Merge tag 'nfs-for-4.21-1' of git://git.linux-nfs.org/projects/anna/linux-nfs
[sfrench/cifs-2.6.git] / include / linux / mm.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6
7 #ifdef __KERNEL__
8
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28 #include <linux/overflow.h>
29
30 struct mempolicy;
31 struct anon_vma;
32 struct anon_vma_chain;
33 struct file_ra_state;
34 struct user_struct;
35 struct writeback_control;
36 struct bdi_writeback;
37
38 void init_mm_internals(void);
39
40 #ifndef CONFIG_NEED_MULTIPLE_NODES      /* Don't use mapnrs, do it properly */
41 extern unsigned long max_mapnr;
42
43 static inline void set_max_mapnr(unsigned long limit)
44 {
45         max_mapnr = limit;
46 }
47 #else
48 static inline void set_max_mapnr(unsigned long limit) { }
49 #endif
50
51 extern atomic_long_t _totalram_pages;
52 static inline unsigned long totalram_pages(void)
53 {
54         return (unsigned long)atomic_long_read(&_totalram_pages);
55 }
56
57 static inline void totalram_pages_inc(void)
58 {
59         atomic_long_inc(&_totalram_pages);
60 }
61
62 static inline void totalram_pages_dec(void)
63 {
64         atomic_long_dec(&_totalram_pages);
65 }
66
67 static inline void totalram_pages_add(long count)
68 {
69         atomic_long_add(count, &_totalram_pages);
70 }
71
72 static inline void totalram_pages_set(long val)
73 {
74         atomic_long_set(&_totalram_pages, val);
75 }
76
77 extern void * high_memory;
78 extern int page_cluster;
79
80 #ifdef CONFIG_SYSCTL
81 extern int sysctl_legacy_va_layout;
82 #else
83 #define sysctl_legacy_va_layout 0
84 #endif
85
86 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
87 extern const int mmap_rnd_bits_min;
88 extern const int mmap_rnd_bits_max;
89 extern int mmap_rnd_bits __read_mostly;
90 #endif
91 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
92 extern const int mmap_rnd_compat_bits_min;
93 extern const int mmap_rnd_compat_bits_max;
94 extern int mmap_rnd_compat_bits __read_mostly;
95 #endif
96
97 #include <asm/page.h>
98 #include <asm/pgtable.h>
99 #include <asm/processor.h>
100
101 #ifndef __pa_symbol
102 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
103 #endif
104
105 #ifndef page_to_virt
106 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
107 #endif
108
109 #ifndef lm_alias
110 #define lm_alias(x)     __va(__pa_symbol(x))
111 #endif
112
113 /*
114  * To prevent common memory management code establishing
115  * a zero page mapping on a read fault.
116  * This macro should be defined within <asm/pgtable.h>.
117  * s390 does this to prevent multiplexing of hardware bits
118  * related to the physical page in case of virtualization.
119  */
120 #ifndef mm_forbids_zeropage
121 #define mm_forbids_zeropage(X)  (0)
122 #endif
123
124 /*
125  * On some architectures it is expensive to call memset() for small sizes.
126  * Those architectures should provide their own implementation of "struct page"
127  * zeroing by defining this macro in <asm/pgtable.h>.
128  */
129 #ifndef mm_zero_struct_page
130 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
131 #endif
132
133 /*
134  * Default maximum number of active map areas, this limits the number of vmas
135  * per mm struct. Users can overwrite this number by sysctl but there is a
136  * problem.
137  *
138  * When a program's coredump is generated as ELF format, a section is created
139  * per a vma. In ELF, the number of sections is represented in unsigned short.
140  * This means the number of sections should be smaller than 65535 at coredump.
141  * Because the kernel adds some informative sections to a image of program at
142  * generating coredump, we need some margin. The number of extra sections is
143  * 1-3 now and depends on arch. We use "5" as safe margin, here.
144  *
145  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
146  * not a hard limit any more. Although some userspace tools can be surprised by
147  * that.
148  */
149 #define MAPCOUNT_ELF_CORE_MARGIN        (5)
150 #define DEFAULT_MAX_MAP_COUNT   (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
151
152 extern int sysctl_max_map_count;
153
154 extern unsigned long sysctl_user_reserve_kbytes;
155 extern unsigned long sysctl_admin_reserve_kbytes;
156
157 extern int sysctl_overcommit_memory;
158 extern int sysctl_overcommit_ratio;
159 extern unsigned long sysctl_overcommit_kbytes;
160
161 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
162                                     size_t *, loff_t *);
163 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
164                                     size_t *, loff_t *);
165
166 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
167
168 /* to align the pointer to the (next) page boundary */
169 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
170
171 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
172 #define PAGE_ALIGNED(addr)      IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
173
174 /*
175  * Linux kernel virtual memory manager primitives.
176  * The idea being to have a "virtual" mm in the same way
177  * we have a virtual fs - giving a cleaner interface to the
178  * mm details, and allowing different kinds of memory mappings
179  * (from shared memory to executable loading to arbitrary
180  * mmap() functions).
181  */
182
183 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
184 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
185 void vm_area_free(struct vm_area_struct *);
186
187 #ifndef CONFIG_MMU
188 extern struct rb_root nommu_region_tree;
189 extern struct rw_semaphore nommu_region_sem;
190
191 extern unsigned int kobjsize(const void *objp);
192 #endif
193
194 /*
195  * vm_flags in vm_area_struct, see mm_types.h.
196  * When changing, update also include/trace/events/mmflags.h
197  */
198 #define VM_NONE         0x00000000
199
200 #define VM_READ         0x00000001      /* currently active flags */
201 #define VM_WRITE        0x00000002
202 #define VM_EXEC         0x00000004
203 #define VM_SHARED       0x00000008
204
205 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
206 #define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
207 #define VM_MAYWRITE     0x00000020
208 #define VM_MAYEXEC      0x00000040
209 #define VM_MAYSHARE     0x00000080
210
211 #define VM_GROWSDOWN    0x00000100      /* general info on the segment */
212 #define VM_UFFD_MISSING 0x00000200      /* missing pages tracking */
213 #define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
214 #define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
215 #define VM_UFFD_WP      0x00001000      /* wrprotect pages tracking */
216
217 #define VM_LOCKED       0x00002000
218 #define VM_IO           0x00004000      /* Memory mapped I/O or similar */
219
220                                         /* Used by sys_madvise() */
221 #define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
222 #define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
223
224 #define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
225 #define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
226 #define VM_LOCKONFAULT  0x00080000      /* Lock the pages covered when they are faulted in */
227 #define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
228 #define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
229 #define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
230 #define VM_SYNC         0x00800000      /* Synchronous page faults */
231 #define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
232 #define VM_WIPEONFORK   0x02000000      /* Wipe VMA contents in child. */
233 #define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
234
235 #ifdef CONFIG_MEM_SOFT_DIRTY
236 # define VM_SOFTDIRTY   0x08000000      /* Not soft dirty clean area */
237 #else
238 # define VM_SOFTDIRTY   0
239 #endif
240
241 #define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
242 #define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
243 #define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
244 #define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
245
246 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
247 #define VM_HIGH_ARCH_BIT_0      32      /* bit only usable on 64-bit architectures */
248 #define VM_HIGH_ARCH_BIT_1      33      /* bit only usable on 64-bit architectures */
249 #define VM_HIGH_ARCH_BIT_2      34      /* bit only usable on 64-bit architectures */
250 #define VM_HIGH_ARCH_BIT_3      35      /* bit only usable on 64-bit architectures */
251 #define VM_HIGH_ARCH_BIT_4      36      /* bit only usable on 64-bit architectures */
252 #define VM_HIGH_ARCH_0  BIT(VM_HIGH_ARCH_BIT_0)
253 #define VM_HIGH_ARCH_1  BIT(VM_HIGH_ARCH_BIT_1)
254 #define VM_HIGH_ARCH_2  BIT(VM_HIGH_ARCH_BIT_2)
255 #define VM_HIGH_ARCH_3  BIT(VM_HIGH_ARCH_BIT_3)
256 #define VM_HIGH_ARCH_4  BIT(VM_HIGH_ARCH_BIT_4)
257 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
258
259 #ifdef CONFIG_ARCH_HAS_PKEYS
260 # define VM_PKEY_SHIFT  VM_HIGH_ARCH_BIT_0
261 # define VM_PKEY_BIT0   VM_HIGH_ARCH_0  /* A protection key is a 4-bit value */
262 # define VM_PKEY_BIT1   VM_HIGH_ARCH_1  /* on x86 and 5-bit value on ppc64   */
263 # define VM_PKEY_BIT2   VM_HIGH_ARCH_2
264 # define VM_PKEY_BIT3   VM_HIGH_ARCH_3
265 #ifdef CONFIG_PPC
266 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
267 #else
268 # define VM_PKEY_BIT4  0
269 #endif
270 #endif /* CONFIG_ARCH_HAS_PKEYS */
271
272 #if defined(CONFIG_X86)
273 # define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
274 #elif defined(CONFIG_PPC)
275 # define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
276 #elif defined(CONFIG_PARISC)
277 # define VM_GROWSUP     VM_ARCH_1
278 #elif defined(CONFIG_IA64)
279 # define VM_GROWSUP     VM_ARCH_1
280 #elif defined(CONFIG_SPARC64)
281 # define VM_SPARC_ADI   VM_ARCH_1       /* Uses ADI tag for access control */
282 # define VM_ARCH_CLEAR  VM_SPARC_ADI
283 #elif !defined(CONFIG_MMU)
284 # define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
285 #endif
286
287 #if defined(CONFIG_X86_INTEL_MPX)
288 /* MPX specific bounds table or bounds directory */
289 # define VM_MPX         VM_HIGH_ARCH_4
290 #else
291 # define VM_MPX         VM_NONE
292 #endif
293
294 #ifndef VM_GROWSUP
295 # define VM_GROWSUP     VM_NONE
296 #endif
297
298 /* Bits set in the VMA until the stack is in its final location */
299 #define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
300
301 #ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
302 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
303 #endif
304
305 #ifdef CONFIG_STACK_GROWSUP
306 #define VM_STACK        VM_GROWSUP
307 #else
308 #define VM_STACK        VM_GROWSDOWN
309 #endif
310
311 #define VM_STACK_FLAGS  (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
312
313 /*
314  * Special vmas that are non-mergable, non-mlock()able.
315  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
316  */
317 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
318
319 /* This mask defines which mm->def_flags a process can inherit its parent */
320 #define VM_INIT_DEF_MASK        VM_NOHUGEPAGE
321
322 /* This mask is used to clear all the VMA flags used by mlock */
323 #define VM_LOCKED_CLEAR_MASK    (~(VM_LOCKED | VM_LOCKONFAULT))
324
325 /* Arch-specific flags to clear when updating VM flags on protection change */
326 #ifndef VM_ARCH_CLEAR
327 # define VM_ARCH_CLEAR  VM_NONE
328 #endif
329 #define VM_FLAGS_CLEAR  (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
330
331 /*
332  * mapping from the currently active vm_flags protection bits (the
333  * low four bits) to a page protection mask..
334  */
335 extern pgprot_t protection_map[16];
336
337 #define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
338 #define FAULT_FLAG_MKWRITE      0x02    /* Fault was mkwrite of existing pte */
339 #define FAULT_FLAG_ALLOW_RETRY  0x04    /* Retry fault if blocking */
340 #define FAULT_FLAG_RETRY_NOWAIT 0x08    /* Don't drop mmap_sem and wait when retrying */
341 #define FAULT_FLAG_KILLABLE     0x10    /* The fault task is in SIGKILL killable region */
342 #define FAULT_FLAG_TRIED        0x20    /* Second try */
343 #define FAULT_FLAG_USER         0x40    /* The fault originated in userspace */
344 #define FAULT_FLAG_REMOTE       0x80    /* faulting for non current tsk/mm */
345 #define FAULT_FLAG_INSTRUCTION  0x100   /* The fault was during an instruction fetch */
346
347 #define FAULT_FLAG_TRACE \
348         { FAULT_FLAG_WRITE,             "WRITE" }, \
349         { FAULT_FLAG_MKWRITE,           "MKWRITE" }, \
350         { FAULT_FLAG_ALLOW_RETRY,       "ALLOW_RETRY" }, \
351         { FAULT_FLAG_RETRY_NOWAIT,      "RETRY_NOWAIT" }, \
352         { FAULT_FLAG_KILLABLE,          "KILLABLE" }, \
353         { FAULT_FLAG_TRIED,             "TRIED" }, \
354         { FAULT_FLAG_USER,              "USER" }, \
355         { FAULT_FLAG_REMOTE,            "REMOTE" }, \
356         { FAULT_FLAG_INSTRUCTION,       "INSTRUCTION" }
357
358 /*
359  * vm_fault is filled by the the pagefault handler and passed to the vma's
360  * ->fault function. The vma's ->fault is responsible for returning a bitmask
361  * of VM_FAULT_xxx flags that give details about how the fault was handled.
362  *
363  * MM layer fills up gfp_mask for page allocations but fault handler might
364  * alter it if its implementation requires a different allocation context.
365  *
366  * pgoff should be used in favour of virtual_address, if possible.
367  */
368 struct vm_fault {
369         struct vm_area_struct *vma;     /* Target VMA */
370         unsigned int flags;             /* FAULT_FLAG_xxx flags */
371         gfp_t gfp_mask;                 /* gfp mask to be used for allocations */
372         pgoff_t pgoff;                  /* Logical page offset based on vma */
373         unsigned long address;          /* Faulting virtual address */
374         pmd_t *pmd;                     /* Pointer to pmd entry matching
375                                          * the 'address' */
376         pud_t *pud;                     /* Pointer to pud entry matching
377                                          * the 'address'
378                                          */
379         pte_t orig_pte;                 /* Value of PTE at the time of fault */
380
381         struct page *cow_page;          /* Page handler may use for COW fault */
382         struct mem_cgroup *memcg;       /* Cgroup cow_page belongs to */
383         struct page *page;              /* ->fault handlers should return a
384                                          * page here, unless VM_FAULT_NOPAGE
385                                          * is set (which is also implied by
386                                          * VM_FAULT_ERROR).
387                                          */
388         /* These three entries are valid only while holding ptl lock */
389         pte_t *pte;                     /* Pointer to pte entry matching
390                                          * the 'address'. NULL if the page
391                                          * table hasn't been allocated.
392                                          */
393         spinlock_t *ptl;                /* Page table lock.
394                                          * Protects pte page table if 'pte'
395                                          * is not NULL, otherwise pmd.
396                                          */
397         pgtable_t prealloc_pte;         /* Pre-allocated pte page table.
398                                          * vm_ops->map_pages() calls
399                                          * alloc_set_pte() from atomic context.
400                                          * do_fault_around() pre-allocates
401                                          * page table to avoid allocation from
402                                          * atomic context.
403                                          */
404 };
405
406 /* page entry size for vm->huge_fault() */
407 enum page_entry_size {
408         PE_SIZE_PTE = 0,
409         PE_SIZE_PMD,
410         PE_SIZE_PUD,
411 };
412
413 /*
414  * These are the virtual MM functions - opening of an area, closing and
415  * unmapping it (needed to keep files on disk up-to-date etc), pointer
416  * to the functions called when a no-page or a wp-page exception occurs.
417  */
418 struct vm_operations_struct {
419         void (*open)(struct vm_area_struct * area);
420         void (*close)(struct vm_area_struct * area);
421         int (*split)(struct vm_area_struct * area, unsigned long addr);
422         int (*mremap)(struct vm_area_struct * area);
423         vm_fault_t (*fault)(struct vm_fault *vmf);
424         vm_fault_t (*huge_fault)(struct vm_fault *vmf,
425                         enum page_entry_size pe_size);
426         void (*map_pages)(struct vm_fault *vmf,
427                         pgoff_t start_pgoff, pgoff_t end_pgoff);
428         unsigned long (*pagesize)(struct vm_area_struct * area);
429
430         /* notification that a previously read-only page is about to become
431          * writable, if an error is returned it will cause a SIGBUS */
432         vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
433
434         /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
435         vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
436
437         /* called by access_process_vm when get_user_pages() fails, typically
438          * for use by special VMAs that can switch between memory and hardware
439          */
440         int (*access)(struct vm_area_struct *vma, unsigned long addr,
441                       void *buf, int len, int write);
442
443         /* Called by the /proc/PID/maps code to ask the vma whether it
444          * has a special name.  Returning non-NULL will also cause this
445          * vma to be dumped unconditionally. */
446         const char *(*name)(struct vm_area_struct *vma);
447
448 #ifdef CONFIG_NUMA
449         /*
450          * set_policy() op must add a reference to any non-NULL @new mempolicy
451          * to hold the policy upon return.  Caller should pass NULL @new to
452          * remove a policy and fall back to surrounding context--i.e. do not
453          * install a MPOL_DEFAULT policy, nor the task or system default
454          * mempolicy.
455          */
456         int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
457
458         /*
459          * get_policy() op must add reference [mpol_get()] to any policy at
460          * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
461          * in mm/mempolicy.c will do this automatically.
462          * get_policy() must NOT add a ref if the policy at (vma,addr) is not
463          * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
464          * If no [shared/vma] mempolicy exists at the addr, get_policy() op
465          * must return NULL--i.e., do not "fallback" to task or system default
466          * policy.
467          */
468         struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
469                                         unsigned long addr);
470 #endif
471         /*
472          * Called by vm_normal_page() for special PTEs to find the
473          * page for @addr.  This is useful if the default behavior
474          * (using pte_page()) would not find the correct page.
475          */
476         struct page *(*find_special_page)(struct vm_area_struct *vma,
477                                           unsigned long addr);
478 };
479
480 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
481 {
482         static const struct vm_operations_struct dummy_vm_ops = {};
483
484         memset(vma, 0, sizeof(*vma));
485         vma->vm_mm = mm;
486         vma->vm_ops = &dummy_vm_ops;
487         INIT_LIST_HEAD(&vma->anon_vma_chain);
488 }
489
490 static inline void vma_set_anonymous(struct vm_area_struct *vma)
491 {
492         vma->vm_ops = NULL;
493 }
494
495 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
496 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
497
498 struct mmu_gather;
499 struct inode;
500
501 #define page_private(page)              ((page)->private)
502 #define set_page_private(page, v)       ((page)->private = (v))
503
504 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
505 static inline int pmd_devmap(pmd_t pmd)
506 {
507         return 0;
508 }
509 static inline int pud_devmap(pud_t pud)
510 {
511         return 0;
512 }
513 static inline int pgd_devmap(pgd_t pgd)
514 {
515         return 0;
516 }
517 #endif
518
519 /*
520  * FIXME: take this include out, include page-flags.h in
521  * files which need it (119 of them)
522  */
523 #include <linux/page-flags.h>
524 #include <linux/huge_mm.h>
525
526 /*
527  * Methods to modify the page usage count.
528  *
529  * What counts for a page usage:
530  * - cache mapping   (page->mapping)
531  * - private data    (page->private)
532  * - page mapped in a task's page tables, each mapping
533  *   is counted separately
534  *
535  * Also, many kernel routines increase the page count before a critical
536  * routine so they can be sure the page doesn't go away from under them.
537  */
538
539 /*
540  * Drop a ref, return true if the refcount fell to zero (the page has no users)
541  */
542 static inline int put_page_testzero(struct page *page)
543 {
544         VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
545         return page_ref_dec_and_test(page);
546 }
547
548 /*
549  * Try to grab a ref unless the page has a refcount of zero, return false if
550  * that is the case.
551  * This can be called when MMU is off so it must not access
552  * any of the virtual mappings.
553  */
554 static inline int get_page_unless_zero(struct page *page)
555 {
556         return page_ref_add_unless(page, 1, 0);
557 }
558
559 extern int page_is_ram(unsigned long pfn);
560
561 enum {
562         REGION_INTERSECTS,
563         REGION_DISJOINT,
564         REGION_MIXED,
565 };
566
567 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
568                       unsigned long desc);
569
570 /* Support for virtually mapped pages */
571 struct page *vmalloc_to_page(const void *addr);
572 unsigned long vmalloc_to_pfn(const void *addr);
573
574 /*
575  * Determine if an address is within the vmalloc range
576  *
577  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
578  * is no special casing required.
579  */
580 static inline bool is_vmalloc_addr(const void *x)
581 {
582 #ifdef CONFIG_MMU
583         unsigned long addr = (unsigned long)x;
584
585         return addr >= VMALLOC_START && addr < VMALLOC_END;
586 #else
587         return false;
588 #endif
589 }
590 #ifdef CONFIG_MMU
591 extern int is_vmalloc_or_module_addr(const void *x);
592 #else
593 static inline int is_vmalloc_or_module_addr(const void *x)
594 {
595         return 0;
596 }
597 #endif
598
599 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
600 static inline void *kvmalloc(size_t size, gfp_t flags)
601 {
602         return kvmalloc_node(size, flags, NUMA_NO_NODE);
603 }
604 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
605 {
606         return kvmalloc_node(size, flags | __GFP_ZERO, node);
607 }
608 static inline void *kvzalloc(size_t size, gfp_t flags)
609 {
610         return kvmalloc(size, flags | __GFP_ZERO);
611 }
612
613 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
614 {
615         size_t bytes;
616
617         if (unlikely(check_mul_overflow(n, size, &bytes)))
618                 return NULL;
619
620         return kvmalloc(bytes, flags);
621 }
622
623 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
624 {
625         return kvmalloc_array(n, size, flags | __GFP_ZERO);
626 }
627
628 extern void kvfree(const void *addr);
629
630 static inline atomic_t *compound_mapcount_ptr(struct page *page)
631 {
632         return &page[1].compound_mapcount;
633 }
634
635 static inline int compound_mapcount(struct page *page)
636 {
637         VM_BUG_ON_PAGE(!PageCompound(page), page);
638         page = compound_head(page);
639         return atomic_read(compound_mapcount_ptr(page)) + 1;
640 }
641
642 /*
643  * The atomic page->_mapcount, starts from -1: so that transitions
644  * both from it and to it can be tracked, using atomic_inc_and_test
645  * and atomic_add_negative(-1).
646  */
647 static inline void page_mapcount_reset(struct page *page)
648 {
649         atomic_set(&(page)->_mapcount, -1);
650 }
651
652 int __page_mapcount(struct page *page);
653
654 static inline int page_mapcount(struct page *page)
655 {
656         VM_BUG_ON_PAGE(PageSlab(page), page);
657
658         if (unlikely(PageCompound(page)))
659                 return __page_mapcount(page);
660         return atomic_read(&page->_mapcount) + 1;
661 }
662
663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
664 int total_mapcount(struct page *page);
665 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
666 #else
667 static inline int total_mapcount(struct page *page)
668 {
669         return page_mapcount(page);
670 }
671 static inline int page_trans_huge_mapcount(struct page *page,
672                                            int *total_mapcount)
673 {
674         int mapcount = page_mapcount(page);
675         if (total_mapcount)
676                 *total_mapcount = mapcount;
677         return mapcount;
678 }
679 #endif
680
681 static inline struct page *virt_to_head_page(const void *x)
682 {
683         struct page *page = virt_to_page(x);
684
685         return compound_head(page);
686 }
687
688 void __put_page(struct page *page);
689
690 void put_pages_list(struct list_head *pages);
691
692 void split_page(struct page *page, unsigned int order);
693
694 /*
695  * Compound pages have a destructor function.  Provide a
696  * prototype for that function and accessor functions.
697  * These are _only_ valid on the head of a compound page.
698  */
699 typedef void compound_page_dtor(struct page *);
700
701 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
702 enum compound_dtor_id {
703         NULL_COMPOUND_DTOR,
704         COMPOUND_PAGE_DTOR,
705 #ifdef CONFIG_HUGETLB_PAGE
706         HUGETLB_PAGE_DTOR,
707 #endif
708 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
709         TRANSHUGE_PAGE_DTOR,
710 #endif
711         NR_COMPOUND_DTORS,
712 };
713 extern compound_page_dtor * const compound_page_dtors[];
714
715 static inline void set_compound_page_dtor(struct page *page,
716                 enum compound_dtor_id compound_dtor)
717 {
718         VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
719         page[1].compound_dtor = compound_dtor;
720 }
721
722 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
723 {
724         VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
725         return compound_page_dtors[page[1].compound_dtor];
726 }
727
728 static inline unsigned int compound_order(struct page *page)
729 {
730         if (!PageHead(page))
731                 return 0;
732         return page[1].compound_order;
733 }
734
735 static inline void set_compound_order(struct page *page, unsigned int order)
736 {
737         page[1].compound_order = order;
738 }
739
740 void free_compound_page(struct page *page);
741
742 #ifdef CONFIG_MMU
743 /*
744  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
745  * servicing faults for write access.  In the normal case, do always want
746  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
747  * that do not have writing enabled, when used by access_process_vm.
748  */
749 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
750 {
751         if (likely(vma->vm_flags & VM_WRITE))
752                 pte = pte_mkwrite(pte);
753         return pte;
754 }
755
756 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
757                 struct page *page);
758 vm_fault_t finish_fault(struct vm_fault *vmf);
759 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
760 #endif
761
762 /*
763  * Multiple processes may "see" the same page. E.g. for untouched
764  * mappings of /dev/null, all processes see the same page full of
765  * zeroes, and text pages of executables and shared libraries have
766  * only one copy in memory, at most, normally.
767  *
768  * For the non-reserved pages, page_count(page) denotes a reference count.
769  *   page_count() == 0 means the page is free. page->lru is then used for
770  *   freelist management in the buddy allocator.
771  *   page_count() > 0  means the page has been allocated.
772  *
773  * Pages are allocated by the slab allocator in order to provide memory
774  * to kmalloc and kmem_cache_alloc. In this case, the management of the
775  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
776  * unless a particular usage is carefully commented. (the responsibility of
777  * freeing the kmalloc memory is the caller's, of course).
778  *
779  * A page may be used by anyone else who does a __get_free_page().
780  * In this case, page_count still tracks the references, and should only
781  * be used through the normal accessor functions. The top bits of page->flags
782  * and page->virtual store page management information, but all other fields
783  * are unused and could be used privately, carefully. The management of this
784  * page is the responsibility of the one who allocated it, and those who have
785  * subsequently been given references to it.
786  *
787  * The other pages (we may call them "pagecache pages") are completely
788  * managed by the Linux memory manager: I/O, buffers, swapping etc.
789  * The following discussion applies only to them.
790  *
791  * A pagecache page contains an opaque `private' member, which belongs to the
792  * page's address_space. Usually, this is the address of a circular list of
793  * the page's disk buffers. PG_private must be set to tell the VM to call
794  * into the filesystem to release these pages.
795  *
796  * A page may belong to an inode's memory mapping. In this case, page->mapping
797  * is the pointer to the inode, and page->index is the file offset of the page,
798  * in units of PAGE_SIZE.
799  *
800  * If pagecache pages are not associated with an inode, they are said to be
801  * anonymous pages. These may become associated with the swapcache, and in that
802  * case PG_swapcache is set, and page->private is an offset into the swapcache.
803  *
804  * In either case (swapcache or inode backed), the pagecache itself holds one
805  * reference to the page. Setting PG_private should also increment the
806  * refcount. The each user mapping also has a reference to the page.
807  *
808  * The pagecache pages are stored in a per-mapping radix tree, which is
809  * rooted at mapping->i_pages, and indexed by offset.
810  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
811  * lists, we instead now tag pages as dirty/writeback in the radix tree.
812  *
813  * All pagecache pages may be subject to I/O:
814  * - inode pages may need to be read from disk,
815  * - inode pages which have been modified and are MAP_SHARED may need
816  *   to be written back to the inode on disk,
817  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
818  *   modified may need to be swapped out to swap space and (later) to be read
819  *   back into memory.
820  */
821
822 /*
823  * The zone field is never updated after free_area_init_core()
824  * sets it, so none of the operations on it need to be atomic.
825  */
826
827 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
828 #define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
829 #define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
830 #define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
831 #define LAST_CPUPID_PGOFF       (ZONES_PGOFF - LAST_CPUPID_WIDTH)
832 #define KASAN_TAG_PGOFF         (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
833
834 /*
835  * Define the bit shifts to access each section.  For non-existent
836  * sections we define the shift as 0; that plus a 0 mask ensures
837  * the compiler will optimise away reference to them.
838  */
839 #define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
840 #define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
841 #define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
842 #define LAST_CPUPID_PGSHIFT     (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
843 #define KASAN_TAG_PGSHIFT       (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
844
845 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
846 #ifdef NODE_NOT_IN_PAGE_FLAGS
847 #define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
848 #define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
849                                                 SECTIONS_PGOFF : ZONES_PGOFF)
850 #else
851 #define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
852 #define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
853                                                 NODES_PGOFF : ZONES_PGOFF)
854 #endif
855
856 #define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
857
858 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
859 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
860 #endif
861
862 #define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
863 #define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
864 #define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
865 #define LAST_CPUPID_MASK        ((1UL << LAST_CPUPID_SHIFT) - 1)
866 #define KASAN_TAG_MASK          ((1UL << KASAN_TAG_WIDTH) - 1)
867 #define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
868
869 static inline enum zone_type page_zonenum(const struct page *page)
870 {
871         return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
872 }
873
874 #ifdef CONFIG_ZONE_DEVICE
875 static inline bool is_zone_device_page(const struct page *page)
876 {
877         return page_zonenum(page) == ZONE_DEVICE;
878 }
879 extern void memmap_init_zone_device(struct zone *, unsigned long,
880                                     unsigned long, struct dev_pagemap *);
881 #else
882 static inline bool is_zone_device_page(const struct page *page)
883 {
884         return false;
885 }
886 #endif
887
888 #ifdef CONFIG_DEV_PAGEMAP_OPS
889 void dev_pagemap_get_ops(void);
890 void dev_pagemap_put_ops(void);
891 void __put_devmap_managed_page(struct page *page);
892 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
893 static inline bool put_devmap_managed_page(struct page *page)
894 {
895         if (!static_branch_unlikely(&devmap_managed_key))
896                 return false;
897         if (!is_zone_device_page(page))
898                 return false;
899         switch (page->pgmap->type) {
900         case MEMORY_DEVICE_PRIVATE:
901         case MEMORY_DEVICE_PUBLIC:
902         case MEMORY_DEVICE_FS_DAX:
903                 __put_devmap_managed_page(page);
904                 return true;
905         default:
906                 break;
907         }
908         return false;
909 }
910
911 static inline bool is_device_private_page(const struct page *page)
912 {
913         return is_zone_device_page(page) &&
914                 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
915 }
916
917 static inline bool is_device_public_page(const struct page *page)
918 {
919         return is_zone_device_page(page) &&
920                 page->pgmap->type == MEMORY_DEVICE_PUBLIC;
921 }
922
923 #ifdef CONFIG_PCI_P2PDMA
924 static inline bool is_pci_p2pdma_page(const struct page *page)
925 {
926         return is_zone_device_page(page) &&
927                 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
928 }
929 #else /* CONFIG_PCI_P2PDMA */
930 static inline bool is_pci_p2pdma_page(const struct page *page)
931 {
932         return false;
933 }
934 #endif /* CONFIG_PCI_P2PDMA */
935
936 #else /* CONFIG_DEV_PAGEMAP_OPS */
937 static inline void dev_pagemap_get_ops(void)
938 {
939 }
940
941 static inline void dev_pagemap_put_ops(void)
942 {
943 }
944
945 static inline bool put_devmap_managed_page(struct page *page)
946 {
947         return false;
948 }
949
950 static inline bool is_device_private_page(const struct page *page)
951 {
952         return false;
953 }
954
955 static inline bool is_device_public_page(const struct page *page)
956 {
957         return false;
958 }
959
960 static inline bool is_pci_p2pdma_page(const struct page *page)
961 {
962         return false;
963 }
964 #endif /* CONFIG_DEV_PAGEMAP_OPS */
965
966 static inline void get_page(struct page *page)
967 {
968         page = compound_head(page);
969         /*
970          * Getting a normal page or the head of a compound page
971          * requires to already have an elevated page->_refcount.
972          */
973         VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
974         page_ref_inc(page);
975 }
976
977 static inline void put_page(struct page *page)
978 {
979         page = compound_head(page);
980
981         /*
982          * For devmap managed pages we need to catch refcount transition from
983          * 2 to 1, when refcount reach one it means the page is free and we
984          * need to inform the device driver through callback. See
985          * include/linux/memremap.h and HMM for details.
986          */
987         if (put_devmap_managed_page(page))
988                 return;
989
990         if (put_page_testzero(page))
991                 __put_page(page);
992 }
993
994 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
995 #define SECTION_IN_PAGE_FLAGS
996 #endif
997
998 /*
999  * The identification function is mainly used by the buddy allocator for
1000  * determining if two pages could be buddies. We are not really identifying
1001  * the zone since we could be using the section number id if we do not have
1002  * node id available in page flags.
1003  * We only guarantee that it will return the same value for two combinable
1004  * pages in a zone.
1005  */
1006 static inline int page_zone_id(struct page *page)
1007 {
1008         return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1009 }
1010
1011 #ifdef NODE_NOT_IN_PAGE_FLAGS
1012 extern int page_to_nid(const struct page *page);
1013 #else
1014 static inline int page_to_nid(const struct page *page)
1015 {
1016         struct page *p = (struct page *)page;
1017
1018         return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1019 }
1020 #endif
1021
1022 #ifdef CONFIG_NUMA_BALANCING
1023 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1024 {
1025         return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1026 }
1027
1028 static inline int cpupid_to_pid(int cpupid)
1029 {
1030         return cpupid & LAST__PID_MASK;
1031 }
1032
1033 static inline int cpupid_to_cpu(int cpupid)
1034 {
1035         return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1036 }
1037
1038 static inline int cpupid_to_nid(int cpupid)
1039 {
1040         return cpu_to_node(cpupid_to_cpu(cpupid));
1041 }
1042
1043 static inline bool cpupid_pid_unset(int cpupid)
1044 {
1045         return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1046 }
1047
1048 static inline bool cpupid_cpu_unset(int cpupid)
1049 {
1050         return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1051 }
1052
1053 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1054 {
1055         return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1056 }
1057
1058 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1059 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1060 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1061 {
1062         return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1063 }
1064
1065 static inline int page_cpupid_last(struct page *page)
1066 {
1067         return page->_last_cpupid;
1068 }
1069 static inline void page_cpupid_reset_last(struct page *page)
1070 {
1071         page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1072 }
1073 #else
1074 static inline int page_cpupid_last(struct page *page)
1075 {
1076         return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1077 }
1078
1079 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1080
1081 static inline void page_cpupid_reset_last(struct page *page)
1082 {
1083         page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1084 }
1085 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1086 #else /* !CONFIG_NUMA_BALANCING */
1087 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1088 {
1089         return page_to_nid(page); /* XXX */
1090 }
1091
1092 static inline int page_cpupid_last(struct page *page)
1093 {
1094         return page_to_nid(page); /* XXX */
1095 }
1096
1097 static inline int cpupid_to_nid(int cpupid)
1098 {
1099         return -1;
1100 }
1101
1102 static inline int cpupid_to_pid(int cpupid)
1103 {
1104         return -1;
1105 }
1106
1107 static inline int cpupid_to_cpu(int cpupid)
1108 {
1109         return -1;
1110 }
1111
1112 static inline int cpu_pid_to_cpupid(int nid, int pid)
1113 {
1114         return -1;
1115 }
1116
1117 static inline bool cpupid_pid_unset(int cpupid)
1118 {
1119         return 1;
1120 }
1121
1122 static inline void page_cpupid_reset_last(struct page *page)
1123 {
1124 }
1125
1126 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1127 {
1128         return false;
1129 }
1130 #endif /* CONFIG_NUMA_BALANCING */
1131
1132 #ifdef CONFIG_KASAN_SW_TAGS
1133 static inline u8 page_kasan_tag(const struct page *page)
1134 {
1135         return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1136 }
1137
1138 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1139 {
1140         page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1141         page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1142 }
1143
1144 static inline void page_kasan_tag_reset(struct page *page)
1145 {
1146         page_kasan_tag_set(page, 0xff);
1147 }
1148 #else
1149 static inline u8 page_kasan_tag(const struct page *page)
1150 {
1151         return 0xff;
1152 }
1153
1154 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1155 static inline void page_kasan_tag_reset(struct page *page) { }
1156 #endif
1157
1158 static inline struct zone *page_zone(const struct page *page)
1159 {
1160         return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1161 }
1162
1163 static inline pg_data_t *page_pgdat(const struct page *page)
1164 {
1165         return NODE_DATA(page_to_nid(page));
1166 }
1167
1168 #ifdef SECTION_IN_PAGE_FLAGS
1169 static inline void set_page_section(struct page *page, unsigned long section)
1170 {
1171         page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1172         page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1173 }
1174
1175 static inline unsigned long page_to_section(const struct page *page)
1176 {
1177         return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1178 }
1179 #endif
1180
1181 static inline void set_page_zone(struct page *page, enum zone_type zone)
1182 {
1183         page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1184         page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1185 }
1186
1187 static inline void set_page_node(struct page *page, unsigned long node)
1188 {
1189         page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1190         page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1191 }
1192
1193 static inline void set_page_links(struct page *page, enum zone_type zone,
1194         unsigned long node, unsigned long pfn)
1195 {
1196         set_page_zone(page, zone);
1197         set_page_node(page, node);
1198 #ifdef SECTION_IN_PAGE_FLAGS
1199         set_page_section(page, pfn_to_section_nr(pfn));
1200 #endif
1201 }
1202
1203 #ifdef CONFIG_MEMCG
1204 static inline struct mem_cgroup *page_memcg(struct page *page)
1205 {
1206         return page->mem_cgroup;
1207 }
1208 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1209 {
1210         WARN_ON_ONCE(!rcu_read_lock_held());
1211         return READ_ONCE(page->mem_cgroup);
1212 }
1213 #else
1214 static inline struct mem_cgroup *page_memcg(struct page *page)
1215 {
1216         return NULL;
1217 }
1218 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1219 {
1220         WARN_ON_ONCE(!rcu_read_lock_held());
1221         return NULL;
1222 }
1223 #endif
1224
1225 /*
1226  * Some inline functions in vmstat.h depend on page_zone()
1227  */
1228 #include <linux/vmstat.h>
1229
1230 static __always_inline void *lowmem_page_address(const struct page *page)
1231 {
1232         return page_to_virt(page);
1233 }
1234
1235 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1236 #define HASHED_PAGE_VIRTUAL
1237 #endif
1238
1239 #if defined(WANT_PAGE_VIRTUAL)
1240 static inline void *page_address(const struct page *page)
1241 {
1242         return page->virtual;
1243 }
1244 static inline void set_page_address(struct page *page, void *address)
1245 {
1246         page->virtual = address;
1247 }
1248 #define page_address_init()  do { } while(0)
1249 #endif
1250
1251 #if defined(HASHED_PAGE_VIRTUAL)
1252 void *page_address(const struct page *page);
1253 void set_page_address(struct page *page, void *virtual);
1254 void page_address_init(void);
1255 #endif
1256
1257 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1258 #define page_address(page) lowmem_page_address(page)
1259 #define set_page_address(page, address)  do { } while(0)
1260 #define page_address_init()  do { } while(0)
1261 #endif
1262
1263 extern void *page_rmapping(struct page *page);
1264 extern struct anon_vma *page_anon_vma(struct page *page);
1265 extern struct address_space *page_mapping(struct page *page);
1266
1267 extern struct address_space *__page_file_mapping(struct page *);
1268
1269 static inline
1270 struct address_space *page_file_mapping(struct page *page)
1271 {
1272         if (unlikely(PageSwapCache(page)))
1273                 return __page_file_mapping(page);
1274
1275         return page->mapping;
1276 }
1277
1278 extern pgoff_t __page_file_index(struct page *page);
1279
1280 /*
1281  * Return the pagecache index of the passed page.  Regular pagecache pages
1282  * use ->index whereas swapcache pages use swp_offset(->private)
1283  */
1284 static inline pgoff_t page_index(struct page *page)
1285 {
1286         if (unlikely(PageSwapCache(page)))
1287                 return __page_file_index(page);
1288         return page->index;
1289 }
1290
1291 bool page_mapped(struct page *page);
1292 struct address_space *page_mapping(struct page *page);
1293 struct address_space *page_mapping_file(struct page *page);
1294
1295 /*
1296  * Return true only if the page has been allocated with
1297  * ALLOC_NO_WATERMARKS and the low watermark was not
1298  * met implying that the system is under some pressure.
1299  */
1300 static inline bool page_is_pfmemalloc(struct page *page)
1301 {
1302         /*
1303          * Page index cannot be this large so this must be
1304          * a pfmemalloc page.
1305          */
1306         return page->index == -1UL;
1307 }
1308
1309 /*
1310  * Only to be called by the page allocator on a freshly allocated
1311  * page.
1312  */
1313 static inline void set_page_pfmemalloc(struct page *page)
1314 {
1315         page->index = -1UL;
1316 }
1317
1318 static inline void clear_page_pfmemalloc(struct page *page)
1319 {
1320         page->index = 0;
1321 }
1322
1323 /*
1324  * Different kinds of faults, as returned by handle_mm_fault().
1325  * Used to decide whether a process gets delivered SIGBUS or
1326  * just gets major/minor fault counters bumped up.
1327  */
1328
1329 #define VM_FAULT_OOM    0x0001
1330 #define VM_FAULT_SIGBUS 0x0002
1331 #define VM_FAULT_MAJOR  0x0004
1332 #define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
1333 #define VM_FAULT_HWPOISON 0x0010        /* Hit poisoned small page */
1334 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1335 #define VM_FAULT_SIGSEGV 0x0040
1336
1337 #define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
1338 #define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
1339 #define VM_FAULT_RETRY  0x0400  /* ->fault blocked, must retry */
1340 #define VM_FAULT_FALLBACK 0x0800        /* huge page fault failed, fall back to small */
1341 #define VM_FAULT_DONE_COW   0x1000      /* ->fault has fully handled COW */
1342 #define VM_FAULT_NEEDDSYNC  0x2000      /* ->fault did not modify page tables
1343                                          * and needs fsync() to complete (for
1344                                          * synchronous page faults in DAX) */
1345
1346 #define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1347                          VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1348                          VM_FAULT_FALLBACK)
1349
1350 #define VM_FAULT_RESULT_TRACE \
1351         { VM_FAULT_OOM,                 "OOM" }, \
1352         { VM_FAULT_SIGBUS,              "SIGBUS" }, \
1353         { VM_FAULT_MAJOR,               "MAJOR" }, \
1354         { VM_FAULT_WRITE,               "WRITE" }, \
1355         { VM_FAULT_HWPOISON,            "HWPOISON" }, \
1356         { VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" }, \
1357         { VM_FAULT_SIGSEGV,             "SIGSEGV" }, \
1358         { VM_FAULT_NOPAGE,              "NOPAGE" }, \
1359         { VM_FAULT_LOCKED,              "LOCKED" }, \
1360         { VM_FAULT_RETRY,               "RETRY" }, \
1361         { VM_FAULT_FALLBACK,            "FALLBACK" }, \
1362         { VM_FAULT_DONE_COW,            "DONE_COW" }, \
1363         { VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" }
1364
1365 /* Encode hstate index for a hwpoisoned large page */
1366 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1367 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1368
1369 /*
1370  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1371  */
1372 extern void pagefault_out_of_memory(void);
1373
1374 #define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
1375
1376 /*
1377  * Flags passed to show_mem() and show_free_areas() to suppress output in
1378  * various contexts.
1379  */
1380 #define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
1381
1382 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1383
1384 extern bool can_do_mlock(void);
1385 extern int user_shm_lock(size_t, struct user_struct *);
1386 extern void user_shm_unlock(size_t, struct user_struct *);
1387
1388 /*
1389  * Parameter block passed down to zap_pte_range in exceptional cases.
1390  */
1391 struct zap_details {
1392         struct address_space *check_mapping;    /* Check page->mapping if set */
1393         pgoff_t first_index;                    /* Lowest page->index to unmap */
1394         pgoff_t last_index;                     /* Highest page->index to unmap */
1395 };
1396
1397 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1398                              pte_t pte, bool with_public_device);
1399 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1400
1401 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1402                                 pmd_t pmd);
1403
1404 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1405                   unsigned long size);
1406 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1407                     unsigned long size);
1408 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1409                 unsigned long start, unsigned long end);
1410
1411 /**
1412  * mm_walk - callbacks for walk_page_range
1413  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1414  *             this handler should only handle pud_trans_huge() puds.
1415  *             the pmd_entry or pte_entry callbacks will be used for
1416  *             regular PUDs.
1417  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1418  *             this handler is required to be able to handle
1419  *             pmd_trans_huge() pmds.  They may simply choose to
1420  *             split_huge_page() instead of handling it explicitly.
1421  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1422  * @pte_hole: if set, called for each hole at all levels
1423  * @hugetlb_entry: if set, called for each hugetlb entry
1424  * @test_walk: caller specific callback function to determine whether
1425  *             we walk over the current vma or not. Returning 0
1426  *             value means "do page table walk over the current vma,"
1427  *             and a negative one means "abort current page table walk
1428  *             right now." 1 means "skip the current vma."
1429  * @mm:        mm_struct representing the target process of page table walk
1430  * @vma:       vma currently walked (NULL if walking outside vmas)
1431  * @private:   private data for callbacks' usage
1432  *
1433  * (see the comment on walk_page_range() for more details)
1434  */
1435 struct mm_walk {
1436         int (*pud_entry)(pud_t *pud, unsigned long addr,
1437                          unsigned long next, struct mm_walk *walk);
1438         int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1439                          unsigned long next, struct mm_walk *walk);
1440         int (*pte_entry)(pte_t *pte, unsigned long addr,
1441                          unsigned long next, struct mm_walk *walk);
1442         int (*pte_hole)(unsigned long addr, unsigned long next,
1443                         struct mm_walk *walk);
1444         int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1445                              unsigned long addr, unsigned long next,
1446                              struct mm_walk *walk);
1447         int (*test_walk)(unsigned long addr, unsigned long next,
1448                         struct mm_walk *walk);
1449         struct mm_struct *mm;
1450         struct vm_area_struct *vma;
1451         void *private;
1452 };
1453
1454 struct mmu_notifier_range;
1455
1456 int walk_page_range(unsigned long addr, unsigned long end,
1457                 struct mm_walk *walk);
1458 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1459 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1460                 unsigned long end, unsigned long floor, unsigned long ceiling);
1461 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1462                         struct vm_area_struct *vma);
1463 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1464                    struct mmu_notifier_range *range,
1465                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1466 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1467         unsigned long *pfn);
1468 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1469                 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1470 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1471                         void *buf, int len, int write);
1472
1473 extern void truncate_pagecache(struct inode *inode, loff_t new);
1474 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1475 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1476 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1477 int truncate_inode_page(struct address_space *mapping, struct page *page);
1478 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1479 int invalidate_inode_page(struct page *page);
1480
1481 #ifdef CONFIG_MMU
1482 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1483                         unsigned long address, unsigned int flags);
1484 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1485                             unsigned long address, unsigned int fault_flags,
1486                             bool *unlocked);
1487 void unmap_mapping_pages(struct address_space *mapping,
1488                 pgoff_t start, pgoff_t nr, bool even_cows);
1489 void unmap_mapping_range(struct address_space *mapping,
1490                 loff_t const holebegin, loff_t const holelen, int even_cows);
1491 #else
1492 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1493                 unsigned long address, unsigned int flags)
1494 {
1495         /* should never happen if there's no MMU */
1496         BUG();
1497         return VM_FAULT_SIGBUS;
1498 }
1499 static inline int fixup_user_fault(struct task_struct *tsk,
1500                 struct mm_struct *mm, unsigned long address,
1501                 unsigned int fault_flags, bool *unlocked)
1502 {
1503         /* should never happen if there's no MMU */
1504         BUG();
1505         return -EFAULT;
1506 }
1507 static inline void unmap_mapping_pages(struct address_space *mapping,
1508                 pgoff_t start, pgoff_t nr, bool even_cows) { }
1509 static inline void unmap_mapping_range(struct address_space *mapping,
1510                 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1511 #endif
1512
1513 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1514                 loff_t const holebegin, loff_t const holelen)
1515 {
1516         unmap_mapping_range(mapping, holebegin, holelen, 0);
1517 }
1518
1519 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1520                 void *buf, int len, unsigned int gup_flags);
1521 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1522                 void *buf, int len, unsigned int gup_flags);
1523 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1524                 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1525
1526 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1527                             unsigned long start, unsigned long nr_pages,
1528                             unsigned int gup_flags, struct page **pages,
1529                             struct vm_area_struct **vmas, int *locked);
1530 long get_user_pages(unsigned long start, unsigned long nr_pages,
1531                             unsigned int gup_flags, struct page **pages,
1532                             struct vm_area_struct **vmas);
1533 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1534                     unsigned int gup_flags, struct page **pages, int *locked);
1535 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1536                     struct page **pages, unsigned int gup_flags);
1537 #ifdef CONFIG_FS_DAX
1538 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1539                             unsigned int gup_flags, struct page **pages,
1540                             struct vm_area_struct **vmas);
1541 #else
1542 static inline long get_user_pages_longterm(unsigned long start,
1543                 unsigned long nr_pages, unsigned int gup_flags,
1544                 struct page **pages, struct vm_area_struct **vmas)
1545 {
1546         return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1547 }
1548 #endif /* CONFIG_FS_DAX */
1549
1550 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1551                         struct page **pages);
1552
1553 /* Container for pinned pfns / pages */
1554 struct frame_vector {
1555         unsigned int nr_allocated;      /* Number of frames we have space for */
1556         unsigned int nr_frames; /* Number of frames stored in ptrs array */
1557         bool got_ref;           /* Did we pin pages by getting page ref? */
1558         bool is_pfns;           /* Does array contain pages or pfns? */
1559         void *ptrs[0];          /* Array of pinned pfns / pages. Use
1560                                  * pfns_vector_pages() or pfns_vector_pfns()
1561                                  * for access */
1562 };
1563
1564 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1565 void frame_vector_destroy(struct frame_vector *vec);
1566 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1567                      unsigned int gup_flags, struct frame_vector *vec);
1568 void put_vaddr_frames(struct frame_vector *vec);
1569 int frame_vector_to_pages(struct frame_vector *vec);
1570 void frame_vector_to_pfns(struct frame_vector *vec);
1571
1572 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1573 {
1574         return vec->nr_frames;
1575 }
1576
1577 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1578 {
1579         if (vec->is_pfns) {
1580                 int err = frame_vector_to_pages(vec);
1581
1582                 if (err)
1583                         return ERR_PTR(err);
1584         }
1585         return (struct page **)(vec->ptrs);
1586 }
1587
1588 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1589 {
1590         if (!vec->is_pfns)
1591                 frame_vector_to_pfns(vec);
1592         return (unsigned long *)(vec->ptrs);
1593 }
1594
1595 struct kvec;
1596 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1597                         struct page **pages);
1598 int get_kernel_page(unsigned long start, int write, struct page **pages);
1599 struct page *get_dump_page(unsigned long addr);
1600
1601 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1602 extern void do_invalidatepage(struct page *page, unsigned int offset,
1603                               unsigned int length);
1604
1605 void __set_page_dirty(struct page *, struct address_space *, int warn);
1606 int __set_page_dirty_nobuffers(struct page *page);
1607 int __set_page_dirty_no_writeback(struct page *page);
1608 int redirty_page_for_writepage(struct writeback_control *wbc,
1609                                 struct page *page);
1610 void account_page_dirtied(struct page *page, struct address_space *mapping);
1611 void account_page_cleaned(struct page *page, struct address_space *mapping,
1612                           struct bdi_writeback *wb);
1613 int set_page_dirty(struct page *page);
1614 int set_page_dirty_lock(struct page *page);
1615 void __cancel_dirty_page(struct page *page);
1616 static inline void cancel_dirty_page(struct page *page)
1617 {
1618         /* Avoid atomic ops, locking, etc. when not actually needed. */
1619         if (PageDirty(page))
1620                 __cancel_dirty_page(page);
1621 }
1622 int clear_page_dirty_for_io(struct page *page);
1623
1624 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1625
1626 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1627 {
1628         return !vma->vm_ops;
1629 }
1630
1631 #ifdef CONFIG_SHMEM
1632 /*
1633  * The vma_is_shmem is not inline because it is used only by slow
1634  * paths in userfault.
1635  */
1636 bool vma_is_shmem(struct vm_area_struct *vma);
1637 #else
1638 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1639 #endif
1640
1641 int vma_is_stack_for_current(struct vm_area_struct *vma);
1642
1643 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1644                 unsigned long old_addr, struct vm_area_struct *new_vma,
1645                 unsigned long new_addr, unsigned long len,
1646                 bool need_rmap_locks);
1647 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1648                               unsigned long end, pgprot_t newprot,
1649                               int dirty_accountable, int prot_numa);
1650 extern int mprotect_fixup(struct vm_area_struct *vma,
1651                           struct vm_area_struct **pprev, unsigned long start,
1652                           unsigned long end, unsigned long newflags);
1653
1654 /*
1655  * doesn't attempt to fault and will return short.
1656  */
1657 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1658                           struct page **pages);
1659 /*
1660  * per-process(per-mm_struct) statistics.
1661  */
1662 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1663 {
1664         long val = atomic_long_read(&mm->rss_stat.count[member]);
1665
1666 #ifdef SPLIT_RSS_COUNTING
1667         /*
1668          * counter is updated in asynchronous manner and may go to minus.
1669          * But it's never be expected number for users.
1670          */
1671         if (val < 0)
1672                 val = 0;
1673 #endif
1674         return (unsigned long)val;
1675 }
1676
1677 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1678 {
1679         atomic_long_add(value, &mm->rss_stat.count[member]);
1680 }
1681
1682 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1683 {
1684         atomic_long_inc(&mm->rss_stat.count[member]);
1685 }
1686
1687 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1688 {
1689         atomic_long_dec(&mm->rss_stat.count[member]);
1690 }
1691
1692 /* Optimized variant when page is already known not to be PageAnon */
1693 static inline int mm_counter_file(struct page *page)
1694 {
1695         if (PageSwapBacked(page))
1696                 return MM_SHMEMPAGES;
1697         return MM_FILEPAGES;
1698 }
1699
1700 static inline int mm_counter(struct page *page)
1701 {
1702         if (PageAnon(page))
1703                 return MM_ANONPAGES;
1704         return mm_counter_file(page);
1705 }
1706
1707 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1708 {
1709         return get_mm_counter(mm, MM_FILEPAGES) +
1710                 get_mm_counter(mm, MM_ANONPAGES) +
1711                 get_mm_counter(mm, MM_SHMEMPAGES);
1712 }
1713
1714 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1715 {
1716         return max(mm->hiwater_rss, get_mm_rss(mm));
1717 }
1718
1719 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1720 {
1721         return max(mm->hiwater_vm, mm->total_vm);
1722 }
1723
1724 static inline void update_hiwater_rss(struct mm_struct *mm)
1725 {
1726         unsigned long _rss = get_mm_rss(mm);
1727
1728         if ((mm)->hiwater_rss < _rss)
1729                 (mm)->hiwater_rss = _rss;
1730 }
1731
1732 static inline void update_hiwater_vm(struct mm_struct *mm)
1733 {
1734         if (mm->hiwater_vm < mm->total_vm)
1735                 mm->hiwater_vm = mm->total_vm;
1736 }
1737
1738 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1739 {
1740         mm->hiwater_rss = get_mm_rss(mm);
1741 }
1742
1743 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1744                                          struct mm_struct *mm)
1745 {
1746         unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1747
1748         if (*maxrss < hiwater_rss)
1749                 *maxrss = hiwater_rss;
1750 }
1751
1752 #if defined(SPLIT_RSS_COUNTING)
1753 void sync_mm_rss(struct mm_struct *mm);
1754 #else
1755 static inline void sync_mm_rss(struct mm_struct *mm)
1756 {
1757 }
1758 #endif
1759
1760 #ifndef __HAVE_ARCH_PTE_DEVMAP
1761 static inline int pte_devmap(pte_t pte)
1762 {
1763         return 0;
1764 }
1765 #endif
1766
1767 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1768
1769 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1770                                spinlock_t **ptl);
1771 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1772                                     spinlock_t **ptl)
1773 {
1774         pte_t *ptep;
1775         __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1776         return ptep;
1777 }
1778
1779 #ifdef __PAGETABLE_P4D_FOLDED
1780 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1781                                                 unsigned long address)
1782 {
1783         return 0;
1784 }
1785 #else
1786 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1787 #endif
1788
1789 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1790 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1791                                                 unsigned long address)
1792 {
1793         return 0;
1794 }
1795 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1796 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1797
1798 #else
1799 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1800
1801 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1802 {
1803         if (mm_pud_folded(mm))
1804                 return;
1805         atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1806 }
1807
1808 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1809 {
1810         if (mm_pud_folded(mm))
1811                 return;
1812         atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1813 }
1814 #endif
1815
1816 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1817 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1818                                                 unsigned long address)
1819 {
1820         return 0;
1821 }
1822
1823 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1824 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1825
1826 #else
1827 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1828
1829 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1830 {
1831         if (mm_pmd_folded(mm))
1832                 return;
1833         atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1834 }
1835
1836 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1837 {
1838         if (mm_pmd_folded(mm))
1839                 return;
1840         atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1841 }
1842 #endif
1843
1844 #ifdef CONFIG_MMU
1845 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1846 {
1847         atomic_long_set(&mm->pgtables_bytes, 0);
1848 }
1849
1850 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1851 {
1852         return atomic_long_read(&mm->pgtables_bytes);
1853 }
1854
1855 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1856 {
1857         atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1858 }
1859
1860 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1861 {
1862         atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1863 }
1864 #else
1865
1866 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1867 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1868 {
1869         return 0;
1870 }
1871
1872 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1873 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1874 #endif
1875
1876 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1877 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1878
1879 /*
1880  * The following ifdef needed to get the 4level-fixup.h header to work.
1881  * Remove it when 4level-fixup.h has been removed.
1882  */
1883 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1884
1885 #ifndef __ARCH_HAS_5LEVEL_HACK
1886 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1887                 unsigned long address)
1888 {
1889         return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1890                 NULL : p4d_offset(pgd, address);
1891 }
1892
1893 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1894                 unsigned long address)
1895 {
1896         return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1897                 NULL : pud_offset(p4d, address);
1898 }
1899 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1900
1901 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1902 {
1903         return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1904                 NULL: pmd_offset(pud, address);
1905 }
1906 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1907
1908 #if USE_SPLIT_PTE_PTLOCKS
1909 #if ALLOC_SPLIT_PTLOCKS
1910 void __init ptlock_cache_init(void);
1911 extern bool ptlock_alloc(struct page *page);
1912 extern void ptlock_free(struct page *page);
1913
1914 static inline spinlock_t *ptlock_ptr(struct page *page)
1915 {
1916         return page->ptl;
1917 }
1918 #else /* ALLOC_SPLIT_PTLOCKS */
1919 static inline void ptlock_cache_init(void)
1920 {
1921 }
1922
1923 static inline bool ptlock_alloc(struct page *page)
1924 {
1925         return true;
1926 }
1927
1928 static inline void ptlock_free(struct page *page)
1929 {
1930 }
1931
1932 static inline spinlock_t *ptlock_ptr(struct page *page)
1933 {
1934         return &page->ptl;
1935 }
1936 #endif /* ALLOC_SPLIT_PTLOCKS */
1937
1938 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1939 {
1940         return ptlock_ptr(pmd_page(*pmd));
1941 }
1942
1943 static inline bool ptlock_init(struct page *page)
1944 {
1945         /*
1946          * prep_new_page() initialize page->private (and therefore page->ptl)
1947          * with 0. Make sure nobody took it in use in between.
1948          *
1949          * It can happen if arch try to use slab for page table allocation:
1950          * slab code uses page->slab_cache, which share storage with page->ptl.
1951          */
1952         VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1953         if (!ptlock_alloc(page))
1954                 return false;
1955         spin_lock_init(ptlock_ptr(page));
1956         return true;
1957 }
1958
1959 #else   /* !USE_SPLIT_PTE_PTLOCKS */
1960 /*
1961  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1962  */
1963 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1964 {
1965         return &mm->page_table_lock;
1966 }
1967 static inline void ptlock_cache_init(void) {}
1968 static inline bool ptlock_init(struct page *page) { return true; }
1969 static inline void ptlock_free(struct page *page) {}
1970 #endif /* USE_SPLIT_PTE_PTLOCKS */
1971
1972 static inline void pgtable_init(void)
1973 {
1974         ptlock_cache_init();
1975         pgtable_cache_init();
1976 }
1977
1978 static inline bool pgtable_page_ctor(struct page *page)
1979 {
1980         if (!ptlock_init(page))
1981                 return false;
1982         __SetPageTable(page);
1983         inc_zone_page_state(page, NR_PAGETABLE);
1984         return true;
1985 }
1986
1987 static inline void pgtable_page_dtor(struct page *page)
1988 {
1989         ptlock_free(page);
1990         __ClearPageTable(page);
1991         dec_zone_page_state(page, NR_PAGETABLE);
1992 }
1993
1994 #define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1995 ({                                                      \
1996         spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1997         pte_t *__pte = pte_offset_map(pmd, address);    \
1998         *(ptlp) = __ptl;                                \
1999         spin_lock(__ptl);                               \
2000         __pte;                                          \
2001 })
2002
2003 #define pte_unmap_unlock(pte, ptl)      do {            \
2004         spin_unlock(ptl);                               \
2005         pte_unmap(pte);                                 \
2006 } while (0)
2007
2008 #define pte_alloc(mm, pmd, address)                     \
2009         (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
2010
2011 #define pte_alloc_map(mm, pmd, address)                 \
2012         (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
2013
2014 #define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
2015         (pte_alloc(mm, pmd, address) ?                  \
2016                  NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2017
2018 #define pte_alloc_kernel(pmd, address)                  \
2019         ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
2020                 NULL: pte_offset_kernel(pmd, address))
2021
2022 #if USE_SPLIT_PMD_PTLOCKS
2023
2024 static struct page *pmd_to_page(pmd_t *pmd)
2025 {
2026         unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2027         return virt_to_page((void *)((unsigned long) pmd & mask));
2028 }
2029
2030 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2031 {
2032         return ptlock_ptr(pmd_to_page(pmd));
2033 }
2034
2035 static inline bool pgtable_pmd_page_ctor(struct page *page)
2036 {
2037 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2038         page->pmd_huge_pte = NULL;
2039 #endif
2040         return ptlock_init(page);
2041 }
2042
2043 static inline void pgtable_pmd_page_dtor(struct page *page)
2044 {
2045 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2046         VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2047 #endif
2048         ptlock_free(page);
2049 }
2050
2051 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2052
2053 #else
2054
2055 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2056 {
2057         return &mm->page_table_lock;
2058 }
2059
2060 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2061 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2062
2063 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2064
2065 #endif
2066
2067 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2068 {
2069         spinlock_t *ptl = pmd_lockptr(mm, pmd);
2070         spin_lock(ptl);
2071         return ptl;
2072 }
2073
2074 /*
2075  * No scalability reason to split PUD locks yet, but follow the same pattern
2076  * as the PMD locks to make it easier if we decide to.  The VM should not be
2077  * considered ready to switch to split PUD locks yet; there may be places
2078  * which need to be converted from page_table_lock.
2079  */
2080 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2081 {
2082         return &mm->page_table_lock;
2083 }
2084
2085 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2086 {
2087         spinlock_t *ptl = pud_lockptr(mm, pud);
2088
2089         spin_lock(ptl);
2090         return ptl;
2091 }
2092
2093 extern void __init pagecache_init(void);
2094 extern void free_area_init(unsigned long * zones_size);
2095 extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2096                 unsigned long zone_start_pfn, unsigned long *zholes_size);
2097 extern void free_initmem(void);
2098
2099 /*
2100  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2101  * into the buddy system. The freed pages will be poisoned with pattern
2102  * "poison" if it's within range [0, UCHAR_MAX].
2103  * Return pages freed into the buddy system.
2104  */
2105 extern unsigned long free_reserved_area(void *start, void *end,
2106                                         int poison, const char *s);
2107
2108 #ifdef  CONFIG_HIGHMEM
2109 /*
2110  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2111  * and totalram_pages.
2112  */
2113 extern void free_highmem_page(struct page *page);
2114 #endif
2115
2116 extern void adjust_managed_page_count(struct page *page, long count);
2117 extern void mem_init_print_info(const char *str);
2118
2119 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2120
2121 /* Free the reserved page into the buddy system, so it gets managed. */
2122 static inline void __free_reserved_page(struct page *page)
2123 {
2124         ClearPageReserved(page);
2125         init_page_count(page);
2126         __free_page(page);
2127 }
2128
2129 static inline void free_reserved_page(struct page *page)
2130 {
2131         __free_reserved_page(page);
2132         adjust_managed_page_count(page, 1);
2133 }
2134
2135 static inline void mark_page_reserved(struct page *page)
2136 {
2137         SetPageReserved(page);
2138         adjust_managed_page_count(page, -1);
2139 }
2140
2141 /*
2142  * Default method to free all the __init memory into the buddy system.
2143  * The freed pages will be poisoned with pattern "poison" if it's within
2144  * range [0, UCHAR_MAX].
2145  * Return pages freed into the buddy system.
2146  */
2147 static inline unsigned long free_initmem_default(int poison)
2148 {
2149         extern char __init_begin[], __init_end[];
2150
2151         return free_reserved_area(&__init_begin, &__init_end,
2152                                   poison, "unused kernel");
2153 }
2154
2155 static inline unsigned long get_num_physpages(void)
2156 {
2157         int nid;
2158         unsigned long phys_pages = 0;
2159
2160         for_each_online_node(nid)
2161                 phys_pages += node_present_pages(nid);
2162
2163         return phys_pages;
2164 }
2165
2166 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2167 /*
2168  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2169  * zones, allocate the backing mem_map and account for memory holes in a more
2170  * architecture independent manner. This is a substitute for creating the
2171  * zone_sizes[] and zholes_size[] arrays and passing them to
2172  * free_area_init_node()
2173  *
2174  * An architecture is expected to register range of page frames backed by
2175  * physical memory with memblock_add[_node]() before calling
2176  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2177  * usage, an architecture is expected to do something like
2178  *
2179  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2180  *                                                       max_highmem_pfn};
2181  * for_each_valid_physical_page_range()
2182  *      memblock_add_node(base, size, nid)
2183  * free_area_init_nodes(max_zone_pfns);
2184  *
2185  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2186  * registered physical page range.  Similarly
2187  * sparse_memory_present_with_active_regions() calls memory_present() for
2188  * each range when SPARSEMEM is enabled.
2189  *
2190  * See mm/page_alloc.c for more information on each function exposed by
2191  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2192  */
2193 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2194 unsigned long node_map_pfn_alignment(void);
2195 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2196                                                 unsigned long end_pfn);
2197 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2198                                                 unsigned long end_pfn);
2199 extern void get_pfn_range_for_nid(unsigned int nid,
2200                         unsigned long *start_pfn, unsigned long *end_pfn);
2201 extern unsigned long find_min_pfn_with_active_regions(void);
2202 extern void free_bootmem_with_active_regions(int nid,
2203                                                 unsigned long max_low_pfn);
2204 extern void sparse_memory_present_with_active_regions(int nid);
2205
2206 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2207
2208 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2209     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2210 static inline int __early_pfn_to_nid(unsigned long pfn,
2211                                         struct mminit_pfnnid_cache *state)
2212 {
2213         return 0;
2214 }
2215 #else
2216 /* please see mm/page_alloc.c */
2217 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2218 /* there is a per-arch backend function. */
2219 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2220                                         struct mminit_pfnnid_cache *state);
2221 #endif
2222
2223 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
2224 void zero_resv_unavail(void);
2225 #else
2226 static inline void zero_resv_unavail(void) {}
2227 #endif
2228
2229 extern void set_dma_reserve(unsigned long new_dma_reserve);
2230 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2231                 enum memmap_context, struct vmem_altmap *);
2232 extern void setup_per_zone_wmarks(void);
2233 extern int __meminit init_per_zone_wmark_min(void);
2234 extern void mem_init(void);
2235 extern void __init mmap_init(void);
2236 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2237 extern long si_mem_available(void);
2238 extern void si_meminfo(struct sysinfo * val);
2239 extern void si_meminfo_node(struct sysinfo *val, int nid);
2240 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2241 extern unsigned long arch_reserved_kernel_pages(void);
2242 #endif
2243
2244 extern __printf(3, 4)
2245 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2246
2247 extern void setup_per_cpu_pageset(void);
2248
2249 extern void zone_pcp_update(struct zone *zone);
2250 extern void zone_pcp_reset(struct zone *zone);
2251
2252 /* page_alloc.c */
2253 extern int min_free_kbytes;
2254 extern int watermark_boost_factor;
2255 extern int watermark_scale_factor;
2256
2257 /* nommu.c */
2258 extern atomic_long_t mmap_pages_allocated;
2259 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2260
2261 /* interval_tree.c */
2262 void vma_interval_tree_insert(struct vm_area_struct *node,
2263                               struct rb_root_cached *root);
2264 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2265                                     struct vm_area_struct *prev,
2266                                     struct rb_root_cached *root);
2267 void vma_interval_tree_remove(struct vm_area_struct *node,
2268                               struct rb_root_cached *root);
2269 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2270                                 unsigned long start, unsigned long last);
2271 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2272                                 unsigned long start, unsigned long last);
2273
2274 #define vma_interval_tree_foreach(vma, root, start, last)               \
2275         for (vma = vma_interval_tree_iter_first(root, start, last);     \
2276              vma; vma = vma_interval_tree_iter_next(vma, start, last))
2277
2278 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2279                                    struct rb_root_cached *root);
2280 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2281                                    struct rb_root_cached *root);
2282 struct anon_vma_chain *
2283 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2284                                   unsigned long start, unsigned long last);
2285 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2286         struct anon_vma_chain *node, unsigned long start, unsigned long last);
2287 #ifdef CONFIG_DEBUG_VM_RB
2288 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2289 #endif
2290
2291 #define anon_vma_interval_tree_foreach(avc, root, start, last)           \
2292         for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2293              avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2294
2295 /* mmap.c */
2296 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2297 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2298         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2299         struct vm_area_struct *expand);
2300 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2301         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2302 {
2303         return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2304 }
2305 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2306         struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2307         unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2308         struct mempolicy *, struct vm_userfaultfd_ctx);
2309 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2310 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2311         unsigned long addr, int new_below);
2312 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2313         unsigned long addr, int new_below);
2314 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2315 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2316         struct rb_node **, struct rb_node *);
2317 extern void unlink_file_vma(struct vm_area_struct *);
2318 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2319         unsigned long addr, unsigned long len, pgoff_t pgoff,
2320         bool *need_rmap_locks);
2321 extern void exit_mmap(struct mm_struct *);
2322
2323 static inline int check_data_rlimit(unsigned long rlim,
2324                                     unsigned long new,
2325                                     unsigned long start,
2326                                     unsigned long end_data,
2327                                     unsigned long start_data)
2328 {
2329         if (rlim < RLIM_INFINITY) {
2330                 if (((new - start) + (end_data - start_data)) > rlim)
2331                         return -ENOSPC;
2332         }
2333
2334         return 0;
2335 }
2336
2337 extern int mm_take_all_locks(struct mm_struct *mm);
2338 extern void mm_drop_all_locks(struct mm_struct *mm);
2339
2340 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2341 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2342 extern struct file *get_task_exe_file(struct task_struct *task);
2343
2344 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2345 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2346
2347 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2348                                    const struct vm_special_mapping *sm);
2349 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2350                                    unsigned long addr, unsigned long len,
2351                                    unsigned long flags,
2352                                    const struct vm_special_mapping *spec);
2353 /* This is an obsolete alternative to _install_special_mapping. */
2354 extern int install_special_mapping(struct mm_struct *mm,
2355                                    unsigned long addr, unsigned long len,
2356                                    unsigned long flags, struct page **pages);
2357
2358 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2359
2360 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2361         unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2362         struct list_head *uf);
2363 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2364         unsigned long len, unsigned long prot, unsigned long flags,
2365         vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2366         struct list_head *uf);
2367 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2368                        struct list_head *uf, bool downgrade);
2369 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2370                      struct list_head *uf);
2371
2372 static inline unsigned long
2373 do_mmap_pgoff(struct file *file, unsigned long addr,
2374         unsigned long len, unsigned long prot, unsigned long flags,
2375         unsigned long pgoff, unsigned long *populate,
2376         struct list_head *uf)
2377 {
2378         return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2379 }
2380
2381 #ifdef CONFIG_MMU
2382 extern int __mm_populate(unsigned long addr, unsigned long len,
2383                          int ignore_errors);
2384 static inline void mm_populate(unsigned long addr, unsigned long len)
2385 {
2386         /* Ignore errors */
2387         (void) __mm_populate(addr, len, 1);
2388 }
2389 #else
2390 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2391 #endif
2392
2393 /* These take the mm semaphore themselves */
2394 extern int __must_check vm_brk(unsigned long, unsigned long);
2395 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2396 extern int vm_munmap(unsigned long, size_t);
2397 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2398         unsigned long, unsigned long,
2399         unsigned long, unsigned long);
2400
2401 struct vm_unmapped_area_info {
2402 #define VM_UNMAPPED_AREA_TOPDOWN 1
2403         unsigned long flags;
2404         unsigned long length;
2405         unsigned long low_limit;
2406         unsigned long high_limit;
2407         unsigned long align_mask;
2408         unsigned long align_offset;
2409 };
2410
2411 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2412 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2413
2414 /*
2415  * Search for an unmapped address range.
2416  *
2417  * We are looking for a range that:
2418  * - does not intersect with any VMA;
2419  * - is contained within the [low_limit, high_limit) interval;
2420  * - is at least the desired size.
2421  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2422  */
2423 static inline unsigned long
2424 vm_unmapped_area(struct vm_unmapped_area_info *info)
2425 {
2426         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2427                 return unmapped_area_topdown(info);
2428         else
2429                 return unmapped_area(info);
2430 }
2431
2432 /* truncate.c */
2433 extern void truncate_inode_pages(struct address_space *, loff_t);
2434 extern void truncate_inode_pages_range(struct address_space *,
2435                                        loff_t lstart, loff_t lend);
2436 extern void truncate_inode_pages_final(struct address_space *);
2437
2438 /* generic vm_area_ops exported for stackable file systems */
2439 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2440 extern void filemap_map_pages(struct vm_fault *vmf,
2441                 pgoff_t start_pgoff, pgoff_t end_pgoff);
2442 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2443
2444 /* mm/page-writeback.c */
2445 int __must_check write_one_page(struct page *page);
2446 void task_dirty_inc(struct task_struct *tsk);
2447
2448 /* readahead.c */
2449 #define VM_MAX_READAHEAD        128     /* kbytes */
2450 #define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
2451
2452 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2453                         pgoff_t offset, unsigned long nr_to_read);
2454
2455 void page_cache_sync_readahead(struct address_space *mapping,
2456                                struct file_ra_state *ra,
2457                                struct file *filp,
2458                                pgoff_t offset,
2459                                unsigned long size);
2460
2461 void page_cache_async_readahead(struct address_space *mapping,
2462                                 struct file_ra_state *ra,
2463                                 struct file *filp,
2464                                 struct page *pg,
2465                                 pgoff_t offset,
2466                                 unsigned long size);
2467
2468 extern unsigned long stack_guard_gap;
2469 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2470 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2471
2472 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2473 extern int expand_downwards(struct vm_area_struct *vma,
2474                 unsigned long address);
2475 #if VM_GROWSUP
2476 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2477 #else
2478   #define expand_upwards(vma, address) (0)
2479 #endif
2480
2481 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2482 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2483 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2484                                              struct vm_area_struct **pprev);
2485
2486 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2487    NULL if none.  Assume start_addr < end_addr. */
2488 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2489 {
2490         struct vm_area_struct * vma = find_vma(mm,start_addr);
2491
2492         if (vma && end_addr <= vma->vm_start)
2493                 vma = NULL;
2494         return vma;
2495 }
2496
2497 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2498 {
2499         unsigned long vm_start = vma->vm_start;
2500
2501         if (vma->vm_flags & VM_GROWSDOWN) {
2502                 vm_start -= stack_guard_gap;
2503                 if (vm_start > vma->vm_start)
2504                         vm_start = 0;
2505         }
2506         return vm_start;
2507 }
2508
2509 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2510 {
2511         unsigned long vm_end = vma->vm_end;
2512
2513         if (vma->vm_flags & VM_GROWSUP) {
2514                 vm_end += stack_guard_gap;
2515                 if (vm_end < vma->vm_end)
2516                         vm_end = -PAGE_SIZE;
2517         }
2518         return vm_end;
2519 }
2520
2521 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2522 {
2523         return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2524 }
2525
2526 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2527 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2528                                 unsigned long vm_start, unsigned long vm_end)
2529 {
2530         struct vm_area_struct *vma = find_vma(mm, vm_start);
2531
2532         if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2533                 vma = NULL;
2534
2535         return vma;
2536 }
2537
2538 static inline bool range_in_vma(struct vm_area_struct *vma,
2539                                 unsigned long start, unsigned long end)
2540 {
2541         return (vma && vma->vm_start <= start && end <= vma->vm_end);
2542 }
2543
2544 #ifdef CONFIG_MMU
2545 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2546 void vma_set_page_prot(struct vm_area_struct *vma);
2547 #else
2548 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2549 {
2550         return __pgprot(0);
2551 }
2552 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2553 {
2554         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2555 }
2556 #endif
2557
2558 #ifdef CONFIG_NUMA_BALANCING
2559 unsigned long change_prot_numa(struct vm_area_struct *vma,
2560                         unsigned long start, unsigned long end);
2561 #endif
2562
2563 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2564 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2565                         unsigned long pfn, unsigned long size, pgprot_t);
2566 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2567 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2568                         unsigned long pfn);
2569 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2570                         unsigned long pfn, pgprot_t pgprot);
2571 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2572                         pfn_t pfn);
2573 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2574                 unsigned long addr, pfn_t pfn);
2575 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2576
2577 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2578                                 unsigned long addr, struct page *page)
2579 {
2580         int err = vm_insert_page(vma, addr, page);
2581
2582         if (err == -ENOMEM)
2583                 return VM_FAULT_OOM;
2584         if (err < 0 && err != -EBUSY)
2585                 return VM_FAULT_SIGBUS;
2586
2587         return VM_FAULT_NOPAGE;
2588 }
2589
2590 static inline vm_fault_t vmf_error(int err)
2591 {
2592         if (err == -ENOMEM)
2593                 return VM_FAULT_OOM;
2594         return VM_FAULT_SIGBUS;
2595 }
2596
2597 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2598                          unsigned int foll_flags);
2599
2600 #define FOLL_WRITE      0x01    /* check pte is writable */
2601 #define FOLL_TOUCH      0x02    /* mark page accessed */
2602 #define FOLL_GET        0x04    /* do get_page on page */
2603 #define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
2604 #define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
2605 #define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
2606                                  * and return without waiting upon it */
2607 #define FOLL_POPULATE   0x40    /* fault in page */
2608 #define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
2609 #define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
2610 #define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
2611 #define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
2612 #define FOLL_TRIED      0x800   /* a retry, previous pass started an IO */
2613 #define FOLL_MLOCK      0x1000  /* lock present pages */
2614 #define FOLL_REMOTE     0x2000  /* we are working on non-current tsk/mm */
2615 #define FOLL_COW        0x4000  /* internal GUP flag */
2616 #define FOLL_ANON       0x8000  /* don't do file mappings */
2617
2618 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2619 {
2620         if (vm_fault & VM_FAULT_OOM)
2621                 return -ENOMEM;
2622         if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2623                 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2624         if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2625                 return -EFAULT;
2626         return 0;
2627 }
2628
2629 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2630                         void *data);
2631 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2632                                unsigned long size, pte_fn_t fn, void *data);
2633
2634
2635 #ifdef CONFIG_PAGE_POISONING
2636 extern bool page_poisoning_enabled(void);
2637 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2638 #else
2639 static inline bool page_poisoning_enabled(void) { return false; }
2640 static inline void kernel_poison_pages(struct page *page, int numpages,
2641                                         int enable) { }
2642 #endif
2643
2644 #ifdef CONFIG_DEBUG_PAGEALLOC
2645 extern bool _debug_pagealloc_enabled;
2646 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2647
2648 static inline bool debug_pagealloc_enabled(void)
2649 {
2650         return _debug_pagealloc_enabled;
2651 }
2652
2653 static inline void
2654 kernel_map_pages(struct page *page, int numpages, int enable)
2655 {
2656         if (!debug_pagealloc_enabled())
2657                 return;
2658
2659         __kernel_map_pages(page, numpages, enable);
2660 }
2661 #ifdef CONFIG_HIBERNATION
2662 extern bool kernel_page_present(struct page *page);
2663 #endif  /* CONFIG_HIBERNATION */
2664 #else   /* CONFIG_DEBUG_PAGEALLOC */
2665 static inline void
2666 kernel_map_pages(struct page *page, int numpages, int enable) {}
2667 #ifdef CONFIG_HIBERNATION
2668 static inline bool kernel_page_present(struct page *page) { return true; }
2669 #endif  /* CONFIG_HIBERNATION */
2670 static inline bool debug_pagealloc_enabled(void)
2671 {
2672         return false;
2673 }
2674 #endif  /* CONFIG_DEBUG_PAGEALLOC */
2675
2676 #ifdef __HAVE_ARCH_GATE_AREA
2677 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2678 extern int in_gate_area_no_mm(unsigned long addr);
2679 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2680 #else
2681 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2682 {
2683         return NULL;
2684 }
2685 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2686 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2687 {
2688         return 0;
2689 }
2690 #endif  /* __HAVE_ARCH_GATE_AREA */
2691
2692 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2693
2694 #ifdef CONFIG_SYSCTL
2695 extern int sysctl_drop_caches;
2696 int drop_caches_sysctl_handler(struct ctl_table *, int,
2697                                         void __user *, size_t *, loff_t *);
2698 #endif
2699
2700 void drop_slab(void);
2701 void drop_slab_node(int nid);
2702
2703 #ifndef CONFIG_MMU
2704 #define randomize_va_space 0
2705 #else
2706 extern int randomize_va_space;
2707 #endif
2708
2709 const char * arch_vma_name(struct vm_area_struct *vma);
2710 void print_vma_addr(char *prefix, unsigned long rip);
2711
2712 void *sparse_buffer_alloc(unsigned long size);
2713 struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2714                 struct vmem_altmap *altmap);
2715 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2716 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2717 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2718 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2719 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2720 void *vmemmap_alloc_block(unsigned long size, int node);
2721 struct vmem_altmap;
2722 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2723 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2724 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2725 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2726                                int node);
2727 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2728                 struct vmem_altmap *altmap);
2729 void vmemmap_populate_print_last(void);
2730 #ifdef CONFIG_MEMORY_HOTPLUG
2731 void vmemmap_free(unsigned long start, unsigned long end,
2732                 struct vmem_altmap *altmap);
2733 #endif
2734 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2735                                   unsigned long nr_pages);
2736
2737 enum mf_flags {
2738         MF_COUNT_INCREASED = 1 << 0,
2739         MF_ACTION_REQUIRED = 1 << 1,
2740         MF_MUST_KILL = 1 << 2,
2741         MF_SOFT_OFFLINE = 1 << 3,
2742 };
2743 extern int memory_failure(unsigned long pfn, int flags);
2744 extern void memory_failure_queue(unsigned long pfn, int flags);
2745 extern int unpoison_memory(unsigned long pfn);
2746 extern int get_hwpoison_page(struct page *page);
2747 #define put_hwpoison_page(page) put_page(page)
2748 extern int sysctl_memory_failure_early_kill;
2749 extern int sysctl_memory_failure_recovery;
2750 extern void shake_page(struct page *p, int access);
2751 extern atomic_long_t num_poisoned_pages __read_mostly;
2752 extern int soft_offline_page(struct page *page, int flags);
2753
2754
2755 /*
2756  * Error handlers for various types of pages.
2757  */
2758 enum mf_result {
2759         MF_IGNORED,     /* Error: cannot be handled */
2760         MF_FAILED,      /* Error: handling failed */
2761         MF_DELAYED,     /* Will be handled later */
2762         MF_RECOVERED,   /* Successfully recovered */
2763 };
2764
2765 enum mf_action_page_type {
2766         MF_MSG_KERNEL,
2767         MF_MSG_KERNEL_HIGH_ORDER,
2768         MF_MSG_SLAB,
2769         MF_MSG_DIFFERENT_COMPOUND,
2770         MF_MSG_POISONED_HUGE,
2771         MF_MSG_HUGE,
2772         MF_MSG_FREE_HUGE,
2773         MF_MSG_NON_PMD_HUGE,
2774         MF_MSG_UNMAP_FAILED,
2775         MF_MSG_DIRTY_SWAPCACHE,
2776         MF_MSG_CLEAN_SWAPCACHE,
2777         MF_MSG_DIRTY_MLOCKED_LRU,
2778         MF_MSG_CLEAN_MLOCKED_LRU,
2779         MF_MSG_DIRTY_UNEVICTABLE_LRU,
2780         MF_MSG_CLEAN_UNEVICTABLE_LRU,
2781         MF_MSG_DIRTY_LRU,
2782         MF_MSG_CLEAN_LRU,
2783         MF_MSG_TRUNCATED_LRU,
2784         MF_MSG_BUDDY,
2785         MF_MSG_BUDDY_2ND,
2786         MF_MSG_DAX,
2787         MF_MSG_UNKNOWN,
2788 };
2789
2790 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2791 extern void clear_huge_page(struct page *page,
2792                             unsigned long addr_hint,
2793                             unsigned int pages_per_huge_page);
2794 extern void copy_user_huge_page(struct page *dst, struct page *src,
2795                                 unsigned long addr_hint,
2796                                 struct vm_area_struct *vma,
2797                                 unsigned int pages_per_huge_page);
2798 extern long copy_huge_page_from_user(struct page *dst_page,
2799                                 const void __user *usr_src,
2800                                 unsigned int pages_per_huge_page,
2801                                 bool allow_pagefault);
2802 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2803
2804 extern struct page_ext_operations debug_guardpage_ops;
2805
2806 #ifdef CONFIG_DEBUG_PAGEALLOC
2807 extern unsigned int _debug_guardpage_minorder;
2808 extern bool _debug_guardpage_enabled;
2809
2810 static inline unsigned int debug_guardpage_minorder(void)
2811 {
2812         return _debug_guardpage_minorder;
2813 }
2814
2815 static inline bool debug_guardpage_enabled(void)
2816 {
2817         return _debug_guardpage_enabled;
2818 }
2819
2820 static inline bool page_is_guard(struct page *page)
2821 {
2822         struct page_ext *page_ext;
2823
2824         if (!debug_guardpage_enabled())
2825                 return false;
2826
2827         page_ext = lookup_page_ext(page);
2828         if (unlikely(!page_ext))
2829                 return false;
2830
2831         return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2832 }
2833 #else
2834 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2835 static inline bool debug_guardpage_enabled(void) { return false; }
2836 static inline bool page_is_guard(struct page *page) { return false; }
2837 #endif /* CONFIG_DEBUG_PAGEALLOC */
2838
2839 #if MAX_NUMNODES > 1
2840 void __init setup_nr_node_ids(void);
2841 #else
2842 static inline void setup_nr_node_ids(void) {}
2843 #endif
2844
2845 #endif /* __KERNEL__ */
2846 #endif /* _LINUX_MM_H */