Merge tag 'timers-urgent-2024-03-23' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / kernel / audit.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* audit.c -- Auditing support
3  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4  * System-call specific features have moved to auditsc.c
5  *
6  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7  * All Rights Reserved.
8  *
9  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
10  *
11  * Goals: 1) Integrate fully with Security Modules.
12  *        2) Minimal run-time overhead:
13  *           a) Minimal when syscall auditing is disabled (audit_enable=0).
14  *           b) Small when syscall auditing is enabled and no audit record
15  *              is generated (defer as much work as possible to record
16  *              generation time):
17  *              i) context is allocated,
18  *              ii) names from getname are stored without a copy, and
19  *              iii) inode information stored from path_lookup.
20  *        3) Ability to disable syscall auditing at boot time (audit=0).
21  *        4) Usable by other parts of the kernel (if audit_log* is called,
22  *           then a syscall record will be generated automatically for the
23  *           current syscall).
24  *        5) Netlink interface to user-space.
25  *        6) Support low-overhead kernel-based filtering to minimize the
26  *           information that must be passed to user-space.
27  *
28  * Audit userspace, documentation, tests, and bug/issue trackers:
29  *      https://github.com/linux-audit
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/file.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/atomic.h>
38 #include <linux/mm.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/err.h>
42 #include <linux/kthread.h>
43 #include <linux/kernel.h>
44 #include <linux/syscalls.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/mutex.h>
48 #include <linux/gfp.h>
49 #include <linux/pid.h>
50
51 #include <linux/audit.h>
52
53 #include <net/sock.h>
54 #include <net/netlink.h>
55 #include <linux/skbuff.h>
56 #include <linux/security.h>
57 #include <linux/freezer.h>
58 #include <linux/pid_namespace.h>
59 #include <net/netns/generic.h>
60
61 #include "audit.h"
62
63 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
64  * (Initialization happens after skb_init is called.) */
65 #define AUDIT_DISABLED          -1
66 #define AUDIT_UNINITIALIZED     0
67 #define AUDIT_INITIALIZED       1
68 static int      audit_initialized = AUDIT_UNINITIALIZED;
69
70 u32             audit_enabled = AUDIT_OFF;
71 bool            audit_ever_enabled = !!AUDIT_OFF;
72
73 EXPORT_SYMBOL_GPL(audit_enabled);
74
75 /* Default state when kernel boots without any parameters. */
76 static u32      audit_default = AUDIT_OFF;
77
78 /* If auditing cannot proceed, audit_failure selects what happens. */
79 static u32      audit_failure = AUDIT_FAIL_PRINTK;
80
81 /* private audit network namespace index */
82 static unsigned int audit_net_id;
83
84 /**
85  * struct audit_net - audit private network namespace data
86  * @sk: communication socket
87  */
88 struct audit_net {
89         struct sock *sk;
90 };
91
92 /**
93  * struct auditd_connection - kernel/auditd connection state
94  * @pid: auditd PID
95  * @portid: netlink portid
96  * @net: the associated network namespace
97  * @rcu: RCU head
98  *
99  * Description:
100  * This struct is RCU protected; you must either hold the RCU lock for reading
101  * or the associated spinlock for writing.
102  */
103 struct auditd_connection {
104         struct pid *pid;
105         u32 portid;
106         struct net *net;
107         struct rcu_head rcu;
108 };
109 static struct auditd_connection __rcu *auditd_conn;
110 static DEFINE_SPINLOCK(auditd_conn_lock);
111
112 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
113  * to that number per second.  This prevents DoS attacks, but results in
114  * audit records being dropped. */
115 static u32      audit_rate_limit;
116
117 /* Number of outstanding audit_buffers allowed.
118  * When set to zero, this means unlimited. */
119 static u32      audit_backlog_limit = 64;
120 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
121 static u32      audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
122
123 /* The identity of the user shutting down the audit system. */
124 static kuid_t           audit_sig_uid = INVALID_UID;
125 static pid_t            audit_sig_pid = -1;
126 static u32              audit_sig_sid;
127
128 /* Records can be lost in several ways:
129    0) [suppressed in audit_alloc]
130    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
131    2) out of memory in audit_log_move [alloc_skb]
132    3) suppressed due to audit_rate_limit
133    4) suppressed due to audit_backlog_limit
134 */
135 static atomic_t audit_lost = ATOMIC_INIT(0);
136
137 /* Monotonically increasing sum of time the kernel has spent
138  * waiting while the backlog limit is exceeded.
139  */
140 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
141
142 /* Hash for inode-based rules */
143 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
144
145 static struct kmem_cache *audit_buffer_cache;
146
147 /* queue msgs to send via kauditd_task */
148 static struct sk_buff_head audit_queue;
149 /* queue msgs due to temporary unicast send problems */
150 static struct sk_buff_head audit_retry_queue;
151 /* queue msgs waiting for new auditd connection */
152 static struct sk_buff_head audit_hold_queue;
153
154 /* queue servicing thread */
155 static struct task_struct *kauditd_task;
156 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
157
158 /* waitqueue for callers who are blocked on the audit backlog */
159 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
160
161 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
162                                    .mask = -1,
163                                    .features = 0,
164                                    .lock = 0,};
165
166 static char *audit_feature_names[2] = {
167         "only_unset_loginuid",
168         "loginuid_immutable",
169 };
170
171 /**
172  * struct audit_ctl_mutex - serialize requests from userspace
173  * @lock: the mutex used for locking
174  * @owner: the task which owns the lock
175  *
176  * Description:
177  * This is the lock struct used to ensure we only process userspace requests
178  * in an orderly fashion.  We can't simply use a mutex/lock here because we
179  * need to track lock ownership so we don't end up blocking the lock owner in
180  * audit_log_start() or similar.
181  */
182 static struct audit_ctl_mutex {
183         struct mutex lock;
184         void *owner;
185 } audit_cmd_mutex;
186
187 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
188  * audit records.  Since printk uses a 1024 byte buffer, this buffer
189  * should be at least that large. */
190 #define AUDIT_BUFSIZ 1024
191
192 /* The audit_buffer is used when formatting an audit record.  The caller
193  * locks briefly to get the record off the freelist or to allocate the
194  * buffer, and locks briefly to send the buffer to the netlink layer or
195  * to place it on a transmit queue.  Multiple audit_buffers can be in
196  * use simultaneously. */
197 struct audit_buffer {
198         struct sk_buff       *skb;      /* formatted skb ready to send */
199         struct audit_context *ctx;      /* NULL or associated context */
200         gfp_t                gfp_mask;
201 };
202
203 struct audit_reply {
204         __u32 portid;
205         struct net *net;
206         struct sk_buff *skb;
207 };
208
209 /**
210  * auditd_test_task - Check to see if a given task is an audit daemon
211  * @task: the task to check
212  *
213  * Description:
214  * Return 1 if the task is a registered audit daemon, 0 otherwise.
215  */
216 int auditd_test_task(struct task_struct *task)
217 {
218         int rc;
219         struct auditd_connection *ac;
220
221         rcu_read_lock();
222         ac = rcu_dereference(auditd_conn);
223         rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
224         rcu_read_unlock();
225
226         return rc;
227 }
228
229 /**
230  * audit_ctl_lock - Take the audit control lock
231  */
232 void audit_ctl_lock(void)
233 {
234         mutex_lock(&audit_cmd_mutex.lock);
235         audit_cmd_mutex.owner = current;
236 }
237
238 /**
239  * audit_ctl_unlock - Drop the audit control lock
240  */
241 void audit_ctl_unlock(void)
242 {
243         audit_cmd_mutex.owner = NULL;
244         mutex_unlock(&audit_cmd_mutex.lock);
245 }
246
247 /**
248  * audit_ctl_owner_current - Test to see if the current task owns the lock
249  *
250  * Description:
251  * Return true if the current task owns the audit control lock, false if it
252  * doesn't own the lock.
253  */
254 static bool audit_ctl_owner_current(void)
255 {
256         return (current == audit_cmd_mutex.owner);
257 }
258
259 /**
260  * auditd_pid_vnr - Return the auditd PID relative to the namespace
261  *
262  * Description:
263  * Returns the PID in relation to the namespace, 0 on failure.
264  */
265 static pid_t auditd_pid_vnr(void)
266 {
267         pid_t pid;
268         const struct auditd_connection *ac;
269
270         rcu_read_lock();
271         ac = rcu_dereference(auditd_conn);
272         if (!ac || !ac->pid)
273                 pid = 0;
274         else
275                 pid = pid_vnr(ac->pid);
276         rcu_read_unlock();
277
278         return pid;
279 }
280
281 /**
282  * audit_get_sk - Return the audit socket for the given network namespace
283  * @net: the destination network namespace
284  *
285  * Description:
286  * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
287  * that a reference is held for the network namespace while the sock is in use.
288  */
289 static struct sock *audit_get_sk(const struct net *net)
290 {
291         struct audit_net *aunet;
292
293         if (!net)
294                 return NULL;
295
296         aunet = net_generic(net, audit_net_id);
297         return aunet->sk;
298 }
299
300 void audit_panic(const char *message)
301 {
302         switch (audit_failure) {
303         case AUDIT_FAIL_SILENT:
304                 break;
305         case AUDIT_FAIL_PRINTK:
306                 if (printk_ratelimit())
307                         pr_err("%s\n", message);
308                 break;
309         case AUDIT_FAIL_PANIC:
310                 panic("audit: %s\n", message);
311                 break;
312         }
313 }
314
315 static inline int audit_rate_check(void)
316 {
317         static unsigned long    last_check = 0;
318         static int              messages   = 0;
319         static DEFINE_SPINLOCK(lock);
320         unsigned long           flags;
321         unsigned long           now;
322         int                     retval     = 0;
323
324         if (!audit_rate_limit)
325                 return 1;
326
327         spin_lock_irqsave(&lock, flags);
328         if (++messages < audit_rate_limit) {
329                 retval = 1;
330         } else {
331                 now = jiffies;
332                 if (time_after(now, last_check + HZ)) {
333                         last_check = now;
334                         messages   = 0;
335                         retval     = 1;
336                 }
337         }
338         spin_unlock_irqrestore(&lock, flags);
339
340         return retval;
341 }
342
343 /**
344  * audit_log_lost - conditionally log lost audit message event
345  * @message: the message stating reason for lost audit message
346  *
347  * Emit at least 1 message per second, even if audit_rate_check is
348  * throttling.
349  * Always increment the lost messages counter.
350 */
351 void audit_log_lost(const char *message)
352 {
353         static unsigned long    last_msg = 0;
354         static DEFINE_SPINLOCK(lock);
355         unsigned long           flags;
356         unsigned long           now;
357         int                     print;
358
359         atomic_inc(&audit_lost);
360
361         print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
362
363         if (!print) {
364                 spin_lock_irqsave(&lock, flags);
365                 now = jiffies;
366                 if (time_after(now, last_msg + HZ)) {
367                         print = 1;
368                         last_msg = now;
369                 }
370                 spin_unlock_irqrestore(&lock, flags);
371         }
372
373         if (print) {
374                 if (printk_ratelimit())
375                         pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
376                                 atomic_read(&audit_lost),
377                                 audit_rate_limit,
378                                 audit_backlog_limit);
379                 audit_panic(message);
380         }
381 }
382
383 static int audit_log_config_change(char *function_name, u32 new, u32 old,
384                                    int allow_changes)
385 {
386         struct audit_buffer *ab;
387         int rc = 0;
388
389         ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
390         if (unlikely(!ab))
391                 return rc;
392         audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
393         audit_log_session_info(ab);
394         rc = audit_log_task_context(ab);
395         if (rc)
396                 allow_changes = 0; /* Something weird, deny request */
397         audit_log_format(ab, " res=%d", allow_changes);
398         audit_log_end(ab);
399         return rc;
400 }
401
402 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
403 {
404         int allow_changes, rc = 0;
405         u32 old = *to_change;
406
407         /* check if we are locked */
408         if (audit_enabled == AUDIT_LOCKED)
409                 allow_changes = 0;
410         else
411                 allow_changes = 1;
412
413         if (audit_enabled != AUDIT_OFF) {
414                 rc = audit_log_config_change(function_name, new, old, allow_changes);
415                 if (rc)
416                         allow_changes = 0;
417         }
418
419         /* If we are allowed, make the change */
420         if (allow_changes == 1)
421                 *to_change = new;
422         /* Not allowed, update reason */
423         else if (rc == 0)
424                 rc = -EPERM;
425         return rc;
426 }
427
428 static int audit_set_rate_limit(u32 limit)
429 {
430         return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
431 }
432
433 static int audit_set_backlog_limit(u32 limit)
434 {
435         return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
436 }
437
438 static int audit_set_backlog_wait_time(u32 timeout)
439 {
440         return audit_do_config_change("audit_backlog_wait_time",
441                                       &audit_backlog_wait_time, timeout);
442 }
443
444 static int audit_set_enabled(u32 state)
445 {
446         int rc;
447         if (state > AUDIT_LOCKED)
448                 return -EINVAL;
449
450         rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
451         if (!rc)
452                 audit_ever_enabled |= !!state;
453
454         return rc;
455 }
456
457 static int audit_set_failure(u32 state)
458 {
459         if (state != AUDIT_FAIL_SILENT
460             && state != AUDIT_FAIL_PRINTK
461             && state != AUDIT_FAIL_PANIC)
462                 return -EINVAL;
463
464         return audit_do_config_change("audit_failure", &audit_failure, state);
465 }
466
467 /**
468  * auditd_conn_free - RCU helper to release an auditd connection struct
469  * @rcu: RCU head
470  *
471  * Description:
472  * Drop any references inside the auditd connection tracking struct and free
473  * the memory.
474  */
475 static void auditd_conn_free(struct rcu_head *rcu)
476 {
477         struct auditd_connection *ac;
478
479         ac = container_of(rcu, struct auditd_connection, rcu);
480         put_pid(ac->pid);
481         put_net(ac->net);
482         kfree(ac);
483 }
484
485 /**
486  * auditd_set - Set/Reset the auditd connection state
487  * @pid: auditd PID
488  * @portid: auditd netlink portid
489  * @net: auditd network namespace pointer
490  * @skb: the netlink command from the audit daemon
491  * @ack: netlink ack flag, cleared if ack'd here
492  *
493  * Description:
494  * This function will obtain and drop network namespace references as
495  * necessary.  Returns zero on success, negative values on failure.
496  */
497 static int auditd_set(struct pid *pid, u32 portid, struct net *net,
498                       struct sk_buff *skb, bool *ack)
499 {
500         unsigned long flags;
501         struct auditd_connection *ac_old, *ac_new;
502         struct nlmsghdr *nlh;
503
504         if (!pid || !net)
505                 return -EINVAL;
506
507         ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
508         if (!ac_new)
509                 return -ENOMEM;
510         ac_new->pid = get_pid(pid);
511         ac_new->portid = portid;
512         ac_new->net = get_net(net);
513
514         /* send the ack now to avoid a race with the queue backlog */
515         if (*ack) {
516                 nlh = nlmsg_hdr(skb);
517                 netlink_ack(skb, nlh, 0, NULL);
518                 *ack = false;
519         }
520
521         spin_lock_irqsave(&auditd_conn_lock, flags);
522         ac_old = rcu_dereference_protected(auditd_conn,
523                                            lockdep_is_held(&auditd_conn_lock));
524         rcu_assign_pointer(auditd_conn, ac_new);
525         spin_unlock_irqrestore(&auditd_conn_lock, flags);
526
527         if (ac_old)
528                 call_rcu(&ac_old->rcu, auditd_conn_free);
529
530         return 0;
531 }
532
533 /**
534  * kauditd_printk_skb - Print the audit record to the ring buffer
535  * @skb: audit record
536  *
537  * Whatever the reason, this packet may not make it to the auditd connection
538  * so write it via printk so the information isn't completely lost.
539  */
540 static void kauditd_printk_skb(struct sk_buff *skb)
541 {
542         struct nlmsghdr *nlh = nlmsg_hdr(skb);
543         char *data = nlmsg_data(nlh);
544
545         if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
546                 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
547 }
548
549 /**
550  * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
551  * @skb: audit record
552  * @error: error code (unused)
553  *
554  * Description:
555  * This should only be used by the kauditd_thread when it fails to flush the
556  * hold queue.
557  */
558 static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error)
559 {
560         /* put the record back in the queue */
561         skb_queue_tail(&audit_hold_queue, skb);
562 }
563
564 /**
565  * kauditd_hold_skb - Queue an audit record, waiting for auditd
566  * @skb: audit record
567  * @error: error code
568  *
569  * Description:
570  * Queue the audit record, waiting for an instance of auditd.  When this
571  * function is called we haven't given up yet on sending the record, but things
572  * are not looking good.  The first thing we want to do is try to write the
573  * record via printk and then see if we want to try and hold on to the record
574  * and queue it, if we have room.  If we want to hold on to the record, but we
575  * don't have room, record a record lost message.
576  */
577 static void kauditd_hold_skb(struct sk_buff *skb, int error)
578 {
579         /* at this point it is uncertain if we will ever send this to auditd so
580          * try to send the message via printk before we go any further */
581         kauditd_printk_skb(skb);
582
583         /* can we just silently drop the message? */
584         if (!audit_default)
585                 goto drop;
586
587         /* the hold queue is only for when the daemon goes away completely,
588          * not -EAGAIN failures; if we are in a -EAGAIN state requeue the
589          * record on the retry queue unless it's full, in which case drop it
590          */
591         if (error == -EAGAIN) {
592                 if (!audit_backlog_limit ||
593                     skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
594                         skb_queue_tail(&audit_retry_queue, skb);
595                         return;
596                 }
597                 audit_log_lost("kauditd retry queue overflow");
598                 goto drop;
599         }
600
601         /* if we have room in the hold queue, queue the message */
602         if (!audit_backlog_limit ||
603             skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
604                 skb_queue_tail(&audit_hold_queue, skb);
605                 return;
606         }
607
608         /* we have no other options - drop the message */
609         audit_log_lost("kauditd hold queue overflow");
610 drop:
611         kfree_skb(skb);
612 }
613
614 /**
615  * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
616  * @skb: audit record
617  * @error: error code (unused)
618  *
619  * Description:
620  * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
621  * but for some reason we are having problems sending it audit records so
622  * queue the given record and attempt to resend.
623  */
624 static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error)
625 {
626         if (!audit_backlog_limit ||
627             skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
628                 skb_queue_tail(&audit_retry_queue, skb);
629                 return;
630         }
631
632         /* we have to drop the record, send it via printk as a last effort */
633         kauditd_printk_skb(skb);
634         audit_log_lost("kauditd retry queue overflow");
635         kfree_skb(skb);
636 }
637
638 /**
639  * auditd_reset - Disconnect the auditd connection
640  * @ac: auditd connection state
641  *
642  * Description:
643  * Break the auditd/kauditd connection and move all the queued records into the
644  * hold queue in case auditd reconnects.  It is important to note that the @ac
645  * pointer should never be dereferenced inside this function as it may be NULL
646  * or invalid, you can only compare the memory address!  If @ac is NULL then
647  * the connection will always be reset.
648  */
649 static void auditd_reset(const struct auditd_connection *ac)
650 {
651         unsigned long flags;
652         struct sk_buff *skb;
653         struct auditd_connection *ac_old;
654
655         /* if it isn't already broken, break the connection */
656         spin_lock_irqsave(&auditd_conn_lock, flags);
657         ac_old = rcu_dereference_protected(auditd_conn,
658                                            lockdep_is_held(&auditd_conn_lock));
659         if (ac && ac != ac_old) {
660                 /* someone already registered a new auditd connection */
661                 spin_unlock_irqrestore(&auditd_conn_lock, flags);
662                 return;
663         }
664         rcu_assign_pointer(auditd_conn, NULL);
665         spin_unlock_irqrestore(&auditd_conn_lock, flags);
666
667         if (ac_old)
668                 call_rcu(&ac_old->rcu, auditd_conn_free);
669
670         /* flush the retry queue to the hold queue, but don't touch the main
671          * queue since we need to process that normally for multicast */
672         while ((skb = skb_dequeue(&audit_retry_queue)))
673                 kauditd_hold_skb(skb, -ECONNREFUSED);
674 }
675
676 /**
677  * auditd_send_unicast_skb - Send a record via unicast to auditd
678  * @skb: audit record
679  *
680  * Description:
681  * Send a skb to the audit daemon, returns positive/zero values on success and
682  * negative values on failure; in all cases the skb will be consumed by this
683  * function.  If the send results in -ECONNREFUSED the connection with auditd
684  * will be reset.  This function may sleep so callers should not hold any locks
685  * where this would cause a problem.
686  */
687 static int auditd_send_unicast_skb(struct sk_buff *skb)
688 {
689         int rc;
690         u32 portid;
691         struct net *net;
692         struct sock *sk;
693         struct auditd_connection *ac;
694
695         /* NOTE: we can't call netlink_unicast while in the RCU section so
696          *       take a reference to the network namespace and grab local
697          *       copies of the namespace, the sock, and the portid; the
698          *       namespace and sock aren't going to go away while we hold a
699          *       reference and if the portid does become invalid after the RCU
700          *       section netlink_unicast() should safely return an error */
701
702         rcu_read_lock();
703         ac = rcu_dereference(auditd_conn);
704         if (!ac) {
705                 rcu_read_unlock();
706                 kfree_skb(skb);
707                 rc = -ECONNREFUSED;
708                 goto err;
709         }
710         net = get_net(ac->net);
711         sk = audit_get_sk(net);
712         portid = ac->portid;
713         rcu_read_unlock();
714
715         rc = netlink_unicast(sk, skb, portid, 0);
716         put_net(net);
717         if (rc < 0)
718                 goto err;
719
720         return rc;
721
722 err:
723         if (ac && rc == -ECONNREFUSED)
724                 auditd_reset(ac);
725         return rc;
726 }
727
728 /**
729  * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
730  * @sk: the sending sock
731  * @portid: the netlink destination
732  * @queue: the skb queue to process
733  * @retry_limit: limit on number of netlink unicast failures
734  * @skb_hook: per-skb hook for additional processing
735  * @err_hook: hook called if the skb fails the netlink unicast send
736  *
737  * Description:
738  * Run through the given queue and attempt to send the audit records to auditd,
739  * returns zero on success, negative values on failure.  It is up to the caller
740  * to ensure that the @sk is valid for the duration of this function.
741  *
742  */
743 static int kauditd_send_queue(struct sock *sk, u32 portid,
744                               struct sk_buff_head *queue,
745                               unsigned int retry_limit,
746                               void (*skb_hook)(struct sk_buff *skb),
747                               void (*err_hook)(struct sk_buff *skb, int error))
748 {
749         int rc = 0;
750         struct sk_buff *skb = NULL;
751         struct sk_buff *skb_tail;
752         unsigned int failed = 0;
753
754         /* NOTE: kauditd_thread takes care of all our locking, we just use
755          *       the netlink info passed to us (e.g. sk and portid) */
756
757         skb_tail = skb_peek_tail(queue);
758         while ((skb != skb_tail) && (skb = skb_dequeue(queue))) {
759                 /* call the skb_hook for each skb we touch */
760                 if (skb_hook)
761                         (*skb_hook)(skb);
762
763                 /* can we send to anyone via unicast? */
764                 if (!sk) {
765                         if (err_hook)
766                                 (*err_hook)(skb, -ECONNREFUSED);
767                         continue;
768                 }
769
770 retry:
771                 /* grab an extra skb reference in case of error */
772                 skb_get(skb);
773                 rc = netlink_unicast(sk, skb, portid, 0);
774                 if (rc < 0) {
775                         /* send failed - try a few times unless fatal error */
776                         if (++failed >= retry_limit ||
777                             rc == -ECONNREFUSED || rc == -EPERM) {
778                                 sk = NULL;
779                                 if (err_hook)
780                                         (*err_hook)(skb, rc);
781                                 if (rc == -EAGAIN)
782                                         rc = 0;
783                                 /* continue to drain the queue */
784                                 continue;
785                         } else
786                                 goto retry;
787                 } else {
788                         /* skb sent - drop the extra reference and continue */
789                         consume_skb(skb);
790                         failed = 0;
791                 }
792         }
793
794         return (rc >= 0 ? 0 : rc);
795 }
796
797 /*
798  * kauditd_send_multicast_skb - Send a record to any multicast listeners
799  * @skb: audit record
800  *
801  * Description:
802  * Write a multicast message to anyone listening in the initial network
803  * namespace.  This function doesn't consume an skb as might be expected since
804  * it has to copy it anyways.
805  */
806 static void kauditd_send_multicast_skb(struct sk_buff *skb)
807 {
808         struct sk_buff *copy;
809         struct sock *sock = audit_get_sk(&init_net);
810         struct nlmsghdr *nlh;
811
812         /* NOTE: we are not taking an additional reference for init_net since
813          *       we don't have to worry about it going away */
814
815         if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
816                 return;
817
818         /*
819          * The seemingly wasteful skb_copy() rather than bumping the refcount
820          * using skb_get() is necessary because non-standard mods are made to
821          * the skb by the original kaudit unicast socket send routine.  The
822          * existing auditd daemon assumes this breakage.  Fixing this would
823          * require co-ordinating a change in the established protocol between
824          * the kaudit kernel subsystem and the auditd userspace code.  There is
825          * no reason for new multicast clients to continue with this
826          * non-compliance.
827          */
828         copy = skb_copy(skb, GFP_KERNEL);
829         if (!copy)
830                 return;
831         nlh = nlmsg_hdr(copy);
832         nlh->nlmsg_len = skb->len;
833
834         nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
835 }
836
837 /**
838  * kauditd_thread - Worker thread to send audit records to userspace
839  * @dummy: unused
840  */
841 static int kauditd_thread(void *dummy)
842 {
843         int rc;
844         u32 portid = 0;
845         struct net *net = NULL;
846         struct sock *sk = NULL;
847         struct auditd_connection *ac;
848
849 #define UNICAST_RETRIES 5
850
851         set_freezable();
852         while (!kthread_should_stop()) {
853                 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
854                 rcu_read_lock();
855                 ac = rcu_dereference(auditd_conn);
856                 if (!ac) {
857                         rcu_read_unlock();
858                         goto main_queue;
859                 }
860                 net = get_net(ac->net);
861                 sk = audit_get_sk(net);
862                 portid = ac->portid;
863                 rcu_read_unlock();
864
865                 /* attempt to flush the hold queue */
866                 rc = kauditd_send_queue(sk, portid,
867                                         &audit_hold_queue, UNICAST_RETRIES,
868                                         NULL, kauditd_rehold_skb);
869                 if (rc < 0) {
870                         sk = NULL;
871                         auditd_reset(ac);
872                         goto main_queue;
873                 }
874
875                 /* attempt to flush the retry queue */
876                 rc = kauditd_send_queue(sk, portid,
877                                         &audit_retry_queue, UNICAST_RETRIES,
878                                         NULL, kauditd_hold_skb);
879                 if (rc < 0) {
880                         sk = NULL;
881                         auditd_reset(ac);
882                         goto main_queue;
883                 }
884
885 main_queue:
886                 /* process the main queue - do the multicast send and attempt
887                  * unicast, dump failed record sends to the retry queue; if
888                  * sk == NULL due to previous failures we will just do the
889                  * multicast send and move the record to the hold queue */
890                 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
891                                         kauditd_send_multicast_skb,
892                                         (sk ?
893                                          kauditd_retry_skb : kauditd_hold_skb));
894                 if (ac && rc < 0)
895                         auditd_reset(ac);
896                 sk = NULL;
897
898                 /* drop our netns reference, no auditd sends past this line */
899                 if (net) {
900                         put_net(net);
901                         net = NULL;
902                 }
903
904                 /* we have processed all the queues so wake everyone */
905                 wake_up(&audit_backlog_wait);
906
907                 /* NOTE: we want to wake up if there is anything on the queue,
908                  *       regardless of if an auditd is connected, as we need to
909                  *       do the multicast send and rotate records from the
910                  *       main queue to the retry/hold queues */
911                 wait_event_freezable(kauditd_wait,
912                                      (skb_queue_len(&audit_queue) ? 1 : 0));
913         }
914
915         return 0;
916 }
917
918 int audit_send_list_thread(void *_dest)
919 {
920         struct audit_netlink_list *dest = _dest;
921         struct sk_buff *skb;
922         struct sock *sk = audit_get_sk(dest->net);
923
924         /* wait for parent to finish and send an ACK */
925         audit_ctl_lock();
926         audit_ctl_unlock();
927
928         while ((skb = __skb_dequeue(&dest->q)) != NULL)
929                 netlink_unicast(sk, skb, dest->portid, 0);
930
931         put_net(dest->net);
932         kfree(dest);
933
934         return 0;
935 }
936
937 struct sk_buff *audit_make_reply(int seq, int type, int done,
938                                  int multi, const void *payload, int size)
939 {
940         struct sk_buff  *skb;
941         struct nlmsghdr *nlh;
942         void            *data;
943         int             flags = multi ? NLM_F_MULTI : 0;
944         int             t     = done  ? NLMSG_DONE  : type;
945
946         skb = nlmsg_new(size, GFP_KERNEL);
947         if (!skb)
948                 return NULL;
949
950         nlh     = nlmsg_put(skb, 0, seq, t, size, flags);
951         if (!nlh)
952                 goto out_kfree_skb;
953         data = nlmsg_data(nlh);
954         memcpy(data, payload, size);
955         return skb;
956
957 out_kfree_skb:
958         kfree_skb(skb);
959         return NULL;
960 }
961
962 static void audit_free_reply(struct audit_reply *reply)
963 {
964         if (!reply)
965                 return;
966
967         kfree_skb(reply->skb);
968         if (reply->net)
969                 put_net(reply->net);
970         kfree(reply);
971 }
972
973 static int audit_send_reply_thread(void *arg)
974 {
975         struct audit_reply *reply = (struct audit_reply *)arg;
976
977         audit_ctl_lock();
978         audit_ctl_unlock();
979
980         /* Ignore failure. It'll only happen if the sender goes away,
981            because our timeout is set to infinite. */
982         netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
983         reply->skb = NULL;
984         audit_free_reply(reply);
985         return 0;
986 }
987
988 /**
989  * audit_send_reply - send an audit reply message via netlink
990  * @request_skb: skb of request we are replying to (used to target the reply)
991  * @seq: sequence number
992  * @type: audit message type
993  * @done: done (last) flag
994  * @multi: multi-part message flag
995  * @payload: payload data
996  * @size: payload size
997  *
998  * Allocates a skb, builds the netlink message, and sends it to the port id.
999  */
1000 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
1001                              int multi, const void *payload, int size)
1002 {
1003         struct task_struct *tsk;
1004         struct audit_reply *reply;
1005
1006         reply = kzalloc(sizeof(*reply), GFP_KERNEL);
1007         if (!reply)
1008                 return;
1009
1010         reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
1011         if (!reply->skb)
1012                 goto err;
1013         reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
1014         reply->portid = NETLINK_CB(request_skb).portid;
1015
1016         tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
1017         if (IS_ERR(tsk))
1018                 goto err;
1019
1020         return;
1021
1022 err:
1023         audit_free_reply(reply);
1024 }
1025
1026 /*
1027  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1028  * control messages.
1029  */
1030 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1031 {
1032         int err = 0;
1033
1034         /* Only support initial user namespace for now. */
1035         /*
1036          * We return ECONNREFUSED because it tricks userspace into thinking
1037          * that audit was not configured into the kernel.  Lots of users
1038          * configure their PAM stack (because that's what the distro does)
1039          * to reject login if unable to send messages to audit.  If we return
1040          * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1041          * configured in and will let login proceed.  If we return EPERM
1042          * userspace will reject all logins.  This should be removed when we
1043          * support non init namespaces!!
1044          */
1045         if (current_user_ns() != &init_user_ns)
1046                 return -ECONNREFUSED;
1047
1048         switch (msg_type) {
1049         case AUDIT_LIST:
1050         case AUDIT_ADD:
1051         case AUDIT_DEL:
1052                 return -EOPNOTSUPP;
1053         case AUDIT_GET:
1054         case AUDIT_SET:
1055         case AUDIT_GET_FEATURE:
1056         case AUDIT_SET_FEATURE:
1057         case AUDIT_LIST_RULES:
1058         case AUDIT_ADD_RULE:
1059         case AUDIT_DEL_RULE:
1060         case AUDIT_SIGNAL_INFO:
1061         case AUDIT_TTY_GET:
1062         case AUDIT_TTY_SET:
1063         case AUDIT_TRIM:
1064         case AUDIT_MAKE_EQUIV:
1065                 /* Only support auditd and auditctl in initial pid namespace
1066                  * for now. */
1067                 if (task_active_pid_ns(current) != &init_pid_ns)
1068                         return -EPERM;
1069
1070                 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1071                         err = -EPERM;
1072                 break;
1073         case AUDIT_USER:
1074         case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1075         case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1076                 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1077                         err = -EPERM;
1078                 break;
1079         default:  /* bad msg */
1080                 err = -EINVAL;
1081         }
1082
1083         return err;
1084 }
1085
1086 static void audit_log_common_recv_msg(struct audit_context *context,
1087                                         struct audit_buffer **ab, u16 msg_type)
1088 {
1089         uid_t uid = from_kuid(&init_user_ns, current_uid());
1090         pid_t pid = task_tgid_nr(current);
1091
1092         if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1093                 *ab = NULL;
1094                 return;
1095         }
1096
1097         *ab = audit_log_start(context, GFP_KERNEL, msg_type);
1098         if (unlikely(!*ab))
1099                 return;
1100         audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1101         audit_log_session_info(*ab);
1102         audit_log_task_context(*ab);
1103 }
1104
1105 static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1106                                            u16 msg_type)
1107 {
1108         audit_log_common_recv_msg(NULL, ab, msg_type);
1109 }
1110
1111 static int is_audit_feature_set(int i)
1112 {
1113         return af.features & AUDIT_FEATURE_TO_MASK(i);
1114 }
1115
1116
1117 static int audit_get_feature(struct sk_buff *skb)
1118 {
1119         u32 seq;
1120
1121         seq = nlmsg_hdr(skb)->nlmsg_seq;
1122
1123         audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1124
1125         return 0;
1126 }
1127
1128 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1129                                      u32 old_lock, u32 new_lock, int res)
1130 {
1131         struct audit_buffer *ab;
1132
1133         if (audit_enabled == AUDIT_OFF)
1134                 return;
1135
1136         ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1137         if (!ab)
1138                 return;
1139         audit_log_task_info(ab);
1140         audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1141                          audit_feature_names[which], !!old_feature, !!new_feature,
1142                          !!old_lock, !!new_lock, res);
1143         audit_log_end(ab);
1144 }
1145
1146 static int audit_set_feature(struct audit_features *uaf)
1147 {
1148         int i;
1149
1150         BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1151
1152         /* if there is ever a version 2 we should handle that here */
1153
1154         for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1155                 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1156                 u32 old_feature, new_feature, old_lock, new_lock;
1157
1158                 /* if we are not changing this feature, move along */
1159                 if (!(feature & uaf->mask))
1160                         continue;
1161
1162                 old_feature = af.features & feature;
1163                 new_feature = uaf->features & feature;
1164                 new_lock = (uaf->lock | af.lock) & feature;
1165                 old_lock = af.lock & feature;
1166
1167                 /* are we changing a locked feature? */
1168                 if (old_lock && (new_feature != old_feature)) {
1169                         audit_log_feature_change(i, old_feature, new_feature,
1170                                                  old_lock, new_lock, 0);
1171                         return -EPERM;
1172                 }
1173         }
1174         /* nothing invalid, do the changes */
1175         for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1176                 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1177                 u32 old_feature, new_feature, old_lock, new_lock;
1178
1179                 /* if we are not changing this feature, move along */
1180                 if (!(feature & uaf->mask))
1181                         continue;
1182
1183                 old_feature = af.features & feature;
1184                 new_feature = uaf->features & feature;
1185                 old_lock = af.lock & feature;
1186                 new_lock = (uaf->lock | af.lock) & feature;
1187
1188                 if (new_feature != old_feature)
1189                         audit_log_feature_change(i, old_feature, new_feature,
1190                                                  old_lock, new_lock, 1);
1191
1192                 if (new_feature)
1193                         af.features |= feature;
1194                 else
1195                         af.features &= ~feature;
1196                 af.lock |= new_lock;
1197         }
1198
1199         return 0;
1200 }
1201
1202 static int audit_replace(struct pid *pid)
1203 {
1204         pid_t pvnr;
1205         struct sk_buff *skb;
1206
1207         pvnr = pid_vnr(pid);
1208         skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1209         if (!skb)
1210                 return -ENOMEM;
1211         return auditd_send_unicast_skb(skb);
1212 }
1213
1214 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh,
1215                              bool *ack)
1216 {
1217         u32                     seq;
1218         void                    *data;
1219         int                     data_len;
1220         int                     err;
1221         struct audit_buffer     *ab;
1222         u16                     msg_type = nlh->nlmsg_type;
1223         struct audit_sig_info   *sig_data;
1224         char                    *ctx = NULL;
1225         u32                     len;
1226
1227         err = audit_netlink_ok(skb, msg_type);
1228         if (err)
1229                 return err;
1230
1231         seq  = nlh->nlmsg_seq;
1232         data = nlmsg_data(nlh);
1233         data_len = nlmsg_len(nlh);
1234
1235         switch (msg_type) {
1236         case AUDIT_GET: {
1237                 struct audit_status     s;
1238                 memset(&s, 0, sizeof(s));
1239                 s.enabled                  = audit_enabled;
1240                 s.failure                  = audit_failure;
1241                 /* NOTE: use pid_vnr() so the PID is relative to the current
1242                  *       namespace */
1243                 s.pid                      = auditd_pid_vnr();
1244                 s.rate_limit               = audit_rate_limit;
1245                 s.backlog_limit            = audit_backlog_limit;
1246                 s.lost                     = atomic_read(&audit_lost);
1247                 s.backlog                  = skb_queue_len(&audit_queue);
1248                 s.feature_bitmap           = AUDIT_FEATURE_BITMAP_ALL;
1249                 s.backlog_wait_time        = audit_backlog_wait_time;
1250                 s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1251                 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1252                 break;
1253         }
1254         case AUDIT_SET: {
1255                 struct audit_status     s;
1256                 memset(&s, 0, sizeof(s));
1257                 /* guard against past and future API changes */
1258                 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1259                 if (s.mask & AUDIT_STATUS_ENABLED) {
1260                         err = audit_set_enabled(s.enabled);
1261                         if (err < 0)
1262                                 return err;
1263                 }
1264                 if (s.mask & AUDIT_STATUS_FAILURE) {
1265                         err = audit_set_failure(s.failure);
1266                         if (err < 0)
1267                                 return err;
1268                 }
1269                 if (s.mask & AUDIT_STATUS_PID) {
1270                         /* NOTE: we are using the vnr PID functions below
1271                          *       because the s.pid value is relative to the
1272                          *       namespace of the caller; at present this
1273                          *       doesn't matter much since you can really only
1274                          *       run auditd from the initial pid namespace, but
1275                          *       something to keep in mind if this changes */
1276                         pid_t new_pid = s.pid;
1277                         pid_t auditd_pid;
1278                         struct pid *req_pid = task_tgid(current);
1279
1280                         /* Sanity check - PID values must match. Setting
1281                          * pid to 0 is how auditd ends auditing. */
1282                         if (new_pid && (new_pid != pid_vnr(req_pid)))
1283                                 return -EINVAL;
1284
1285                         /* test the auditd connection */
1286                         audit_replace(req_pid);
1287
1288                         auditd_pid = auditd_pid_vnr();
1289                         if (auditd_pid) {
1290                                 /* replacing a healthy auditd is not allowed */
1291                                 if (new_pid) {
1292                                         audit_log_config_change("audit_pid",
1293                                                         new_pid, auditd_pid, 0);
1294                                         return -EEXIST;
1295                                 }
1296                                 /* only current auditd can unregister itself */
1297                                 if (pid_vnr(req_pid) != auditd_pid) {
1298                                         audit_log_config_change("audit_pid",
1299                                                         new_pid, auditd_pid, 0);
1300                                         return -EACCES;
1301                                 }
1302                         }
1303
1304                         if (new_pid) {
1305                                 /* register a new auditd connection */
1306                                 err = auditd_set(req_pid,
1307                                                  NETLINK_CB(skb).portid,
1308                                                  sock_net(NETLINK_CB(skb).sk),
1309                                                  skb, ack);
1310                                 if (audit_enabled != AUDIT_OFF)
1311                                         audit_log_config_change("audit_pid",
1312                                                                 new_pid,
1313                                                                 auditd_pid,
1314                                                                 err ? 0 : 1);
1315                                 if (err)
1316                                         return err;
1317
1318                                 /* try to process any backlog */
1319                                 wake_up_interruptible(&kauditd_wait);
1320                         } else {
1321                                 if (audit_enabled != AUDIT_OFF)
1322                                         audit_log_config_change("audit_pid",
1323                                                                 new_pid,
1324                                                                 auditd_pid, 1);
1325
1326                                 /* unregister the auditd connection */
1327                                 auditd_reset(NULL);
1328                         }
1329                 }
1330                 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1331                         err = audit_set_rate_limit(s.rate_limit);
1332                         if (err < 0)
1333                                 return err;
1334                 }
1335                 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1336                         err = audit_set_backlog_limit(s.backlog_limit);
1337                         if (err < 0)
1338                                 return err;
1339                 }
1340                 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1341                         if (sizeof(s) > (size_t)nlh->nlmsg_len)
1342                                 return -EINVAL;
1343                         if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1344                                 return -EINVAL;
1345                         err = audit_set_backlog_wait_time(s.backlog_wait_time);
1346                         if (err < 0)
1347                                 return err;
1348                 }
1349                 if (s.mask == AUDIT_STATUS_LOST) {
1350                         u32 lost = atomic_xchg(&audit_lost, 0);
1351
1352                         audit_log_config_change("lost", 0, lost, 1);
1353                         return lost;
1354                 }
1355                 if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1356                         u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1357
1358                         audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1359                         return actual;
1360                 }
1361                 break;
1362         }
1363         case AUDIT_GET_FEATURE:
1364                 err = audit_get_feature(skb);
1365                 if (err)
1366                         return err;
1367                 break;
1368         case AUDIT_SET_FEATURE:
1369                 if (data_len < sizeof(struct audit_features))
1370                         return -EINVAL;
1371                 err = audit_set_feature(data);
1372                 if (err)
1373                         return err;
1374                 break;
1375         case AUDIT_USER:
1376         case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1377         case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1378                 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1379                         return 0;
1380                 /* exit early if there isn't at least one character to print */
1381                 if (data_len < 2)
1382                         return -EINVAL;
1383
1384                 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1385                 if (err == 1) { /* match or error */
1386                         char *str = data;
1387
1388                         err = 0;
1389                         if (msg_type == AUDIT_USER_TTY) {
1390                                 err = tty_audit_push();
1391                                 if (err)
1392                                         break;
1393                         }
1394                         audit_log_user_recv_msg(&ab, msg_type);
1395                         if (msg_type != AUDIT_USER_TTY) {
1396                                 /* ensure NULL termination */
1397                                 str[data_len - 1] = '\0';
1398                                 audit_log_format(ab, " msg='%.*s'",
1399                                                  AUDIT_MESSAGE_TEXT_MAX,
1400                                                  str);
1401                         } else {
1402                                 audit_log_format(ab, " data=");
1403                                 if (str[data_len - 1] == '\0')
1404                                         data_len--;
1405                                 audit_log_n_untrustedstring(ab, str, data_len);
1406                         }
1407                         audit_log_end(ab);
1408                 }
1409                 break;
1410         case AUDIT_ADD_RULE:
1411         case AUDIT_DEL_RULE:
1412                 if (data_len < sizeof(struct audit_rule_data))
1413                         return -EINVAL;
1414                 if (audit_enabled == AUDIT_LOCKED) {
1415                         audit_log_common_recv_msg(audit_context(), &ab,
1416                                                   AUDIT_CONFIG_CHANGE);
1417                         audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1418                                          msg_type == AUDIT_ADD_RULE ?
1419                                                 "add_rule" : "remove_rule",
1420                                          audit_enabled);
1421                         audit_log_end(ab);
1422                         return -EPERM;
1423                 }
1424                 err = audit_rule_change(msg_type, seq, data, data_len);
1425                 break;
1426         case AUDIT_LIST_RULES:
1427                 err = audit_list_rules_send(skb, seq);
1428                 break;
1429         case AUDIT_TRIM:
1430                 audit_trim_trees();
1431                 audit_log_common_recv_msg(audit_context(), &ab,
1432                                           AUDIT_CONFIG_CHANGE);
1433                 audit_log_format(ab, " op=trim res=1");
1434                 audit_log_end(ab);
1435                 break;
1436         case AUDIT_MAKE_EQUIV: {
1437                 void *bufp = data;
1438                 u32 sizes[2];
1439                 size_t msglen = data_len;
1440                 char *old, *new;
1441
1442                 err = -EINVAL;
1443                 if (msglen < 2 * sizeof(u32))
1444                         break;
1445                 memcpy(sizes, bufp, 2 * sizeof(u32));
1446                 bufp += 2 * sizeof(u32);
1447                 msglen -= 2 * sizeof(u32);
1448                 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1449                 if (IS_ERR(old)) {
1450                         err = PTR_ERR(old);
1451                         break;
1452                 }
1453                 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1454                 if (IS_ERR(new)) {
1455                         err = PTR_ERR(new);
1456                         kfree(old);
1457                         break;
1458                 }
1459                 /* OK, here comes... */
1460                 err = audit_tag_tree(old, new);
1461
1462                 audit_log_common_recv_msg(audit_context(), &ab,
1463                                           AUDIT_CONFIG_CHANGE);
1464                 audit_log_format(ab, " op=make_equiv old=");
1465                 audit_log_untrustedstring(ab, old);
1466                 audit_log_format(ab, " new=");
1467                 audit_log_untrustedstring(ab, new);
1468                 audit_log_format(ab, " res=%d", !err);
1469                 audit_log_end(ab);
1470                 kfree(old);
1471                 kfree(new);
1472                 break;
1473         }
1474         case AUDIT_SIGNAL_INFO:
1475                 len = 0;
1476                 if (audit_sig_sid) {
1477                         err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1478                         if (err)
1479                                 return err;
1480                 }
1481                 sig_data = kmalloc(struct_size(sig_data, ctx, len), GFP_KERNEL);
1482                 if (!sig_data) {
1483                         if (audit_sig_sid)
1484                                 security_release_secctx(ctx, len);
1485                         return -ENOMEM;
1486                 }
1487                 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1488                 sig_data->pid = audit_sig_pid;
1489                 if (audit_sig_sid) {
1490                         memcpy(sig_data->ctx, ctx, len);
1491                         security_release_secctx(ctx, len);
1492                 }
1493                 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1494                                  sig_data, struct_size(sig_data, ctx, len));
1495                 kfree(sig_data);
1496                 break;
1497         case AUDIT_TTY_GET: {
1498                 struct audit_tty_status s;
1499                 unsigned int t;
1500
1501                 t = READ_ONCE(current->signal->audit_tty);
1502                 s.enabled = t & AUDIT_TTY_ENABLE;
1503                 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1504
1505                 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1506                 break;
1507         }
1508         case AUDIT_TTY_SET: {
1509                 struct audit_tty_status s, old;
1510                 struct audit_buffer     *ab;
1511                 unsigned int t;
1512
1513                 memset(&s, 0, sizeof(s));
1514                 /* guard against past and future API changes */
1515                 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1516                 /* check if new data is valid */
1517                 if ((s.enabled != 0 && s.enabled != 1) ||
1518                     (s.log_passwd != 0 && s.log_passwd != 1))
1519                         err = -EINVAL;
1520
1521                 if (err)
1522                         t = READ_ONCE(current->signal->audit_tty);
1523                 else {
1524                         t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1525                         t = xchg(&current->signal->audit_tty, t);
1526                 }
1527                 old.enabled = t & AUDIT_TTY_ENABLE;
1528                 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1529
1530                 audit_log_common_recv_msg(audit_context(), &ab,
1531                                           AUDIT_CONFIG_CHANGE);
1532                 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1533                                  " old-log_passwd=%d new-log_passwd=%d res=%d",
1534                                  old.enabled, s.enabled, old.log_passwd,
1535                                  s.log_passwd, !err);
1536                 audit_log_end(ab);
1537                 break;
1538         }
1539         default:
1540                 err = -EINVAL;
1541                 break;
1542         }
1543
1544         return err < 0 ? err : 0;
1545 }
1546
1547 /**
1548  * audit_receive - receive messages from a netlink control socket
1549  * @skb: the message buffer
1550  *
1551  * Parse the provided skb and deal with any messages that may be present,
1552  * malformed skbs are discarded.
1553  */
1554 static void audit_receive(struct sk_buff *skb)
1555 {
1556         struct nlmsghdr *nlh;
1557         bool ack;
1558         /*
1559          * len MUST be signed for nlmsg_next to be able to dec it below 0
1560          * if the nlmsg_len was not aligned
1561          */
1562         int len;
1563         int err;
1564
1565         nlh = nlmsg_hdr(skb);
1566         len = skb->len;
1567
1568         audit_ctl_lock();
1569         while (nlmsg_ok(nlh, len)) {
1570                 ack = nlh->nlmsg_flags & NLM_F_ACK;
1571                 err = audit_receive_msg(skb, nlh, &ack);
1572
1573                 /* send an ack if the user asked for one and audit_receive_msg
1574                  * didn't already do it, or if there was an error. */
1575                 if (ack || err)
1576                         netlink_ack(skb, nlh, err, NULL);
1577
1578                 nlh = nlmsg_next(nlh, &len);
1579         }
1580         audit_ctl_unlock();
1581
1582         /* can't block with the ctrl lock, so penalize the sender now */
1583         if (audit_backlog_limit &&
1584             (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1585                 DECLARE_WAITQUEUE(wait, current);
1586
1587                 /* wake kauditd to try and flush the queue */
1588                 wake_up_interruptible(&kauditd_wait);
1589
1590                 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1591                 set_current_state(TASK_UNINTERRUPTIBLE);
1592                 schedule_timeout(audit_backlog_wait_time);
1593                 remove_wait_queue(&audit_backlog_wait, &wait);
1594         }
1595 }
1596
1597 /* Log information about who is connecting to the audit multicast socket */
1598 static void audit_log_multicast(int group, const char *op, int err)
1599 {
1600         const struct cred *cred;
1601         struct tty_struct *tty;
1602         char comm[sizeof(current->comm)];
1603         struct audit_buffer *ab;
1604
1605         if (!audit_enabled)
1606                 return;
1607
1608         ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1609         if (!ab)
1610                 return;
1611
1612         cred = current_cred();
1613         tty = audit_get_tty();
1614         audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1615                          task_pid_nr(current),
1616                          from_kuid(&init_user_ns, cred->uid),
1617                          from_kuid(&init_user_ns, audit_get_loginuid(current)),
1618                          tty ? tty_name(tty) : "(none)",
1619                          audit_get_sessionid(current));
1620         audit_put_tty(tty);
1621         audit_log_task_context(ab); /* subj= */
1622         audit_log_format(ab, " comm=");
1623         audit_log_untrustedstring(ab, get_task_comm(comm, current));
1624         audit_log_d_path_exe(ab, current->mm); /* exe= */
1625         audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1626         audit_log_end(ab);
1627 }
1628
1629 /* Run custom bind function on netlink socket group connect or bind requests. */
1630 static int audit_multicast_bind(struct net *net, int group)
1631 {
1632         int err = 0;
1633
1634         if (!capable(CAP_AUDIT_READ))
1635                 err = -EPERM;
1636         audit_log_multicast(group, "connect", err);
1637         return err;
1638 }
1639
1640 static void audit_multicast_unbind(struct net *net, int group)
1641 {
1642         audit_log_multicast(group, "disconnect", 0);
1643 }
1644
1645 static int __net_init audit_net_init(struct net *net)
1646 {
1647         struct netlink_kernel_cfg cfg = {
1648                 .input  = audit_receive,
1649                 .bind   = audit_multicast_bind,
1650                 .unbind = audit_multicast_unbind,
1651                 .flags  = NL_CFG_F_NONROOT_RECV,
1652                 .groups = AUDIT_NLGRP_MAX,
1653         };
1654
1655         struct audit_net *aunet = net_generic(net, audit_net_id);
1656
1657         aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1658         if (aunet->sk == NULL) {
1659                 audit_panic("cannot initialize netlink socket in namespace");
1660                 return -ENOMEM;
1661         }
1662         /* limit the timeout in case auditd is blocked/stopped */
1663         aunet->sk->sk_sndtimeo = HZ / 10;
1664
1665         return 0;
1666 }
1667
1668 static void __net_exit audit_net_exit(struct net *net)
1669 {
1670         struct audit_net *aunet = net_generic(net, audit_net_id);
1671
1672         /* NOTE: you would think that we would want to check the auditd
1673          * connection and potentially reset it here if it lives in this
1674          * namespace, but since the auditd connection tracking struct holds a
1675          * reference to this namespace (see auditd_set()) we are only ever
1676          * going to get here after that connection has been released */
1677
1678         netlink_kernel_release(aunet->sk);
1679 }
1680
1681 static struct pernet_operations audit_net_ops __net_initdata = {
1682         .init = audit_net_init,
1683         .exit = audit_net_exit,
1684         .id = &audit_net_id,
1685         .size = sizeof(struct audit_net),
1686 };
1687
1688 /* Initialize audit support at boot time. */
1689 static int __init audit_init(void)
1690 {
1691         int i;
1692
1693         if (audit_initialized == AUDIT_DISABLED)
1694                 return 0;
1695
1696         audit_buffer_cache = KMEM_CACHE(audit_buffer, SLAB_PANIC);
1697
1698         skb_queue_head_init(&audit_queue);
1699         skb_queue_head_init(&audit_retry_queue);
1700         skb_queue_head_init(&audit_hold_queue);
1701
1702         for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1703                 INIT_LIST_HEAD(&audit_inode_hash[i]);
1704
1705         mutex_init(&audit_cmd_mutex.lock);
1706         audit_cmd_mutex.owner = NULL;
1707
1708         pr_info("initializing netlink subsys (%s)\n",
1709                 audit_default ? "enabled" : "disabled");
1710         register_pernet_subsys(&audit_net_ops);
1711
1712         audit_initialized = AUDIT_INITIALIZED;
1713
1714         kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1715         if (IS_ERR(kauditd_task)) {
1716                 int err = PTR_ERR(kauditd_task);
1717                 panic("audit: failed to start the kauditd thread (%d)\n", err);
1718         }
1719
1720         audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1721                 "state=initialized audit_enabled=%u res=1",
1722                  audit_enabled);
1723
1724         return 0;
1725 }
1726 postcore_initcall(audit_init);
1727
1728 /*
1729  * Process kernel command-line parameter at boot time.
1730  * audit={0|off} or audit={1|on}.
1731  */
1732 static int __init audit_enable(char *str)
1733 {
1734         if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1735                 audit_default = AUDIT_OFF;
1736         else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1737                 audit_default = AUDIT_ON;
1738         else {
1739                 pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1740                 audit_default = AUDIT_ON;
1741         }
1742
1743         if (audit_default == AUDIT_OFF)
1744                 audit_initialized = AUDIT_DISABLED;
1745         if (audit_set_enabled(audit_default))
1746                 pr_err("audit: error setting audit state (%d)\n",
1747                        audit_default);
1748
1749         pr_info("%s\n", audit_default ?
1750                 "enabled (after initialization)" : "disabled (until reboot)");
1751
1752         return 1;
1753 }
1754 __setup("audit=", audit_enable);
1755
1756 /* Process kernel command-line parameter at boot time.
1757  * audit_backlog_limit=<n> */
1758 static int __init audit_backlog_limit_set(char *str)
1759 {
1760         u32 audit_backlog_limit_arg;
1761
1762         pr_info("audit_backlog_limit: ");
1763         if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1764                 pr_cont("using default of %u, unable to parse %s\n",
1765                         audit_backlog_limit, str);
1766                 return 1;
1767         }
1768
1769         audit_backlog_limit = audit_backlog_limit_arg;
1770         pr_cont("%d\n", audit_backlog_limit);
1771
1772         return 1;
1773 }
1774 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1775
1776 static void audit_buffer_free(struct audit_buffer *ab)
1777 {
1778         if (!ab)
1779                 return;
1780
1781         kfree_skb(ab->skb);
1782         kmem_cache_free(audit_buffer_cache, ab);
1783 }
1784
1785 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1786                                                gfp_t gfp_mask, int type)
1787 {
1788         struct audit_buffer *ab;
1789
1790         ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1791         if (!ab)
1792                 return NULL;
1793
1794         ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1795         if (!ab->skb)
1796                 goto err;
1797         if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1798                 goto err;
1799
1800         ab->ctx = ctx;
1801         ab->gfp_mask = gfp_mask;
1802
1803         return ab;
1804
1805 err:
1806         audit_buffer_free(ab);
1807         return NULL;
1808 }
1809
1810 /**
1811  * audit_serial - compute a serial number for the audit record
1812  *
1813  * Compute a serial number for the audit record.  Audit records are
1814  * written to user-space as soon as they are generated, so a complete
1815  * audit record may be written in several pieces.  The timestamp of the
1816  * record and this serial number are used by the user-space tools to
1817  * determine which pieces belong to the same audit record.  The
1818  * (timestamp,serial) tuple is unique for each syscall and is live from
1819  * syscall entry to syscall exit.
1820  *
1821  * NOTE: Another possibility is to store the formatted records off the
1822  * audit context (for those records that have a context), and emit them
1823  * all at syscall exit.  However, this could delay the reporting of
1824  * significant errors until syscall exit (or never, if the system
1825  * halts).
1826  */
1827 unsigned int audit_serial(void)
1828 {
1829         static atomic_t serial = ATOMIC_INIT(0);
1830
1831         return atomic_inc_return(&serial);
1832 }
1833
1834 static inline void audit_get_stamp(struct audit_context *ctx,
1835                                    struct timespec64 *t, unsigned int *serial)
1836 {
1837         if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1838                 ktime_get_coarse_real_ts64(t);
1839                 *serial = audit_serial();
1840         }
1841 }
1842
1843 /**
1844  * audit_log_start - obtain an audit buffer
1845  * @ctx: audit_context (may be NULL)
1846  * @gfp_mask: type of allocation
1847  * @type: audit message type
1848  *
1849  * Returns audit_buffer pointer on success or NULL on error.
1850  *
1851  * Obtain an audit buffer.  This routine does locking to obtain the
1852  * audit buffer, but then no locking is required for calls to
1853  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1854  * syscall, then the syscall is marked as auditable and an audit record
1855  * will be written at syscall exit.  If there is no associated task, then
1856  * task context (ctx) should be NULL.
1857  */
1858 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1859                                      int type)
1860 {
1861         struct audit_buffer *ab;
1862         struct timespec64 t;
1863         unsigned int serial;
1864
1865         if (audit_initialized != AUDIT_INITIALIZED)
1866                 return NULL;
1867
1868         if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1869                 return NULL;
1870
1871         /* NOTE: don't ever fail/sleep on these two conditions:
1872          * 1. auditd generated record - since we need auditd to drain the
1873          *    queue; also, when we are checking for auditd, compare PIDs using
1874          *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1875          *    using a PID anchored in the caller's namespace
1876          * 2. generator holding the audit_cmd_mutex - we don't want to block
1877          *    while holding the mutex, although we do penalize the sender
1878          *    later in audit_receive() when it is safe to block
1879          */
1880         if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1881                 long stime = audit_backlog_wait_time;
1882
1883                 while (audit_backlog_limit &&
1884                        (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1885                         /* wake kauditd to try and flush the queue */
1886                         wake_up_interruptible(&kauditd_wait);
1887
1888                         /* sleep if we are allowed and we haven't exhausted our
1889                          * backlog wait limit */
1890                         if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1891                                 long rtime = stime;
1892
1893                                 DECLARE_WAITQUEUE(wait, current);
1894
1895                                 add_wait_queue_exclusive(&audit_backlog_wait,
1896                                                          &wait);
1897                                 set_current_state(TASK_UNINTERRUPTIBLE);
1898                                 stime = schedule_timeout(rtime);
1899                                 atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1900                                 remove_wait_queue(&audit_backlog_wait, &wait);
1901                         } else {
1902                                 if (audit_rate_check() && printk_ratelimit())
1903                                         pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1904                                                 skb_queue_len(&audit_queue),
1905                                                 audit_backlog_limit);
1906                                 audit_log_lost("backlog limit exceeded");
1907                                 return NULL;
1908                         }
1909                 }
1910         }
1911
1912         ab = audit_buffer_alloc(ctx, gfp_mask, type);
1913         if (!ab) {
1914                 audit_log_lost("out of memory in audit_log_start");
1915                 return NULL;
1916         }
1917
1918         audit_get_stamp(ab->ctx, &t, &serial);
1919         /* cancel dummy context to enable supporting records */
1920         if (ctx)
1921                 ctx->dummy = 0;
1922         audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1923                          (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1924
1925         return ab;
1926 }
1927
1928 /**
1929  * audit_expand - expand skb in the audit buffer
1930  * @ab: audit_buffer
1931  * @extra: space to add at tail of the skb
1932  *
1933  * Returns 0 (no space) on failed expansion, or available space if
1934  * successful.
1935  */
1936 static inline int audit_expand(struct audit_buffer *ab, int extra)
1937 {
1938         struct sk_buff *skb = ab->skb;
1939         int oldtail = skb_tailroom(skb);
1940         int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1941         int newtail = skb_tailroom(skb);
1942
1943         if (ret < 0) {
1944                 audit_log_lost("out of memory in audit_expand");
1945                 return 0;
1946         }
1947
1948         skb->truesize += newtail - oldtail;
1949         return newtail;
1950 }
1951
1952 /*
1953  * Format an audit message into the audit buffer.  If there isn't enough
1954  * room in the audit buffer, more room will be allocated and vsnprint
1955  * will be called a second time.  Currently, we assume that a printk
1956  * can't format message larger than 1024 bytes, so we don't either.
1957  */
1958 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1959                               va_list args)
1960 {
1961         int len, avail;
1962         struct sk_buff *skb;
1963         va_list args2;
1964
1965         if (!ab)
1966                 return;
1967
1968         BUG_ON(!ab->skb);
1969         skb = ab->skb;
1970         avail = skb_tailroom(skb);
1971         if (avail == 0) {
1972                 avail = audit_expand(ab, AUDIT_BUFSIZ);
1973                 if (!avail)
1974                         goto out;
1975         }
1976         va_copy(args2, args);
1977         len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1978         if (len >= avail) {
1979                 /* The printk buffer is 1024 bytes long, so if we get
1980                  * here and AUDIT_BUFSIZ is at least 1024, then we can
1981                  * log everything that printk could have logged. */
1982                 avail = audit_expand(ab,
1983                         max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1984                 if (!avail)
1985                         goto out_va_end;
1986                 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1987         }
1988         if (len > 0)
1989                 skb_put(skb, len);
1990 out_va_end:
1991         va_end(args2);
1992 out:
1993         return;
1994 }
1995
1996 /**
1997  * audit_log_format - format a message into the audit buffer.
1998  * @ab: audit_buffer
1999  * @fmt: format string
2000  * @...: optional parameters matching @fmt string
2001  *
2002  * All the work is done in audit_log_vformat.
2003  */
2004 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
2005 {
2006         va_list args;
2007
2008         if (!ab)
2009                 return;
2010         va_start(args, fmt);
2011         audit_log_vformat(ab, fmt, args);
2012         va_end(args);
2013 }
2014
2015 /**
2016  * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
2017  * @ab: the audit_buffer
2018  * @buf: buffer to convert to hex
2019  * @len: length of @buf to be converted
2020  *
2021  * No return value; failure to expand is silently ignored.
2022  *
2023  * This function will take the passed buf and convert it into a string of
2024  * ascii hex digits. The new string is placed onto the skb.
2025  */
2026 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
2027                 size_t len)
2028 {
2029         int i, avail, new_len;
2030         unsigned char *ptr;
2031         struct sk_buff *skb;
2032
2033         if (!ab)
2034                 return;
2035
2036         BUG_ON(!ab->skb);
2037         skb = ab->skb;
2038         avail = skb_tailroom(skb);
2039         new_len = len<<1;
2040         if (new_len >= avail) {
2041                 /* Round the buffer request up to the next multiple */
2042                 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
2043                 avail = audit_expand(ab, new_len);
2044                 if (!avail)
2045                         return;
2046         }
2047
2048         ptr = skb_tail_pointer(skb);
2049         for (i = 0; i < len; i++)
2050                 ptr = hex_byte_pack_upper(ptr, buf[i]);
2051         *ptr = 0;
2052         skb_put(skb, len << 1); /* new string is twice the old string */
2053 }
2054
2055 /*
2056  * Format a string of no more than slen characters into the audit buffer,
2057  * enclosed in quote marks.
2058  */
2059 void audit_log_n_string(struct audit_buffer *ab, const char *string,
2060                         size_t slen)
2061 {
2062         int avail, new_len;
2063         unsigned char *ptr;
2064         struct sk_buff *skb;
2065
2066         if (!ab)
2067                 return;
2068
2069         BUG_ON(!ab->skb);
2070         skb = ab->skb;
2071         avail = skb_tailroom(skb);
2072         new_len = slen + 3;     /* enclosing quotes + null terminator */
2073         if (new_len > avail) {
2074                 avail = audit_expand(ab, new_len);
2075                 if (!avail)
2076                         return;
2077         }
2078         ptr = skb_tail_pointer(skb);
2079         *ptr++ = '"';
2080         memcpy(ptr, string, slen);
2081         ptr += slen;
2082         *ptr++ = '"';
2083         *ptr = 0;
2084         skb_put(skb, slen + 2); /* don't include null terminator */
2085 }
2086
2087 /**
2088  * audit_string_contains_control - does a string need to be logged in hex
2089  * @string: string to be checked
2090  * @len: max length of the string to check
2091  */
2092 bool audit_string_contains_control(const char *string, size_t len)
2093 {
2094         const unsigned char *p;
2095         for (p = string; p < (const unsigned char *)string + len; p++) {
2096                 if (*p == '"' || *p < 0x21 || *p > 0x7e)
2097                         return true;
2098         }
2099         return false;
2100 }
2101
2102 /**
2103  * audit_log_n_untrustedstring - log a string that may contain random characters
2104  * @ab: audit_buffer
2105  * @len: length of string (not including trailing null)
2106  * @string: string to be logged
2107  *
2108  * This code will escape a string that is passed to it if the string
2109  * contains a control character, unprintable character, double quote mark,
2110  * or a space. Unescaped strings will start and end with a double quote mark.
2111  * Strings that are escaped are printed in hex (2 digits per char).
2112  *
2113  * The caller specifies the number of characters in the string to log, which may
2114  * or may not be the entire string.
2115  */
2116 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2117                                  size_t len)
2118 {
2119         if (audit_string_contains_control(string, len))
2120                 audit_log_n_hex(ab, string, len);
2121         else
2122                 audit_log_n_string(ab, string, len);
2123 }
2124
2125 /**
2126  * audit_log_untrustedstring - log a string that may contain random characters
2127  * @ab: audit_buffer
2128  * @string: string to be logged
2129  *
2130  * Same as audit_log_n_untrustedstring(), except that strlen is used to
2131  * determine string length.
2132  */
2133 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2134 {
2135         audit_log_n_untrustedstring(ab, string, strlen(string));
2136 }
2137
2138 /* This is a helper-function to print the escaped d_path */
2139 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2140                       const struct path *path)
2141 {
2142         char *p, *pathname;
2143
2144         if (prefix)
2145                 audit_log_format(ab, "%s", prefix);
2146
2147         /* We will allow 11 spaces for ' (deleted)' to be appended */
2148         pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2149         if (!pathname) {
2150                 audit_log_format(ab, "\"<no_memory>\"");
2151                 return;
2152         }
2153         p = d_path(path, pathname, PATH_MAX+11);
2154         if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2155                 /* FIXME: can we save some information here? */
2156                 audit_log_format(ab, "\"<too_long>\"");
2157         } else
2158                 audit_log_untrustedstring(ab, p);
2159         kfree(pathname);
2160 }
2161
2162 void audit_log_session_info(struct audit_buffer *ab)
2163 {
2164         unsigned int sessionid = audit_get_sessionid(current);
2165         uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2166
2167         audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2168 }
2169
2170 void audit_log_key(struct audit_buffer *ab, char *key)
2171 {
2172         audit_log_format(ab, " key=");
2173         if (key)
2174                 audit_log_untrustedstring(ab, key);
2175         else
2176                 audit_log_format(ab, "(null)");
2177 }
2178
2179 int audit_log_task_context(struct audit_buffer *ab)
2180 {
2181         char *ctx = NULL;
2182         unsigned len;
2183         int error;
2184         u32 sid;
2185
2186         security_current_getsecid_subj(&sid);
2187         if (!sid)
2188                 return 0;
2189
2190         error = security_secid_to_secctx(sid, &ctx, &len);
2191         if (error) {
2192                 if (error != -EINVAL)
2193                         goto error_path;
2194                 return 0;
2195         }
2196
2197         audit_log_format(ab, " subj=%s", ctx);
2198         security_release_secctx(ctx, len);
2199         return 0;
2200
2201 error_path:
2202         audit_panic("error in audit_log_task_context");
2203         return error;
2204 }
2205 EXPORT_SYMBOL(audit_log_task_context);
2206
2207 void audit_log_d_path_exe(struct audit_buffer *ab,
2208                           struct mm_struct *mm)
2209 {
2210         struct file *exe_file;
2211
2212         if (!mm)
2213                 goto out_null;
2214
2215         exe_file = get_mm_exe_file(mm);
2216         if (!exe_file)
2217                 goto out_null;
2218
2219         audit_log_d_path(ab, " exe=", &exe_file->f_path);
2220         fput(exe_file);
2221         return;
2222 out_null:
2223         audit_log_format(ab, " exe=(null)");
2224 }
2225
2226 struct tty_struct *audit_get_tty(void)
2227 {
2228         struct tty_struct *tty = NULL;
2229         unsigned long flags;
2230
2231         spin_lock_irqsave(&current->sighand->siglock, flags);
2232         if (current->signal)
2233                 tty = tty_kref_get(current->signal->tty);
2234         spin_unlock_irqrestore(&current->sighand->siglock, flags);
2235         return tty;
2236 }
2237
2238 void audit_put_tty(struct tty_struct *tty)
2239 {
2240         tty_kref_put(tty);
2241 }
2242
2243 void audit_log_task_info(struct audit_buffer *ab)
2244 {
2245         const struct cred *cred;
2246         char comm[sizeof(current->comm)];
2247         struct tty_struct *tty;
2248
2249         if (!ab)
2250                 return;
2251
2252         cred = current_cred();
2253         tty = audit_get_tty();
2254         audit_log_format(ab,
2255                          " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2256                          " euid=%u suid=%u fsuid=%u"
2257                          " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2258                          task_ppid_nr(current),
2259                          task_tgid_nr(current),
2260                          from_kuid(&init_user_ns, audit_get_loginuid(current)),
2261                          from_kuid(&init_user_ns, cred->uid),
2262                          from_kgid(&init_user_ns, cred->gid),
2263                          from_kuid(&init_user_ns, cred->euid),
2264                          from_kuid(&init_user_ns, cred->suid),
2265                          from_kuid(&init_user_ns, cred->fsuid),
2266                          from_kgid(&init_user_ns, cred->egid),
2267                          from_kgid(&init_user_ns, cred->sgid),
2268                          from_kgid(&init_user_ns, cred->fsgid),
2269                          tty ? tty_name(tty) : "(none)",
2270                          audit_get_sessionid(current));
2271         audit_put_tty(tty);
2272         audit_log_format(ab, " comm=");
2273         audit_log_untrustedstring(ab, get_task_comm(comm, current));
2274         audit_log_d_path_exe(ab, current->mm);
2275         audit_log_task_context(ab);
2276 }
2277 EXPORT_SYMBOL(audit_log_task_info);
2278
2279 /**
2280  * audit_log_path_denied - report a path restriction denial
2281  * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2282  * @operation: specific operation name
2283  */
2284 void audit_log_path_denied(int type, const char *operation)
2285 {
2286         struct audit_buffer *ab;
2287
2288         if (!audit_enabled || audit_dummy_context())
2289                 return;
2290
2291         /* Generate log with subject, operation, outcome. */
2292         ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2293         if (!ab)
2294                 return;
2295         audit_log_format(ab, "op=%s", operation);
2296         audit_log_task_info(ab);
2297         audit_log_format(ab, " res=0");
2298         audit_log_end(ab);
2299 }
2300
2301 /* global counter which is incremented every time something logs in */
2302 static atomic_t session_id = ATOMIC_INIT(0);
2303
2304 static int audit_set_loginuid_perm(kuid_t loginuid)
2305 {
2306         /* if we are unset, we don't need privs */
2307         if (!audit_loginuid_set(current))
2308                 return 0;
2309         /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2310         if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2311                 return -EPERM;
2312         /* it is set, you need permission */
2313         if (!capable(CAP_AUDIT_CONTROL))
2314                 return -EPERM;
2315         /* reject if this is not an unset and we don't allow that */
2316         if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2317                                  && uid_valid(loginuid))
2318                 return -EPERM;
2319         return 0;
2320 }
2321
2322 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2323                                    unsigned int oldsessionid,
2324                                    unsigned int sessionid, int rc)
2325 {
2326         struct audit_buffer *ab;
2327         uid_t uid, oldloginuid, loginuid;
2328         struct tty_struct *tty;
2329
2330         if (!audit_enabled)
2331                 return;
2332
2333         ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2334         if (!ab)
2335                 return;
2336
2337         uid = from_kuid(&init_user_ns, task_uid(current));
2338         oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2339         loginuid = from_kuid(&init_user_ns, kloginuid);
2340         tty = audit_get_tty();
2341
2342         audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2343         audit_log_task_context(ab);
2344         audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2345                          oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2346                          oldsessionid, sessionid, !rc);
2347         audit_put_tty(tty);
2348         audit_log_end(ab);
2349 }
2350
2351 /**
2352  * audit_set_loginuid - set current task's loginuid
2353  * @loginuid: loginuid value
2354  *
2355  * Returns 0.
2356  *
2357  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2358  */
2359 int audit_set_loginuid(kuid_t loginuid)
2360 {
2361         unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2362         kuid_t oldloginuid;
2363         int rc;
2364
2365         oldloginuid = audit_get_loginuid(current);
2366         oldsessionid = audit_get_sessionid(current);
2367
2368         rc = audit_set_loginuid_perm(loginuid);
2369         if (rc)
2370                 goto out;
2371
2372         /* are we setting or clearing? */
2373         if (uid_valid(loginuid)) {
2374                 sessionid = (unsigned int)atomic_inc_return(&session_id);
2375                 if (unlikely(sessionid == AUDIT_SID_UNSET))
2376                         sessionid = (unsigned int)atomic_inc_return(&session_id);
2377         }
2378
2379         current->sessionid = sessionid;
2380         current->loginuid = loginuid;
2381 out:
2382         audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2383         return rc;
2384 }
2385
2386 /**
2387  * audit_signal_info - record signal info for shutting down audit subsystem
2388  * @sig: signal value
2389  * @t: task being signaled
2390  *
2391  * If the audit subsystem is being terminated, record the task (pid)
2392  * and uid that is doing that.
2393  */
2394 int audit_signal_info(int sig, struct task_struct *t)
2395 {
2396         kuid_t uid = current_uid(), auid;
2397
2398         if (auditd_test_task(t) &&
2399             (sig == SIGTERM || sig == SIGHUP ||
2400              sig == SIGUSR1 || sig == SIGUSR2)) {
2401                 audit_sig_pid = task_tgid_nr(current);
2402                 auid = audit_get_loginuid(current);
2403                 if (uid_valid(auid))
2404                         audit_sig_uid = auid;
2405                 else
2406                         audit_sig_uid = uid;
2407                 security_current_getsecid_subj(&audit_sig_sid);
2408         }
2409
2410         return audit_signal_info_syscall(t);
2411 }
2412
2413 /**
2414  * audit_log_end - end one audit record
2415  * @ab: the audit_buffer
2416  *
2417  * We can not do a netlink send inside an irq context because it blocks (last
2418  * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2419  * queue and a kthread is scheduled to remove them from the queue outside the
2420  * irq context.  May be called in any context.
2421  */
2422 void audit_log_end(struct audit_buffer *ab)
2423 {
2424         struct sk_buff *skb;
2425         struct nlmsghdr *nlh;
2426
2427         if (!ab)
2428                 return;
2429
2430         if (audit_rate_check()) {
2431                 skb = ab->skb;
2432                 ab->skb = NULL;
2433
2434                 /* setup the netlink header, see the comments in
2435                  * kauditd_send_multicast_skb() for length quirks */
2436                 nlh = nlmsg_hdr(skb);
2437                 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2438
2439                 /* queue the netlink packet and poke the kauditd thread */
2440                 skb_queue_tail(&audit_queue, skb);
2441                 wake_up_interruptible(&kauditd_wait);
2442         } else
2443                 audit_log_lost("rate limit exceeded");
2444
2445         audit_buffer_free(ab);
2446 }
2447
2448 /**
2449  * audit_log - Log an audit record
2450  * @ctx: audit context
2451  * @gfp_mask: type of allocation
2452  * @type: audit message type
2453  * @fmt: format string to use
2454  * @...: variable parameters matching the format string
2455  *
2456  * This is a convenience function that calls audit_log_start,
2457  * audit_log_vformat, and audit_log_end.  It may be called
2458  * in any context.
2459  */
2460 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2461                const char *fmt, ...)
2462 {
2463         struct audit_buffer *ab;
2464         va_list args;
2465
2466         ab = audit_log_start(ctx, gfp_mask, type);
2467         if (ab) {
2468                 va_start(args, fmt);
2469                 audit_log_vformat(ab, fmt, args);
2470                 va_end(args);
2471                 audit_log_end(ab);
2472         }
2473 }
2474
2475 EXPORT_SYMBOL(audit_log_start);
2476 EXPORT_SYMBOL(audit_log_end);
2477 EXPORT_SYMBOL(audit_log_format);
2478 EXPORT_SYMBOL(audit_log);