nametype=NORMAL");
1381                 break;
1382         case AUDIT_TYPE_PARENT:
1383                 audit_log_format(ab, " nametype=PARENT");
1384                 break;
1385         case AUDIT_TYPE_CHILD_DELETE:
1386                 audit_log_format(ab, " nametype=DELETE");
1387                 break;
1388         case AUDIT_TYPE_CHILD_CREATE:
1389                 audit_log_format(ab, " nametype=CREATE");
1390                 break;
1391         default:
1392                 audit_log_format(ab, " nametype=UNKNOWN");
1393                 break;
1394         }
1395
1396         audit_log_fcaps(ab, n);
1397         audit_log_end(ab);
1398 }
1399
1400 static void audit_log_proctitle(void)
1401 {
1402         int res;
1403         char *buf;
1404         char *msg = "(null)";
1405         int len = strlen(msg);
1406         struct audit_context *context = audit_context();
1407         struct audit_buffer *ab;
1408
1409         if (!context || context->dummy)
1410                 return;
1411
1412         ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1413         if (!ab)
1414                 return; /* audit_panic or being filtered */
1415
1416         audit_log_format(ab, "proctitle=");
1417
1418         /* Not  cached */
1419         if (!context->proctitle.value) {
1420                 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1421                 if (!buf)
1422                         goto out;
1423                 /* Historically called this from procfs naming */
1424                 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1425                 if (res == 0) {
1426                         kfree(buf);
1427                         goto out;
1428                 }
1429                 res = audit_proctitle_rtrim(buf, res);
1430                 if (res == 0) {
1431                         kfree(buf);
1432                         goto out;
1433                 }
1434                 context->proctitle.value = buf;
1435                 context->proctitle.len = res;
1436         }
1437         msg = context->proctitle.value;
1438         len = context->proctitle.len;
1439 out:
1440         audit_log_n_untrustedstring(ab, msg, len);
1441         audit_log_end(ab);
1442 }
1443
1444 static void audit_log_exit(void)
1445 {
1446         int i, call_panic = 0;
1447         struct audit_context *context = audit_context();
1448         struct audit_buffer *ab;
1449         struct audit_aux_data *aux;
1450         struct audit_names *n;
1451
1452         context->personality = current->personality;
1453
1454         ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1455         if (!ab)
1456                 return;         /* audit_panic has been called */
1457         audit_log_format(ab, "arch=%x syscall=%d",
1458                          context->arch, context->major);
1459         if (context->personality != PER_LINUX)
1460                 audit_log_format(ab, " per=%lx", context->personality);
1461         if (context->return_valid)
1462                 audit_log_format(ab, " success=%s exit=%ld",
1463                                  (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1464                                  context->return_code);
1465
1466         audit_log_format(ab,
1467                          " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1468                          context->argv[0],
1469                          context->argv[1],
1470                          context->argv[2],
1471                          context->argv[3],
1472                          context->name_count);
1473
1474         audit_log_task_info(ab);
1475         audit_log_key(ab, context->filterkey);
1476         audit_log_end(ab);
1477
1478         for (aux = context->aux; aux; aux = aux->next) {
1479
1480                 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1481                 if (!ab)
1482                         continue; /* audit_panic has been called */
1483
1484                 switch (aux->type) {
1485
1486                 case AUDIT_BPRM_FCAPS: {
1487                         struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1488                         audit_log_format(ab, "fver=%x", axs->fcap_ver);
1489                         audit_log_cap(ab, "fp", &axs->fcap.permitted);
1490                         audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1491                         audit_log_format(ab, " fe=%d", axs->fcap.fE);
1492                         audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1493                         audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1494                         audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1495                         audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1496                         audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1497                         audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1498                         audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1499                         audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1500                         audit_log_format(ab, " frootid=%d",
1501                                          from_kuid(&init_user_ns,
1502                                                    axs->fcap.rootid));
1503                         break; }
1504
1505                 }
1506                 audit_log_end(ab);
1507         }
1508
1509         if (context->type)
1510                 show_special(context, &call_panic);
1511
1512         if (context->fds[0] >= 0) {
1513                 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1514                 if (ab) {
1515                         audit_log_format(ab, "fd0=%d fd1=%d",
1516                                         context->fds[0], context->fds[1]);
1517                         audit_log_end(ab);
1518                 }
1519         }
1520
1521         if (context->sockaddr_len) {
1522                 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1523                 if (ab) {
1524                         audit_log_format(ab, "saddr=");
1525                         audit_log_n_hex(ab, (void *)context->sockaddr,
1526                                         context->sockaddr_len);
1527                         audit_log_end(ab);
1528                 }
1529         }
1530
1531         for (aux = context->aux_pids; aux; aux = aux->next) {
1532                 struct audit_aux_data_pids *axs = (void *)aux;
1533
1534                 for (i = 0; i < axs->pid_count; i++)
1535                         if (audit_log_pid_context(context, axs->target_pid[i],
1536                                                   axs->target_auid[i],
1537                                                   axs->target_uid[i],
1538                                                   axs->target_sessionid[i],
1539                                                   axs->target_sid[i],
1540                                                   axs->target_comm[i]))
1541                                 call_panic = 1;
1542         }
1543
1544         if (context->target_pid &&
1545             audit_log_pid_context(context, context->target_pid,
1546                                   context->target_auid, context->target_uid,
1547                                   context->target_sessionid,
1548                                   context->target_sid, context->target_comm))
1549                         call_panic = 1;
1550
1551         if (context->pwd.dentry && context->pwd.mnt) {
1552                 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1553                 if (ab) {
1554                         audit_log_d_path(ab, "cwd=", &context->pwd);
1555                         audit_log_end(ab);
1556                 }
1557         }
1558
1559         i = 0;
1560         list_for_each_entry(n, &context->names_list, list) {
1561                 if (n->hidden)
1562                         continue;
1563                 audit_log_name(context, n, NULL, i++, &call_panic);
1564         }
1565
1566         audit_log_proctitle();
1567
1568         /* Send end of event record to help user space know we are finished */
1569         ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1570         if (ab)
1571                 audit_log_end(ab);
1572         if (call_panic)
1573                 audit_panic("error converting sid to string");
1574 }
1575
1576 /**
1577  * __audit_free - free a per-task audit context
1578  * @tsk: task whose audit context block to free
1579  *
1580  * Called from copy_process and do_exit
1581  */
1582 void __audit_free(struct task_struct *tsk)
1583 {
1584         struct audit_context *context = tsk->audit_context;
1585
1586         if (!context)
1587                 return;
1588
1589         if (!list_empty(&context->killed_trees))
1590                 audit_kill_trees(context);
1591
1592         /* We are called either by do_exit() or the fork() error handling code;
1593          * in the former case tsk == current and in the latter tsk is a
1594          * random task_struct that doesn't doesn't have any meaningful data we
1595          * need to log via audit_log_exit().
1596          */
1597         if (tsk == current && !context->dummy && context->in_syscall) {
1598                 context->return_valid = 0;
1599                 context->return_code = 0;
1600
1601                 audit_filter_syscall(tsk, context,
1602                                      &audit_filter_list[AUDIT_FILTER_EXIT]);
1603                 audit_filter_inodes(tsk, context);
1604                 if (context->current_state == AUDIT_RECORD_CONTEXT)
1605                         audit_log_exit();
1606         }
1607
1608         audit_set_context(tsk, NULL);
1609         audit_free_context(context);
1610 }
1611
1612 /**
1613  * __audit_syscall_entry - fill in an audit record at syscall entry
1614  * @major: major syscall type (function)
1615  * @a1: additional syscall register 1
1616  * @a2: additional syscall register 2
1617  * @a3: additional syscall register 3
1618  * @a4: additional syscall register 4
1619  *
1620  * Fill in audit context at syscall entry.  This only happens if the
1621  * audit context was created when the task was created and the state or
1622  * filters demand the audit context be built.  If the state from the
1623  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1624  * then the record will be written at syscall exit time (otherwise, it
1625  * will only be written if another part of the kernel requests that it
1626  * be written).
1627  */
1628 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1629                            unsigned long a3, unsigned long a4)
1630 {
1631         struct audit_context *context = audit_context();
1632         enum audit_state     state;
1633
1634         if (!audit_enabled || !context)
1635                 return;
1636
1637         BUG_ON(context->in_syscall || context->name_count);
1638
1639         state = context->state;
1640         if (state == AUDIT_DISABLED)
1641                 return;
1642
1643         context->dummy = !audit_n_rules;
1644         if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1645                 context->prio = 0;
1646                 if (auditd_test_task(current))
1647                         return;
1648         }
1649
1650         context->arch       = syscall_get_arch(current);
1651         context->major      = major;
1652         context->argv[0]    = a1;
1653         context->argv[1]    = a2;
1654         context->argv[2]    = a3;
1655         context->argv[3]    = a4;
1656         context->serial     = 0;
1657         context->in_syscall = 1;
1658         context->current_state  = state;
1659         context->ppid       = 0;
1660         ktime_get_coarse_real_ts64(&context->ctime);
1661 }
1662
1663 /**
1664  * __audit_syscall_exit - deallocate audit context after a system call
1665  * @success: success value of the syscall
1666  * @return_code: return value of the syscall
1667  *
1668  * Tear down after system call.  If the audit context has been marked as
1669  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1670  * filtering, or because some other part of the kernel wrote an audit
1671  * message), then write out the syscall information.  In call cases,
1672  * free the names stored from getname().
1673  */
1674 void __audit_syscall_exit(int success, long return_code)
1675 {
1676         struct audit_context *context;
1677
1678         context = audit_context();
1679         if (!context)
1680                 return;
1681
1682         if (!list_empty(&context->killed_trees))
1683                 audit_kill_trees(context);
1684
1685         if (!context->dummy && context->in_syscall) {
1686                 if (success)
1687                         context->return_valid = AUDITSC_SUCCESS;
1688                 else
1689                         context->return_valid = AUDITSC_FAILURE;
1690
1691                 /*
1692                  * we need to fix up the return code in the audit logs if the
1693                  * actual return codes are later going to be fixed up by the
1694                  * arch specific signal handlers
1695                  *
1696                  * This is actually a test for:
1697                  * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1698                  * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1699                  *
1700                  * but is faster than a bunch of ||
1701                  */
1702                 if (unlikely(return_code <= -ERESTARTSYS) &&
1703                     (return_code >= -ERESTART_RESTARTBLOCK) &&
1704                     (return_code != -ENOIOCTLCMD))
1705                         context->return_code = -EINTR;
1706                 else
1707                         context->return_code  = return_code;
1708
1709                 audit_filter_syscall(current, context,
1710                                      &audit_filter_list[AUDIT_FILTER_EXIT]);
1711                 audit_filter_inodes(current, context);
1712                 if (context->current_state == AUDIT_RECORD_CONTEXT)
1713                         audit_log_exit();
1714         }
1715
1716         context->in_syscall = 0;
1717         context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1718
1719         audit_free_module(context);
1720         audit_free_names(context);
1721         unroll_tree_refs(context, NULL, 0);
1722         audit_free_aux(context);
1723         context->aux = NULL;
1724         context->aux_pids = NULL;
1725         context->target_pid = 0;
1726         context->target_sid = 0;
1727         context->sockaddr_len = 0;
1728         context->type = 0;
1729         context->fds[0] = -1;
1730         if (context->state != AUDIT_RECORD_CONTEXT) {
1731                 kfree(context->filterkey);
1732                 context->filterkey = NULL;
1733         }
1734 }
1735
1736 static inline void handle_one(const struct inode *inode)
1737 {
1738         struct audit_context *context;
1739         struct audit_tree_refs *p;
1740         struct audit_chunk *chunk;
1741         int count;
1742         if (likely(!inode->i_fsnotify_marks))
1743                 return;
1744         context = audit_context();
1745         p = context->trees;
1746         count = context->tree_count;
1747         rcu_read_lock();
1748         chunk = audit_tree_lookup(inode);
1749         rcu_read_unlock();
1750         if (!chunk)
1751                 return;
1752         if (likely(put_tree_ref(context, chunk)))
1753                 return;
1754         if (unlikely(!grow_tree_refs(context))) {
1755                 pr_warn("out of memory, audit has lost a tree reference\n");
1756                 audit_set_auditable(context);
1757                 audit_put_chunk(chunk);
1758                 unroll_tree_refs(context, p, count);
1759                 return;
1760         }
1761         put_tree_ref(context, chunk);
1762 }
1763
1764 static void handle_path(const struct dentry *dentry)
1765 {
1766         struct audit_context *context;
1767         struct audit_tree_refs *p;
1768         const struct dentry *d, *parent;
1769         struct audit_chunk *drop;
1770         unsigned long seq;
1771         int count;
1772
1773         context = audit_context();
1774         p = context->trees;
1775         count = context->tree_count;
1776 retry:
1777         drop = NULL;
1778         d = dentry;
1779         rcu_read_lock();
1780         seq = read_seqbegin(&rename_lock);
1781         for(;;) {
1782                 struct inode *inode = d_backing_inode(d);
1783                 if (inode && unlikely(inode->i_fsnotify_marks)) {
1784                         struct audit_chunk *chunk;
1785                         chunk = audit_tree_lookup(inode);
1786                         if (chunk) {
1787                                 if (unlikely(!put_tree_ref(context, chunk))) {
1788                                         drop = chunk;
1789                                         break;
1790                                 }
1791                         }
1792                 }
1793                 parent = d->d_parent;
1794                 if (parent == d)
1795                         break;
1796                 d = parent;
1797         }
1798         if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1799                 rcu_read_unlock();
1800                 if (!drop) {
1801                         /* just a race with rename */
1802                         unroll_tree_refs(context, p, count);
1803                         goto retry;
1804                 }
1805                 audit_put_chunk(drop);
1806                 if (grow_tree_refs(context)) {
1807                         /* OK, got more space */
1808                         unroll_tree_refs(context, p, count);
1809                         goto retry;
1810                 }
1811                 /* too bad */
1812                 pr_warn("out of memory, audit has lost a tree reference\n");
1813                 unroll_tree_refs(context, p, count);
1814                 audit_set_auditable(context);
1815                 return;
1816         }
1817         rcu_read_unlock();
1818 }
1819
1820 static struct audit_names *audit_alloc_name(struct audit_context *context,
1821                                                 unsigned char type)
1822 {
1823         struct audit_names *aname;
1824
1825         if (context->name_count < AUDIT_NAMES) {
1826                 aname = &context->preallocated_names[context->name_count];
1827                 memset(aname, 0, sizeof(*aname));
1828         } else {
1829                 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1830                 if (!aname)
1831                         return NULL;
1832                 aname->should_free = true;
1833         }
1834
1835         aname->ino = AUDIT_INO_UNSET;
1836         aname->type = type;
1837         list_add_tail(&aname->list, &context->names_list);
1838
1839         context->name_count++;
1840         return aname;
1841 }
1842
1843 /**
1844  * __audit_reusename - fill out filename with info from existing entry
1845  * @uptr: userland ptr to pathname
1846  *
1847  * Search the audit_names list for the current audit context. If there is an
1848  * existing entry with a matching "uptr" then return the filename
1849  * associated with that audit_name. If not, return NULL.
1850  */
1851 struct filename *
1852 __audit_reusename(const __user char *uptr)
1853 {
1854         struct audit_context *context = audit_context();
1855         struct audit_names *n;
1856
1857         list_for_each_entry(n, &context->names_list, list) {
1858                 if (!n->name)
1859                         continue;
1860                 if (n->name->uptr == uptr) {
1861                         n->name->refcnt++;
1862                         return n->name;
1863                 }
1864         }
1865         return NULL;
1866 }
1867
1868 /**
1869  * __audit_getname - add a name to the list
1870  * @name: name to add
1871  *
1872  * Add a name to the list of audit names for this context.
1873  * Called from fs/namei.c:getname().
1874  */
1875 void __audit_getname(struct filename *name)
1876 {
1877         struct audit_context *context = audit_context();
1878         struct audit_names *n;
1879
1880         if (!context->in_syscall)
1881                 return;
1882
1883         n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1884         if (!n)
1885                 return;
1886
1887         n->name = name;
1888         n->name_len = AUDIT_NAME_FULL;
1889         name->aname = n;
1890         name->refcnt++;
1891
1892         if (!context->pwd.dentry)
1893                 get_fs_pwd(current->fs, &context->pwd);
1894 }
1895
1896 static inline int audit_copy_fcaps(struct audit_names *name,
1897                                    const struct dentry *dentry)
1898 {
1899         struct cpu_vfs_cap_data caps;
1900         int rc;
1901
1902         if (!dentry)
1903                 return 0;
1904
1905         rc = get_vfs_caps_from_disk(dentry, &caps);
1906         if (rc)
1907                 return rc;
1908
1909         name->fcap.permitted = caps.permitted;
1910         name->fcap.inheritable = caps.inheritable;
1911         name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1912         name->fcap.rootid = caps.rootid;
1913         name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1914                                 VFS_CAP_REVISION_SHIFT;
1915
1916         return 0;
1917 }
1918
1919 /* Copy inode data into an audit_names. */
1920 static void audit_copy_inode(struct audit_names *name,
1921                              const struct dentry *dentry,
1922                              struct inode *inode, unsigned int flags)
1923 {
1924         name->ino   = inode->i_ino;
1925         name->dev   = inode->i_sb->s_dev;
1926         name->mode  = inode->i_mode;
1927         name->uid   = inode->i_uid;
1928         name->gid   = inode->i_gid;
1929         name->rdev  = inode->i_rdev;
1930         security_inode_getsecid(inode, &name->osid);
1931         if (flags & AUDIT_INODE_NOEVAL) {
1932                 name->fcap_ver = -1;
1933                 return;
1934         }
1935         audit_copy_fcaps(name, dentry);
1936 }
1937
1938 /**
1939  * __audit_inode - store the inode and device from a lookup
1940  * @name: name being audited
1941  * @dentry: dentry being audited
1942  * @flags: attributes for this particular entry
1943  */
1944 void __audit_inode(struct filename *name, const struct dentry *dentry,
1945                    unsigned int flags)
1946 {
1947         struct audit_context *context = audit_context();
1948         struct inode *inode = d_backing_inode(dentry);
1949         struct audit_names *n;
1950         bool parent = flags & AUDIT_INODE_PARENT;
1951         struct audit_entry *e;
1952         struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1953         int i;
1954
1955         if (!context->in_syscall)
1956                 return;
1957
1958         rcu_read_lock();
1959         list_for_each_entry_rcu(e, list, list) {
1960                 for (i = 0; i < e->rule.field_count; i++) {
1961                         struct audit_field *f = &e->rule.fields[i];
1962
1963                         if (f->type == AUDIT_FSTYPE
1964                             && audit_comparator(inode->i_sb->s_magic,
1965                                                 f->op, f->val)
1966                             && e->rule.action == AUDIT_NEVER) {
1967                                 rcu_read_unlock();
1968                                 return;
1969                         }
1970                 }
1971         }
1972         rcu_read_unlock();
1973
1974         if (!name)
1975                 goto out_alloc;
1976
1977         /*
1978          * If we have a pointer to an audit_names entry already, then we can
1979          * just use it directly if the type is correct.
1980          */
1981         n = name->aname;
1982         if (n) {
1983                 if (parent) {
1984                         if (n->type == AUDIT_TYPE_PARENT ||
1985                             n->type == AUDIT_TYPE_UNKNOWN)
1986                                 goto out;
1987                 } else {
1988                         if (n->type != AUDIT_TYPE_PARENT)
1989                                 goto out;
1990                 }
1991         }
1992
1993         list_for_each_entry_reverse(n, &context->names_list, list) {
1994                 if (n->ino) {
1995                         /* valid inode number, use that for the comparison */
1996                         if (n->ino != inode->i_ino ||
1997                             n->dev != inode->i_sb->s_dev)
1998                                 continue;
1999                 } else if (n->name) {
2000                         /* inode number has not been set, check the name */
2001                         if (strcmp(n->name->name, name->name))
2002                                 continue;
2003                 } else
2004                         /* no inode and no name (?!) ... this is odd ... */
2005                         continue;
2006
2007                 /* match the correct record type */
2008                 if (parent) {
2009                         if (n->type == AUDIT_TYPE_PARENT ||
2010                             n->type == AUDIT_TYPE_UNKNOWN)
2011                                 goto out;
2012                 } else {
2013                         if (n->type != AUDIT_TYPE_PARENT)
2014                                 goto out;
2015                 }
2016         }
2017
2018 out_alloc:
2019         /* unable to find an entry with both a matching name and type */
2020         n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2021         if (!n)
2022                 return;
2023         if (name) {
2024                 n->name = name;
2025                 name->refcnt++;
2026         }
2027
2028 out:
2029         if (parent) {
2030                 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2031                 n->type = AUDIT_TYPE_PARENT;
2032                 if (flags & AUDIT_INODE_HIDDEN)
2033                         n->hidden = true;
2034         } else {
2035                 n->name_len = AUDIT_NAME_FULL;
2036                 n->type = AUDIT_TYPE_NORMAL;
2037         }
2038         handle_path(dentry);
2039         audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2040 }
2041
2042 void __audit_file(const struct file *file)
2043 {
2044         __audit_inode(NULL, file->f_path.dentry, 0);
2045 }
2046
2047 /**
2048  * __audit_inode_child - collect inode info for created/removed objects
2049  * @parent: inode of dentry parent
2050  * @dentry: dentry being audited
2051  * @type:   AUDIT_TYPE_* value that we're looking for
2052  *
2053  * For syscalls that create or remove filesystem objects, audit_inode
2054  * can only collect information for the filesystem object's parent.
2055  * This call updates the audit context with the child's information.
2056  * Syscalls that create a new filesystem object must be hooked after
2057  * the object is created.  Syscalls that remove a filesystem object
2058  * must be hooked prior, in order to capture the target inode during
2059  * unsuccessful attempts.
2060  */
2061 void __audit_inode_child(struct inode *parent,
2062                          const struct dentry *dentry,
2063                          const unsigned char type)
2064 {
2065         struct audit_context *context = audit_context();
2066         struct inode *inode = d_backing_inode(dentry);
2067         const struct qstr *dname = &dentry->d_name;
2068         struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2069         struct audit_entry *e;
2070         struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2071         int i;
2072
2073         if (!context->in_syscall)
2074                 return;
2075
2076         rcu_read_lock();
2077         list_for_each_entry_rcu(e, list, list) {
2078                 for (i = 0; i < e->rule.field_count; i++) {
2079                         struct audit_field *f = &e->rule.fields[i];
2080
2081                         if (f->type == AUDIT_FSTYPE
2082                             && audit_comparator(parent->i_sb->s_magic,
2083                                                 f->op, f->val)
2084                             && e->rule.action == AUDIT_NEVER) {
2085                                 rcu_read_unlock();
2086                                 return;
2087                         }
2088                 }
2089         }
2090         rcu_read_unlock();
2091
2092         if (inode)
2093                 handle_one(inode);
2094
2095         /* look for a parent entry first */
2096         list_for_each_entry(n, &context->names_list, list) {
2097                 if (!n->name ||
2098                     (n->type != AUDIT_TYPE_PARENT &&
2099                      n->type != AUDIT_TYPE_UNKNOWN))
2100                         continue;
2101
2102                 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2103                     !audit_compare_dname_path(dname,
2104                                               n->name->name, n->name_len)) {
2105                         if (n->type == AUDIT_TYPE_UNKNOWN)
2106                                 n->type = AUDIT_TYPE_PARENT;
2107                         found_parent = n;
2108                         break;
2109                 }
2110         }
2111
2112         /* is there a matching child entry? */
2113         list_for_each_entry(n, &context->names_list, list) {
2114                 /* can only match entries that have a name */
2115                 if (!n->name ||
2116                     (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2117                         continue;
2118
2119                 if (!strcmp(dname->name, n->name->name) ||
2120                     !audit_compare_dname_path(dname, n->name->name,
2121                                                 found_parent ?
2122                                                 found_parent->name_len :
2123                                                 AUDIT_NAME_FULL)) {
2124                         if (n->type == AUDIT_TYPE_UNKNOWN)
2125                                 n->type = type;
2126                         found_child = n;
2127                         break;
2128                 }
2129         }
2130
2131         if (!found_parent) {
2132                 /* create a new, "anonymous" parent record */
2133                 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2134                 if (!n)
2135                         return;
2136                 audit_copy_inode(n, NULL, parent, 0);
2137         }
2138
2139         if (!found_child) {
2140                 found_child = audit_alloc_name(context, type);
2141                 if (!found_child)
2142                         return;
2143
2144                 /* Re-use the name belonging to the slot for a matching parent
2145                  * directory. All names for this context are relinquished in
2146                  * audit_free_names() */
2147                 if (found_parent) {
2148                         found_child->name = found_parent->name;
2149                         found_child->name_len = AUDIT_NAME_FULL;
2150                         found_child->name->refcnt++;
2151                 }
2152         }
2153
2154         if (inode)
2155                 audit_copy_inode(found_child, dentry, inode, 0);
2156         else
2157                 found_child->ino = AUDIT_INO_UNSET;
2158 }
2159 EXPORT_SYMBOL_GPL(__audit_inode_child);
2160
2161 /**
2162  * auditsc_get_stamp - get local copies of audit_context values
2163  * @ctx: audit_context for the task
2164  * @t: timespec64 to store time recorded in the audit_context
2165  * @serial: serial value that is recorded in the audit_context
2166  *
2167  * Also sets the context as auditable.
2168  */
2169 int auditsc_get_stamp(struct audit_context *ctx,
2170                        struct timespec64 *t, unsigned int *serial)
2171 {
2172         if (!ctx->in_syscall)
2173                 return 0;
2174         if (!ctx->serial)
2175                 ctx->serial = audit_serial();
2176         t->tv_sec  = ctx->ctime.tv_sec;
2177         t->tv_nsec = ctx->ctime.tv_nsec;
2178         *serial    = ctx->serial;
2179         if (!ctx->prio) {
2180                 ctx->prio = 1;
2181                 ctx->current_state = AUDIT_RECORD_CONTEXT;
2182         }
2183         return 1;
2184 }
2185
2186 /**
2187  * __audit_mq_open - record audit data for a POSIX MQ open
2188  * @oflag: open flag
2189  * @mode: mode bits
2190  * @attr: queue attributes
2191  *
2192  */
2193 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2194 {
2195         struct audit_context *context = audit_context();
2196
2197         if (attr)
2198                 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2199         else
2200                 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2201
2202         context->mq_open.oflag = oflag;
2203         context->mq_open.mode = mode;
2204
2205         context->type = AUDIT_MQ_OPEN;
2206 }
2207
2208 /**
2209  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2210  * @mqdes: MQ descriptor
2211  * @msg_len: Message length
2212  * @msg_prio: Message priority
2213  * @abs_timeout: Message timeout in absolute time
2214  *
2215  */
2216 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2217                         const struct timespec64 *abs_timeout)
2218 {
2219         struct audit_context *context = audit_context();
2220         struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2221
2222         if (abs_timeout)
2223                 memcpy(p, abs_timeout, sizeof(*p));
2224         else
2225                 memset(p, 0, sizeof(*p));
2226
2227         context->mq_sendrecv.mqdes = mqdes;
2228         context->mq_sendrecv.msg_len = msg_len;
2229         context->mq_sendrecv.msg_prio = msg_prio;
2230
2231         context->type = AUDIT_MQ_SENDRECV;
2232 }
2233
2234 /**
2235  * __audit_mq_notify - record audit data for a POSIX MQ notify
2236  * @mqdes: MQ descriptor
2237  * @notification: Notification event
2238  *
2239  */
2240
2241 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2242 {
2243         struct audit_context *context = audit_context();
2244
2245         if (notification)
2246                 context->mq_notify.sigev_signo = notification->sigev_signo;
2247         else
2248                 context->mq_notify.sigev_signo = 0;
2249
2250         context->mq_notify.mqdes = mqdes;
2251         context->type = AUDIT_MQ_NOTIFY;
2252 }
2253
2254 /**
2255  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2256  * @mqdes: MQ descriptor
2257  * @mqstat: MQ flags
2258  *
2259  */
2260 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2261 {
2262         struct audit_context *context = audit_context();
2263         context->mq_getsetattr.mqdes = mqdes;
2264         context->mq_getsetattr.mqstat = *mqstat;
2265         context->type = AUDIT_MQ_GETSETATTR;
2266 }
2267
2268 /**
2269  * __audit_ipc_obj - record audit data for ipc object
2270  * @ipcp: ipc permissions
2271  *
2272  */
2273 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2274 {
2275         struct audit_context *context = audit_context();
2276         context->ipc.uid = ipcp->uid;
2277         context->ipc.gid = ipcp->gid;
2278         context->ipc.mode = ipcp->mode;
2279         context->ipc.has_perm = 0;
2280         security_ipc_getsecid(ipcp, &context->ipc.osid);
2281         context->type = AUDIT_IPC;
2282 }
2283
2284 /**
2285  * __audit_ipc_set_perm - record audit data for new ipc permissions
2286  * @qbytes: msgq bytes
2287  * @uid: msgq user id
2288  * @gid: msgq group id
2289  * @mode: msgq mode (permissions)
2290  *
2291  * Called only after audit_ipc_obj().
2292  */
2293 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2294 {
2295         struct audit_context *context = audit_context();
2296
2297         context->ipc.qbytes = qbytes;
2298         context->ipc.perm_uid = uid;
2299         context->ipc.perm_gid = gid;
2300         context->ipc.perm_mode = mode;
2301         context->ipc.has_perm = 1;
2302 }
2303
2304 void __audit_bprm(struct linux_binprm *bprm)
2305 {
2306         struct audit_context *context = audit_context();
2307
2308         context->type = AUDIT_EXECVE;
2309         context->execve.argc = bprm->argc;
2310 }
2311
2312
2313 /**
2314  * __audit_socketcall - record audit data for sys_socketcall
2315  * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2316  * @args: args array
2317  *
2318  */
2319 int __audit_socketcall(int nargs, unsigned long *args)
2320 {
2321         struct audit_context *context = audit_context();
2322
2323         if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2324                 return -EINVAL;
2325         context->type = AUDIT_SOCKETCALL;
2326         context->socketcall.nargs = nargs;
2327         memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2328         return 0;
2329 }
2330
2331 /**
2332  * __audit_fd_pair - record audit data for pipe and socketpair
2333  * @fd1: the first file descriptor
2334  * @fd2: the second file descriptor
2335  *
2336  */
2337 void __audit_fd_pair(int fd1, int fd2)
2338 {
2339         struct audit_context *context = audit_context();
2340         context->fds[0] = fd1;
2341         context->fds[1] = fd2;
2342 }
2343
2344 /**
2345  * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2346  * @len: data length in user space
2347  * @a: data address in kernel space
2348  *
2349  * Returns 0 for success or NULL context or < 0 on error.
2350  */
2351 int __audit_sockaddr(int len, void *a)
2352 {
2353         struct audit_context *context = audit_context();
2354
2355         if (!context->sockaddr) {
2356                 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2357                 if (!p)
2358                         return -ENOMEM;
2359                 context->sockaddr = p;
2360         }
2361
2362         context->sockaddr_len = len;
2363         memcpy(context->sockaddr, a, len);
2364         return 0;
2365 }
2366
2367 void __audit_ptrace(struct task_struct *t)
2368 {
2369         struct audit_context *context = audit_context();
2370
2371         context->target_pid = task_tgid_nr(t);
2372         context->target_auid = audit_get_loginuid(t);
2373         context->target_uid = task_uid(t);
2374         context->target_sessionid = audit_get_sessionid(t);
2375         security_task_getsecid(t, &context->target_sid);
2376         memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2377 }
2378
2379 /**
2380  * audit_signal_info_syscall - record signal info for syscalls
2381  * @t: task being signaled
2382  *
2383  * If the audit subsystem is being terminated, record the task (pid)
2384  * and uid that is doing that.
2385  */
2386 int audit_signal_info_syscall(struct task_struct *t)
2387 {
2388         struct audit_aux_data_pids *axp;
2389         struct audit_context *ctx = audit_context();
2390         kuid_t t_uid = task_uid(t);
2391
2392         if (!audit_signals || audit_dummy_context())
2393                 return 0;
2394
2395         /* optimize the common case by putting first signal recipient directly
2396          * in audit_context */
2397         if (!ctx->target_pid) {
2398                 ctx->target_pid = task_tgid_nr(t);
2399                 ctx->target_auid = audit_get_loginuid(t);
2400                 ctx->target_uid = t_uid;
2401                 ctx->target_sessionid = audit_get_sessionid(t);
2402                 security_task_getsecid(t, &ctx->target_sid);
2403                 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2404                 return 0;
2405         }
2406
2407         axp = (void *)ctx->aux_pids;
2408         if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2409                 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2410                 if (!axp)
2411                         return -ENOMEM;
2412
2413                 axp->d.type = AUDIT_OBJ_PID;
2414                 axp->d.next = ctx->aux_pids;
2415                 ctx->aux_pids = (void *)axp;
2416         }
2417         BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2418
2419         axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2420         axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2421         axp->target_uid[axp->pid_count] = t_uid;
2422         axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2423         security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2424         memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2425         axp->pid_count++;
2426
2427         return 0;
2428 }
2429
2430 /**
2431  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2432  * @bprm: pointer to the bprm being processed
2433  * @new: the proposed new credentials
2434  * @old: the old credentials
2435  *
2436  * Simply check if the proc already has the caps given by the file and if not
2437  * store the priv escalation info for later auditing at the end of the syscall
2438  *
2439  * -Eric
2440  */
2441 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2442                            const struct cred *new, const struct cred *old)
2443 {
2444         struct audit_aux_data_bprm_fcaps *ax;
2445         struct audit_context *context = audit_context();
2446         struct cpu_vfs_cap_data vcaps;
2447
2448         ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2449         if (!ax)
2450                 return -ENOMEM;
2451
2452         ax->d.type = AUDIT_BPRM_FCAPS;
2453         ax->d.next = context->aux;
2454         context->aux = (void *)ax;
2455
2456         get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2457
2458         ax->fcap.permitted = vcaps.permitted;
2459         ax->fcap.inheritable = vcaps.inheritable;
2460         ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2461         ax->fcap.rootid = vcaps.rootid;
2462         ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2463
2464         ax->old_pcap.permitted   = old->cap_permitted;
2465         ax->old_pcap.inheritable = old->cap_inheritable;
2466         ax->old_pcap.effective   = old->cap_effective;
2467         ax->old_pcap.ambient     = old->cap_ambient;
2468
2469         ax->new_pcap.permitted   = new->cap_permitted;
2470         ax->new_pcap.inheritable = new->cap_inheritable;
2471         ax->new_pcap.effective   = new->cap_effective;
2472         ax->new_pcap.ambient     = new->cap_ambient;
2473         return 0;
2474 }
2475
2476 /**
2477  * __audit_log_capset - store information about the arguments to the capset syscall
2478  * @new: the new credentials
2479  * @old: the old (current) credentials
2480  *
2481  * Record the arguments userspace sent to sys_capset for later printing by the
2482  * audit system if applicable
2483  */
2484 void __audit_log_capset(const struct cred *new, const struct cred *old)
2485 {
2486         struct audit_context *context = audit_context();
2487         context->capset.pid = task_tgid_nr(current);
2488         context->capset.cap.effective   = new->cap_effective;
2489         context->capset.cap.inheritable = new->cap_effective;
2490         context->capset.cap.permitted   = new->cap_permitted;
2491         context->capset.cap.ambient     = new->cap_ambient;
2492         context->type = AUDIT_CAPSET;
2493 }
2494
2495 void __audit_mmap_fd(int fd, int flags)
2496 {
2497         struct audit_context *context = audit_context();
2498         context->mmap.fd = fd;
2499         context->mmap.flags = flags;
2500         context->type = AUDIT_MMAP;
2501 }
2502
2503 void __audit_log_kern_module(char *name)
2504 {
2505         struct audit_context *context = audit_context();
2506
2507         context->module.name = kstrdup(name, GFP_KERNEL);
2508         if (!context->module.name)
2509                 audit_log_lost("out of memory in __audit_log_kern_module");
2510         context->type = AUDIT_KERN_MODULE;
2511 }
2512
2513 void __audit_fanotify(unsigned int response)
2514 {
2515         audit_log(audit_context(), GFP_KERNEL,
2516                 AUDIT_FANOTIFY, "resp=%u", response);
2517 }
2518
2519 void __audit_tk_injoffset(struct timespec64 offset)
2520 {
2521         audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2522                   "sec=%lli nsec=%li",
2523                   (long long)offset.tv_sec, offset.tv_nsec);
2524 }
2525
2526 static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2527                               const char *op, enum audit_ntp_type type)
2528 {
2529         const struct audit_ntp_val *val = &ad->vals[type];
2530
2531         if (val->newval == val->oldval)
2532                 return;
2533
2534         audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2535                   "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2536 }
2537
2538 void __audit_ntp_log(const struct audit_ntp_data *ad)
2539 {
2540         audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET);
2541         audit_log_ntp_val(ad, "freq",   AUDIT_NTP_FREQ);
2542         audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS);
2543         audit_log_ntp_val(ad, "tai",    AUDIT_NTP_TAI);
2544         audit_log_ntp_val(ad, "tick",   AUDIT_NTP_TICK);
2545         audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST);
2546 }
2547
2548 static void audit_log_task(struct audit_buffer *ab)
2549 {
2550         kuid_t auid, uid;
2551         kgid_t gid;
2552         unsigned int sessionid;
2553         char comm[sizeof(current->comm)];
2554
2555         auid = audit_get_loginuid(current);
2556         sessionid = audit_get_sessionid(current);
2557         current_uid_gid(&uid, &gid);
2558
2559         audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2560                          from_kuid(&init_user_ns, auid),
2561                          from_kuid(&init_user_ns, uid),
2562                          from_kgid(&init_user_ns, gid),
2563                          sessionid);
2564         audit_log_task_context(ab);
2565         audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2566         audit_log_untrustedstring(ab, get_task_comm(comm, current));
2567         audit_log_d_path_exe(ab, current->mm);
2568 }
2569
2570 /**
2571  * audit_core_dumps - record information about processes that end abnormally
2572  * @signr: signal value
2573  *
2574  * If a process ends with a core dump, something fishy is going on and we
2575  * should record the event for investigation.
2576  */
2577 void audit_core_dumps(long signr)
2578 {
2579         struct audit_buffer *ab;
2580
2581         if (!audit_enabled)
2582                 return;
2583
2584         if (signr == SIGQUIT)   /* don't care for those */
2585                 return;
2586
2587         ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2588         if (unlikely(!ab))
2589                 return;
2590         audit_log_task(ab);
2591         audit_log_format(ab, " sig=%ld res=1", signr);
2592         audit_log_end(ab);
2593 }
2594
2595 /**
2596  * audit_seccomp - record information about a seccomp action
2597  * @syscall: syscall number
2598  * @signr: signal value
2599  * @code: the seccomp action
2600  *
2601  * Record the information associated with a seccomp action. Event filtering for
2602  * seccomp actions that are not to be logged is done in seccomp_log().
2603  * Therefore, this function forces auditing independent of the audit_enabled
2604  * and dummy context state because seccomp actions should be logged even when
2605  * audit is not in use.
2606  */
2607 void audit_seccomp(unsigned long syscall, long signr, int code)
2608 {
2609         struct audit_buffer *ab;
2610
2611         ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2612         if (unlikely(!ab))
2613                 return;
2614         audit_log_task(ab);
2615         audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2616                          signr, syscall_get_arch(current), syscall,
2617                          in_compat_syscall(), KSTK_EIP(current), code);
2618         audit_log_end(ab);
2619 }
2620
2621 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2622                                   int res)
2623 {
2624         struct audit_buffer *ab;
2625
2626         if (!audit_enabled)
2627                 return;
2628
2629         ab = audit_log_start(audit_context(), GFP_KERNEL,
2630                              AUDIT_CONFIG_CHANGE);
2631         if (unlikely(!ab))
2632                 return;
2633
2634         audit_log_format(ab,
2635                          "op=seccomp-logging actions=%s old-actions=%s res=%d",
2636                          names, old_names, res);
2637         audit_log_end(ab);
2638 }
2639
2640 struct list_head *audit_killed_trees(void)
2641 {
2642         struct audit_context *ctx = audit_context();
2643         if (likely(!ctx || !ctx->in_syscall))
2644                 return NULL;
2645         return &ctx->killed_trees;
2646 }