Merge tag 'rtc-4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux
[sfrench/cifs-2.6.git] / include / linux / slab.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4  *
5  * (C) SGI 2006, Christoph Lameter
6  *      Cleaned up and restructured to ease the addition of alternative
7  *      implementations of SLAB allocators.
8  * (C) Linux Foundation 2008-2013
9  *      Unified interface for all slab allocators
10  */
11
12 #ifndef _LINUX_SLAB_H
13 #define _LINUX_SLAB_H
14
15 #include <linux/gfp.h>
16 #include <linux/overflow.h>
17 #include <linux/types.h>
18 #include <linux/workqueue.h>
19
20
21 /*
22  * Flags to pass to kmem_cache_create().
23  * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
24  */
25 /* DEBUG: Perform (expensive) checks on alloc/free */
26 #define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U)
27 /* DEBUG: Red zone objs in a cache */
28 #define SLAB_RED_ZONE           ((slab_flags_t __force)0x00000400U)
29 /* DEBUG: Poison objects */
30 #define SLAB_POISON             ((slab_flags_t __force)0x00000800U)
31 /* Align objs on cache lines */
32 #define SLAB_HWCACHE_ALIGN      ((slab_flags_t __force)0x00002000U)
33 /* Use GFP_DMA memory */
34 #define SLAB_CACHE_DMA          ((slab_flags_t __force)0x00004000U)
35 /* DEBUG: Store the last owner for bug hunting */
36 #define SLAB_STORE_USER         ((slab_flags_t __force)0x00010000U)
37 /* Panic if kmem_cache_create() fails */
38 #define SLAB_PANIC              ((slab_flags_t __force)0x00040000U)
39 /*
40  * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
41  *
42  * This delays freeing the SLAB page by a grace period, it does _NOT_
43  * delay object freeing. This means that if you do kmem_cache_free()
44  * that memory location is free to be reused at any time. Thus it may
45  * be possible to see another object there in the same RCU grace period.
46  *
47  * This feature only ensures the memory location backing the object
48  * stays valid, the trick to using this is relying on an independent
49  * object validation pass. Something like:
50  *
51  *  rcu_read_lock()
52  * again:
53  *  obj = lockless_lookup(key);
54  *  if (obj) {
55  *    if (!try_get_ref(obj)) // might fail for free objects
56  *      goto again;
57  *
58  *    if (obj->key != key) { // not the object we expected
59  *      put_ref(obj);
60  *      goto again;
61  *    }
62  *  }
63  *  rcu_read_unlock();
64  *
65  * This is useful if we need to approach a kernel structure obliquely,
66  * from its address obtained without the usual locking. We can lock
67  * the structure to stabilize it and check it's still at the given address,
68  * only if we can be sure that the memory has not been meanwhile reused
69  * for some other kind of object (which our subsystem's lock might corrupt).
70  *
71  * rcu_read_lock before reading the address, then rcu_read_unlock after
72  * taking the spinlock within the structure expected at that address.
73  *
74  * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
75  */
76 /* Defer freeing slabs to RCU */
77 #define SLAB_TYPESAFE_BY_RCU    ((slab_flags_t __force)0x00080000U)
78 /* Spread some memory over cpuset */
79 #define SLAB_MEM_SPREAD         ((slab_flags_t __force)0x00100000U)
80 /* Trace allocations and frees */
81 #define SLAB_TRACE              ((slab_flags_t __force)0x00200000U)
82
83 /* Flag to prevent checks on free */
84 #ifdef CONFIG_DEBUG_OBJECTS
85 # define SLAB_DEBUG_OBJECTS     ((slab_flags_t __force)0x00400000U)
86 #else
87 # define SLAB_DEBUG_OBJECTS     0
88 #endif
89
90 /* Avoid kmemleak tracing */
91 #define SLAB_NOLEAKTRACE        ((slab_flags_t __force)0x00800000U)
92
93 /* Fault injection mark */
94 #ifdef CONFIG_FAILSLAB
95 # define SLAB_FAILSLAB          ((slab_flags_t __force)0x02000000U)
96 #else
97 # define SLAB_FAILSLAB          0
98 #endif
99 /* Account to memcg */
100 #ifdef CONFIG_MEMCG_KMEM
101 # define SLAB_ACCOUNT           ((slab_flags_t __force)0x04000000U)
102 #else
103 # define SLAB_ACCOUNT           0
104 #endif
105
106 #ifdef CONFIG_KASAN
107 #define SLAB_KASAN              ((slab_flags_t __force)0x08000000U)
108 #else
109 #define SLAB_KASAN              0
110 #endif
111
112 /* The following flags affect the page allocator grouping pages by mobility */
113 /* Objects are reclaimable */
114 #define SLAB_RECLAIM_ACCOUNT    ((slab_flags_t __force)0x00020000U)
115 #define SLAB_TEMPORARY          SLAB_RECLAIM_ACCOUNT    /* Objects are short-lived */
116 /*
117  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
118  *
119  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
120  *
121  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
122  * Both make kfree a no-op.
123  */
124 #define ZERO_SIZE_PTR ((void *)16)
125
126 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
127                                 (unsigned long)ZERO_SIZE_PTR)
128
129 #include <linux/kasan.h>
130
131 struct mem_cgroup;
132 /*
133  * struct kmem_cache related prototypes
134  */
135 void __init kmem_cache_init(void);
136 bool slab_is_available(void);
137
138 extern bool usercopy_fallback;
139
140 struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
141                         unsigned int align, slab_flags_t flags,
142                         void (*ctor)(void *));
143 struct kmem_cache *kmem_cache_create_usercopy(const char *name,
144                         unsigned int size, unsigned int align,
145                         slab_flags_t flags,
146                         unsigned int useroffset, unsigned int usersize,
147                         void (*ctor)(void *));
148 void kmem_cache_destroy(struct kmem_cache *);
149 int kmem_cache_shrink(struct kmem_cache *);
150
151 void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
152 void memcg_deactivate_kmem_caches(struct mem_cgroup *);
153 void memcg_destroy_kmem_caches(struct mem_cgroup *);
154
155 /*
156  * Please use this macro to create slab caches. Simply specify the
157  * name of the structure and maybe some flags that are listed above.
158  *
159  * The alignment of the struct determines object alignment. If you
160  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
161  * then the objects will be properly aligned in SMP configurations.
162  */
163 #define KMEM_CACHE(__struct, __flags)                                   \
164                 kmem_cache_create(#__struct, sizeof(struct __struct),   \
165                         __alignof__(struct __struct), (__flags), NULL)
166
167 /*
168  * To whitelist a single field for copying to/from usercopy, use this
169  * macro instead for KMEM_CACHE() above.
170  */
171 #define KMEM_CACHE_USERCOPY(__struct, __flags, __field)                 \
172                 kmem_cache_create_usercopy(#__struct,                   \
173                         sizeof(struct __struct),                        \
174                         __alignof__(struct __struct), (__flags),        \
175                         offsetof(struct __struct, __field),             \
176                         sizeof_field(struct __struct, __field), NULL)
177
178 /*
179  * Common kmalloc functions provided by all allocators
180  */
181 void * __must_check __krealloc(const void *, size_t, gfp_t);
182 void * __must_check krealloc(const void *, size_t, gfp_t);
183 void kfree(const void *);
184 void kzfree(const void *);
185 size_t ksize(const void *);
186
187 #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
188 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
189                         bool to_user);
190 #else
191 static inline void __check_heap_object(const void *ptr, unsigned long n,
192                                        struct page *page, bool to_user) { }
193 #endif
194
195 /*
196  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
197  * alignment larger than the alignment of a 64-bit integer.
198  * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
199  */
200 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
201 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
202 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
203 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
204 #else
205 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
206 #endif
207
208 /*
209  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
210  * Intended for arches that get misalignment faults even for 64 bit integer
211  * aligned buffers.
212  */
213 #ifndef ARCH_SLAB_MINALIGN
214 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
215 #endif
216
217 /*
218  * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
219  * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
220  * aligned pointers.
221  */
222 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
223 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
224 #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
225
226 /*
227  * Kmalloc array related definitions
228  */
229
230 #ifdef CONFIG_SLAB
231 /*
232  * The largest kmalloc size supported by the SLAB allocators is
233  * 32 megabyte (2^25) or the maximum allocatable page order if that is
234  * less than 32 MB.
235  *
236  * WARNING: Its not easy to increase this value since the allocators have
237  * to do various tricks to work around compiler limitations in order to
238  * ensure proper constant folding.
239  */
240 #define KMALLOC_SHIFT_HIGH      ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
241                                 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
242 #define KMALLOC_SHIFT_MAX       KMALLOC_SHIFT_HIGH
243 #ifndef KMALLOC_SHIFT_LOW
244 #define KMALLOC_SHIFT_LOW       5
245 #endif
246 #endif
247
248 #ifdef CONFIG_SLUB
249 /*
250  * SLUB directly allocates requests fitting in to an order-1 page
251  * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
252  */
253 #define KMALLOC_SHIFT_HIGH      (PAGE_SHIFT + 1)
254 #define KMALLOC_SHIFT_MAX       (MAX_ORDER + PAGE_SHIFT - 1)
255 #ifndef KMALLOC_SHIFT_LOW
256 #define KMALLOC_SHIFT_LOW       3
257 #endif
258 #endif
259
260 #ifdef CONFIG_SLOB
261 /*
262  * SLOB passes all requests larger than one page to the page allocator.
263  * No kmalloc array is necessary since objects of different sizes can
264  * be allocated from the same page.
265  */
266 #define KMALLOC_SHIFT_HIGH      PAGE_SHIFT
267 #define KMALLOC_SHIFT_MAX       (MAX_ORDER + PAGE_SHIFT - 1)
268 #ifndef KMALLOC_SHIFT_LOW
269 #define KMALLOC_SHIFT_LOW       3
270 #endif
271 #endif
272
273 /* Maximum allocatable size */
274 #define KMALLOC_MAX_SIZE        (1UL << KMALLOC_SHIFT_MAX)
275 /* Maximum size for which we actually use a slab cache */
276 #define KMALLOC_MAX_CACHE_SIZE  (1UL << KMALLOC_SHIFT_HIGH)
277 /* Maximum order allocatable via the slab allocagtor */
278 #define KMALLOC_MAX_ORDER       (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
279
280 /*
281  * Kmalloc subsystem.
282  */
283 #ifndef KMALLOC_MIN_SIZE
284 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
285 #endif
286
287 /*
288  * This restriction comes from byte sized index implementation.
289  * Page size is normally 2^12 bytes and, in this case, if we want to use
290  * byte sized index which can represent 2^8 entries, the size of the object
291  * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
292  * If minimum size of kmalloc is less than 16, we use it as minimum object
293  * size and give up to use byte sized index.
294  */
295 #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
296                                (KMALLOC_MIN_SIZE) : 16)
297
298 /*
299  * Whenever changing this, take care of that kmalloc_type() and
300  * create_kmalloc_caches() still work as intended.
301  */
302 enum kmalloc_cache_type {
303         KMALLOC_NORMAL = 0,
304         KMALLOC_RECLAIM,
305 #ifdef CONFIG_ZONE_DMA
306         KMALLOC_DMA,
307 #endif
308         NR_KMALLOC_TYPES
309 };
310
311 #ifndef CONFIG_SLOB
312 extern struct kmem_cache *
313 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
314
315 static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
316 {
317 #ifdef CONFIG_ZONE_DMA
318         /*
319          * The most common case is KMALLOC_NORMAL, so test for it
320          * with a single branch for both flags.
321          */
322         if (likely((flags & (__GFP_DMA | __GFP_RECLAIMABLE)) == 0))
323                 return KMALLOC_NORMAL;
324
325         /*
326          * At least one of the flags has to be set. If both are, __GFP_DMA
327          * is more important.
328          */
329         return flags & __GFP_DMA ? KMALLOC_DMA : KMALLOC_RECLAIM;
330 #else
331         return flags & __GFP_RECLAIMABLE ? KMALLOC_RECLAIM : KMALLOC_NORMAL;
332 #endif
333 }
334
335 /*
336  * Figure out which kmalloc slab an allocation of a certain size
337  * belongs to.
338  * 0 = zero alloc
339  * 1 =  65 .. 96 bytes
340  * 2 = 129 .. 192 bytes
341  * n = 2^(n-1)+1 .. 2^n
342  */
343 static __always_inline unsigned int kmalloc_index(size_t size)
344 {
345         if (!size)
346                 return 0;
347
348         if (size <= KMALLOC_MIN_SIZE)
349                 return KMALLOC_SHIFT_LOW;
350
351         if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
352                 return 1;
353         if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
354                 return 2;
355         if (size <=          8) return 3;
356         if (size <=         16) return 4;
357         if (size <=         32) return 5;
358         if (size <=         64) return 6;
359         if (size <=        128) return 7;
360         if (size <=        256) return 8;
361         if (size <=        512) return 9;
362         if (size <=       1024) return 10;
363         if (size <=   2 * 1024) return 11;
364         if (size <=   4 * 1024) return 12;
365         if (size <=   8 * 1024) return 13;
366         if (size <=  16 * 1024) return 14;
367         if (size <=  32 * 1024) return 15;
368         if (size <=  64 * 1024) return 16;
369         if (size <= 128 * 1024) return 17;
370         if (size <= 256 * 1024) return 18;
371         if (size <= 512 * 1024) return 19;
372         if (size <= 1024 * 1024) return 20;
373         if (size <=  2 * 1024 * 1024) return 21;
374         if (size <=  4 * 1024 * 1024) return 22;
375         if (size <=  8 * 1024 * 1024) return 23;
376         if (size <=  16 * 1024 * 1024) return 24;
377         if (size <=  32 * 1024 * 1024) return 25;
378         if (size <=  64 * 1024 * 1024) return 26;
379         BUG();
380
381         /* Will never be reached. Needed because the compiler may complain */
382         return -1;
383 }
384 #endif /* !CONFIG_SLOB */
385
386 void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc;
387 void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc;
388 void kmem_cache_free(struct kmem_cache *, void *);
389
390 /*
391  * Bulk allocation and freeing operations. These are accelerated in an
392  * allocator specific way to avoid taking locks repeatedly or building
393  * metadata structures unnecessarily.
394  *
395  * Note that interrupts must be enabled when calling these functions.
396  */
397 void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
398 int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
399
400 /*
401  * Caller must not use kfree_bulk() on memory not originally allocated
402  * by kmalloc(), because the SLOB allocator cannot handle this.
403  */
404 static __always_inline void kfree_bulk(size_t size, void **p)
405 {
406         kmem_cache_free_bulk(NULL, size, p);
407 }
408
409 #ifdef CONFIG_NUMA
410 void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc;
411 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc;
412 #else
413 static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
414 {
415         return __kmalloc(size, flags);
416 }
417
418 static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
419 {
420         return kmem_cache_alloc(s, flags);
421 }
422 #endif
423
424 #ifdef CONFIG_TRACING
425 extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc;
426
427 #ifdef CONFIG_NUMA
428 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
429                                            gfp_t gfpflags,
430                                            int node, size_t size) __assume_slab_alignment __malloc;
431 #else
432 static __always_inline void *
433 kmem_cache_alloc_node_trace(struct kmem_cache *s,
434                               gfp_t gfpflags,
435                               int node, size_t size)
436 {
437         return kmem_cache_alloc_trace(s, gfpflags, size);
438 }
439 #endif /* CONFIG_NUMA */
440
441 #else /* CONFIG_TRACING */
442 static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
443                 gfp_t flags, size_t size)
444 {
445         void *ret = kmem_cache_alloc(s, flags);
446
447         ret = kasan_kmalloc(s, ret, size, flags);
448         return ret;
449 }
450
451 static __always_inline void *
452 kmem_cache_alloc_node_trace(struct kmem_cache *s,
453                               gfp_t gfpflags,
454                               int node, size_t size)
455 {
456         void *ret = kmem_cache_alloc_node(s, gfpflags, node);
457
458         ret = kasan_kmalloc(s, ret, size, gfpflags);
459         return ret;
460 }
461 #endif /* CONFIG_TRACING */
462
463 extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
464
465 #ifdef CONFIG_TRACING
466 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
467 #else
468 static __always_inline void *
469 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
470 {
471         return kmalloc_order(size, flags, order);
472 }
473 #endif
474
475 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
476 {
477         unsigned int order = get_order(size);
478         return kmalloc_order_trace(size, flags, order);
479 }
480
481 /**
482  * kmalloc - allocate memory
483  * @size: how many bytes of memory are required.
484  * @flags: the type of memory to allocate.
485  *
486  * kmalloc is the normal method of allocating memory
487  * for objects smaller than page size in the kernel.
488  *
489  * The @flags argument may be one of the GFP flags defined at
490  * include/linux/gfp.h and described at
491  * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
492  *
493  * The recommended usage of the @flags is described at
494  * :ref:`Documentation/core-api/memory-allocation.rst <memory-allocation>`
495  *
496  * Below is a brief outline of the most useful GFP flags
497  *
498  * %GFP_KERNEL
499  *      Allocate normal kernel ram. May sleep.
500  *
501  * %GFP_NOWAIT
502  *      Allocation will not sleep.
503  *
504  * %GFP_ATOMIC
505  *      Allocation will not sleep.  May use emergency pools.
506  *
507  * %GFP_HIGHUSER
508  *      Allocate memory from high memory on behalf of user.
509  *
510  * Also it is possible to set different flags by OR'ing
511  * in one or more of the following additional @flags:
512  *
513  * %__GFP_HIGH
514  *      This allocation has high priority and may use emergency pools.
515  *
516  * %__GFP_NOFAIL
517  *      Indicate that this allocation is in no way allowed to fail
518  *      (think twice before using).
519  *
520  * %__GFP_NORETRY
521  *      If memory is not immediately available,
522  *      then give up at once.
523  *
524  * %__GFP_NOWARN
525  *      If allocation fails, don't issue any warnings.
526  *
527  * %__GFP_RETRY_MAYFAIL
528  *      Try really hard to succeed the allocation but fail
529  *      eventually.
530  */
531 static __always_inline void *kmalloc(size_t size, gfp_t flags)
532 {
533         if (__builtin_constant_p(size)) {
534 #ifndef CONFIG_SLOB
535                 unsigned int index;
536 #endif
537                 if (size > KMALLOC_MAX_CACHE_SIZE)
538                         return kmalloc_large(size, flags);
539 #ifndef CONFIG_SLOB
540                 index = kmalloc_index(size);
541
542                 if (!index)
543                         return ZERO_SIZE_PTR;
544
545                 return kmem_cache_alloc_trace(
546                                 kmalloc_caches[kmalloc_type(flags)][index],
547                                 flags, size);
548 #endif
549         }
550         return __kmalloc(size, flags);
551 }
552
553 /*
554  * Determine size used for the nth kmalloc cache.
555  * return size or 0 if a kmalloc cache for that
556  * size does not exist
557  */
558 static __always_inline unsigned int kmalloc_size(unsigned int n)
559 {
560 #ifndef CONFIG_SLOB
561         if (n > 2)
562                 return 1U << n;
563
564         if (n == 1 && KMALLOC_MIN_SIZE <= 32)
565                 return 96;
566
567         if (n == 2 && KMALLOC_MIN_SIZE <= 64)
568                 return 192;
569 #endif
570         return 0;
571 }
572
573 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
574 {
575 #ifndef CONFIG_SLOB
576         if (__builtin_constant_p(size) &&
577                 size <= KMALLOC_MAX_CACHE_SIZE) {
578                 unsigned int i = kmalloc_index(size);
579
580                 if (!i)
581                         return ZERO_SIZE_PTR;
582
583                 return kmem_cache_alloc_node_trace(
584                                 kmalloc_caches[kmalloc_type(flags)][i],
585                                                 flags, node, size);
586         }
587 #endif
588         return __kmalloc_node(size, flags, node);
589 }
590
591 struct memcg_cache_array {
592         struct rcu_head rcu;
593         struct kmem_cache *entries[0];
594 };
595
596 /*
597  * This is the main placeholder for memcg-related information in kmem caches.
598  * Both the root cache and the child caches will have it. For the root cache,
599  * this will hold a dynamically allocated array large enough to hold
600  * information about the currently limited memcgs in the system. To allow the
601  * array to be accessed without taking any locks, on relocation we free the old
602  * version only after a grace period.
603  *
604  * Root and child caches hold different metadata.
605  *
606  * @root_cache: Common to root and child caches.  NULL for root, pointer to
607  *              the root cache for children.
608  *
609  * The following fields are specific to root caches.
610  *
611  * @memcg_caches: kmemcg ID indexed table of child caches.  This table is
612  *              used to index child cachces during allocation and cleared
613  *              early during shutdown.
614  *
615  * @root_caches_node: List node for slab_root_caches list.
616  *
617  * @children:   List of all child caches.  While the child caches are also
618  *              reachable through @memcg_caches, a child cache remains on
619  *              this list until it is actually destroyed.
620  *
621  * The following fields are specific to child caches.
622  *
623  * @memcg:      Pointer to the memcg this cache belongs to.
624  *
625  * @children_node: List node for @root_cache->children list.
626  *
627  * @kmem_caches_node: List node for @memcg->kmem_caches list.
628  */
629 struct memcg_cache_params {
630         struct kmem_cache *root_cache;
631         union {
632                 struct {
633                         struct memcg_cache_array __rcu *memcg_caches;
634                         struct list_head __root_caches_node;
635                         struct list_head children;
636                         bool dying;
637                 };
638                 struct {
639                         struct mem_cgroup *memcg;
640                         struct list_head children_node;
641                         struct list_head kmem_caches_node;
642
643                         void (*deact_fn)(struct kmem_cache *);
644                         union {
645                                 struct rcu_head deact_rcu_head;
646                                 struct work_struct deact_work;
647                         };
648                 };
649         };
650 };
651
652 int memcg_update_all_caches(int num_memcgs);
653
654 /**
655  * kmalloc_array - allocate memory for an array.
656  * @n: number of elements.
657  * @size: element size.
658  * @flags: the type of memory to allocate (see kmalloc).
659  */
660 static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
661 {
662         size_t bytes;
663
664         if (unlikely(check_mul_overflow(n, size, &bytes)))
665                 return NULL;
666         if (__builtin_constant_p(n) && __builtin_constant_p(size))
667                 return kmalloc(bytes, flags);
668         return __kmalloc(bytes, flags);
669 }
670
671 /**
672  * kcalloc - allocate memory for an array. The memory is set to zero.
673  * @n: number of elements.
674  * @size: element size.
675  * @flags: the type of memory to allocate (see kmalloc).
676  */
677 static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
678 {
679         return kmalloc_array(n, size, flags | __GFP_ZERO);
680 }
681
682 /*
683  * kmalloc_track_caller is a special version of kmalloc that records the
684  * calling function of the routine calling it for slab leak tracking instead
685  * of just the calling function (confusing, eh?).
686  * It's useful when the call to kmalloc comes from a widely-used standard
687  * allocator where we care about the real place the memory allocation
688  * request comes from.
689  */
690 extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
691 #define kmalloc_track_caller(size, flags) \
692         __kmalloc_track_caller(size, flags, _RET_IP_)
693
694 static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
695                                        int node)
696 {
697         size_t bytes;
698
699         if (unlikely(check_mul_overflow(n, size, &bytes)))
700                 return NULL;
701         if (__builtin_constant_p(n) && __builtin_constant_p(size))
702                 return kmalloc_node(bytes, flags, node);
703         return __kmalloc_node(bytes, flags, node);
704 }
705
706 static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
707 {
708         return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
709 }
710
711
712 #ifdef CONFIG_NUMA
713 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
714 #define kmalloc_node_track_caller(size, flags, node) \
715         __kmalloc_node_track_caller(size, flags, node, \
716                         _RET_IP_)
717
718 #else /* CONFIG_NUMA */
719
720 #define kmalloc_node_track_caller(size, flags, node) \
721         kmalloc_track_caller(size, flags)
722
723 #endif /* CONFIG_NUMA */
724
725 /*
726  * Shortcuts
727  */
728 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
729 {
730         return kmem_cache_alloc(k, flags | __GFP_ZERO);
731 }
732
733 /**
734  * kzalloc - allocate memory. The memory is set to zero.
735  * @size: how many bytes of memory are required.
736  * @flags: the type of memory to allocate (see kmalloc).
737  */
738 static inline void *kzalloc(size_t size, gfp_t flags)
739 {
740         return kmalloc(size, flags | __GFP_ZERO);
741 }
742
743 /**
744  * kzalloc_node - allocate zeroed memory from a particular memory node.
745  * @size: how many bytes of memory are required.
746  * @flags: the type of memory to allocate (see kmalloc).
747  * @node: memory node from which to allocate
748  */
749 static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
750 {
751         return kmalloc_node(size, flags | __GFP_ZERO, node);
752 }
753
754 unsigned int kmem_cache_size(struct kmem_cache *s);
755 void __init kmem_cache_init_late(void);
756
757 #if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
758 int slab_prepare_cpu(unsigned int cpu);
759 int slab_dead_cpu(unsigned int cpu);
760 #else
761 #define slab_prepare_cpu        NULL
762 #define slab_dead_cpu           NULL
763 #endif
764
765 #endif  /* _LINUX_SLAB_H */