Documentation: Fix 'file_mapped' -> 'mapped_file'
[sfrench/cifs-2.6.git] / include / linux / mtd / mtd.h
1 /*
2  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  *
18  */
19
20 #ifndef __MTD_MTD_H__
21 #define __MTD_MTD_H__
22
23 #include <linux/types.h>
24 #include <linux/uio.h>
25 #include <linux/notifier.h>
26 #include <linux/device.h>
27 #include <linux/of.h>
28
29 #include <mtd/mtd-abi.h>
30
31 #include <asm/div64.h>
32
33 #define MTD_ERASE_PENDING       0x01
34 #define MTD_ERASING             0x02
35 #define MTD_ERASE_SUSPEND       0x04
36 #define MTD_ERASE_DONE          0x08
37 #define MTD_ERASE_FAILED        0x10
38
39 #define MTD_FAIL_ADDR_UNKNOWN -1LL
40
41 /*
42  * If the erase fails, fail_addr might indicate exactly which block failed. If
43  * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level
44  * or was not specific to any particular block.
45  */
46 struct erase_info {
47         struct mtd_info *mtd;
48         uint64_t addr;
49         uint64_t len;
50         uint64_t fail_addr;
51         u_long time;
52         u_long retries;
53         unsigned dev;
54         unsigned cell;
55         void (*callback) (struct erase_info *self);
56         u_long priv;
57         u_char state;
58         struct erase_info *next;
59 };
60
61 struct mtd_erase_region_info {
62         uint64_t offset;                /* At which this region starts, from the beginning of the MTD */
63         uint32_t erasesize;             /* For this region */
64         uint32_t numblocks;             /* Number of blocks of erasesize in this region */
65         unsigned long *lockmap;         /* If keeping bitmap of locks */
66 };
67
68 /**
69  * struct mtd_oob_ops - oob operation operands
70  * @mode:       operation mode
71  *
72  * @len:        number of data bytes to write/read
73  *
74  * @retlen:     number of data bytes written/read
75  *
76  * @ooblen:     number of oob bytes to write/read
77  * @oobretlen:  number of oob bytes written/read
78  * @ooboffs:    offset of oob data in the oob area (only relevant when
79  *              mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW)
80  * @datbuf:     data buffer - if NULL only oob data are read/written
81  * @oobbuf:     oob data buffer
82  *
83  * Note, it is allowed to read more than one OOB area at one go, but not write.
84  * The interface assumes that the OOB write requests program only one page's
85  * OOB area.
86  */
87 struct mtd_oob_ops {
88         unsigned int    mode;
89         size_t          len;
90         size_t          retlen;
91         size_t          ooblen;
92         size_t          oobretlen;
93         uint32_t        ooboffs;
94         uint8_t         *datbuf;
95         uint8_t         *oobbuf;
96 };
97
98 #define MTD_MAX_OOBFREE_ENTRIES_LARGE   32
99 #define MTD_MAX_ECCPOS_ENTRIES_LARGE    640
100 /**
101  * struct mtd_oob_region - oob region definition
102  * @offset: region offset
103  * @length: region length
104  *
105  * This structure describes a region of the OOB area, and is used
106  * to retrieve ECC or free bytes sections.
107  * Each section is defined by an offset within the OOB area and a
108  * length.
109  */
110 struct mtd_oob_region {
111         u32 offset;
112         u32 length;
113 };
114
115 /*
116  * struct mtd_ooblayout_ops - NAND OOB layout operations
117  * @ecc: function returning an ECC region in the OOB area.
118  *       Should return -ERANGE if %section exceeds the total number of
119  *       ECC sections.
120  * @free: function returning a free region in the OOB area.
121  *        Should return -ERANGE if %section exceeds the total number of
122  *        free sections.
123  */
124 struct mtd_ooblayout_ops {
125         int (*ecc)(struct mtd_info *mtd, int section,
126                    struct mtd_oob_region *oobecc);
127         int (*free)(struct mtd_info *mtd, int section,
128                     struct mtd_oob_region *oobfree);
129 };
130
131 /**
132  * struct mtd_pairing_info - page pairing information
133  *
134  * @pair: pair id
135  * @group: group id
136  *
137  * The term "pair" is used here, even though TLC NANDs might group pages by 3
138  * (3 bits in a single cell). A pair should regroup all pages that are sharing
139  * the same cell. Pairs are then indexed in ascending order.
140  *
141  * @group is defining the position of a page in a given pair. It can also be
142  * seen as the bit position in the cell: page attached to bit 0 belongs to
143  * group 0, page attached to bit 1 belongs to group 1, etc.
144  *
145  * Example:
146  * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme:
147  *
148  *              group-0         group-1
149  *
150  *  pair-0      page-0          page-4
151  *  pair-1      page-1          page-5
152  *  pair-2      page-2          page-8
153  *  ...
154  *  pair-127    page-251        page-255
155  *
156  *
157  * Note that the "group" and "pair" terms were extracted from Samsung and
158  * Hynix datasheets, and might be referenced under other names in other
159  * datasheets (Micron is describing this concept as "shared pages").
160  */
161 struct mtd_pairing_info {
162         int pair;
163         int group;
164 };
165
166 /**
167  * struct mtd_pairing_scheme - page pairing scheme description
168  *
169  * @ngroups: number of groups. Should be related to the number of bits
170  *           per cell.
171  * @get_info: converts a write-unit (page number within an erase block) into
172  *            mtd_pairing information (pair + group). This function should
173  *            fill the info parameter based on the wunit index or return
174  *            -EINVAL if the wunit parameter is invalid.
175  * @get_wunit: converts pairing information into a write-unit (page) number.
176  *             This function should return the wunit index pointed by the
177  *             pairing information described in the info argument. It should
178  *             return -EINVAL, if there's no wunit corresponding to the
179  *             passed pairing information.
180  *
181  * See mtd_pairing_info documentation for a detailed explanation of the
182  * pair and group concepts.
183  *
184  * The mtd_pairing_scheme structure provides a generic solution to represent
185  * NAND page pairing scheme. Instead of exposing two big tables to do the
186  * write-unit <-> (pair + group) conversions, we ask the MTD drivers to
187  * implement the ->get_info() and ->get_wunit() functions.
188  *
189  * MTD users will then be able to query these information by using the
190  * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers.
191  *
192  * @ngroups is here to help MTD users iterating over all the pages in a
193  * given pair. This value can be retrieved by MTD users using the
194  * mtd_pairing_groups() helper.
195  *
196  * Examples are given in the mtd_pairing_info_to_wunit() and
197  * mtd_wunit_to_pairing_info() documentation.
198  */
199 struct mtd_pairing_scheme {
200         int ngroups;
201         int (*get_info)(struct mtd_info *mtd, int wunit,
202                         struct mtd_pairing_info *info);
203         int (*get_wunit)(struct mtd_info *mtd,
204                          const struct mtd_pairing_info *info);
205 };
206
207 struct module;  /* only needed for owner field in mtd_info */
208
209 /**
210  * struct mtd_debug_info - debugging information for an MTD device.
211  *
212  * @dfs_dir: direntry object of the MTD device debugfs directory
213  */
214 struct mtd_debug_info {
215         struct dentry *dfs_dir;
216 };
217
218 struct mtd_info {
219         u_char type;
220         uint32_t flags;
221         uint64_t size;   // Total size of the MTD
222
223         /* "Major" erase size for the device. Naïve users may take this
224          * to be the only erase size available, or may use the more detailed
225          * information below if they desire
226          */
227         uint32_t erasesize;
228         /* Minimal writable flash unit size. In case of NOR flash it is 1 (even
229          * though individual bits can be cleared), in case of NAND flash it is
230          * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR
231          * it is of ECC block size, etc. It is illegal to have writesize = 0.
232          * Any driver registering a struct mtd_info must ensure a writesize of
233          * 1 or larger.
234          */
235         uint32_t writesize;
236
237         /*
238          * Size of the write buffer used by the MTD. MTD devices having a write
239          * buffer can write multiple writesize chunks at a time. E.g. while
240          * writing 4 * writesize bytes to a device with 2 * writesize bytes
241          * buffer the MTD driver can (but doesn't have to) do 2 writesize
242          * operations, but not 4. Currently, all NANDs have writebufsize
243          * equivalent to writesize (NAND page size). Some NOR flashes do have
244          * writebufsize greater than writesize.
245          */
246         uint32_t writebufsize;
247
248         uint32_t oobsize;   // Amount of OOB data per block (e.g. 16)
249         uint32_t oobavail;  // Available OOB bytes per block
250
251         /*
252          * If erasesize is a power of 2 then the shift is stored in
253          * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize.
254          */
255         unsigned int erasesize_shift;
256         unsigned int writesize_shift;
257         /* Masks based on erasesize_shift and writesize_shift */
258         unsigned int erasesize_mask;
259         unsigned int writesize_mask;
260
261         /*
262          * read ops return -EUCLEAN if max number of bitflips corrected on any
263          * one region comprising an ecc step equals or exceeds this value.
264          * Settable by driver, else defaults to ecc_strength.  User can override
265          * in sysfs.  N.B. The meaning of the -EUCLEAN return code has changed;
266          * see Documentation/ABI/testing/sysfs-class-mtd for more detail.
267          */
268         unsigned int bitflip_threshold;
269
270         /* Kernel-only stuff starts here. */
271         const char *name;
272         int index;
273
274         /* OOB layout description */
275         const struct mtd_ooblayout_ops *ooblayout;
276
277         /* NAND pairing scheme, only provided for MLC/TLC NANDs */
278         const struct mtd_pairing_scheme *pairing;
279
280         /* the ecc step size. */
281         unsigned int ecc_step_size;
282
283         /* max number of correctible bit errors per ecc step */
284         unsigned int ecc_strength;
285
286         /* Data for variable erase regions. If numeraseregions is zero,
287          * it means that the whole device has erasesize as given above.
288          */
289         int numeraseregions;
290         struct mtd_erase_region_info *eraseregions;
291
292         /*
293          * Do not call via these pointers, use corresponding mtd_*()
294          * wrappers instead.
295          */
296         int (*_erase) (struct mtd_info *mtd, struct erase_info *instr);
297         int (*_point) (struct mtd_info *mtd, loff_t from, size_t len,
298                        size_t *retlen, void **virt, resource_size_t *phys);
299         int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len);
300         int (*_read) (struct mtd_info *mtd, loff_t from, size_t len,
301                       size_t *retlen, u_char *buf);
302         int (*_write) (struct mtd_info *mtd, loff_t to, size_t len,
303                        size_t *retlen, const u_char *buf);
304         int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len,
305                              size_t *retlen, const u_char *buf);
306         int (*_read_oob) (struct mtd_info *mtd, loff_t from,
307                           struct mtd_oob_ops *ops);
308         int (*_write_oob) (struct mtd_info *mtd, loff_t to,
309                            struct mtd_oob_ops *ops);
310         int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len,
311                                     size_t *retlen, struct otp_info *buf);
312         int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from,
313                                     size_t len, size_t *retlen, u_char *buf);
314         int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len,
315                                     size_t *retlen, struct otp_info *buf);
316         int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from,
317                                     size_t len, size_t *retlen, u_char *buf);
318         int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to,
319                                      size_t len, size_t *retlen, u_char *buf);
320         int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from,
321                                     size_t len);
322         int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs,
323                         unsigned long count, loff_t to, size_t *retlen);
324         void (*_sync) (struct mtd_info *mtd);
325         int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
326         int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
327         int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
328         int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs);
329         int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs);
330         int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs);
331         int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len);
332         int (*_suspend) (struct mtd_info *mtd);
333         void (*_resume) (struct mtd_info *mtd);
334         void (*_reboot) (struct mtd_info *mtd);
335         /*
336          * If the driver is something smart, like UBI, it may need to maintain
337          * its own reference counting. The below functions are only for driver.
338          */
339         int (*_get_device) (struct mtd_info *mtd);
340         void (*_put_device) (struct mtd_info *mtd);
341
342         struct notifier_block reboot_notifier;  /* default mode before reboot */
343
344         /* ECC status information */
345         struct mtd_ecc_stats ecc_stats;
346         /* Subpage shift (NAND) */
347         int subpage_sft;
348
349         void *priv;
350
351         struct module *owner;
352         struct device dev;
353         int usecount;
354         struct mtd_debug_info dbg;
355 };
356
357 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
358                       struct mtd_oob_region *oobecc);
359 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
360                                  int *section,
361                                  struct mtd_oob_region *oobregion);
362 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
363                                const u8 *oobbuf, int start, int nbytes);
364 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
365                                u8 *oobbuf, int start, int nbytes);
366 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
367                        struct mtd_oob_region *oobfree);
368 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
369                                 const u8 *oobbuf, int start, int nbytes);
370 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
371                                 u8 *oobbuf, int start, int nbytes);
372 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd);
373 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd);
374
375 static inline void mtd_set_ooblayout(struct mtd_info *mtd,
376                                      const struct mtd_ooblayout_ops *ooblayout)
377 {
378         mtd->ooblayout = ooblayout;
379 }
380
381 static inline void mtd_set_pairing_scheme(struct mtd_info *mtd,
382                                 const struct mtd_pairing_scheme *pairing)
383 {
384         mtd->pairing = pairing;
385 }
386
387 static inline void mtd_set_of_node(struct mtd_info *mtd,
388                                    struct device_node *np)
389 {
390         mtd->dev.of_node = np;
391         if (!mtd->name)
392                 of_property_read_string(np, "label", &mtd->name);
393 }
394
395 static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd)
396 {
397         return dev_of_node(&mtd->dev);
398 }
399
400 static inline int mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops)
401 {
402         return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize;
403 }
404
405 static inline int mtd_max_bad_blocks(struct mtd_info *mtd,
406                                      loff_t ofs, size_t len)
407 {
408         if (!mtd->_max_bad_blocks)
409                 return -ENOTSUPP;
410
411         if (mtd->size < (len + ofs) || ofs < 0)
412                 return -EINVAL;
413
414         return mtd->_max_bad_blocks(mtd, ofs, len);
415 }
416
417 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
418                               struct mtd_pairing_info *info);
419 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
420                               const struct mtd_pairing_info *info);
421 int mtd_pairing_groups(struct mtd_info *mtd);
422 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr);
423 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
424               void **virt, resource_size_t *phys);
425 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
426 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
427                                     unsigned long offset, unsigned long flags);
428 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
429              u_char *buf);
430 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
431               const u_char *buf);
432 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
433                     const u_char *buf);
434
435 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops);
436 int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops);
437
438 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
439                            struct otp_info *buf);
440 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
441                            size_t *retlen, u_char *buf);
442 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
443                            struct otp_info *buf);
444 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
445                            size_t *retlen, u_char *buf);
446 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
447                             size_t *retlen, u_char *buf);
448 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len);
449
450 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
451                unsigned long count, loff_t to, size_t *retlen);
452
453 static inline void mtd_sync(struct mtd_info *mtd)
454 {
455         if (mtd->_sync)
456                 mtd->_sync(mtd);
457 }
458
459 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
460 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
461 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
462 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs);
463 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs);
464 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs);
465
466 static inline int mtd_suspend(struct mtd_info *mtd)
467 {
468         return mtd->_suspend ? mtd->_suspend(mtd) : 0;
469 }
470
471 static inline void mtd_resume(struct mtd_info *mtd)
472 {
473         if (mtd->_resume)
474                 mtd->_resume(mtd);
475 }
476
477 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd)
478 {
479         if (mtd->erasesize_shift)
480                 return sz >> mtd->erasesize_shift;
481         do_div(sz, mtd->erasesize);
482         return sz;
483 }
484
485 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd)
486 {
487         if (mtd->erasesize_shift)
488                 return sz & mtd->erasesize_mask;
489         return do_div(sz, mtd->erasesize);
490 }
491
492 static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd)
493 {
494         if (mtd->writesize_shift)
495                 return sz >> mtd->writesize_shift;
496         do_div(sz, mtd->writesize);
497         return sz;
498 }
499
500 static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd)
501 {
502         if (mtd->writesize_shift)
503                 return sz & mtd->writesize_mask;
504         return do_div(sz, mtd->writesize);
505 }
506
507 static inline int mtd_wunit_per_eb(struct mtd_info *mtd)
508 {
509         return mtd->erasesize / mtd->writesize;
510 }
511
512 static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs)
513 {
514         return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd);
515 }
516
517 static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base,
518                                          int wunit)
519 {
520         return base + (wunit * mtd->writesize);
521 }
522
523
524 static inline int mtd_has_oob(const struct mtd_info *mtd)
525 {
526         return mtd->_read_oob && mtd->_write_oob;
527 }
528
529 static inline int mtd_type_is_nand(const struct mtd_info *mtd)
530 {
531         return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH;
532 }
533
534 static inline int mtd_can_have_bb(const struct mtd_info *mtd)
535 {
536         return !!mtd->_block_isbad;
537 }
538
539         /* Kernel-side ioctl definitions */
540
541 struct mtd_partition;
542 struct mtd_part_parser_data;
543
544 extern int mtd_device_parse_register(struct mtd_info *mtd,
545                                      const char * const *part_probe_types,
546                                      struct mtd_part_parser_data *parser_data,
547                                      const struct mtd_partition *defparts,
548                                      int defnr_parts);
549 #define mtd_device_register(master, parts, nr_parts)    \
550         mtd_device_parse_register(master, NULL, NULL, parts, nr_parts)
551 extern int mtd_device_unregister(struct mtd_info *master);
552 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
553 extern int __get_mtd_device(struct mtd_info *mtd);
554 extern void __put_mtd_device(struct mtd_info *mtd);
555 extern struct mtd_info *get_mtd_device_nm(const char *name);
556 extern void put_mtd_device(struct mtd_info *mtd);
557
558
559 struct mtd_notifier {
560         void (*add)(struct mtd_info *mtd);
561         void (*remove)(struct mtd_info *mtd);
562         struct list_head list;
563 };
564
565
566 extern void register_mtd_user (struct mtd_notifier *new);
567 extern int unregister_mtd_user (struct mtd_notifier *old);
568 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size);
569
570 void mtd_erase_callback(struct erase_info *instr);
571
572 static inline int mtd_is_bitflip(int err) {
573         return err == -EUCLEAN;
574 }
575
576 static inline int mtd_is_eccerr(int err) {
577         return err == -EBADMSG;
578 }
579
580 static inline int mtd_is_bitflip_or_eccerr(int err) {
581         return mtd_is_bitflip(err) || mtd_is_eccerr(err);
582 }
583
584 unsigned mtd_mmap_capabilities(struct mtd_info *mtd);
585
586 #endif /* __MTD_MTD_H__ */