Merge tag 'iommu-updates-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / include / linux / jiffies.h
1 #ifndef _LINUX_JIFFIES_H
2 #define _LINUX_JIFFIES_H
3
4 #include <linux/cache.h>
5 #include <linux/math64.h>
6 #include <linux/kernel.h>
7 #include <linux/types.h>
8 #include <linux/time.h>
9 #include <linux/timex.h>
10 #include <asm/param.h>                  /* for HZ */
11 #include <generated/timeconst.h>
12
13 /*
14  * The following defines establish the engineering parameters of the PLL
15  * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
16  * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
17  * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
18  * nearest power of two in order to avoid hardware multiply operations.
19  */
20 #if HZ >= 12 && HZ < 24
21 # define SHIFT_HZ       4
22 #elif HZ >= 24 && HZ < 48
23 # define SHIFT_HZ       5
24 #elif HZ >= 48 && HZ < 96
25 # define SHIFT_HZ       6
26 #elif HZ >= 96 && HZ < 192
27 # define SHIFT_HZ       7
28 #elif HZ >= 192 && HZ < 384
29 # define SHIFT_HZ       8
30 #elif HZ >= 384 && HZ < 768
31 # define SHIFT_HZ       9
32 #elif HZ >= 768 && HZ < 1536
33 # define SHIFT_HZ       10
34 #elif HZ >= 1536 && HZ < 3072
35 # define SHIFT_HZ       11
36 #elif HZ >= 3072 && HZ < 6144
37 # define SHIFT_HZ       12
38 #elif HZ >= 6144 && HZ < 12288
39 # define SHIFT_HZ       13
40 #else
41 # error Invalid value of HZ.
42 #endif
43
44 /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
45  * improve accuracy by shifting LSH bits, hence calculating:
46  *     (NOM << LSH) / DEN
47  * This however means trouble for large NOM, because (NOM << LSH) may no
48  * longer fit in 32 bits. The following way of calculating this gives us
49  * some slack, under the following conditions:
50  *   - (NOM / DEN) fits in (32 - LSH) bits.
51  *   - (NOM % DEN) fits in (32 - LSH) bits.
52  */
53 #define SH_DIV(NOM,DEN,LSH) (   (((NOM) / (DEN)) << (LSH))              \
54                              + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
55
56 /* LATCH is used in the interval timer and ftape setup. */
57 #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ)   /* For divider */
58
59 extern int register_refined_jiffies(long clock_tick_rate);
60
61 /* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */
62 #define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ)
63
64 /* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
65 #define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
66
67 /*
68  * The 64-bit value is not atomic - you MUST NOT read it
69  * without sampling the sequence number in jiffies_lock.
70  * get_jiffies_64() will do this for you as appropriate.
71  */
72 extern u64 __cacheline_aligned_in_smp jiffies_64;
73 extern unsigned long volatile __cacheline_aligned_in_smp jiffies;
74
75 #if (BITS_PER_LONG < 64)
76 u64 get_jiffies_64(void);
77 #else
78 static inline u64 get_jiffies_64(void)
79 {
80         return (u64)jiffies;
81 }
82 #endif
83
84 /*
85  *      These inlines deal with timer wrapping correctly. You are 
86  *      strongly encouraged to use them
87  *      1. Because people otherwise forget
88  *      2. Because if the timer wrap changes in future you won't have to
89  *         alter your driver code.
90  *
91  * time_after(a,b) returns true if the time a is after time b.
92  *
93  * Do this with "<0" and ">=0" to only test the sign of the result. A
94  * good compiler would generate better code (and a really good compiler
95  * wouldn't care). Gcc is currently neither.
96  */
97 #define time_after(a,b)         \
98         (typecheck(unsigned long, a) && \
99          typecheck(unsigned long, b) && \
100          ((long)((b) - (a)) < 0))
101 #define time_before(a,b)        time_after(b,a)
102
103 #define time_after_eq(a,b)      \
104         (typecheck(unsigned long, a) && \
105          typecheck(unsigned long, b) && \
106          ((long)((a) - (b)) >= 0))
107 #define time_before_eq(a,b)     time_after_eq(b,a)
108
109 /*
110  * Calculate whether a is in the range of [b, c].
111  */
112 #define time_in_range(a,b,c) \
113         (time_after_eq(a,b) && \
114          time_before_eq(a,c))
115
116 /*
117  * Calculate whether a is in the range of [b, c).
118  */
119 #define time_in_range_open(a,b,c) \
120         (time_after_eq(a,b) && \
121          time_before(a,c))
122
123 /* Same as above, but does so with platform independent 64bit types.
124  * These must be used when utilizing jiffies_64 (i.e. return value of
125  * get_jiffies_64() */
126 #define time_after64(a,b)       \
127         (typecheck(__u64, a) && \
128          typecheck(__u64, b) && \
129          ((__s64)((b) - (a)) < 0))
130 #define time_before64(a,b)      time_after64(b,a)
131
132 #define time_after_eq64(a,b)    \
133         (typecheck(__u64, a) && \
134          typecheck(__u64, b) && \
135          ((__s64)((a) - (b)) >= 0))
136 #define time_before_eq64(a,b)   time_after_eq64(b,a)
137
138 #define time_in_range64(a, b, c) \
139         (time_after_eq64(a, b) && \
140          time_before_eq64(a, c))
141
142 /*
143  * These four macros compare jiffies and 'a' for convenience.
144  */
145
146 /* time_is_before_jiffies(a) return true if a is before jiffies */
147 #define time_is_before_jiffies(a) time_after(jiffies, a)
148 #define time_is_before_jiffies64(a) time_after64(get_jiffies_64(), a)
149
150 /* time_is_after_jiffies(a) return true if a is after jiffies */
151 #define time_is_after_jiffies(a) time_before(jiffies, a)
152 #define time_is_after_jiffies64(a) time_before64(get_jiffies_64(), a)
153
154 /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
155 #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
156 #define time_is_before_eq_jiffies64(a) time_after_eq64(get_jiffies_64(), a)
157
158 /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
159 #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
160 #define time_is_after_eq_jiffies64(a) time_before_eq64(get_jiffies_64(), a)
161
162 /*
163  * Have the 32 bit jiffies value wrap 5 minutes after boot
164  * so jiffies wrap bugs show up earlier.
165  */
166 #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
167
168 /*
169  * Change timeval to jiffies, trying to avoid the
170  * most obvious overflows..
171  *
172  * And some not so obvious.
173  *
174  * Note that we don't want to return LONG_MAX, because
175  * for various timeout reasons we often end up having
176  * to wait "jiffies+1" in order to guarantee that we wait
177  * at _least_ "jiffies" - so "jiffies+1" had better still
178  * be positive.
179  */
180 #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
181
182 extern unsigned long preset_lpj;
183
184 /*
185  * We want to do realistic conversions of time so we need to use the same
186  * values the update wall clock code uses as the jiffies size.  This value
187  * is: TICK_NSEC (which is defined in timex.h).  This
188  * is a constant and is in nanoseconds.  We will use scaled math
189  * with a set of scales defined here as SEC_JIFFIE_SC,  USEC_JIFFIE_SC and
190  * NSEC_JIFFIE_SC.  Note that these defines contain nothing but
191  * constants and so are computed at compile time.  SHIFT_HZ (computed in
192  * timex.h) adjusts the scaling for different HZ values.
193
194  * Scaled math???  What is that?
195  *
196  * Scaled math is a way to do integer math on values that would,
197  * otherwise, either overflow, underflow, or cause undesired div
198  * instructions to appear in the execution path.  In short, we "scale"
199  * up the operands so they take more bits (more precision, less
200  * underflow), do the desired operation and then "scale" the result back
201  * by the same amount.  If we do the scaling by shifting we avoid the
202  * costly mpy and the dastardly div instructions.
203
204  * Suppose, for example, we want to convert from seconds to jiffies
205  * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE.  The
206  * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
207  * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
208  * might calculate at compile time, however, the result will only have
209  * about 3-4 bits of precision (less for smaller values of HZ).
210  *
211  * So, we scale as follows:
212  * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
213  * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
214  * Then we make SCALE a power of two so:
215  * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
216  * Now we define:
217  * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
218  * jiff = (sec * SEC_CONV) >> SCALE;
219  *
220  * Often the math we use will expand beyond 32-bits so we tell C how to
221  * do this and pass the 64-bit result of the mpy through the ">> SCALE"
222  * which should take the result back to 32-bits.  We want this expansion
223  * to capture as much precision as possible.  At the same time we don't
224  * want to overflow so we pick the SCALE to avoid this.  In this file,
225  * that means using a different scale for each range of HZ values (as
226  * defined in timex.h).
227  *
228  * For those who want to know, gcc will give a 64-bit result from a "*"
229  * operator if the result is a long long AND at least one of the
230  * operands is cast to long long (usually just prior to the "*" so as
231  * not to confuse it into thinking it really has a 64-bit operand,
232  * which, buy the way, it can do, but it takes more code and at least 2
233  * mpys).
234
235  * We also need to be aware that one second in nanoseconds is only a
236  * couple of bits away from overflowing a 32-bit word, so we MUST use
237  * 64-bits to get the full range time in nanoseconds.
238
239  */
240
241 /*
242  * Here are the scales we will use.  One for seconds, nanoseconds and
243  * microseconds.
244  *
245  * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
246  * check if the sign bit is set.  If not, we bump the shift count by 1.
247  * (Gets an extra bit of precision where we can use it.)
248  * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
249  * Haven't tested others.
250
251  * Limits of cpp (for #if expressions) only long (no long long), but
252  * then we only need the most signicant bit.
253  */
254
255 #define SEC_JIFFIE_SC (31 - SHIFT_HZ)
256 #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
257 #undef SEC_JIFFIE_SC
258 #define SEC_JIFFIE_SC (32 - SHIFT_HZ)
259 #endif
260 #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
261 #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
262                                 TICK_NSEC -1) / (u64)TICK_NSEC))
263
264 #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
265                                         TICK_NSEC -1) / (u64)TICK_NSEC))
266 /*
267  * The maximum jiffie value is (MAX_INT >> 1).  Here we translate that
268  * into seconds.  The 64-bit case will overflow if we are not careful,
269  * so use the messy SH_DIV macro to do it.  Still all constants.
270  */
271 #if BITS_PER_LONG < 64
272 # define MAX_SEC_IN_JIFFIES \
273         (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
274 #else   /* take care of overflow on 64 bits machines */
275 # define MAX_SEC_IN_JIFFIES \
276         (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
277
278 #endif
279
280 /*
281  * Convert various time units to each other:
282  */
283 extern unsigned int jiffies_to_msecs(const unsigned long j);
284 extern unsigned int jiffies_to_usecs(const unsigned long j);
285
286 static inline u64 jiffies_to_nsecs(const unsigned long j)
287 {
288         return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC;
289 }
290
291 extern u64 jiffies64_to_nsecs(u64 j);
292
293 extern unsigned long __msecs_to_jiffies(const unsigned int m);
294 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
295 /*
296  * HZ is equal to or smaller than 1000, and 1000 is a nice round
297  * multiple of HZ, divide with the factor between them, but round
298  * upwards:
299  */
300 static inline unsigned long _msecs_to_jiffies(const unsigned int m)
301 {
302         return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
303 }
304 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
305 /*
306  * HZ is larger than 1000, and HZ is a nice round multiple of 1000 -
307  * simply multiply with the factor between them.
308  *
309  * But first make sure the multiplication result cannot overflow:
310  */
311 static inline unsigned long _msecs_to_jiffies(const unsigned int m)
312 {
313         if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
314                 return MAX_JIFFY_OFFSET;
315         return m * (HZ / MSEC_PER_SEC);
316 }
317 #else
318 /*
319  * Generic case - multiply, round and divide. But first check that if
320  * we are doing a net multiplication, that we wouldn't overflow:
321  */
322 static inline unsigned long _msecs_to_jiffies(const unsigned int m)
323 {
324         if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
325                 return MAX_JIFFY_OFFSET;
326
327         return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32;
328 }
329 #endif
330 /**
331  * msecs_to_jiffies: - convert milliseconds to jiffies
332  * @m:  time in milliseconds
333  *
334  * conversion is done as follows:
335  *
336  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
337  *
338  * - 'too large' values [that would result in larger than
339  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
340  *
341  * - all other values are converted to jiffies by either multiplying
342  *   the input value by a factor or dividing it with a factor and
343  *   handling any 32-bit overflows.
344  *   for the details see __msecs_to_jiffies()
345  *
346  * msecs_to_jiffies() checks for the passed in value being a constant
347  * via __builtin_constant_p() allowing gcc to eliminate most of the
348  * code, __msecs_to_jiffies() is called if the value passed does not
349  * allow constant folding and the actual conversion must be done at
350  * runtime.
351  * the HZ range specific helpers _msecs_to_jiffies() are called both
352  * directly here and from __msecs_to_jiffies() in the case where
353  * constant folding is not possible.
354  */
355 static __always_inline unsigned long msecs_to_jiffies(const unsigned int m)
356 {
357         if (__builtin_constant_p(m)) {
358                 if ((int)m < 0)
359                         return MAX_JIFFY_OFFSET;
360                 return _msecs_to_jiffies(m);
361         } else {
362                 return __msecs_to_jiffies(m);
363         }
364 }
365
366 extern unsigned long __usecs_to_jiffies(const unsigned int u);
367 #if !(USEC_PER_SEC % HZ)
368 static inline unsigned long _usecs_to_jiffies(const unsigned int u)
369 {
370         return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
371 }
372 #else
373 static inline unsigned long _usecs_to_jiffies(const unsigned int u)
374 {
375         return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
376                 >> USEC_TO_HZ_SHR32;
377 }
378 #endif
379
380 /**
381  * usecs_to_jiffies: - convert microseconds to jiffies
382  * @u:  time in microseconds
383  *
384  * conversion is done as follows:
385  *
386  * - 'too large' values [that would result in larger than
387  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
388  *
389  * - all other values are converted to jiffies by either multiplying
390  *   the input value by a factor or dividing it with a factor and
391  *   handling any 32-bit overflows as for msecs_to_jiffies.
392  *
393  * usecs_to_jiffies() checks for the passed in value being a constant
394  * via __builtin_constant_p() allowing gcc to eliminate most of the
395  * code, __usecs_to_jiffies() is called if the value passed does not
396  * allow constant folding and the actual conversion must be done at
397  * runtime.
398  * the HZ range specific helpers _usecs_to_jiffies() are called both
399  * directly here and from __msecs_to_jiffies() in the case where
400  * constant folding is not possible.
401  */
402 static __always_inline unsigned long usecs_to_jiffies(const unsigned int u)
403 {
404         if (__builtin_constant_p(u)) {
405                 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
406                         return MAX_JIFFY_OFFSET;
407                 return _usecs_to_jiffies(u);
408         } else {
409                 return __usecs_to_jiffies(u);
410         }
411 }
412
413 extern unsigned long timespec64_to_jiffies(const struct timespec64 *value);
414 extern void jiffies_to_timespec64(const unsigned long jiffies,
415                                   struct timespec64 *value);
416 static inline unsigned long timespec_to_jiffies(const struct timespec *value)
417 {
418         struct timespec64 ts = timespec_to_timespec64(*value);
419
420         return timespec64_to_jiffies(&ts);
421 }
422
423 static inline void jiffies_to_timespec(const unsigned long jiffies,
424                                        struct timespec *value)
425 {
426         struct timespec64 ts;
427
428         jiffies_to_timespec64(jiffies, &ts);
429         *value = timespec64_to_timespec(ts);
430 }
431
432 extern unsigned long timeval_to_jiffies(const struct timeval *value);
433 extern void jiffies_to_timeval(const unsigned long jiffies,
434                                struct timeval *value);
435
436 extern clock_t jiffies_to_clock_t(unsigned long x);
437 static inline clock_t jiffies_delta_to_clock_t(long delta)
438 {
439         return jiffies_to_clock_t(max(0L, delta));
440 }
441
442 extern unsigned long clock_t_to_jiffies(unsigned long x);
443 extern u64 jiffies_64_to_clock_t(u64 x);
444 extern u64 nsec_to_clock_t(u64 x);
445 extern u64 nsecs_to_jiffies64(u64 n);
446 extern unsigned long nsecs_to_jiffies(u64 n);
447
448 #define TIMESTAMP_SIZE  30
449
450 #endif