/home/lenb/src/to-linus branch 'acpi-2.6.12'
[sfrench/cifs-2.6.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <asm/param.h>  /* for HZ */
5
6 #include <linux/config.h>
7 #include <linux/capability.h>
8 #include <linux/threads.h>
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/timex.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/thread_info.h>
15 #include <linux/cpumask.h>
16 #include <linux/errno.h>
17 #include <linux/nodemask.h>
18
19 #include <asm/system.h>
20 #include <asm/semaphore.h>
21 #include <asm/page.h>
22 #include <asm/ptrace.h>
23 #include <asm/mmu.h>
24 #include <asm/cputime.h>
25
26 #include <linux/smp.h>
27 #include <linux/sem.h>
28 #include <linux/signal.h>
29 #include <linux/securebits.h>
30 #include <linux/fs_struct.h>
31 #include <linux/compiler.h>
32 #include <linux/completion.h>
33 #include <linux/pid.h>
34 #include <linux/percpu.h>
35 #include <linux/topology.h>
36 #include <linux/seccomp.h>
37
38 struct exec_domain;
39
40 /*
41  * cloning flags:
42  */
43 #define CSIGNAL         0x000000ff      /* signal mask to be sent at exit */
44 #define CLONE_VM        0x00000100      /* set if VM shared between processes */
45 #define CLONE_FS        0x00000200      /* set if fs info shared between processes */
46 #define CLONE_FILES     0x00000400      /* set if open files shared between processes */
47 #define CLONE_SIGHAND   0x00000800      /* set if signal handlers and blocked signals shared */
48 #define CLONE_PTRACE    0x00002000      /* set if we want to let tracing continue on the child too */
49 #define CLONE_VFORK     0x00004000      /* set if the parent wants the child to wake it up on mm_release */
50 #define CLONE_PARENT    0x00008000      /* set if we want to have the same parent as the cloner */
51 #define CLONE_THREAD    0x00010000      /* Same thread group? */
52 #define CLONE_NEWNS     0x00020000      /* New namespace group? */
53 #define CLONE_SYSVSEM   0x00040000      /* share system V SEM_UNDO semantics */
54 #define CLONE_SETTLS    0x00080000      /* create a new TLS for the child */
55 #define CLONE_PARENT_SETTID     0x00100000      /* set the TID in the parent */
56 #define CLONE_CHILD_CLEARTID    0x00200000      /* clear the TID in the child */
57 #define CLONE_DETACHED          0x00400000      /* Unused, ignored */
58 #define CLONE_UNTRACED          0x00800000      /* set if the tracing process can't force CLONE_PTRACE on this clone */
59 #define CLONE_CHILD_SETTID      0x01000000      /* set the TID in the child */
60 #define CLONE_STOPPED           0x02000000      /* Start in stopped state */
61
62 /*
63  * List of flags we want to share for kernel threads,
64  * if only because they are not used by them anyway.
65  */
66 #define CLONE_KERNEL    (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
67
68 /*
69  * These are the constant used to fake the fixed-point load-average
70  * counting. Some notes:
71  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
72  *    a load-average precision of 10 bits integer + 11 bits fractional
73  *  - if you want to count load-averages more often, you need more
74  *    precision, or rounding will get you. With 2-second counting freq,
75  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
76  *    11 bit fractions.
77  */
78 extern unsigned long avenrun[];         /* Load averages */
79
80 #define FSHIFT          11              /* nr of bits of precision */
81 #define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
82 #define LOAD_FREQ       (5*HZ)          /* 5 sec intervals */
83 #define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
84 #define EXP_5           2014            /* 1/exp(5sec/5min) */
85 #define EXP_15          2037            /* 1/exp(5sec/15min) */
86
87 #define CALC_LOAD(load,exp,n) \
88         load *= exp; \
89         load += n*(FIXED_1-exp); \
90         load >>= FSHIFT;
91
92 extern unsigned long total_forks;
93 extern int nr_threads;
94 extern int last_pid;
95 DECLARE_PER_CPU(unsigned long, process_counts);
96 extern int nr_processes(void);
97 extern unsigned long nr_running(void);
98 extern unsigned long nr_uninterruptible(void);
99 extern unsigned long nr_iowait(void);
100
101 #include <linux/time.h>
102 #include <linux/param.h>
103 #include <linux/resource.h>
104 #include <linux/timer.h>
105
106 #include <asm/processor.h>
107
108 #define TASK_RUNNING            0
109 #define TASK_INTERRUPTIBLE      1
110 #define TASK_UNINTERRUPTIBLE    2
111 #define TASK_STOPPED            4
112 #define TASK_TRACED             8
113 #define EXIT_ZOMBIE             16
114 #define EXIT_DEAD               32
115
116 #define __set_task_state(tsk, state_value)              \
117         do { (tsk)->state = (state_value); } while (0)
118 #define set_task_state(tsk, state_value)                \
119         set_mb((tsk)->state, (state_value))
120
121 #define __set_current_state(state_value)                        \
122         do { current->state = (state_value); } while (0)
123 #define set_current_state(state_value)          \
124         set_mb(current->state, (state_value))
125
126 /* Task command name length */
127 #define TASK_COMM_LEN 16
128
129 /*
130  * Scheduling policies
131  */
132 #define SCHED_NORMAL            0
133 #define SCHED_FIFO              1
134 #define SCHED_RR                2
135
136 struct sched_param {
137         int sched_priority;
138 };
139
140 #ifdef __KERNEL__
141
142 #include <linux/spinlock.h>
143
144 /*
145  * This serializes "schedule()" and also protects
146  * the run-queue from deletions/modifications (but
147  * _adding_ to the beginning of the run-queue has
148  * a separate lock).
149  */
150 extern rwlock_t tasklist_lock;
151 extern spinlock_t mmlist_lock;
152
153 typedef struct task_struct task_t;
154
155 extern void sched_init(void);
156 extern void sched_init_smp(void);
157 extern void init_idle(task_t *idle, int cpu);
158
159 extern cpumask_t nohz_cpu_mask;
160
161 extern void show_state(void);
162 extern void show_regs(struct pt_regs *);
163
164 /*
165  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
166  * task), SP is the stack pointer of the first frame that should be shown in the back
167  * trace (or NULL if the entire call-chain of the task should be shown).
168  */
169 extern void show_stack(struct task_struct *task, unsigned long *sp);
170
171 void io_schedule(void);
172 long io_schedule_timeout(long timeout);
173
174 extern void cpu_init (void);
175 extern void trap_init(void);
176 extern void update_process_times(int user);
177 extern void scheduler_tick(void);
178
179 /* Attach to any functions which should be ignored in wchan output. */
180 #define __sched         __attribute__((__section__(".sched.text")))
181 /* Is this address in the __sched functions? */
182 extern int in_sched_functions(unsigned long addr);
183
184 #define MAX_SCHEDULE_TIMEOUT    LONG_MAX
185 extern signed long FASTCALL(schedule_timeout(signed long timeout));
186 asmlinkage void schedule(void);
187
188 struct namespace;
189
190 /* Maximum number of active map areas.. This is a random (large) number */
191 #define DEFAULT_MAX_MAP_COUNT   65536
192
193 extern int sysctl_max_map_count;
194
195 #include <linux/aio.h>
196
197 extern unsigned long
198 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
199                        unsigned long, unsigned long);
200 extern unsigned long
201 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
202                           unsigned long len, unsigned long pgoff,
203                           unsigned long flags);
204 extern void arch_unmap_area(struct mm_struct *, unsigned long);
205 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
206
207 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
208 #define get_mm_counter(mm, member) ((mm)->_##member)
209 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
210 #define inc_mm_counter(mm, member) (mm)->_##member++
211 #define dec_mm_counter(mm, member) (mm)->_##member--
212 typedef unsigned long mm_counter_t;
213
214 struct mm_struct {
215         struct vm_area_struct * mmap;           /* list of VMAs */
216         struct rb_root mm_rb;
217         struct vm_area_struct * mmap_cache;     /* last find_vma result */
218         unsigned long (*get_unmapped_area) (struct file *filp,
219                                 unsigned long addr, unsigned long len,
220                                 unsigned long pgoff, unsigned long flags);
221         void (*unmap_area) (struct mm_struct *mm, unsigned long addr);
222         unsigned long mmap_base;                /* base of mmap area */
223         unsigned long cached_hole_size;         /* if non-zero, the largest hole below free_area_cache */
224         unsigned long free_area_cache;          /* first hole of size cached_hole_size or larger */
225         pgd_t * pgd;
226         atomic_t mm_users;                      /* How many users with user space? */
227         atomic_t mm_count;                      /* How many references to "struct mm_struct" (users count as 1) */
228         int map_count;                          /* number of VMAs */
229         struct rw_semaphore mmap_sem;
230         spinlock_t page_table_lock;             /* Protects page tables and some counters */
231
232         struct list_head mmlist;                /* List of maybe swapped mm's.  These are globally strung
233                                                  * together off init_mm.mmlist, and are protected
234                                                  * by mmlist_lock
235                                                  */
236
237         unsigned long start_code, end_code, start_data, end_data;
238         unsigned long start_brk, brk, start_stack;
239         unsigned long arg_start, arg_end, env_start, env_end;
240         unsigned long total_vm, locked_vm, shared_vm;
241         unsigned long exec_vm, stack_vm, reserved_vm, def_flags, nr_ptes;
242
243         /* Special counters protected by the page_table_lock */
244         mm_counter_t _rss;
245         mm_counter_t _anon_rss;
246
247         unsigned long saved_auxv[42]; /* for /proc/PID/auxv */
248
249         unsigned dumpable:2;
250         cpumask_t cpu_vm_mask;
251
252         /* Architecture-specific MM context */
253         mm_context_t context;
254
255         /* Token based thrashing protection. */
256         unsigned long swap_token_time;
257         char recent_pagein;
258
259         /* coredumping support */
260         int core_waiters;
261         struct completion *core_startup_done, core_done;
262
263         /* aio bits */
264         rwlock_t                ioctx_list_lock;
265         struct kioctx           *ioctx_list;
266
267         struct kioctx           default_kioctx;
268
269         unsigned long hiwater_rss;      /* High-water RSS usage */
270         unsigned long hiwater_vm;       /* High-water virtual memory usage */
271 };
272
273 struct sighand_struct {
274         atomic_t                count;
275         struct k_sigaction      action[_NSIG];
276         spinlock_t              siglock;
277 };
278
279 /*
280  * NOTE! "signal_struct" does not have it's own
281  * locking, because a shared signal_struct always
282  * implies a shared sighand_struct, so locking
283  * sighand_struct is always a proper superset of
284  * the locking of signal_struct.
285  */
286 struct signal_struct {
287         atomic_t                count;
288         atomic_t                live;
289
290         wait_queue_head_t       wait_chldexit;  /* for wait4() */
291
292         /* current thread group signal load-balancing target: */
293         task_t                  *curr_target;
294
295         /* shared signal handling: */
296         struct sigpending       shared_pending;
297
298         /* thread group exit support */
299         int                     group_exit_code;
300         /* overloaded:
301          * - notify group_exit_task when ->count is equal to notify_count
302          * - everyone except group_exit_task is stopped during signal delivery
303          *   of fatal signals, group_exit_task processes the signal.
304          */
305         struct task_struct      *group_exit_task;
306         int                     notify_count;
307
308         /* thread group stop support, overloads group_exit_code too */
309         int                     group_stop_count;
310         unsigned int            flags; /* see SIGNAL_* flags below */
311
312         /* POSIX.1b Interval Timers */
313         struct list_head posix_timers;
314
315         /* ITIMER_REAL timer for the process */
316         struct timer_list real_timer;
317         unsigned long it_real_value, it_real_incr;
318
319         /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
320         cputime_t it_prof_expires, it_virt_expires;
321         cputime_t it_prof_incr, it_virt_incr;
322
323         /* job control IDs */
324         pid_t pgrp;
325         pid_t tty_old_pgrp;
326         pid_t session;
327         /* boolean value for session group leader */
328         int leader;
329
330         struct tty_struct *tty; /* NULL if no tty */
331
332         /*
333          * Cumulative resource counters for dead threads in the group,
334          * and for reaped dead child processes forked by this group.
335          * Live threads maintain their own counters and add to these
336          * in __exit_signal, except for the group leader.
337          */
338         cputime_t utime, stime, cutime, cstime;
339         unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
340         unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
341
342         /*
343          * Cumulative ns of scheduled CPU time for dead threads in the
344          * group, not including a zombie group leader.  (This only differs
345          * from jiffies_to_ns(utime + stime) if sched_clock uses something
346          * other than jiffies.)
347          */
348         unsigned long long sched_time;
349
350         /*
351          * We don't bother to synchronize most readers of this at all,
352          * because there is no reader checking a limit that actually needs
353          * to get both rlim_cur and rlim_max atomically, and either one
354          * alone is a single word that can safely be read normally.
355          * getrlimit/setrlimit use task_lock(current->group_leader) to
356          * protect this instead of the siglock, because they really
357          * have no need to disable irqs.
358          */
359         struct rlimit rlim[RLIM_NLIMITS];
360
361         struct list_head cpu_timers[3];
362
363         /* keep the process-shared keyrings here so that they do the right
364          * thing in threads created with CLONE_THREAD */
365 #ifdef CONFIG_KEYS
366         struct key *session_keyring;    /* keyring inherited over fork */
367         struct key *process_keyring;    /* keyring private to this process */
368 #endif
369 };
370
371 /* Context switch must be unlocked if interrupts are to be enabled */
372 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
373 # define __ARCH_WANT_UNLOCKED_CTXSW
374 #endif
375
376 /*
377  * Bits in flags field of signal_struct.
378  */
379 #define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
380 #define SIGNAL_STOP_DEQUEUED    0x00000002 /* stop signal dequeued */
381 #define SIGNAL_STOP_CONTINUED   0x00000004 /* SIGCONT since WCONTINUED reap */
382 #define SIGNAL_GROUP_EXIT       0x00000008 /* group exit in progress */
383
384
385 /*
386  * Priority of a process goes from 0..MAX_PRIO-1, valid RT
387  * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL tasks are
388  * in the range MAX_RT_PRIO..MAX_PRIO-1. Priority values
389  * are inverted: lower p->prio value means higher priority.
390  *
391  * The MAX_USER_RT_PRIO value allows the actual maximum
392  * RT priority to be separate from the value exported to
393  * user-space.  This allows kernel threads to set their
394  * priority to a value higher than any user task. Note:
395  * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
396  */
397
398 #define MAX_USER_RT_PRIO        100
399 #define MAX_RT_PRIO             MAX_USER_RT_PRIO
400
401 #define MAX_PRIO                (MAX_RT_PRIO + 40)
402
403 #define rt_task(p)              (unlikely((p)->prio < MAX_RT_PRIO))
404
405 /*
406  * Some day this will be a full-fledged user tracking system..
407  */
408 struct user_struct {
409         atomic_t __count;       /* reference count */
410         atomic_t processes;     /* How many processes does this user have? */
411         atomic_t files;         /* How many open files does this user have? */
412         atomic_t sigpending;    /* How many pending signals does this user have? */
413 #ifdef CONFIG_INOTIFY
414         atomic_t inotify_watches; /* How many inotify watches does this user have? */
415         atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
416 #endif
417         /* protected by mq_lock */
418         unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
419         unsigned long locked_shm; /* How many pages of mlocked shm ? */
420
421 #ifdef CONFIG_KEYS
422         struct key *uid_keyring;        /* UID specific keyring */
423         struct key *session_keyring;    /* UID's default session keyring */
424 #endif
425
426         /* Hash table maintenance information */
427         struct list_head uidhash_list;
428         uid_t uid;
429 };
430
431 extern struct user_struct *find_user(uid_t);
432
433 extern struct user_struct root_user;
434 #define INIT_USER (&root_user)
435
436 typedef struct prio_array prio_array_t;
437 struct backing_dev_info;
438 struct reclaim_state;
439
440 #ifdef CONFIG_SCHEDSTATS
441 struct sched_info {
442         /* cumulative counters */
443         unsigned long   cpu_time,       /* time spent on the cpu */
444                         run_delay,      /* time spent waiting on a runqueue */
445                         pcnt;           /* # of timeslices run on this cpu */
446
447         /* timestamps */
448         unsigned long   last_arrival,   /* when we last ran on a cpu */
449                         last_queued;    /* when we were last queued to run */
450 };
451
452 extern struct file_operations proc_schedstat_operations;
453 #endif
454
455 enum idle_type
456 {
457         SCHED_IDLE,
458         NOT_IDLE,
459         NEWLY_IDLE,
460         MAX_IDLE_TYPES
461 };
462
463 /*
464  * sched-domains (multiprocessor balancing) declarations:
465  */
466 #ifdef CONFIG_SMP
467 #define SCHED_LOAD_SCALE        128UL   /* increase resolution of load */
468
469 #define SD_LOAD_BALANCE         1       /* Do load balancing on this domain. */
470 #define SD_BALANCE_NEWIDLE      2       /* Balance when about to become idle */
471 #define SD_BALANCE_EXEC         4       /* Balance on exec */
472 #define SD_BALANCE_FORK         8       /* Balance on fork, clone */
473 #define SD_WAKE_IDLE            16      /* Wake to idle CPU on task wakeup */
474 #define SD_WAKE_AFFINE          32      /* Wake task to waking CPU */
475 #define SD_WAKE_BALANCE         64      /* Perform balancing at task wakeup */
476 #define SD_SHARE_CPUPOWER       128     /* Domain members share cpu power */
477
478 struct sched_group {
479         struct sched_group *next;       /* Must be a circular list */
480         cpumask_t cpumask;
481
482         /*
483          * CPU power of this group, SCHED_LOAD_SCALE being max power for a
484          * single CPU. This is read only (except for setup, hotplug CPU).
485          */
486         unsigned long cpu_power;
487 };
488
489 struct sched_domain {
490         /* These fields must be setup */
491         struct sched_domain *parent;    /* top domain must be null terminated */
492         struct sched_group *groups;     /* the balancing groups of the domain */
493         cpumask_t span;                 /* span of all CPUs in this domain */
494         unsigned long min_interval;     /* Minimum balance interval ms */
495         unsigned long max_interval;     /* Maximum balance interval ms */
496         unsigned int busy_factor;       /* less balancing by factor if busy */
497         unsigned int imbalance_pct;     /* No balance until over watermark */
498         unsigned long long cache_hot_time; /* Task considered cache hot (ns) */
499         unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
500         unsigned int per_cpu_gain;      /* CPU % gained by adding domain cpus */
501         unsigned int busy_idx;
502         unsigned int idle_idx;
503         unsigned int newidle_idx;
504         unsigned int wake_idx;
505         unsigned int forkexec_idx;
506         int flags;                      /* See SD_* */
507
508         /* Runtime fields. */
509         unsigned long last_balance;     /* init to jiffies. units in jiffies */
510         unsigned int balance_interval;  /* initialise to 1. units in ms. */
511         unsigned int nr_balance_failed; /* initialise to 0 */
512
513 #ifdef CONFIG_SCHEDSTATS
514         /* load_balance() stats */
515         unsigned long lb_cnt[MAX_IDLE_TYPES];
516         unsigned long lb_failed[MAX_IDLE_TYPES];
517         unsigned long lb_balanced[MAX_IDLE_TYPES];
518         unsigned long lb_imbalance[MAX_IDLE_TYPES];
519         unsigned long lb_gained[MAX_IDLE_TYPES];
520         unsigned long lb_hot_gained[MAX_IDLE_TYPES];
521         unsigned long lb_nobusyg[MAX_IDLE_TYPES];
522         unsigned long lb_nobusyq[MAX_IDLE_TYPES];
523
524         /* Active load balancing */
525         unsigned long alb_cnt;
526         unsigned long alb_failed;
527         unsigned long alb_pushed;
528
529         /* SD_BALANCE_EXEC stats */
530         unsigned long sbe_cnt;
531         unsigned long sbe_balanced;
532         unsigned long sbe_pushed;
533
534         /* SD_BALANCE_FORK stats */
535         unsigned long sbf_cnt;
536         unsigned long sbf_balanced;
537         unsigned long sbf_pushed;
538
539         /* try_to_wake_up() stats */
540         unsigned long ttwu_wake_remote;
541         unsigned long ttwu_move_affine;
542         unsigned long ttwu_move_balance;
543 #endif
544 };
545
546 extern void partition_sched_domains(cpumask_t *partition1,
547                                     cpumask_t *partition2);
548 #ifdef ARCH_HAS_SCHED_DOMAIN
549 /* Useful helpers that arch setup code may use. Defined in kernel/sched.c */
550 extern cpumask_t cpu_isolated_map;
551 extern void init_sched_build_groups(struct sched_group groups[],
552                                 cpumask_t span, int (*group_fn)(int cpu));
553 extern void cpu_attach_domain(struct sched_domain *sd, int cpu);
554 #endif /* ARCH_HAS_SCHED_DOMAIN */
555 #endif /* CONFIG_SMP */
556
557
558 struct io_context;                      /* See blkdev.h */
559 void exit_io_context(void);
560 struct cpuset;
561
562 #define NGROUPS_SMALL           32
563 #define NGROUPS_PER_BLOCK       ((int)(PAGE_SIZE / sizeof(gid_t)))
564 struct group_info {
565         int ngroups;
566         atomic_t usage;
567         gid_t small_block[NGROUPS_SMALL];
568         int nblocks;
569         gid_t *blocks[0];
570 };
571
572 /*
573  * get_group_info() must be called with the owning task locked (via task_lock())
574  * when task != current.  The reason being that the vast majority of callers are
575  * looking at current->group_info, which can not be changed except by the
576  * current task.  Changing current->group_info requires the task lock, too.
577  */
578 #define get_group_info(group_info) do { \
579         atomic_inc(&(group_info)->usage); \
580 } while (0)
581
582 #define put_group_info(group_info) do { \
583         if (atomic_dec_and_test(&(group_info)->usage)) \
584                 groups_free(group_info); \
585 } while (0)
586
587 extern struct group_info *groups_alloc(int gidsetsize);
588 extern void groups_free(struct group_info *group_info);
589 extern int set_current_groups(struct group_info *group_info);
590 extern int groups_search(struct group_info *group_info, gid_t grp);
591 /* access the groups "array" with this macro */
592 #define GROUP_AT(gi, i) \
593     ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
594
595
596 struct audit_context;           /* See audit.c */
597 struct mempolicy;
598
599 struct task_struct {
600         volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
601         struct thread_info *thread_info;
602         atomic_t usage;
603         unsigned long flags;    /* per process flags, defined below */
604         unsigned long ptrace;
605
606         int lock_depth;         /* BKL lock depth */
607
608 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
609         int oncpu;
610 #endif
611         int prio, static_prio;
612         struct list_head run_list;
613         prio_array_t *array;
614
615         unsigned short ioprio;
616
617         unsigned long sleep_avg;
618         unsigned long long timestamp, last_ran;
619         unsigned long long sched_time; /* sched_clock time spent running */
620         int activated;
621
622         unsigned long policy;
623         cpumask_t cpus_allowed;
624         unsigned int time_slice, first_time_slice;
625
626 #ifdef CONFIG_SCHEDSTATS
627         struct sched_info sched_info;
628 #endif
629
630         struct list_head tasks;
631         /*
632          * ptrace_list/ptrace_children forms the list of my children
633          * that were stolen by a ptracer.
634          */
635         struct list_head ptrace_children;
636         struct list_head ptrace_list;
637
638         struct mm_struct *mm, *active_mm;
639
640 /* task state */
641         struct linux_binfmt *binfmt;
642         long exit_state;
643         int exit_code, exit_signal;
644         int pdeath_signal;  /*  The signal sent when the parent dies  */
645         /* ??? */
646         unsigned long personality;
647         unsigned did_exec:1;
648         pid_t pid;
649         pid_t tgid;
650         /* 
651          * pointers to (original) parent process, youngest child, younger sibling,
652          * older sibling, respectively.  (p->father can be replaced with 
653          * p->parent->pid)
654          */
655         struct task_struct *real_parent; /* real parent process (when being debugged) */
656         struct task_struct *parent;     /* parent process */
657         /*
658          * children/sibling forms the list of my children plus the
659          * tasks I'm ptracing.
660          */
661         struct list_head children;      /* list of my children */
662         struct list_head sibling;       /* linkage in my parent's children list */
663         struct task_struct *group_leader;       /* threadgroup leader */
664
665         /* PID/PID hash table linkage. */
666         struct pid pids[PIDTYPE_MAX];
667
668         struct completion *vfork_done;          /* for vfork() */
669         int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
670         int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
671
672         unsigned long rt_priority;
673         cputime_t utime, stime;
674         unsigned long nvcsw, nivcsw; /* context switch counts */
675         struct timespec start_time;
676 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
677         unsigned long min_flt, maj_flt;
678
679         cputime_t it_prof_expires, it_virt_expires;
680         unsigned long long it_sched_expires;
681         struct list_head cpu_timers[3];
682
683 /* process credentials */
684         uid_t uid,euid,suid,fsuid;
685         gid_t gid,egid,sgid,fsgid;
686         struct group_info *group_info;
687         kernel_cap_t   cap_effective, cap_inheritable, cap_permitted;
688         unsigned keep_capabilities:1;
689         struct user_struct *user;
690 #ifdef CONFIG_KEYS
691         struct key *thread_keyring;     /* keyring private to this thread */
692         unsigned char jit_keyring;      /* default keyring to attach requested keys to */
693 #endif
694         int oomkilladj; /* OOM kill score adjustment (bit shift). */
695         char comm[TASK_COMM_LEN]; /* executable name excluding path
696                                      - access with [gs]et_task_comm (which lock
697                                        it with task_lock())
698                                      - initialized normally by flush_old_exec */
699 /* file system info */
700         int link_count, total_link_count;
701 /* ipc stuff */
702         struct sysv_sem sysvsem;
703 /* CPU-specific state of this task */
704         struct thread_struct thread;
705 /* filesystem information */
706         struct fs_struct *fs;
707 /* open file information */
708         struct files_struct *files;
709 /* namespace */
710         struct namespace *namespace;
711 /* signal handlers */
712         struct signal_struct *signal;
713         struct sighand_struct *sighand;
714
715         sigset_t blocked, real_blocked;
716         struct sigpending pending;
717
718         unsigned long sas_ss_sp;
719         size_t sas_ss_size;
720         int (*notifier)(void *priv);
721         void *notifier_data;
722         sigset_t *notifier_mask;
723         
724         void *security;
725         struct audit_context *audit_context;
726         seccomp_t seccomp;
727
728 /* Thread group tracking */
729         u32 parent_exec_id;
730         u32 self_exec_id;
731 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
732         spinlock_t alloc_lock;
733 /* Protection of proc_dentry: nesting proc_lock, dcache_lock, write_lock_irq(&tasklist_lock); */
734         spinlock_t proc_lock;
735
736 /* journalling filesystem info */
737         void *journal_info;
738
739 /* VM state */
740         struct reclaim_state *reclaim_state;
741
742         struct dentry *proc_dentry;
743         struct backing_dev_info *backing_dev_info;
744
745         struct io_context *io_context;
746
747         unsigned long ptrace_message;
748         siginfo_t *last_siginfo; /* For ptrace use.  */
749 /*
750  * current io wait handle: wait queue entry to use for io waits
751  * If this thread is processing aio, this points at the waitqueue
752  * inside the currently handled kiocb. It may be NULL (i.e. default
753  * to a stack based synchronous wait) if its doing sync IO.
754  */
755         wait_queue_t *io_wait;
756 /* i/o counters(bytes read/written, #syscalls */
757         u64 rchar, wchar, syscr, syscw;
758 #if defined(CONFIG_BSD_PROCESS_ACCT)
759         u64 acct_rss_mem1;      /* accumulated rss usage */
760         u64 acct_vm_mem1;       /* accumulated virtual memory usage */
761         clock_t acct_stimexpd;  /* clock_t-converted stime since last update */
762 #endif
763 #ifdef CONFIG_NUMA
764         struct mempolicy *mempolicy;
765         short il_next;
766 #endif
767 #ifdef CONFIG_CPUSETS
768         struct cpuset *cpuset;
769         nodemask_t mems_allowed;
770         int cpuset_mems_generation;
771 #endif
772         atomic_t fs_excl;       /* holding fs exclusive resources */
773 };
774
775 static inline pid_t process_group(struct task_struct *tsk)
776 {
777         return tsk->signal->pgrp;
778 }
779
780 /**
781  * pid_alive - check that a task structure is not stale
782  * @p: Task structure to be checked.
783  *
784  * Test if a process is not yet dead (at most zombie state)
785  * If pid_alive fails, then pointers within the task structure
786  * can be stale and must not be dereferenced.
787  */
788 static inline int pid_alive(struct task_struct *p)
789 {
790         return p->pids[PIDTYPE_PID].nr != 0;
791 }
792
793 extern void free_task(struct task_struct *tsk);
794 extern void __put_task_struct(struct task_struct *tsk);
795 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
796 #define put_task_struct(tsk) \
797 do { if (atomic_dec_and_test(&(tsk)->usage)) __put_task_struct(tsk); } while(0)
798
799 /*
800  * Per process flags
801  */
802 #define PF_ALIGNWARN    0x00000001      /* Print alignment warning msgs */
803                                         /* Not implemented yet, only for 486*/
804 #define PF_STARTING     0x00000002      /* being created */
805 #define PF_EXITING      0x00000004      /* getting shut down */
806 #define PF_DEAD         0x00000008      /* Dead */
807 #define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
808 #define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
809 #define PF_DUMPCORE     0x00000200      /* dumped core */
810 #define PF_SIGNALED     0x00000400      /* killed by a signal */
811 #define PF_MEMALLOC     0x00000800      /* Allocating memory */
812 #define PF_FLUSHER      0x00001000      /* responsible for disk writeback */
813 #define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
814 #define PF_FREEZE       0x00004000      /* this task is being frozen for suspend now */
815 #define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
816 #define PF_FROZEN       0x00010000      /* frozen for system suspend */
817 #define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
818 #define PF_KSWAPD       0x00040000      /* I am kswapd */
819 #define PF_SWAPOFF      0x00080000      /* I am in swapoff */
820 #define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
821 #define PF_SYNCWRITE    0x00200000      /* I am doing a sync write */
822 #define PF_BORROWED_MM  0x00400000      /* I am a kthread doing use_mm */
823 #define PF_RANDOMIZE    0x00800000      /* randomize virtual address space */
824
825 /*
826  * Only the _current_ task can read/write to tsk->flags, but other
827  * tasks can access tsk->flags in readonly mode for example
828  * with tsk_used_math (like during threaded core dumping).
829  * There is however an exception to this rule during ptrace
830  * or during fork: the ptracer task is allowed to write to the
831  * child->flags of its traced child (same goes for fork, the parent
832  * can write to the child->flags), because we're guaranteed the
833  * child is not running and in turn not changing child->flags
834  * at the same time the parent does it.
835  */
836 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
837 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
838 #define clear_used_math() clear_stopped_child_used_math(current)
839 #define set_used_math() set_stopped_child_used_math(current)
840 #define conditional_stopped_child_used_math(condition, child) \
841         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
842 #define conditional_used_math(condition) \
843         conditional_stopped_child_used_math(condition, current)
844 #define copy_to_stopped_child_used_math(child) \
845         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
846 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
847 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
848 #define used_math() tsk_used_math(current)
849
850 #ifdef CONFIG_SMP
851 extern int set_cpus_allowed(task_t *p, cpumask_t new_mask);
852 #else
853 static inline int set_cpus_allowed(task_t *p, cpumask_t new_mask)
854 {
855         if (!cpus_intersects(new_mask, cpu_online_map))
856                 return -EINVAL;
857         return 0;
858 }
859 #endif
860
861 extern unsigned long long sched_clock(void);
862 extern unsigned long long current_sched_time(const task_t *current_task);
863
864 /* sched_exec is called by processes performing an exec */
865 #ifdef CONFIG_SMP
866 extern void sched_exec(void);
867 #else
868 #define sched_exec()   {}
869 #endif
870
871 #ifdef CONFIG_HOTPLUG_CPU
872 extern void idle_task_exit(void);
873 #else
874 static inline void idle_task_exit(void) {}
875 #endif
876
877 extern void sched_idle_next(void);
878 extern void set_user_nice(task_t *p, long nice);
879 extern int task_prio(const task_t *p);
880 extern int task_nice(const task_t *p);
881 extern int can_nice(const task_t *p, const int nice);
882 extern int task_curr(const task_t *p);
883 extern int idle_cpu(int cpu);
884 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
885 extern task_t *idle_task(int cpu);
886
887 void yield(void);
888
889 /*
890  * The default (Linux) execution domain.
891  */
892 extern struct exec_domain       default_exec_domain;
893
894 union thread_union {
895         struct thread_info thread_info;
896         unsigned long stack[THREAD_SIZE/sizeof(long)];
897 };
898
899 #ifndef __HAVE_ARCH_KSTACK_END
900 static inline int kstack_end(void *addr)
901 {
902         /* Reliable end of stack detection:
903          * Some APM bios versions misalign the stack
904          */
905         return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
906 }
907 #endif
908
909 extern union thread_union init_thread_union;
910 extern struct task_struct init_task;
911
912 extern struct   mm_struct init_mm;
913
914 #define find_task_by_pid(nr)    find_task_by_pid_type(PIDTYPE_PID, nr)
915 extern struct task_struct *find_task_by_pid_type(int type, int pid);
916 extern void set_special_pids(pid_t session, pid_t pgrp);
917 extern void __set_special_pids(pid_t session, pid_t pgrp);
918
919 /* per-UID process charging. */
920 extern struct user_struct * alloc_uid(uid_t);
921 static inline struct user_struct *get_uid(struct user_struct *u)
922 {
923         atomic_inc(&u->__count);
924         return u;
925 }
926 extern void free_uid(struct user_struct *);
927 extern void switch_uid(struct user_struct *);
928
929 #include <asm/current.h>
930
931 extern void do_timer(struct pt_regs *);
932
933 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
934 extern int FASTCALL(wake_up_process(struct task_struct * tsk));
935 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
936                                                 unsigned long clone_flags));
937 #ifdef CONFIG_SMP
938  extern void kick_process(struct task_struct *tsk);
939 #else
940  static inline void kick_process(struct task_struct *tsk) { }
941 #endif
942 extern void FASTCALL(sched_fork(task_t * p, int clone_flags));
943 extern void FASTCALL(sched_exit(task_t * p));
944
945 extern int in_group_p(gid_t);
946 extern int in_egroup_p(gid_t);
947
948 extern void proc_caches_init(void);
949 extern void flush_signals(struct task_struct *);
950 extern void flush_signal_handlers(struct task_struct *, int force_default);
951 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
952
953 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
954 {
955         unsigned long flags;
956         int ret;
957
958         spin_lock_irqsave(&tsk->sighand->siglock, flags);
959         ret = dequeue_signal(tsk, mask, info);
960         spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
961
962         return ret;
963 }       
964
965 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
966                               sigset_t *mask);
967 extern void unblock_all_signals(void);
968 extern void release_task(struct task_struct * p);
969 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
970 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
971 extern int force_sigsegv(int, struct task_struct *);
972 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
973 extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp);
974 extern int kill_pg_info(int, struct siginfo *, pid_t);
975 extern int kill_proc_info(int, struct siginfo *, pid_t);
976 extern void do_notify_parent(struct task_struct *, int);
977 extern void force_sig(int, struct task_struct *);
978 extern void force_sig_specific(int, struct task_struct *);
979 extern int send_sig(int, struct task_struct *, int);
980 extern void zap_other_threads(struct task_struct *p);
981 extern int kill_pg(pid_t, int, int);
982 extern int kill_sl(pid_t, int, int);
983 extern int kill_proc(pid_t, int, int);
984 extern struct sigqueue *sigqueue_alloc(void);
985 extern void sigqueue_free(struct sigqueue *);
986 extern int send_sigqueue(int, struct sigqueue *,  struct task_struct *);
987 extern int send_group_sigqueue(int, struct sigqueue *,  struct task_struct *);
988 extern int do_sigaction(int, const struct k_sigaction *, struct k_sigaction *);
989 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
990
991 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
992 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
993 #define SEND_SIG_PRIV   ((struct siginfo *) 1)
994 #define SEND_SIG_FORCED ((struct siginfo *) 2)
995
996 /* True if we are on the alternate signal stack.  */
997
998 static inline int on_sig_stack(unsigned long sp)
999 {
1000         return (sp - current->sas_ss_sp < current->sas_ss_size);
1001 }
1002
1003 static inline int sas_ss_flags(unsigned long sp)
1004 {
1005         return (current->sas_ss_size == 0 ? SS_DISABLE
1006                 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1007 }
1008
1009
1010 #ifdef CONFIG_SECURITY
1011 /* code is in security.c */
1012 extern int capable(int cap);
1013 #else
1014 static inline int capable(int cap)
1015 {
1016         if (cap_raised(current->cap_effective, cap)) {
1017                 current->flags |= PF_SUPERPRIV;
1018                 return 1;
1019         }
1020         return 0;
1021 }
1022 #endif
1023
1024 /*
1025  * Routines for handling mm_structs
1026  */
1027 extern struct mm_struct * mm_alloc(void);
1028
1029 /* mmdrop drops the mm and the page tables */
1030 extern void FASTCALL(__mmdrop(struct mm_struct *));
1031 static inline void mmdrop(struct mm_struct * mm)
1032 {
1033         if (atomic_dec_and_test(&mm->mm_count))
1034                 __mmdrop(mm);
1035 }
1036
1037 /* mmput gets rid of the mappings and all user-space */
1038 extern void mmput(struct mm_struct *);
1039 /* Grab a reference to a task's mm, if it is not already going away */
1040 extern struct mm_struct *get_task_mm(struct task_struct *task);
1041 /* Remove the current tasks stale references to the old mm_struct */
1042 extern void mm_release(struct task_struct *, struct mm_struct *);
1043
1044 extern int  copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1045 extern void flush_thread(void);
1046 extern void exit_thread(void);
1047
1048 extern void exit_files(struct task_struct *);
1049 extern void exit_signal(struct task_struct *);
1050 extern void __exit_signal(struct task_struct *);
1051 extern void exit_sighand(struct task_struct *);
1052 extern void __exit_sighand(struct task_struct *);
1053 extern void exit_itimers(struct signal_struct *);
1054
1055 extern NORET_TYPE void do_group_exit(int);
1056
1057 extern void daemonize(const char *, ...);
1058 extern int allow_signal(int);
1059 extern int disallow_signal(int);
1060 extern task_t *child_reaper;
1061
1062 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1063 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1064 task_t *fork_idle(int);
1065
1066 extern void set_task_comm(struct task_struct *tsk, char *from);
1067 extern void get_task_comm(char *to, struct task_struct *tsk);
1068
1069 #ifdef CONFIG_SMP
1070 extern void wait_task_inactive(task_t * p);
1071 #else
1072 #define wait_task_inactive(p)   do { } while (0)
1073 #endif
1074
1075 #define remove_parent(p)        list_del_init(&(p)->sibling)
1076 #define add_parent(p, parent)   list_add_tail(&(p)->sibling,&(parent)->children)
1077
1078 #define REMOVE_LINKS(p) do {                                    \
1079         if (thread_group_leader(p))                             \
1080                 list_del_init(&(p)->tasks);                     \
1081         remove_parent(p);                                       \
1082         } while (0)
1083
1084 #define SET_LINKS(p) do {                                       \
1085         if (thread_group_leader(p))                             \
1086                 list_add_tail(&(p)->tasks,&init_task.tasks);    \
1087         add_parent(p, (p)->parent);                             \
1088         } while (0)
1089
1090 #define next_task(p)    list_entry((p)->tasks.next, struct task_struct, tasks)
1091 #define prev_task(p)    list_entry((p)->tasks.prev, struct task_struct, tasks)
1092
1093 #define for_each_process(p) \
1094         for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1095
1096 /*
1097  * Careful: do_each_thread/while_each_thread is a double loop so
1098  *          'break' will not work as expected - use goto instead.
1099  */
1100 #define do_each_thread(g, t) \
1101         for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1102
1103 #define while_each_thread(g, t) \
1104         while ((t = next_thread(t)) != g)
1105
1106 extern task_t * FASTCALL(next_thread(const task_t *p));
1107
1108 #define thread_group_leader(p)  (p->pid == p->tgid)
1109
1110 static inline int thread_group_empty(task_t *p)
1111 {
1112         return list_empty(&p->pids[PIDTYPE_TGID].pid_list);
1113 }
1114
1115 #define delay_group_leader(p) \
1116                 (thread_group_leader(p) && !thread_group_empty(p))
1117
1118 extern void unhash_process(struct task_struct *p);
1119
1120 /*
1121  * Protects ->fs, ->files, ->mm, ->ptrace, ->group_info, ->comm, keyring
1122  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
1123  * pins the final release of task.io_context.
1124  *
1125  * Nests both inside and outside of read_lock(&tasklist_lock).
1126  * It must not be nested with write_lock_irq(&tasklist_lock),
1127  * neither inside nor outside.
1128  */
1129 static inline void task_lock(struct task_struct *p)
1130 {
1131         spin_lock(&p->alloc_lock);
1132 }
1133
1134 static inline void task_unlock(struct task_struct *p)
1135 {
1136         spin_unlock(&p->alloc_lock);
1137 }
1138
1139 /* set thread flags in other task's structures
1140  * - see asm/thread_info.h for TIF_xxxx flags available
1141  */
1142 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1143 {
1144         set_ti_thread_flag(tsk->thread_info,flag);
1145 }
1146
1147 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1148 {
1149         clear_ti_thread_flag(tsk->thread_info,flag);
1150 }
1151
1152 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1153 {
1154         return test_and_set_ti_thread_flag(tsk->thread_info,flag);
1155 }
1156
1157 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1158 {
1159         return test_and_clear_ti_thread_flag(tsk->thread_info,flag);
1160 }
1161
1162 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1163 {
1164         return test_ti_thread_flag(tsk->thread_info,flag);
1165 }
1166
1167 static inline void set_tsk_need_resched(struct task_struct *tsk)
1168 {
1169         set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1170 }
1171
1172 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1173 {
1174         clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1175 }
1176
1177 static inline int signal_pending(struct task_struct *p)
1178 {
1179         return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1180 }
1181   
1182 static inline int need_resched(void)
1183 {
1184         return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1185 }
1186
1187 /*
1188  * cond_resched() and cond_resched_lock(): latency reduction via
1189  * explicit rescheduling in places that are safe. The return
1190  * value indicates whether a reschedule was done in fact.
1191  * cond_resched_lock() will drop the spinlock before scheduling,
1192  * cond_resched_softirq() will enable bhs before scheduling.
1193  */
1194 extern int cond_resched(void);
1195 extern int cond_resched_lock(spinlock_t * lock);
1196 extern int cond_resched_softirq(void);
1197
1198 /*
1199  * Does a critical section need to be broken due to another
1200  * task waiting?:
1201  */
1202 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1203 # define need_lockbreak(lock) ((lock)->break_lock)
1204 #else
1205 # define need_lockbreak(lock) 0
1206 #endif
1207
1208 /*
1209  * Does a critical section need to be broken due to another
1210  * task waiting or preemption being signalled:
1211  */
1212 static inline int lock_need_resched(spinlock_t *lock)
1213 {
1214         if (need_lockbreak(lock) || need_resched())
1215                 return 1;
1216         return 0;
1217 }
1218
1219 /* Reevaluate whether the task has signals pending delivery.
1220    This is required every time the blocked sigset_t changes.
1221    callers must hold sighand->siglock.  */
1222
1223 extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t));
1224 extern void recalc_sigpending(void);
1225
1226 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1227
1228 /*
1229  * Wrappers for p->thread_info->cpu access. No-op on UP.
1230  */
1231 #ifdef CONFIG_SMP
1232
1233 static inline unsigned int task_cpu(const struct task_struct *p)
1234 {
1235         return p->thread_info->cpu;
1236 }
1237
1238 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1239 {
1240         p->thread_info->cpu = cpu;
1241 }
1242
1243 #else
1244
1245 static inline unsigned int task_cpu(const struct task_struct *p)
1246 {
1247         return 0;
1248 }
1249
1250 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1251 {
1252 }
1253
1254 #endif /* CONFIG_SMP */
1255
1256 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1257 extern void arch_pick_mmap_layout(struct mm_struct *mm);
1258 #else
1259 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1260 {
1261         mm->mmap_base = TASK_UNMAPPED_BASE;
1262         mm->get_unmapped_area = arch_get_unmapped_area;
1263         mm->unmap_area = arch_unmap_area;
1264 }
1265 #endif
1266
1267 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1268 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1269
1270 #ifdef CONFIG_MAGIC_SYSRQ
1271
1272 extern void normalize_rt_tasks(void);
1273
1274 #endif
1275
1276 #ifdef CONFIG_PM
1277 /*
1278  * Check if a process has been frozen
1279  */
1280 static inline int frozen(struct task_struct *p)
1281 {
1282         return p->flags & PF_FROZEN;
1283 }
1284
1285 /*
1286  * Check if there is a request to freeze a process
1287  */
1288 static inline int freezing(struct task_struct *p)
1289 {
1290         return p->flags & PF_FREEZE;
1291 }
1292
1293 /*
1294  * Request that a process be frozen
1295  * FIXME: SMP problem. We may not modify other process' flags!
1296  */
1297 static inline void freeze(struct task_struct *p)
1298 {
1299         p->flags |= PF_FREEZE;
1300 }
1301
1302 /*
1303  * Wake up a frozen process
1304  */
1305 static inline int thaw_process(struct task_struct *p)
1306 {
1307         if (frozen(p)) {
1308                 p->flags &= ~PF_FROZEN;
1309                 wake_up_process(p);
1310                 return 1;
1311         }
1312         return 0;
1313 }
1314
1315 /*
1316  * freezing is complete, mark process as frozen
1317  */
1318 static inline void frozen_process(struct task_struct *p)
1319 {
1320         p->flags = (p->flags & ~PF_FREEZE) | PF_FROZEN;
1321 }
1322
1323 extern void refrigerator(void);
1324 extern int freeze_processes(void);
1325 extern void thaw_processes(void);
1326
1327 static inline int try_to_freeze(void)
1328 {
1329         if (freezing(current)) {
1330                 refrigerator();
1331                 return 1;
1332         } else
1333                 return 0;
1334 }
1335 #else
1336 static inline int frozen(struct task_struct *p) { return 0; }
1337 static inline int freezing(struct task_struct *p) { return 0; }
1338 static inline void freeze(struct task_struct *p) { BUG(); }
1339 static inline int thaw_process(struct task_struct *p) { return 1; }
1340 static inline void frozen_process(struct task_struct *p) { BUG(); }
1341
1342 static inline void refrigerator(void) {}
1343 static inline int freeze_processes(void) { BUG(); return 0; }
1344 static inline void thaw_processes(void) {}
1345
1346 static inline int try_to_freeze(void) { return 0; }
1347
1348 #endif /* CONFIG_PM */
1349 #endif /* __KERNEL__ */
1350
1351 #endif