Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux
[sfrench/cifs-2.6.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27
28 #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/processor.h>
46
47 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48
49 /* to align the pointer to the (next) page boundary */
50 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51
52 /*
53  * Linux kernel virtual memory manager primitives.
54  * The idea being to have a "virtual" mm in the same way
55  * we have a virtual fs - giving a cleaner interface to the
56  * mm details, and allowing different kinds of memory mappings
57  * (from shared memory to executable loading to arbitrary
58  * mmap() functions).
59  */
60
61 extern struct kmem_cache *vm_area_cachep;
62
63 #ifndef CONFIG_MMU
64 extern struct rb_root nommu_region_tree;
65 extern struct rw_semaphore nommu_region_sem;
66
67 extern unsigned int kobjsize(const void *objp);
68 #endif
69
70 /*
71  * vm_flags in vm_area_struct, see mm_types.h.
72  */
73 #define VM_NONE         0x00000000
74
75 #define VM_READ         0x00000001      /* currently active flags */
76 #define VM_WRITE        0x00000002
77 #define VM_EXEC         0x00000004
78 #define VM_SHARED       0x00000008
79
80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
81 #define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
82 #define VM_MAYWRITE     0x00000020
83 #define VM_MAYEXEC      0x00000040
84 #define VM_MAYSHARE     0x00000080
85
86 #define VM_GROWSDOWN    0x00000100      /* general info on the segment */
87 #define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
88 #define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
89
90 #define VM_LOCKED       0x00002000
91 #define VM_IO           0x00004000      /* Memory mapped I/O or similar */
92
93                                         /* Used by sys_madvise() */
94 #define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
95 #define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
96
97 #define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
98 #define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
99 #define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
100 #define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
101 #define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
102 #define VM_NONLINEAR    0x00800000      /* Is non-linear (remap_file_pages) */
103 #define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
104 #define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
105
106 #define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
107 #define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
108 #define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
109 #define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
110
111 #if defined(CONFIG_X86)
112 # define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
113 #elif defined(CONFIG_PPC)
114 # define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
115 #elif defined(CONFIG_PARISC)
116 # define VM_GROWSUP     VM_ARCH_1
117 #elif defined(CONFIG_IA64)
118 # define VM_GROWSUP     VM_ARCH_1
119 #elif !defined(CONFIG_MMU)
120 # define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
121 #endif
122
123 #ifndef VM_GROWSUP
124 # define VM_GROWSUP     VM_NONE
125 #endif
126
127 /* Bits set in the VMA until the stack is in its final location */
128 #define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
129
130 #ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
131 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
132 #endif
133
134 #ifdef CONFIG_STACK_GROWSUP
135 #define VM_STACK_FLAGS  (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
136 #else
137 #define VM_STACK_FLAGS  (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
138 #endif
139
140 #define VM_READHINTMASK                 (VM_SEQ_READ | VM_RAND_READ)
141 #define VM_ClearReadHint(v)             (v)->vm_flags &= ~VM_READHINTMASK
142 #define VM_NormalReadHint(v)            (!((v)->vm_flags & VM_READHINTMASK))
143 #define VM_SequentialReadHint(v)        ((v)->vm_flags & VM_SEQ_READ)
144 #define VM_RandomReadHint(v)            ((v)->vm_flags & VM_RAND_READ)
145
146 /*
147  * Special vmas that are non-mergable, non-mlock()able.
148  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
149  */
150 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
151
152 /*
153  * mapping from the currently active vm_flags protection bits (the
154  * low four bits) to a page protection mask..
155  */
156 extern pgprot_t protection_map[16];
157
158 #define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
159 #define FAULT_FLAG_NONLINEAR    0x02    /* Fault was via a nonlinear mapping */
160 #define FAULT_FLAG_MKWRITE      0x04    /* Fault was mkwrite of existing pte */
161 #define FAULT_FLAG_ALLOW_RETRY  0x08    /* Retry fault if blocking */
162 #define FAULT_FLAG_RETRY_NOWAIT 0x10    /* Don't drop mmap_sem and wait when retrying */
163 #define FAULT_FLAG_KILLABLE     0x20    /* The fault task is in SIGKILL killable region */
164 #define FAULT_FLAG_TRIED        0x40    /* second try */
165
166 /*
167  * vm_fault is filled by the the pagefault handler and passed to the vma's
168  * ->fault function. The vma's ->fault is responsible for returning a bitmask
169  * of VM_FAULT_xxx flags that give details about how the fault was handled.
170  *
171  * pgoff should be used in favour of virtual_address, if possible. If pgoff
172  * is used, one may implement ->remap_pages to get nonlinear mapping support.
173  */
174 struct vm_fault {
175         unsigned int flags;             /* FAULT_FLAG_xxx flags */
176         pgoff_t pgoff;                  /* Logical page offset based on vma */
177         void __user *virtual_address;   /* Faulting virtual address */
178
179         struct page *page;              /* ->fault handlers should return a
180                                          * page here, unless VM_FAULT_NOPAGE
181                                          * is set (which is also implied by
182                                          * VM_FAULT_ERROR).
183                                          */
184 };
185
186 /*
187  * These are the virtual MM functions - opening of an area, closing and
188  * unmapping it (needed to keep files on disk up-to-date etc), pointer
189  * to the functions called when a no-page or a wp-page exception occurs. 
190  */
191 struct vm_operations_struct {
192         void (*open)(struct vm_area_struct * area);
193         void (*close)(struct vm_area_struct * area);
194         int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
195
196         /* notification that a previously read-only page is about to become
197          * writable, if an error is returned it will cause a SIGBUS */
198         int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
199
200         /* called by access_process_vm when get_user_pages() fails, typically
201          * for use by special VMAs that can switch between memory and hardware
202          */
203         int (*access)(struct vm_area_struct *vma, unsigned long addr,
204                       void *buf, int len, int write);
205 #ifdef CONFIG_NUMA
206         /*
207          * set_policy() op must add a reference to any non-NULL @new mempolicy
208          * to hold the policy upon return.  Caller should pass NULL @new to
209          * remove a policy and fall back to surrounding context--i.e. do not
210          * install a MPOL_DEFAULT policy, nor the task or system default
211          * mempolicy.
212          */
213         int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
214
215         /*
216          * get_policy() op must add reference [mpol_get()] to any policy at
217          * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
218          * in mm/mempolicy.c will do this automatically.
219          * get_policy() must NOT add a ref if the policy at (vma,addr) is not
220          * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
221          * If no [shared/vma] mempolicy exists at the addr, get_policy() op
222          * must return NULL--i.e., do not "fallback" to task or system default
223          * policy.
224          */
225         struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
226                                         unsigned long addr);
227         int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
228                 const nodemask_t *to, unsigned long flags);
229 #endif
230         /* called by sys_remap_file_pages() to populate non-linear mapping */
231         int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
232                            unsigned long size, pgoff_t pgoff);
233 };
234
235 struct mmu_gather;
236 struct inode;
237
238 #define page_private(page)              ((page)->private)
239 #define set_page_private(page, v)       ((page)->private = (v))
240
241 /* It's valid only if the page is free path or free_list */
242 static inline void set_freepage_migratetype(struct page *page, int migratetype)
243 {
244         page->index = migratetype;
245 }
246
247 /* It's valid only if the page is free path or free_list */
248 static inline int get_freepage_migratetype(struct page *page)
249 {
250         return page->index;
251 }
252
253 /*
254  * FIXME: take this include out, include page-flags.h in
255  * files which need it (119 of them)
256  */
257 #include <linux/page-flags.h>
258 #include <linux/huge_mm.h>
259
260 /*
261  * Methods to modify the page usage count.
262  *
263  * What counts for a page usage:
264  * - cache mapping   (page->mapping)
265  * - private data    (page->private)
266  * - page mapped in a task's page tables, each mapping
267  *   is counted separately
268  *
269  * Also, many kernel routines increase the page count before a critical
270  * routine so they can be sure the page doesn't go away from under them.
271  */
272
273 /*
274  * Drop a ref, return true if the refcount fell to zero (the page has no users)
275  */
276 static inline int put_page_testzero(struct page *page)
277 {
278         VM_BUG_ON(atomic_read(&page->_count) == 0);
279         return atomic_dec_and_test(&page->_count);
280 }
281
282 /*
283  * Try to grab a ref unless the page has a refcount of zero, return false if
284  * that is the case.
285  */
286 static inline int get_page_unless_zero(struct page *page)
287 {
288         return atomic_inc_not_zero(&page->_count);
289 }
290
291 extern int page_is_ram(unsigned long pfn);
292
293 /* Support for virtually mapped pages */
294 struct page *vmalloc_to_page(const void *addr);
295 unsigned long vmalloc_to_pfn(const void *addr);
296
297 /*
298  * Determine if an address is within the vmalloc range
299  *
300  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
301  * is no special casing required.
302  */
303 static inline int is_vmalloc_addr(const void *x)
304 {
305 #ifdef CONFIG_MMU
306         unsigned long addr = (unsigned long)x;
307
308         return addr >= VMALLOC_START && addr < VMALLOC_END;
309 #else
310         return 0;
311 #endif
312 }
313 #ifdef CONFIG_MMU
314 extern int is_vmalloc_or_module_addr(const void *x);
315 #else
316 static inline int is_vmalloc_or_module_addr(const void *x)
317 {
318         return 0;
319 }
320 #endif
321
322 static inline void compound_lock(struct page *page)
323 {
324 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
325         VM_BUG_ON(PageSlab(page));
326         bit_spin_lock(PG_compound_lock, &page->flags);
327 #endif
328 }
329
330 static inline void compound_unlock(struct page *page)
331 {
332 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
333         VM_BUG_ON(PageSlab(page));
334         bit_spin_unlock(PG_compound_lock, &page->flags);
335 #endif
336 }
337
338 static inline unsigned long compound_lock_irqsave(struct page *page)
339 {
340         unsigned long uninitialized_var(flags);
341 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
342         local_irq_save(flags);
343         compound_lock(page);
344 #endif
345         return flags;
346 }
347
348 static inline void compound_unlock_irqrestore(struct page *page,
349                                               unsigned long flags)
350 {
351 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
352         compound_unlock(page);
353         local_irq_restore(flags);
354 #endif
355 }
356
357 static inline struct page *compound_head(struct page *page)
358 {
359         if (unlikely(PageTail(page)))
360                 return page->first_page;
361         return page;
362 }
363
364 /*
365  * The atomic page->_mapcount, starts from -1: so that transitions
366  * both from it and to it can be tracked, using atomic_inc_and_test
367  * and atomic_add_negative(-1).
368  */
369 static inline void reset_page_mapcount(struct page *page)
370 {
371         atomic_set(&(page)->_mapcount, -1);
372 }
373
374 static inline int page_mapcount(struct page *page)
375 {
376         return atomic_read(&(page)->_mapcount) + 1;
377 }
378
379 static inline int page_count(struct page *page)
380 {
381         return atomic_read(&compound_head(page)->_count);
382 }
383
384 static inline void get_huge_page_tail(struct page *page)
385 {
386         /*
387          * __split_huge_page_refcount() cannot run
388          * from under us.
389          */
390         VM_BUG_ON(page_mapcount(page) < 0);
391         VM_BUG_ON(atomic_read(&page->_count) != 0);
392         atomic_inc(&page->_mapcount);
393 }
394
395 extern bool __get_page_tail(struct page *page);
396
397 static inline void get_page(struct page *page)
398 {
399         if (unlikely(PageTail(page)))
400                 if (likely(__get_page_tail(page)))
401                         return;
402         /*
403          * Getting a normal page or the head of a compound page
404          * requires to already have an elevated page->_count.
405          */
406         VM_BUG_ON(atomic_read(&page->_count) <= 0);
407         atomic_inc(&page->_count);
408 }
409
410 static inline struct page *virt_to_head_page(const void *x)
411 {
412         struct page *page = virt_to_page(x);
413         return compound_head(page);
414 }
415
416 /*
417  * Setup the page count before being freed into the page allocator for
418  * the first time (boot or memory hotplug)
419  */
420 static inline void init_page_count(struct page *page)
421 {
422         atomic_set(&page->_count, 1);
423 }
424
425 /*
426  * PageBuddy() indicate that the page is free and in the buddy system
427  * (see mm/page_alloc.c).
428  *
429  * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
430  * -2 so that an underflow of the page_mapcount() won't be mistaken
431  * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
432  * efficiently by most CPU architectures.
433  */
434 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
435
436 static inline int PageBuddy(struct page *page)
437 {
438         return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
439 }
440
441 static inline void __SetPageBuddy(struct page *page)
442 {
443         VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
444         atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
445 }
446
447 static inline void __ClearPageBuddy(struct page *page)
448 {
449         VM_BUG_ON(!PageBuddy(page));
450         atomic_set(&page->_mapcount, -1);
451 }
452
453 void put_page(struct page *page);
454 void put_pages_list(struct list_head *pages);
455
456 void split_page(struct page *page, unsigned int order);
457 int split_free_page(struct page *page);
458 int capture_free_page(struct page *page, int alloc_order, int migratetype);
459
460 /*
461  * Compound pages have a destructor function.  Provide a
462  * prototype for that function and accessor functions.
463  * These are _only_ valid on the head of a PG_compound page.
464  */
465 typedef void compound_page_dtor(struct page *);
466
467 static inline void set_compound_page_dtor(struct page *page,
468                                                 compound_page_dtor *dtor)
469 {
470         page[1].lru.next = (void *)dtor;
471 }
472
473 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
474 {
475         return (compound_page_dtor *)page[1].lru.next;
476 }
477
478 static inline int compound_order(struct page *page)
479 {
480         if (!PageHead(page))
481                 return 0;
482         return (unsigned long)page[1].lru.prev;
483 }
484
485 static inline int compound_trans_order(struct page *page)
486 {
487         int order;
488         unsigned long flags;
489
490         if (!PageHead(page))
491                 return 0;
492
493         flags = compound_lock_irqsave(page);
494         order = compound_order(page);
495         compound_unlock_irqrestore(page, flags);
496         return order;
497 }
498
499 static inline void set_compound_order(struct page *page, unsigned long order)
500 {
501         page[1].lru.prev = (void *)order;
502 }
503
504 #ifdef CONFIG_MMU
505 /*
506  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
507  * servicing faults for write access.  In the normal case, do always want
508  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
509  * that do not have writing enabled, when used by access_process_vm.
510  */
511 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
512 {
513         if (likely(vma->vm_flags & VM_WRITE))
514                 pte = pte_mkwrite(pte);
515         return pte;
516 }
517 #endif
518
519 /*
520  * Multiple processes may "see" the same page. E.g. for untouched
521  * mappings of /dev/null, all processes see the same page full of
522  * zeroes, and text pages of executables and shared libraries have
523  * only one copy in memory, at most, normally.
524  *
525  * For the non-reserved pages, page_count(page) denotes a reference count.
526  *   page_count() == 0 means the page is free. page->lru is then used for
527  *   freelist management in the buddy allocator.
528  *   page_count() > 0  means the page has been allocated.
529  *
530  * Pages are allocated by the slab allocator in order to provide memory
531  * to kmalloc and kmem_cache_alloc. In this case, the management of the
532  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
533  * unless a particular usage is carefully commented. (the responsibility of
534  * freeing the kmalloc memory is the caller's, of course).
535  *
536  * A page may be used by anyone else who does a __get_free_page().
537  * In this case, page_count still tracks the references, and should only
538  * be used through the normal accessor functions. The top bits of page->flags
539  * and page->virtual store page management information, but all other fields
540  * are unused and could be used privately, carefully. The management of this
541  * page is the responsibility of the one who allocated it, and those who have
542  * subsequently been given references to it.
543  *
544  * The other pages (we may call them "pagecache pages") are completely
545  * managed by the Linux memory manager: I/O, buffers, swapping etc.
546  * The following discussion applies only to them.
547  *
548  * A pagecache page contains an opaque `private' member, which belongs to the
549  * page's address_space. Usually, this is the address of a circular list of
550  * the page's disk buffers. PG_private must be set to tell the VM to call
551  * into the filesystem to release these pages.
552  *
553  * A page may belong to an inode's memory mapping. In this case, page->mapping
554  * is the pointer to the inode, and page->index is the file offset of the page,
555  * in units of PAGE_CACHE_SIZE.
556  *
557  * If pagecache pages are not associated with an inode, they are said to be
558  * anonymous pages. These may become associated with the swapcache, and in that
559  * case PG_swapcache is set, and page->private is an offset into the swapcache.
560  *
561  * In either case (swapcache or inode backed), the pagecache itself holds one
562  * reference to the page. Setting PG_private should also increment the
563  * refcount. The each user mapping also has a reference to the page.
564  *
565  * The pagecache pages are stored in a per-mapping radix tree, which is
566  * rooted at mapping->page_tree, and indexed by offset.
567  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
568  * lists, we instead now tag pages as dirty/writeback in the radix tree.
569  *
570  * All pagecache pages may be subject to I/O:
571  * - inode pages may need to be read from disk,
572  * - inode pages which have been modified and are MAP_SHARED may need
573  *   to be written back to the inode on disk,
574  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
575  *   modified may need to be swapped out to swap space and (later) to be read
576  *   back into memory.
577  */
578
579 /*
580  * The zone field is never updated after free_area_init_core()
581  * sets it, so none of the operations on it need to be atomic.
582  */
583
584
585 /*
586  * page->flags layout:
587  *
588  * There are three possibilities for how page->flags get
589  * laid out.  The first is for the normal case, without
590  * sparsemem.  The second is for sparsemem when there is
591  * plenty of space for node and section.  The last is when
592  * we have run out of space and have to fall back to an
593  * alternate (slower) way of determining the node.
594  *
595  * No sparsemem or sparsemem vmemmap: |       NODE     | ZONE | ... | FLAGS |
596  * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
597  * classic sparse no space for node:  | SECTION |     ZONE    | ... | FLAGS |
598  */
599 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
600 #define SECTIONS_WIDTH          SECTIONS_SHIFT
601 #else
602 #define SECTIONS_WIDTH          0
603 #endif
604
605 #define ZONES_WIDTH             ZONES_SHIFT
606
607 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
608 #define NODES_WIDTH             NODES_SHIFT
609 #else
610 #ifdef CONFIG_SPARSEMEM_VMEMMAP
611 #error "Vmemmap: No space for nodes field in page flags"
612 #endif
613 #define NODES_WIDTH             0
614 #endif
615
616 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
617 #define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
618 #define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
619 #define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
620
621 /*
622  * We are going to use the flags for the page to node mapping if its in
623  * there.  This includes the case where there is no node, so it is implicit.
624  */
625 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
626 #define NODE_NOT_IN_PAGE_FLAGS
627 #endif
628
629 /*
630  * Define the bit shifts to access each section.  For non-existent
631  * sections we define the shift as 0; that plus a 0 mask ensures
632  * the compiler will optimise away reference to them.
633  */
634 #define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
635 #define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
636 #define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
637
638 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
639 #ifdef NODE_NOT_IN_PAGE_FLAGS
640 #define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
641 #define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
642                                                 SECTIONS_PGOFF : ZONES_PGOFF)
643 #else
644 #define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
645 #define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
646                                                 NODES_PGOFF : ZONES_PGOFF)
647 #endif
648
649 #define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
650
651 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
652 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
653 #endif
654
655 #define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
656 #define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
657 #define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
658 #define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
659
660 static inline enum zone_type page_zonenum(const struct page *page)
661 {
662         return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
663 }
664
665 /*
666  * The identification function is only used by the buddy allocator for
667  * determining if two pages could be buddies. We are not really
668  * identifying a zone since we could be using a the section number
669  * id if we have not node id available in page flags.
670  * We guarantee only that it will return the same value for two
671  * combinable pages in a zone.
672  */
673 static inline int page_zone_id(struct page *page)
674 {
675         return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
676 }
677
678 static inline int zone_to_nid(struct zone *zone)
679 {
680 #ifdef CONFIG_NUMA
681         return zone->node;
682 #else
683         return 0;
684 #endif
685 }
686
687 #ifdef NODE_NOT_IN_PAGE_FLAGS
688 extern int page_to_nid(const struct page *page);
689 #else
690 static inline int page_to_nid(const struct page *page)
691 {
692         return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
693 }
694 #endif
695
696 static inline struct zone *page_zone(const struct page *page)
697 {
698         return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
699 }
700
701 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
702 static inline void set_page_section(struct page *page, unsigned long section)
703 {
704         page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
705         page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
706 }
707
708 static inline unsigned long page_to_section(const struct page *page)
709 {
710         return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
711 }
712 #endif
713
714 static inline void set_page_zone(struct page *page, enum zone_type zone)
715 {
716         page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
717         page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
718 }
719
720 static inline void set_page_node(struct page *page, unsigned long node)
721 {
722         page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
723         page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
724 }
725
726 static inline void set_page_links(struct page *page, enum zone_type zone,
727         unsigned long node, unsigned long pfn)
728 {
729         set_page_zone(page, zone);
730         set_page_node(page, node);
731 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
732         set_page_section(page, pfn_to_section_nr(pfn));
733 #endif
734 }
735
736 /*
737  * Some inline functions in vmstat.h depend on page_zone()
738  */
739 #include <linux/vmstat.h>
740
741 static __always_inline void *lowmem_page_address(const struct page *page)
742 {
743         return __va(PFN_PHYS(page_to_pfn(page)));
744 }
745
746 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
747 #define HASHED_PAGE_VIRTUAL
748 #endif
749
750 #if defined(WANT_PAGE_VIRTUAL)
751 #define page_address(page) ((page)->virtual)
752 #define set_page_address(page, address)                 \
753         do {                                            \
754                 (page)->virtual = (address);            \
755         } while(0)
756 #define page_address_init()  do { } while(0)
757 #endif
758
759 #if defined(HASHED_PAGE_VIRTUAL)
760 void *page_address(const struct page *page);
761 void set_page_address(struct page *page, void *virtual);
762 void page_address_init(void);
763 #endif
764
765 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
766 #define page_address(page) lowmem_page_address(page)
767 #define set_page_address(page, address)  do { } while(0)
768 #define page_address_init()  do { } while(0)
769 #endif
770
771 /*
772  * On an anonymous page mapped into a user virtual memory area,
773  * page->mapping points to its anon_vma, not to a struct address_space;
774  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
775  *
776  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
777  * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
778  * and then page->mapping points, not to an anon_vma, but to a private
779  * structure which KSM associates with that merged page.  See ksm.h.
780  *
781  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
782  *
783  * Please note that, confusingly, "page_mapping" refers to the inode
784  * address_space which maps the page from disk; whereas "page_mapped"
785  * refers to user virtual address space into which the page is mapped.
786  */
787 #define PAGE_MAPPING_ANON       1
788 #define PAGE_MAPPING_KSM        2
789 #define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
790
791 extern struct address_space swapper_space;
792 static inline struct address_space *page_mapping(struct page *page)
793 {
794         struct address_space *mapping = page->mapping;
795
796         VM_BUG_ON(PageSlab(page));
797         if (unlikely(PageSwapCache(page)))
798                 mapping = &swapper_space;
799         else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
800                 mapping = NULL;
801         return mapping;
802 }
803
804 /* Neutral page->mapping pointer to address_space or anon_vma or other */
805 static inline void *page_rmapping(struct page *page)
806 {
807         return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
808 }
809
810 extern struct address_space *__page_file_mapping(struct page *);
811
812 static inline
813 struct address_space *page_file_mapping(struct page *page)
814 {
815         if (unlikely(PageSwapCache(page)))
816                 return __page_file_mapping(page);
817
818         return page->mapping;
819 }
820
821 static inline int PageAnon(struct page *page)
822 {
823         return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
824 }
825
826 /*
827  * Return the pagecache index of the passed page.  Regular pagecache pages
828  * use ->index whereas swapcache pages use ->private
829  */
830 static inline pgoff_t page_index(struct page *page)
831 {
832         if (unlikely(PageSwapCache(page)))
833                 return page_private(page);
834         return page->index;
835 }
836
837 extern pgoff_t __page_file_index(struct page *page);
838
839 /*
840  * Return the file index of the page. Regular pagecache pages use ->index
841  * whereas swapcache pages use swp_offset(->private)
842  */
843 static inline pgoff_t page_file_index(struct page *page)
844 {
845         if (unlikely(PageSwapCache(page)))
846                 return __page_file_index(page);
847
848         return page->index;
849 }
850
851 /*
852  * Return true if this page is mapped into pagetables.
853  */
854 static inline int page_mapped(struct page *page)
855 {
856         return atomic_read(&(page)->_mapcount) >= 0;
857 }
858
859 /*
860  * Different kinds of faults, as returned by handle_mm_fault().
861  * Used to decide whether a process gets delivered SIGBUS or
862  * just gets major/minor fault counters bumped up.
863  */
864
865 #define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */
866
867 #define VM_FAULT_OOM    0x0001
868 #define VM_FAULT_SIGBUS 0x0002
869 #define VM_FAULT_MAJOR  0x0004
870 #define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
871 #define VM_FAULT_HWPOISON 0x0010        /* Hit poisoned small page */
872 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
873
874 #define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
875 #define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
876 #define VM_FAULT_RETRY  0x0400  /* ->fault blocked, must retry */
877
878 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
879
880 #define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
881                          VM_FAULT_HWPOISON_LARGE)
882
883 /* Encode hstate index for a hwpoisoned large page */
884 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
885 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
886
887 /*
888  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
889  */
890 extern void pagefault_out_of_memory(void);
891
892 #define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
893
894 /*
895  * Flags passed to show_mem() and show_free_areas() to suppress output in
896  * various contexts.
897  */
898 #define SHOW_MEM_FILTER_NODES   (0x0001u)       /* filter disallowed nodes */
899
900 extern void show_free_areas(unsigned int flags);
901 extern bool skip_free_areas_node(unsigned int flags, int nid);
902
903 int shmem_zero_setup(struct vm_area_struct *);
904
905 extern int can_do_mlock(void);
906 extern int user_shm_lock(size_t, struct user_struct *);
907 extern void user_shm_unlock(size_t, struct user_struct *);
908
909 /*
910  * Parameter block passed down to zap_pte_range in exceptional cases.
911  */
912 struct zap_details {
913         struct vm_area_struct *nonlinear_vma;   /* Check page->index if set */
914         struct address_space *check_mapping;    /* Check page->mapping if set */
915         pgoff_t first_index;                    /* Lowest page->index to unmap */
916         pgoff_t last_index;                     /* Highest page->index to unmap */
917 };
918
919 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
920                 pte_t pte);
921
922 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
923                 unsigned long size);
924 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
925                 unsigned long size, struct zap_details *);
926 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
927                 unsigned long start, unsigned long end);
928
929 /**
930  * mm_walk - callbacks for walk_page_range
931  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
932  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
933  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
934  *             this handler is required to be able to handle
935  *             pmd_trans_huge() pmds.  They may simply choose to
936  *             split_huge_page() instead of handling it explicitly.
937  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
938  * @pte_hole: if set, called for each hole at all levels
939  * @hugetlb_entry: if set, called for each hugetlb entry
940  *                 *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
941  *                            is used.
942  *
943  * (see walk_page_range for more details)
944  */
945 struct mm_walk {
946         int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
947         int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
948         int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
949         int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
950         int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
951         int (*hugetlb_entry)(pte_t *, unsigned long,
952                              unsigned long, unsigned long, struct mm_walk *);
953         struct mm_struct *mm;
954         void *private;
955 };
956
957 int walk_page_range(unsigned long addr, unsigned long end,
958                 struct mm_walk *walk);
959 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
960                 unsigned long end, unsigned long floor, unsigned long ceiling);
961 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
962                         struct vm_area_struct *vma);
963 void unmap_mapping_range(struct address_space *mapping,
964                 loff_t const holebegin, loff_t const holelen, int even_cows);
965 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
966         unsigned long *pfn);
967 int follow_phys(struct vm_area_struct *vma, unsigned long address,
968                 unsigned int flags, unsigned long *prot, resource_size_t *phys);
969 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
970                         void *buf, int len, int write);
971
972 static inline void unmap_shared_mapping_range(struct address_space *mapping,
973                 loff_t const holebegin, loff_t const holelen)
974 {
975         unmap_mapping_range(mapping, holebegin, holelen, 0);
976 }
977
978 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
979 extern void truncate_setsize(struct inode *inode, loff_t newsize);
980 extern int vmtruncate(struct inode *inode, loff_t offset);
981 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
982 int truncate_inode_page(struct address_space *mapping, struct page *page);
983 int generic_error_remove_page(struct address_space *mapping, struct page *page);
984 int invalidate_inode_page(struct page *page);
985
986 #ifdef CONFIG_MMU
987 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
988                         unsigned long address, unsigned int flags);
989 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
990                             unsigned long address, unsigned int fault_flags);
991 #else
992 static inline int handle_mm_fault(struct mm_struct *mm,
993                         struct vm_area_struct *vma, unsigned long address,
994                         unsigned int flags)
995 {
996         /* should never happen if there's no MMU */
997         BUG();
998         return VM_FAULT_SIGBUS;
999 }
1000 static inline int fixup_user_fault(struct task_struct *tsk,
1001                 struct mm_struct *mm, unsigned long address,
1002                 unsigned int fault_flags)
1003 {
1004         /* should never happen if there's no MMU */
1005         BUG();
1006         return -EFAULT;
1007 }
1008 #endif
1009
1010 extern int make_pages_present(unsigned long addr, unsigned long end);
1011 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1012 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1013                 void *buf, int len, int write);
1014
1015 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1016                      unsigned long start, int len, unsigned int foll_flags,
1017                      struct page **pages, struct vm_area_struct **vmas,
1018                      int *nonblocking);
1019 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1020                         unsigned long start, int nr_pages, int write, int force,
1021                         struct page **pages, struct vm_area_struct **vmas);
1022 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1023                         struct page **pages);
1024 struct kvec;
1025 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1026                         struct page **pages);
1027 int get_kernel_page(unsigned long start, int write, struct page **pages);
1028 struct page *get_dump_page(unsigned long addr);
1029
1030 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1031 extern void do_invalidatepage(struct page *page, unsigned long offset);
1032
1033 int __set_page_dirty_nobuffers(struct page *page);
1034 int __set_page_dirty_no_writeback(struct page *page);
1035 int redirty_page_for_writepage(struct writeback_control *wbc,
1036                                 struct page *page);
1037 void account_page_dirtied(struct page *page, struct address_space *mapping);
1038 void account_page_writeback(struct page *page);
1039 int set_page_dirty(struct page *page);
1040 int set_page_dirty_lock(struct page *page);
1041 int clear_page_dirty_for_io(struct page *page);
1042
1043 /* Is the vma a continuation of the stack vma above it? */
1044 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1045 {
1046         return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1047 }
1048
1049 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1050                                              unsigned long addr)
1051 {
1052         return (vma->vm_flags & VM_GROWSDOWN) &&
1053                 (vma->vm_start == addr) &&
1054                 !vma_growsdown(vma->vm_prev, addr);
1055 }
1056
1057 /* Is the vma a continuation of the stack vma below it? */
1058 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1059 {
1060         return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1061 }
1062
1063 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1064                                            unsigned long addr)
1065 {
1066         return (vma->vm_flags & VM_GROWSUP) &&
1067                 (vma->vm_end == addr) &&
1068                 !vma_growsup(vma->vm_next, addr);
1069 }
1070
1071 extern pid_t
1072 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1073
1074 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1075                 unsigned long old_addr, struct vm_area_struct *new_vma,
1076                 unsigned long new_addr, unsigned long len,
1077                 bool need_rmap_locks);
1078 extern unsigned long do_mremap(unsigned long addr,
1079                                unsigned long old_len, unsigned long new_len,
1080                                unsigned long flags, unsigned long new_addr);
1081 extern int mprotect_fixup(struct vm_area_struct *vma,
1082                           struct vm_area_struct **pprev, unsigned long start,
1083                           unsigned long end, unsigned long newflags);
1084
1085 /*
1086  * doesn't attempt to fault and will return short.
1087  */
1088 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1089                           struct page **pages);
1090 /*
1091  * per-process(per-mm_struct) statistics.
1092  */
1093 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1094 {
1095         long val = atomic_long_read(&mm->rss_stat.count[member]);
1096
1097 #ifdef SPLIT_RSS_COUNTING
1098         /*
1099          * counter is updated in asynchronous manner and may go to minus.
1100          * But it's never be expected number for users.
1101          */
1102         if (val < 0)
1103                 val = 0;
1104 #endif
1105         return (unsigned long)val;
1106 }
1107
1108 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1109 {
1110         atomic_long_add(value, &mm->rss_stat.count[member]);
1111 }
1112
1113 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1114 {
1115         atomic_long_inc(&mm->rss_stat.count[member]);
1116 }
1117
1118 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1119 {
1120         atomic_long_dec(&mm->rss_stat.count[member]);
1121 }
1122
1123 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1124 {
1125         return get_mm_counter(mm, MM_FILEPAGES) +
1126                 get_mm_counter(mm, MM_ANONPAGES);
1127 }
1128
1129 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1130 {
1131         return max(mm->hiwater_rss, get_mm_rss(mm));
1132 }
1133
1134 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1135 {
1136         return max(mm->hiwater_vm, mm->total_vm);
1137 }
1138
1139 static inline void update_hiwater_rss(struct mm_struct *mm)
1140 {
1141         unsigned long _rss = get_mm_rss(mm);
1142
1143         if ((mm)->hiwater_rss < _rss)
1144                 (mm)->hiwater_rss = _rss;
1145 }
1146
1147 static inline void update_hiwater_vm(struct mm_struct *mm)
1148 {
1149         if (mm->hiwater_vm < mm->total_vm)
1150                 mm->hiwater_vm = mm->total_vm;
1151 }
1152
1153 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1154                                          struct mm_struct *mm)
1155 {
1156         unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1157
1158         if (*maxrss < hiwater_rss)
1159                 *maxrss = hiwater_rss;
1160 }
1161
1162 #if defined(SPLIT_RSS_COUNTING)
1163 void sync_mm_rss(struct mm_struct *mm);
1164 #else
1165 static inline void sync_mm_rss(struct mm_struct *mm)
1166 {
1167 }
1168 #endif
1169
1170 int vma_wants_writenotify(struct vm_area_struct *vma);
1171
1172 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1173                                spinlock_t **ptl);
1174 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1175                                     spinlock_t **ptl)
1176 {
1177         pte_t *ptep;
1178         __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1179         return ptep;
1180 }
1181
1182 #ifdef __PAGETABLE_PUD_FOLDED
1183 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1184                                                 unsigned long address)
1185 {
1186         return 0;
1187 }
1188 #else
1189 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1190 #endif
1191
1192 #ifdef __PAGETABLE_PMD_FOLDED
1193 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1194                                                 unsigned long address)
1195 {
1196         return 0;
1197 }
1198 #else
1199 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1200 #endif
1201
1202 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1203                 pmd_t *pmd, unsigned long address);
1204 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1205
1206 /*
1207  * The following ifdef needed to get the 4level-fixup.h header to work.
1208  * Remove it when 4level-fixup.h has been removed.
1209  */
1210 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1211 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1212 {
1213         return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1214                 NULL: pud_offset(pgd, address);
1215 }
1216
1217 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1218 {
1219         return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1220                 NULL: pmd_offset(pud, address);
1221 }
1222 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1223
1224 #if USE_SPLIT_PTLOCKS
1225 /*
1226  * We tuck a spinlock to guard each pagetable page into its struct page,
1227  * at page->private, with BUILD_BUG_ON to make sure that this will not
1228  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1229  * When freeing, reset page->mapping so free_pages_check won't complain.
1230  */
1231 #define __pte_lockptr(page)     &((page)->ptl)
1232 #define pte_lock_init(_page)    do {                                    \
1233         spin_lock_init(__pte_lockptr(_page));                           \
1234 } while (0)
1235 #define pte_lock_deinit(page)   ((page)->mapping = NULL)
1236 #define pte_lockptr(mm, pmd)    ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1237 #else   /* !USE_SPLIT_PTLOCKS */
1238 /*
1239  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1240  */
1241 #define pte_lock_init(page)     do {} while (0)
1242 #define pte_lock_deinit(page)   do {} while (0)
1243 #define pte_lockptr(mm, pmd)    ({(void)(pmd); &(mm)->page_table_lock;})
1244 #endif /* USE_SPLIT_PTLOCKS */
1245
1246 static inline void pgtable_page_ctor(struct page *page)
1247 {
1248         pte_lock_init(page);
1249         inc_zone_page_state(page, NR_PAGETABLE);
1250 }
1251
1252 static inline void pgtable_page_dtor(struct page *page)
1253 {
1254         pte_lock_deinit(page);
1255         dec_zone_page_state(page, NR_PAGETABLE);
1256 }
1257
1258 #define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1259 ({                                                      \
1260         spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1261         pte_t *__pte = pte_offset_map(pmd, address);    \
1262         *(ptlp) = __ptl;                                \
1263         spin_lock(__ptl);                               \
1264         __pte;                                          \
1265 })
1266
1267 #define pte_unmap_unlock(pte, ptl)      do {            \
1268         spin_unlock(ptl);                               \
1269         pte_unmap(pte);                                 \
1270 } while (0)
1271
1272 #define pte_alloc_map(mm, vma, pmd, address)                            \
1273         ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,    \
1274                                                         pmd, address))? \
1275          NULL: pte_offset_map(pmd, address))
1276
1277 #define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
1278         ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,   \
1279                                                         pmd, address))? \
1280                 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1281
1282 #define pte_alloc_kernel(pmd, address)                  \
1283         ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1284                 NULL: pte_offset_kernel(pmd, address))
1285
1286 extern void free_area_init(unsigned long * zones_size);
1287 extern void free_area_init_node(int nid, unsigned long * zones_size,
1288                 unsigned long zone_start_pfn, unsigned long *zholes_size);
1289 extern void free_initmem(void);
1290
1291 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1292 /*
1293  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1294  * zones, allocate the backing mem_map and account for memory holes in a more
1295  * architecture independent manner. This is a substitute for creating the
1296  * zone_sizes[] and zholes_size[] arrays and passing them to
1297  * free_area_init_node()
1298  *
1299  * An architecture is expected to register range of page frames backed by
1300  * physical memory with memblock_add[_node]() before calling
1301  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1302  * usage, an architecture is expected to do something like
1303  *
1304  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1305  *                                                       max_highmem_pfn};
1306  * for_each_valid_physical_page_range()
1307  *      memblock_add_node(base, size, nid)
1308  * free_area_init_nodes(max_zone_pfns);
1309  *
1310  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1311  * registered physical page range.  Similarly
1312  * sparse_memory_present_with_active_regions() calls memory_present() for
1313  * each range when SPARSEMEM is enabled.
1314  *
1315  * See mm/page_alloc.c for more information on each function exposed by
1316  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1317  */
1318 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1319 unsigned long node_map_pfn_alignment(void);
1320 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1321                                                 unsigned long end_pfn);
1322 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1323                                                 unsigned long end_pfn);
1324 extern void get_pfn_range_for_nid(unsigned int nid,
1325                         unsigned long *start_pfn, unsigned long *end_pfn);
1326 extern unsigned long find_min_pfn_with_active_regions(void);
1327 extern void free_bootmem_with_active_regions(int nid,
1328                                                 unsigned long max_low_pfn);
1329 extern void sparse_memory_present_with_active_regions(int nid);
1330
1331 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1332
1333 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1334     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1335 static inline int __early_pfn_to_nid(unsigned long pfn)
1336 {
1337         return 0;
1338 }
1339 #else
1340 /* please see mm/page_alloc.c */
1341 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1342 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1343 /* there is a per-arch backend function. */
1344 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1345 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1346 #endif
1347
1348 extern void set_dma_reserve(unsigned long new_dma_reserve);
1349 extern void memmap_init_zone(unsigned long, int, unsigned long,
1350                                 unsigned long, enum memmap_context);
1351 extern void setup_per_zone_wmarks(void);
1352 extern int __meminit init_per_zone_wmark_min(void);
1353 extern void mem_init(void);
1354 extern void __init mmap_init(void);
1355 extern void show_mem(unsigned int flags);
1356 extern void si_meminfo(struct sysinfo * val);
1357 extern void si_meminfo_node(struct sysinfo *val, int nid);
1358 extern int after_bootmem;
1359
1360 extern __printf(3, 4)
1361 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1362
1363 extern void setup_per_cpu_pageset(void);
1364
1365 extern void zone_pcp_update(struct zone *zone);
1366 extern void zone_pcp_reset(struct zone *zone);
1367
1368 /* nommu.c */
1369 extern atomic_long_t mmap_pages_allocated;
1370 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1371
1372 /* interval_tree.c */
1373 void vma_interval_tree_insert(struct vm_area_struct *node,
1374                               struct rb_root *root);
1375 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1376                                     struct vm_area_struct *prev,
1377                                     struct rb_root *root);
1378 void vma_interval_tree_remove(struct vm_area_struct *node,
1379                               struct rb_root *root);
1380 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1381                                 unsigned long start, unsigned long last);
1382 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1383                                 unsigned long start, unsigned long last);
1384
1385 #define vma_interval_tree_foreach(vma, root, start, last)               \
1386         for (vma = vma_interval_tree_iter_first(root, start, last);     \
1387              vma; vma = vma_interval_tree_iter_next(vma, start, last))
1388
1389 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1390                                         struct list_head *list)
1391 {
1392         list_add_tail(&vma->shared.nonlinear, list);
1393 }
1394
1395 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1396                                    struct rb_root *root);
1397 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1398                                    struct rb_root *root);
1399 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1400         struct rb_root *root, unsigned long start, unsigned long last);
1401 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1402         struct anon_vma_chain *node, unsigned long start, unsigned long last);
1403 #ifdef CONFIG_DEBUG_VM_RB
1404 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1405 #endif
1406
1407 #define anon_vma_interval_tree_foreach(avc, root, start, last)           \
1408         for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1409              avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1410
1411 /* mmap.c */
1412 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1413 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1414         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1415 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1416         struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1417         unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1418         struct mempolicy *);
1419 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1420 extern int split_vma(struct mm_struct *,
1421         struct vm_area_struct *, unsigned long addr, int new_below);
1422 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1423 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1424         struct rb_node **, struct rb_node *);
1425 extern void unlink_file_vma(struct vm_area_struct *);
1426 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1427         unsigned long addr, unsigned long len, pgoff_t pgoff,
1428         bool *need_rmap_locks);
1429 extern void exit_mmap(struct mm_struct *);
1430
1431 extern int mm_take_all_locks(struct mm_struct *mm);
1432 extern void mm_drop_all_locks(struct mm_struct *mm);
1433
1434 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1435 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1436
1437 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1438 extern int install_special_mapping(struct mm_struct *mm,
1439                                    unsigned long addr, unsigned long len,
1440                                    unsigned long flags, struct page **pages);
1441
1442 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1443
1444 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1445         unsigned long len, unsigned long flags,
1446         vm_flags_t vm_flags, unsigned long pgoff);
1447 extern unsigned long do_mmap_pgoff(struct file *, unsigned long,
1448         unsigned long, unsigned long,
1449         unsigned long, unsigned long);
1450 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1451
1452 /* These take the mm semaphore themselves */
1453 extern unsigned long vm_brk(unsigned long, unsigned long);
1454 extern int vm_munmap(unsigned long, size_t);
1455 extern unsigned long vm_mmap(struct file *, unsigned long,
1456         unsigned long, unsigned long,
1457         unsigned long, unsigned long);
1458
1459 /* truncate.c */
1460 extern void truncate_inode_pages(struct address_space *, loff_t);
1461 extern void truncate_inode_pages_range(struct address_space *,
1462                                        loff_t lstart, loff_t lend);
1463
1464 /* generic vm_area_ops exported for stackable file systems */
1465 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1466 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1467
1468 /* mm/page-writeback.c */
1469 int write_one_page(struct page *page, int wait);
1470 void task_dirty_inc(struct task_struct *tsk);
1471
1472 /* readahead.c */
1473 #define VM_MAX_READAHEAD        128     /* kbytes */
1474 #define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
1475
1476 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1477                         pgoff_t offset, unsigned long nr_to_read);
1478
1479 void page_cache_sync_readahead(struct address_space *mapping,
1480                                struct file_ra_state *ra,
1481                                struct file *filp,
1482                                pgoff_t offset,
1483                                unsigned long size);
1484
1485 void page_cache_async_readahead(struct address_space *mapping,
1486                                 struct file_ra_state *ra,
1487                                 struct file *filp,
1488                                 struct page *pg,
1489                                 pgoff_t offset,
1490                                 unsigned long size);
1491
1492 unsigned long max_sane_readahead(unsigned long nr);
1493 unsigned long ra_submit(struct file_ra_state *ra,
1494                         struct address_space *mapping,
1495                         struct file *filp);
1496
1497 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1498 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1499
1500 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1501 extern int expand_downwards(struct vm_area_struct *vma,
1502                 unsigned long address);
1503 #if VM_GROWSUP
1504 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1505 #else
1506   #define expand_upwards(vma, address) do { } while (0)
1507 #endif
1508
1509 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1510 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1511 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1512                                              struct vm_area_struct **pprev);
1513
1514 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1515    NULL if none.  Assume start_addr < end_addr. */
1516 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1517 {
1518         struct vm_area_struct * vma = find_vma(mm,start_addr);
1519
1520         if (vma && end_addr <= vma->vm_start)
1521                 vma = NULL;
1522         return vma;
1523 }
1524
1525 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1526 {
1527         return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1528 }
1529
1530 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1531 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1532                                 unsigned long vm_start, unsigned long vm_end)
1533 {
1534         struct vm_area_struct *vma = find_vma(mm, vm_start);
1535
1536         if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1537                 vma = NULL;
1538
1539         return vma;
1540 }
1541
1542 #ifdef CONFIG_MMU
1543 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1544 #else
1545 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1546 {
1547         return __pgprot(0);
1548 }
1549 #endif
1550
1551 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1552 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1553                         unsigned long pfn, unsigned long size, pgprot_t);
1554 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1555 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1556                         unsigned long pfn);
1557 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1558                         unsigned long pfn);
1559
1560 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1561                         unsigned int foll_flags);
1562 #define FOLL_WRITE      0x01    /* check pte is writable */
1563 #define FOLL_TOUCH      0x02    /* mark page accessed */
1564 #define FOLL_GET        0x04    /* do get_page on page */
1565 #define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
1566 #define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
1567 #define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
1568                                  * and return without waiting upon it */
1569 #define FOLL_MLOCK      0x40    /* mark page as mlocked */
1570 #define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
1571 #define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
1572
1573 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1574                         void *data);
1575 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1576                                unsigned long size, pte_fn_t fn, void *data);
1577
1578 #ifdef CONFIG_PROC_FS
1579 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1580 #else
1581 static inline void vm_stat_account(struct mm_struct *mm,
1582                         unsigned long flags, struct file *file, long pages)
1583 {
1584         mm->total_vm += pages;
1585 }
1586 #endif /* CONFIG_PROC_FS */
1587
1588 #ifdef CONFIG_DEBUG_PAGEALLOC
1589 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1590 #ifdef CONFIG_HIBERNATION
1591 extern bool kernel_page_present(struct page *page);
1592 #endif /* CONFIG_HIBERNATION */
1593 #else
1594 static inline void
1595 kernel_map_pages(struct page *page, int numpages, int enable) {}
1596 #ifdef CONFIG_HIBERNATION
1597 static inline bool kernel_page_present(struct page *page) { return true; }
1598 #endif /* CONFIG_HIBERNATION */
1599 #endif
1600
1601 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1602 #ifdef  __HAVE_ARCH_GATE_AREA
1603 int in_gate_area_no_mm(unsigned long addr);
1604 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1605 #else
1606 int in_gate_area_no_mm(unsigned long addr);
1607 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1608 #endif  /* __HAVE_ARCH_GATE_AREA */
1609
1610 int drop_caches_sysctl_handler(struct ctl_table *, int,
1611                                         void __user *, size_t *, loff_t *);
1612 unsigned long shrink_slab(struct shrink_control *shrink,
1613                           unsigned long nr_pages_scanned,
1614                           unsigned long lru_pages);
1615
1616 #ifndef CONFIG_MMU
1617 #define randomize_va_space 0
1618 #else
1619 extern int randomize_va_space;
1620 #endif
1621
1622 const char * arch_vma_name(struct vm_area_struct *vma);
1623 void print_vma_addr(char *prefix, unsigned long rip);
1624
1625 void sparse_mem_maps_populate_node(struct page **map_map,
1626                                    unsigned long pnum_begin,
1627                                    unsigned long pnum_end,
1628                                    unsigned long map_count,
1629                                    int nodeid);
1630
1631 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1632 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1633 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1634 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1635 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1636 void *vmemmap_alloc_block(unsigned long size, int node);
1637 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1638 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1639 int vmemmap_populate_basepages(struct page *start_page,
1640                                                 unsigned long pages, int node);
1641 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1642 void vmemmap_populate_print_last(void);
1643
1644
1645 enum mf_flags {
1646         MF_COUNT_INCREASED = 1 << 0,
1647         MF_ACTION_REQUIRED = 1 << 1,
1648         MF_MUST_KILL = 1 << 2,
1649 };
1650 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1651 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1652 extern int unpoison_memory(unsigned long pfn);
1653 extern int sysctl_memory_failure_early_kill;
1654 extern int sysctl_memory_failure_recovery;
1655 extern void shake_page(struct page *p, int access);
1656 extern atomic_long_t mce_bad_pages;
1657 extern int soft_offline_page(struct page *page, int flags);
1658
1659 extern void dump_page(struct page *page);
1660
1661 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1662 extern void clear_huge_page(struct page *page,
1663                             unsigned long addr,
1664                             unsigned int pages_per_huge_page);
1665 extern void copy_user_huge_page(struct page *dst, struct page *src,
1666                                 unsigned long addr, struct vm_area_struct *vma,
1667                                 unsigned int pages_per_huge_page);
1668 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1669
1670 #ifdef CONFIG_DEBUG_PAGEALLOC
1671 extern unsigned int _debug_guardpage_minorder;
1672
1673 static inline unsigned int debug_guardpage_minorder(void)
1674 {
1675         return _debug_guardpage_minorder;
1676 }
1677
1678 static inline bool page_is_guard(struct page *page)
1679 {
1680         return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1681 }
1682 #else
1683 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1684 static inline bool page_is_guard(struct page *page) { return false; }
1685 #endif /* CONFIG_DEBUG_PAGEALLOC */
1686
1687 extern void reset_zone_present_pages(void);
1688 extern void fixup_zone_present_pages(int nid, unsigned long start_pfn,
1689                                 unsigned long end_pfn);
1690
1691 #endif /* __KERNEL__ */
1692 #endif /* _LINUX_MM_H */