Merge tag 'firewire-updates' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee139...
[sfrench/cifs-2.6.git] / include / uapi / linux / btrfs_tree.h
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 #ifndef _BTRFS_CTREE_H_
3 #define _BTRFS_CTREE_H_
4
5 #include <linux/btrfs.h>
6 #include <linux/types.h>
7
8 /*
9  * This header contains the structure definitions and constants used
10  * by file system objects that can be retrieved using
11  * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
12  * is needed to describe a leaf node's key or item contents.
13  */
14
15 /* holds pointers to all of the tree roots */
16 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
17
18 /* stores information about which extents are in use, and reference counts */
19 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
20
21 /*
22  * chunk tree stores translations from logical -> physical block numbering
23  * the super block points to the chunk tree
24  */
25 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
26
27 /*
28  * stores information about which areas of a given device are in use.
29  * one per device.  The tree of tree roots points to the device tree
30  */
31 #define BTRFS_DEV_TREE_OBJECTID 4ULL
32
33 /* one per subvolume, storing files and directories */
34 #define BTRFS_FS_TREE_OBJECTID 5ULL
35
36 /* directory objectid inside the root tree */
37 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
38
39 /* holds checksums of all the data extents */
40 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
41
42 /* holds quota configuration and tracking */
43 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
44
45 /* for storing items that use the BTRFS_UUID_KEY* types */
46 #define BTRFS_UUID_TREE_OBJECTID 9ULL
47
48 /* tracks free space in block groups. */
49 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
50
51 /* device stats in the device tree */
52 #define BTRFS_DEV_STATS_OBJECTID 0ULL
53
54 /* for storing balance parameters in the root tree */
55 #define BTRFS_BALANCE_OBJECTID -4ULL
56
57 /* orhpan objectid for tracking unlinked/truncated files */
58 #define BTRFS_ORPHAN_OBJECTID -5ULL
59
60 /* does write ahead logging to speed up fsyncs */
61 #define BTRFS_TREE_LOG_OBJECTID -6ULL
62 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
63
64 /* for space balancing */
65 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
66 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
67
68 /*
69  * extent checksums all have this objectid
70  * this allows them to share the logging tree
71  * for fsyncs
72  */
73 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
74
75 /* For storing free space cache */
76 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
77
78 /*
79  * The inode number assigned to the special inode for storing
80  * free ino cache
81  */
82 #define BTRFS_FREE_INO_OBJECTID -12ULL
83
84 /* dummy objectid represents multiple objectids */
85 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
86
87 /*
88  * All files have objectids in this range.
89  */
90 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
91 #define BTRFS_LAST_FREE_OBJECTID -256ULL
92 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
93
94
95 /*
96  * the device items go into the chunk tree.  The key is in the form
97  * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
98  */
99 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
100
101 #define BTRFS_BTREE_INODE_OBJECTID 1
102
103 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
104
105 #define BTRFS_DEV_REPLACE_DEVID 0ULL
106
107 /*
108  * inode items have the data typically returned from stat and store other
109  * info about object characteristics.  There is one for every file and dir in
110  * the FS
111  */
112 #define BTRFS_INODE_ITEM_KEY            1
113 #define BTRFS_INODE_REF_KEY             12
114 #define BTRFS_INODE_EXTREF_KEY          13
115 #define BTRFS_XATTR_ITEM_KEY            24
116 #define BTRFS_ORPHAN_ITEM_KEY           48
117 /* reserve 2-15 close to the inode for later flexibility */
118
119 /*
120  * dir items are the name -> inode pointers in a directory.  There is one
121  * for every name in a directory.
122  */
123 #define BTRFS_DIR_LOG_ITEM_KEY  60
124 #define BTRFS_DIR_LOG_INDEX_KEY 72
125 #define BTRFS_DIR_ITEM_KEY      84
126 #define BTRFS_DIR_INDEX_KEY     96
127 /*
128  * extent data is for file data
129  */
130 #define BTRFS_EXTENT_DATA_KEY   108
131
132 /*
133  * extent csums are stored in a separate tree and hold csums for
134  * an entire extent on disk.
135  */
136 #define BTRFS_EXTENT_CSUM_KEY   128
137
138 /*
139  * root items point to tree roots.  They are typically in the root
140  * tree used by the super block to find all the other trees
141  */
142 #define BTRFS_ROOT_ITEM_KEY     132
143
144 /*
145  * root backrefs tie subvols and snapshots to the directory entries that
146  * reference them
147  */
148 #define BTRFS_ROOT_BACKREF_KEY  144
149
150 /*
151  * root refs make a fast index for listing all of the snapshots and
152  * subvolumes referenced by a given root.  They point directly to the
153  * directory item in the root that references the subvol
154  */
155 #define BTRFS_ROOT_REF_KEY      156
156
157 /*
158  * extent items are in the extent map tree.  These record which blocks
159  * are used, and how many references there are to each block
160  */
161 #define BTRFS_EXTENT_ITEM_KEY   168
162
163 /*
164  * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
165  * the length, so we save the level in key->offset instead of the length.
166  */
167 #define BTRFS_METADATA_ITEM_KEY 169
168
169 #define BTRFS_TREE_BLOCK_REF_KEY        176
170
171 #define BTRFS_EXTENT_DATA_REF_KEY       178
172
173 #define BTRFS_EXTENT_REF_V0_KEY         180
174
175 #define BTRFS_SHARED_BLOCK_REF_KEY      182
176
177 #define BTRFS_SHARED_DATA_REF_KEY       184
178
179 /*
180  * block groups give us hints into the extent allocation trees.  Which
181  * blocks are free etc etc
182  */
183 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
184
185 /*
186  * Every block group is represented in the free space tree by a free space info
187  * item, which stores some accounting information. It is keyed on
188  * (block_group_start, FREE_SPACE_INFO, block_group_length).
189  */
190 #define BTRFS_FREE_SPACE_INFO_KEY 198
191
192 /*
193  * A free space extent tracks an extent of space that is free in a block group.
194  * It is keyed on (start, FREE_SPACE_EXTENT, length).
195  */
196 #define BTRFS_FREE_SPACE_EXTENT_KEY 199
197
198 /*
199  * When a block group becomes very fragmented, we convert it to use bitmaps
200  * instead of extents. A free space bitmap is keyed on
201  * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
202  * (length / sectorsize) bits.
203  */
204 #define BTRFS_FREE_SPACE_BITMAP_KEY 200
205
206 #define BTRFS_DEV_EXTENT_KEY    204
207 #define BTRFS_DEV_ITEM_KEY      216
208 #define BTRFS_CHUNK_ITEM_KEY    228
209
210 /*
211  * Records the overall state of the qgroups.
212  * There's only one instance of this key present,
213  * (0, BTRFS_QGROUP_STATUS_KEY, 0)
214  */
215 #define BTRFS_QGROUP_STATUS_KEY         240
216 /*
217  * Records the currently used space of the qgroup.
218  * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
219  */
220 #define BTRFS_QGROUP_INFO_KEY           242
221 /*
222  * Contains the user configured limits for the qgroup.
223  * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
224  */
225 #define BTRFS_QGROUP_LIMIT_KEY          244
226 /*
227  * Records the child-parent relationship of qgroups. For
228  * each relation, 2 keys are present:
229  * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
230  * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
231  */
232 #define BTRFS_QGROUP_RELATION_KEY       246
233
234 /*
235  * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
236  */
237 #define BTRFS_BALANCE_ITEM_KEY  248
238
239 /*
240  * The key type for tree items that are stored persistently, but do not need to
241  * exist for extended period of time. The items can exist in any tree.
242  *
243  * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
244  *
245  * Existing items:
246  *
247  * - balance status item
248  *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
249  */
250 #define BTRFS_TEMPORARY_ITEM_KEY        248
251
252 /*
253  * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
254  */
255 #define BTRFS_DEV_STATS_KEY             249
256
257 /*
258  * The key type for tree items that are stored persistently and usually exist
259  * for a long period, eg. filesystem lifetime. The item kinds can be status
260  * information, stats or preference values. The item can exist in any tree.
261  *
262  * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
263  *
264  * Existing items:
265  *
266  * - device statistics, store IO stats in the device tree, one key for all
267  *   stats
268  *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
269  */
270 #define BTRFS_PERSISTENT_ITEM_KEY       249
271
272 /*
273  * Persistantly stores the device replace state in the device tree.
274  * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
275  */
276 #define BTRFS_DEV_REPLACE_KEY   250
277
278 /*
279  * Stores items that allow to quickly map UUIDs to something else.
280  * These items are part of the filesystem UUID tree.
281  * The key is built like this:
282  * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
283  */
284 #if BTRFS_UUID_SIZE != 16
285 #error "UUID items require BTRFS_UUID_SIZE == 16!"
286 #endif
287 #define BTRFS_UUID_KEY_SUBVOL   251     /* for UUIDs assigned to subvols */
288 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL  252     /* for UUIDs assigned to
289                                                  * received subvols */
290
291 /*
292  * string items are for debugging.  They just store a short string of
293  * data in the FS
294  */
295 #define BTRFS_STRING_ITEM_KEY   253
296
297
298
299 /* 32 bytes in various csum fields */
300 #define BTRFS_CSUM_SIZE 32
301
302 /* csum types */
303 #define BTRFS_CSUM_TYPE_CRC32   0
304
305 /*
306  * flags definitions for directory entry item type
307  *
308  * Used by:
309  * struct btrfs_dir_item.type
310  */
311 #define BTRFS_FT_UNKNOWN        0
312 #define BTRFS_FT_REG_FILE       1
313 #define BTRFS_FT_DIR            2
314 #define BTRFS_FT_CHRDEV         3
315 #define BTRFS_FT_BLKDEV         4
316 #define BTRFS_FT_FIFO           5
317 #define BTRFS_FT_SOCK           6
318 #define BTRFS_FT_SYMLINK        7
319 #define BTRFS_FT_XATTR          8
320 #define BTRFS_FT_MAX            9
321
322 /*
323  * The key defines the order in the tree, and so it also defines (optimal)
324  * block layout.
325  *
326  * objectid corresponds to the inode number.
327  *
328  * type tells us things about the object, and is a kind of stream selector.
329  * so for a given inode, keys with type of 1 might refer to the inode data,
330  * type of 2 may point to file data in the btree and type == 3 may point to
331  * extents.
332  *
333  * offset is the starting byte offset for this key in the stream.
334  *
335  * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
336  * in cpu native order.  Otherwise they are identical and their sizes
337  * should be the same (ie both packed)
338  */
339 struct btrfs_disk_key {
340         __le64 objectid;
341         __u8 type;
342         __le64 offset;
343 } __attribute__ ((__packed__));
344
345 struct btrfs_key {
346         __u64 objectid;
347         __u8 type;
348         __u64 offset;
349 } __attribute__ ((__packed__));
350
351 struct btrfs_dev_item {
352         /* the internal btrfs device id */
353         __le64 devid;
354
355         /* size of the device */
356         __le64 total_bytes;
357
358         /* bytes used */
359         __le64 bytes_used;
360
361         /* optimal io alignment for this device */
362         __le32 io_align;
363
364         /* optimal io width for this device */
365         __le32 io_width;
366
367         /* minimal io size for this device */
368         __le32 sector_size;
369
370         /* type and info about this device */
371         __le64 type;
372
373         /* expected generation for this device */
374         __le64 generation;
375
376         /*
377          * starting byte of this partition on the device,
378          * to allow for stripe alignment in the future
379          */
380         __le64 start_offset;
381
382         /* grouping information for allocation decisions */
383         __le32 dev_group;
384
385         /* seek speed 0-100 where 100 is fastest */
386         __u8 seek_speed;
387
388         /* bandwidth 0-100 where 100 is fastest */
389         __u8 bandwidth;
390
391         /* btrfs generated uuid for this device */
392         __u8 uuid[BTRFS_UUID_SIZE];
393
394         /* uuid of FS who owns this device */
395         __u8 fsid[BTRFS_UUID_SIZE];
396 } __attribute__ ((__packed__));
397
398 struct btrfs_stripe {
399         __le64 devid;
400         __le64 offset;
401         __u8 dev_uuid[BTRFS_UUID_SIZE];
402 } __attribute__ ((__packed__));
403
404 struct btrfs_chunk {
405         /* size of this chunk in bytes */
406         __le64 length;
407
408         /* objectid of the root referencing this chunk */
409         __le64 owner;
410
411         __le64 stripe_len;
412         __le64 type;
413
414         /* optimal io alignment for this chunk */
415         __le32 io_align;
416
417         /* optimal io width for this chunk */
418         __le32 io_width;
419
420         /* minimal io size for this chunk */
421         __le32 sector_size;
422
423         /* 2^16 stripes is quite a lot, a second limit is the size of a single
424          * item in the btree
425          */
426         __le16 num_stripes;
427
428         /* sub stripes only matter for raid10 */
429         __le16 sub_stripes;
430         struct btrfs_stripe stripe;
431         /* additional stripes go here */
432 } __attribute__ ((__packed__));
433
434 #define BTRFS_FREE_SPACE_EXTENT 1
435 #define BTRFS_FREE_SPACE_BITMAP 2
436
437 struct btrfs_free_space_entry {
438         __le64 offset;
439         __le64 bytes;
440         __u8 type;
441 } __attribute__ ((__packed__));
442
443 struct btrfs_free_space_header {
444         struct btrfs_disk_key location;
445         __le64 generation;
446         __le64 num_entries;
447         __le64 num_bitmaps;
448 } __attribute__ ((__packed__));
449
450 #define BTRFS_HEADER_FLAG_WRITTEN       (1ULL << 0)
451 #define BTRFS_HEADER_FLAG_RELOC         (1ULL << 1)
452
453 /* Super block flags */
454 /* Errors detected */
455 #define BTRFS_SUPER_FLAG_ERROR          (1ULL << 2)
456
457 #define BTRFS_SUPER_FLAG_SEEDING        (1ULL << 32)
458 #define BTRFS_SUPER_FLAG_METADUMP       (1ULL << 33)
459 #define BTRFS_SUPER_FLAG_METADUMP_V2    (1ULL << 34)
460 #define BTRFS_SUPER_FLAG_CHANGING_FSID  (1ULL << 35)
461
462
463 /*
464  * items in the extent btree are used to record the objectid of the
465  * owner of the block and the number of references
466  */
467
468 struct btrfs_extent_item {
469         __le64 refs;
470         __le64 generation;
471         __le64 flags;
472 } __attribute__ ((__packed__));
473
474 struct btrfs_extent_item_v0 {
475         __le32 refs;
476 } __attribute__ ((__packed__));
477
478
479 #define BTRFS_EXTENT_FLAG_DATA          (1ULL << 0)
480 #define BTRFS_EXTENT_FLAG_TREE_BLOCK    (1ULL << 1)
481
482 /* following flags only apply to tree blocks */
483
484 /* use full backrefs for extent pointers in the block */
485 #define BTRFS_BLOCK_FLAG_FULL_BACKREF   (1ULL << 8)
486
487 /*
488  * this flag is only used internally by scrub and may be changed at any time
489  * it is only declared here to avoid collisions
490  */
491 #define BTRFS_EXTENT_FLAG_SUPER         (1ULL << 48)
492
493 struct btrfs_tree_block_info {
494         struct btrfs_disk_key key;
495         __u8 level;
496 } __attribute__ ((__packed__));
497
498 struct btrfs_extent_data_ref {
499         __le64 root;
500         __le64 objectid;
501         __le64 offset;
502         __le32 count;
503 } __attribute__ ((__packed__));
504
505 struct btrfs_shared_data_ref {
506         __le32 count;
507 } __attribute__ ((__packed__));
508
509 struct btrfs_extent_inline_ref {
510         __u8 type;
511         __le64 offset;
512 } __attribute__ ((__packed__));
513
514 /* old style backrefs item */
515 struct btrfs_extent_ref_v0 {
516         __le64 root;
517         __le64 generation;
518         __le64 objectid;
519         __le32 count;
520 } __attribute__ ((__packed__));
521
522
523 /* dev extents record free space on individual devices.  The owner
524  * field points back to the chunk allocation mapping tree that allocated
525  * the extent.  The chunk tree uuid field is a way to double check the owner
526  */
527 struct btrfs_dev_extent {
528         __le64 chunk_tree;
529         __le64 chunk_objectid;
530         __le64 chunk_offset;
531         __le64 length;
532         __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
533 } __attribute__ ((__packed__));
534
535 struct btrfs_inode_ref {
536         __le64 index;
537         __le16 name_len;
538         /* name goes here */
539 } __attribute__ ((__packed__));
540
541 struct btrfs_inode_extref {
542         __le64 parent_objectid;
543         __le64 index;
544         __le16 name_len;
545         __u8   name[0];
546         /* name goes here */
547 } __attribute__ ((__packed__));
548
549 struct btrfs_timespec {
550         __le64 sec;
551         __le32 nsec;
552 } __attribute__ ((__packed__));
553
554 struct btrfs_inode_item {
555         /* nfs style generation number */
556         __le64 generation;
557         /* transid that last touched this inode */
558         __le64 transid;
559         __le64 size;
560         __le64 nbytes;
561         __le64 block_group;
562         __le32 nlink;
563         __le32 uid;
564         __le32 gid;
565         __le32 mode;
566         __le64 rdev;
567         __le64 flags;
568
569         /* modification sequence number for NFS */
570         __le64 sequence;
571
572         /*
573          * a little future expansion, for more than this we can
574          * just grow the inode item and version it
575          */
576         __le64 reserved[4];
577         struct btrfs_timespec atime;
578         struct btrfs_timespec ctime;
579         struct btrfs_timespec mtime;
580         struct btrfs_timespec otime;
581 } __attribute__ ((__packed__));
582
583 struct btrfs_dir_log_item {
584         __le64 end;
585 } __attribute__ ((__packed__));
586
587 struct btrfs_dir_item {
588         struct btrfs_disk_key location;
589         __le64 transid;
590         __le16 data_len;
591         __le16 name_len;
592         __u8 type;
593 } __attribute__ ((__packed__));
594
595 #define BTRFS_ROOT_SUBVOL_RDONLY        (1ULL << 0)
596
597 /*
598  * Internal in-memory flag that a subvolume has been marked for deletion but
599  * still visible as a directory
600  */
601 #define BTRFS_ROOT_SUBVOL_DEAD          (1ULL << 48)
602
603 struct btrfs_root_item {
604         struct btrfs_inode_item inode;
605         __le64 generation;
606         __le64 root_dirid;
607         __le64 bytenr;
608         __le64 byte_limit;
609         __le64 bytes_used;
610         __le64 last_snapshot;
611         __le64 flags;
612         __le32 refs;
613         struct btrfs_disk_key drop_progress;
614         __u8 drop_level;
615         __u8 level;
616
617         /*
618          * The following fields appear after subvol_uuids+subvol_times
619          * were introduced.
620          */
621
622         /*
623          * This generation number is used to test if the new fields are valid
624          * and up to date while reading the root item. Every time the root item
625          * is written out, the "generation" field is copied into this field. If
626          * anyone ever mounted the fs with an older kernel, we will have
627          * mismatching generation values here and thus must invalidate the
628          * new fields. See btrfs_update_root and btrfs_find_last_root for
629          * details.
630          * the offset of generation_v2 is also used as the start for the memset
631          * when invalidating the fields.
632          */
633         __le64 generation_v2;
634         __u8 uuid[BTRFS_UUID_SIZE];
635         __u8 parent_uuid[BTRFS_UUID_SIZE];
636         __u8 received_uuid[BTRFS_UUID_SIZE];
637         __le64 ctransid; /* updated when an inode changes */
638         __le64 otransid; /* trans when created */
639         __le64 stransid; /* trans when sent. non-zero for received subvol */
640         __le64 rtransid; /* trans when received. non-zero for received subvol */
641         struct btrfs_timespec ctime;
642         struct btrfs_timespec otime;
643         struct btrfs_timespec stime;
644         struct btrfs_timespec rtime;
645         __le64 reserved[8]; /* for future */
646 } __attribute__ ((__packed__));
647
648 /*
649  * this is used for both forward and backward root refs
650  */
651 struct btrfs_root_ref {
652         __le64 dirid;
653         __le64 sequence;
654         __le16 name_len;
655 } __attribute__ ((__packed__));
656
657 struct btrfs_disk_balance_args {
658         /*
659          * profiles to operate on, single is denoted by
660          * BTRFS_AVAIL_ALLOC_BIT_SINGLE
661          */
662         __le64 profiles;
663
664         /*
665          * usage filter
666          * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
667          * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
668          */
669         union {
670                 __le64 usage;
671                 struct {
672                         __le32 usage_min;
673                         __le32 usage_max;
674                 };
675         };
676
677         /* devid filter */
678         __le64 devid;
679
680         /* devid subset filter [pstart..pend) */
681         __le64 pstart;
682         __le64 pend;
683
684         /* btrfs virtual address space subset filter [vstart..vend) */
685         __le64 vstart;
686         __le64 vend;
687
688         /*
689          * profile to convert to, single is denoted by
690          * BTRFS_AVAIL_ALLOC_BIT_SINGLE
691          */
692         __le64 target;
693
694         /* BTRFS_BALANCE_ARGS_* */
695         __le64 flags;
696
697         /*
698          * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
699          * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
700          * and maximum
701          */
702         union {
703                 __le64 limit;
704                 struct {
705                         __le32 limit_min;
706                         __le32 limit_max;
707                 };
708         };
709
710         /*
711          * Process chunks that cross stripes_min..stripes_max devices,
712          * BTRFS_BALANCE_ARGS_STRIPES_RANGE
713          */
714         __le32 stripes_min;
715         __le32 stripes_max;
716
717         __le64 unused[6];
718 } __attribute__ ((__packed__));
719
720 /*
721  * store balance parameters to disk so that balance can be properly
722  * resumed after crash or unmount
723  */
724 struct btrfs_balance_item {
725         /* BTRFS_BALANCE_* */
726         __le64 flags;
727
728         struct btrfs_disk_balance_args data;
729         struct btrfs_disk_balance_args meta;
730         struct btrfs_disk_balance_args sys;
731
732         __le64 unused[4];
733 } __attribute__ ((__packed__));
734
735 #define BTRFS_FILE_EXTENT_INLINE 0
736 #define BTRFS_FILE_EXTENT_REG 1
737 #define BTRFS_FILE_EXTENT_PREALLOC 2
738 #define BTRFS_FILE_EXTENT_TYPES 2
739
740 struct btrfs_file_extent_item {
741         /*
742          * transaction id that created this extent
743          */
744         __le64 generation;
745         /*
746          * max number of bytes to hold this extent in ram
747          * when we split a compressed extent we can't know how big
748          * each of the resulting pieces will be.  So, this is
749          * an upper limit on the size of the extent in ram instead of
750          * an exact limit.
751          */
752         __le64 ram_bytes;
753
754         /*
755          * 32 bits for the various ways we might encode the data,
756          * including compression and encryption.  If any of these
757          * are set to something a given disk format doesn't understand
758          * it is treated like an incompat flag for reading and writing,
759          * but not for stat.
760          */
761         __u8 compression;
762         __u8 encryption;
763         __le16 other_encoding; /* spare for later use */
764
765         /* are we inline data or a real extent? */
766         __u8 type;
767
768         /*
769          * disk space consumed by the extent, checksum blocks are included
770          * in these numbers
771          *
772          * At this offset in the structure, the inline extent data start.
773          */
774         __le64 disk_bytenr;
775         __le64 disk_num_bytes;
776         /*
777          * the logical offset in file blocks (no csums)
778          * this extent record is for.  This allows a file extent to point
779          * into the middle of an existing extent on disk, sharing it
780          * between two snapshots (useful if some bytes in the middle of the
781          * extent have changed
782          */
783         __le64 offset;
784         /*
785          * the logical number of file blocks (no csums included).  This
786          * always reflects the size uncompressed and without encoding.
787          */
788         __le64 num_bytes;
789
790 } __attribute__ ((__packed__));
791
792 struct btrfs_csum_item {
793         __u8 csum;
794 } __attribute__ ((__packed__));
795
796 struct btrfs_dev_stats_item {
797         /*
798          * grow this item struct at the end for future enhancements and keep
799          * the existing values unchanged
800          */
801         __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
802 } __attribute__ ((__packed__));
803
804 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS     0
805 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID      1
806 #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED      0
807 #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED            1
808 #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED          2
809 #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED           3
810 #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED           4
811
812 struct btrfs_dev_replace_item {
813         /*
814          * grow this item struct at the end for future enhancements and keep
815          * the existing values unchanged
816          */
817         __le64 src_devid;
818         __le64 cursor_left;
819         __le64 cursor_right;
820         __le64 cont_reading_from_srcdev_mode;
821
822         __le64 replace_state;
823         __le64 time_started;
824         __le64 time_stopped;
825         __le64 num_write_errors;
826         __le64 num_uncorrectable_read_errors;
827 } __attribute__ ((__packed__));
828
829 /* different types of block groups (and chunks) */
830 #define BTRFS_BLOCK_GROUP_DATA          (1ULL << 0)
831 #define BTRFS_BLOCK_GROUP_SYSTEM        (1ULL << 1)
832 #define BTRFS_BLOCK_GROUP_METADATA      (1ULL << 2)
833 #define BTRFS_BLOCK_GROUP_RAID0         (1ULL << 3)
834 #define BTRFS_BLOCK_GROUP_RAID1         (1ULL << 4)
835 #define BTRFS_BLOCK_GROUP_DUP           (1ULL << 5)
836 #define BTRFS_BLOCK_GROUP_RAID10        (1ULL << 6)
837 #define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
838 #define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
839 #define BTRFS_BLOCK_GROUP_RESERVED      (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
840                                          BTRFS_SPACE_INFO_GLOBAL_RSV)
841
842 enum btrfs_raid_types {
843         BTRFS_RAID_RAID10,
844         BTRFS_RAID_RAID1,
845         BTRFS_RAID_DUP,
846         BTRFS_RAID_RAID0,
847         BTRFS_RAID_SINGLE,
848         BTRFS_RAID_RAID5,
849         BTRFS_RAID_RAID6,
850         BTRFS_NR_RAID_TYPES
851 };
852
853 #define BTRFS_BLOCK_GROUP_TYPE_MASK     (BTRFS_BLOCK_GROUP_DATA |    \
854                                          BTRFS_BLOCK_GROUP_SYSTEM |  \
855                                          BTRFS_BLOCK_GROUP_METADATA)
856
857 #define BTRFS_BLOCK_GROUP_PROFILE_MASK  (BTRFS_BLOCK_GROUP_RAID0 |   \
858                                          BTRFS_BLOCK_GROUP_RAID1 |   \
859                                          BTRFS_BLOCK_GROUP_RAID5 |   \
860                                          BTRFS_BLOCK_GROUP_RAID6 |   \
861                                          BTRFS_BLOCK_GROUP_DUP |     \
862                                          BTRFS_BLOCK_GROUP_RAID10)
863 #define BTRFS_BLOCK_GROUP_RAID56_MASK   (BTRFS_BLOCK_GROUP_RAID5 |   \
864                                          BTRFS_BLOCK_GROUP_RAID6)
865
866 /*
867  * We need a bit for restriper to be able to tell when chunks of type
868  * SINGLE are available.  This "extended" profile format is used in
869  * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
870  * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
871  * to avoid remappings between two formats in future.
872  */
873 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE    (1ULL << 48)
874
875 /*
876  * A fake block group type that is used to communicate global block reserve
877  * size to userspace via the SPACE_INFO ioctl.
878  */
879 #define BTRFS_SPACE_INFO_GLOBAL_RSV     (1ULL << 49)
880
881 #define BTRFS_EXTENDED_PROFILE_MASK     (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
882                                          BTRFS_AVAIL_ALLOC_BIT_SINGLE)
883
884 static inline __u64 chunk_to_extended(__u64 flags)
885 {
886         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
887                 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
888
889         return flags;
890 }
891 static inline __u64 extended_to_chunk(__u64 flags)
892 {
893         return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
894 }
895
896 struct btrfs_block_group_item {
897         __le64 used;
898         __le64 chunk_objectid;
899         __le64 flags;
900 } __attribute__ ((__packed__));
901
902 struct btrfs_free_space_info {
903         __le32 extent_count;
904         __le32 flags;
905 } __attribute__ ((__packed__));
906
907 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
908
909 #define BTRFS_QGROUP_LEVEL_SHIFT                48
910 static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
911 {
912         return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
913 }
914
915 /*
916  * is subvolume quota turned on?
917  */
918 #define BTRFS_QGROUP_STATUS_FLAG_ON             (1ULL << 0)
919 /*
920  * RESCAN is set during the initialization phase
921  */
922 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN         (1ULL << 1)
923 /*
924  * Some qgroup entries are known to be out of date,
925  * either because the configuration has changed in a way that
926  * makes a rescan necessary, or because the fs has been mounted
927  * with a non-qgroup-aware version.
928  * Turning qouta off and on again makes it inconsistent, too.
929  */
930 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT   (1ULL << 2)
931
932 #define BTRFS_QGROUP_STATUS_VERSION        1
933
934 struct btrfs_qgroup_status_item {
935         __le64 version;
936         /*
937          * the generation is updated during every commit. As older
938          * versions of btrfs are not aware of qgroups, it will be
939          * possible to detect inconsistencies by checking the
940          * generation on mount time
941          */
942         __le64 generation;
943
944         /* flag definitions see above */
945         __le64 flags;
946
947         /*
948          * only used during scanning to record the progress
949          * of the scan. It contains a logical address
950          */
951         __le64 rescan;
952 } __attribute__ ((__packed__));
953
954 struct btrfs_qgroup_info_item {
955         __le64 generation;
956         __le64 rfer;
957         __le64 rfer_cmpr;
958         __le64 excl;
959         __le64 excl_cmpr;
960 } __attribute__ ((__packed__));
961
962 struct btrfs_qgroup_limit_item {
963         /*
964          * only updated when any of the other values change
965          */
966         __le64 flags;
967         __le64 max_rfer;
968         __le64 max_excl;
969         __le64 rsv_rfer;
970         __le64 rsv_excl;
971 } __attribute__ ((__packed__));
972
973 #endif /* _BTRFS_CTREE_H_ */