Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[sfrench/cifs-2.6.git] / include / linux / fscrypt.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fscrypt.h: declarations for per-file encryption
4  *
5  * Filesystems that implement per-file encryption include this header
6  * file with the __FS_HAS_ENCRYPTION set according to whether that filesystem
7  * is being built with encryption support or not.
8  *
9  * Copyright (C) 2015, Google, Inc.
10  *
11  * Written by Michael Halcrow, 2015.
12  * Modified by Jaegeuk Kim, 2015.
13  */
14 #ifndef _LINUX_FSCRYPT_H
15 #define _LINUX_FSCRYPT_H
16
17 #include <linux/key.h>
18 #include <linux/fs.h>
19 #include <linux/mm.h>
20 #include <linux/bio.h>
21 #include <linux/dcache.h>
22 #include <crypto/skcipher.h>
23 #include <uapi/linux/fs.h>
24
25 #define FS_CRYPTO_BLOCK_SIZE            16
26
27 struct fscrypt_info;
28
29 struct fscrypt_ctx {
30         union {
31                 struct {
32                         struct page *bounce_page;       /* Ciphertext page */
33                         struct page *control_page;      /* Original page  */
34                 } w;
35                 struct {
36                         struct bio *bio;
37                         struct work_struct work;
38                 } r;
39                 struct list_head free_list;     /* Free list */
40         };
41         u8 flags;                               /* Flags */
42 };
43
44 /**
45  * For encrypted symlinks, the ciphertext length is stored at the beginning
46  * of the string in little-endian format.
47  */
48 struct fscrypt_symlink_data {
49         __le16 len;
50         char encrypted_path[1];
51 } __packed;
52
53 struct fscrypt_str {
54         unsigned char *name;
55         u32 len;
56 };
57
58 struct fscrypt_name {
59         const struct qstr *usr_fname;
60         struct fscrypt_str disk_name;
61         u32 hash;
62         u32 minor_hash;
63         struct fscrypt_str crypto_buf;
64 };
65
66 #define FSTR_INIT(n, l)         { .name = n, .len = l }
67 #define FSTR_TO_QSTR(f)         QSTR_INIT((f)->name, (f)->len)
68 #define fname_name(p)           ((p)->disk_name.name)
69 #define fname_len(p)            ((p)->disk_name.len)
70
71 /*
72  * fscrypt superblock flags
73  */
74 #define FS_CFLG_OWN_PAGES (1U << 1)
75
76 /*
77  * crypto opertions for filesystems
78  */
79 struct fscrypt_operations {
80         unsigned int flags;
81         const char *key_prefix;
82         int (*get_context)(struct inode *, void *, size_t);
83         int (*set_context)(struct inode *, const void *, size_t, void *);
84         bool (*dummy_context)(struct inode *);
85         bool (*empty_dir)(struct inode *);
86         unsigned (*max_namelen)(struct inode *);
87 };
88
89 /* Maximum value for the third parameter of fscrypt_operations.set_context(). */
90 #define FSCRYPT_SET_CONTEXT_MAX_SIZE    28
91
92 static inline bool fscrypt_dummy_context_enabled(struct inode *inode)
93 {
94         if (inode->i_sb->s_cop->dummy_context &&
95                                 inode->i_sb->s_cop->dummy_context(inode))
96                 return true;
97         return false;
98 }
99
100 static inline bool fscrypt_valid_enc_modes(u32 contents_mode,
101                                         u32 filenames_mode)
102 {
103         if (contents_mode == FS_ENCRYPTION_MODE_AES_128_CBC &&
104             filenames_mode == FS_ENCRYPTION_MODE_AES_128_CTS)
105                 return true;
106
107         if (contents_mode == FS_ENCRYPTION_MODE_AES_256_XTS &&
108             filenames_mode == FS_ENCRYPTION_MODE_AES_256_CTS)
109                 return true;
110
111         return false;
112 }
113
114 static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
115 {
116         if (str->len == 1 && str->name[0] == '.')
117                 return true;
118
119         if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
120                 return true;
121
122         return false;
123 }
124
125 #if __FS_HAS_ENCRYPTION
126
127 static inline struct page *fscrypt_control_page(struct page *page)
128 {
129         return ((struct fscrypt_ctx *)page_private(page))->w.control_page;
130 }
131
132 static inline bool fscrypt_has_encryption_key(const struct inode *inode)
133 {
134         return (inode->i_crypt_info != NULL);
135 }
136
137 #include <linux/fscrypt_supp.h>
138
139 #else /* !__FS_HAS_ENCRYPTION */
140
141 static inline struct page *fscrypt_control_page(struct page *page)
142 {
143         WARN_ON_ONCE(1);
144         return ERR_PTR(-EINVAL);
145 }
146
147 static inline bool fscrypt_has_encryption_key(const struct inode *inode)
148 {
149         return 0;
150 }
151
152 #include <linux/fscrypt_notsupp.h>
153 #endif /* __FS_HAS_ENCRYPTION */
154
155 /**
156  * fscrypt_require_key - require an inode's encryption key
157  * @inode: the inode we need the key for
158  *
159  * If the inode is encrypted, set up its encryption key if not already done.
160  * Then require that the key be present and return -ENOKEY otherwise.
161  *
162  * No locks are needed, and the key will live as long as the struct inode --- so
163  * it won't go away from under you.
164  *
165  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
166  * if a problem occurred while setting up the encryption key.
167  */
168 static inline int fscrypt_require_key(struct inode *inode)
169 {
170         if (IS_ENCRYPTED(inode)) {
171                 int err = fscrypt_get_encryption_info(inode);
172
173                 if (err)
174                         return err;
175                 if (!fscrypt_has_encryption_key(inode))
176                         return -ENOKEY;
177         }
178         return 0;
179 }
180
181 /**
182  * fscrypt_prepare_link - prepare to link an inode into a possibly-encrypted directory
183  * @old_dentry: an existing dentry for the inode being linked
184  * @dir: the target directory
185  * @dentry: negative dentry for the target filename
186  *
187  * A new link can only be added to an encrypted directory if the directory's
188  * encryption key is available --- since otherwise we'd have no way to encrypt
189  * the filename.  Therefore, we first set up the directory's encryption key (if
190  * not already done) and return an error if it's unavailable.
191  *
192  * We also verify that the link will not violate the constraint that all files
193  * in an encrypted directory tree use the same encryption policy.
194  *
195  * Return: 0 on success, -ENOKEY if the directory's encryption key is missing,
196  * -EPERM if the link would result in an inconsistent encryption policy, or
197  * another -errno code.
198  */
199 static inline int fscrypt_prepare_link(struct dentry *old_dentry,
200                                        struct inode *dir,
201                                        struct dentry *dentry)
202 {
203         if (IS_ENCRYPTED(dir))
204                 return __fscrypt_prepare_link(d_inode(old_dentry), dir);
205         return 0;
206 }
207
208 /**
209  * fscrypt_prepare_rename - prepare for a rename between possibly-encrypted directories
210  * @old_dir: source directory
211  * @old_dentry: dentry for source file
212  * @new_dir: target directory
213  * @new_dentry: dentry for target location (may be negative unless exchanging)
214  * @flags: rename flags (we care at least about %RENAME_EXCHANGE)
215  *
216  * Prepare for ->rename() where the source and/or target directories may be
217  * encrypted.  A new link can only be added to an encrypted directory if the
218  * directory's encryption key is available --- since otherwise we'd have no way
219  * to encrypt the filename.  A rename to an existing name, on the other hand,
220  * *is* cryptographically possible without the key.  However, we take the more
221  * conservative approach and just forbid all no-key renames.
222  *
223  * We also verify that the rename will not violate the constraint that all files
224  * in an encrypted directory tree use the same encryption policy.
225  *
226  * Return: 0 on success, -ENOKEY if an encryption key is missing, -EPERM if the
227  * rename would cause inconsistent encryption policies, or another -errno code.
228  */
229 static inline int fscrypt_prepare_rename(struct inode *old_dir,
230                                          struct dentry *old_dentry,
231                                          struct inode *new_dir,
232                                          struct dentry *new_dentry,
233                                          unsigned int flags)
234 {
235         if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir))
236                 return __fscrypt_prepare_rename(old_dir, old_dentry,
237                                                 new_dir, new_dentry, flags);
238         return 0;
239 }
240
241 /**
242  * fscrypt_prepare_lookup - prepare to lookup a name in a possibly-encrypted directory
243  * @dir: directory being searched
244  * @dentry: filename being looked up
245  * @flags: lookup flags
246  *
247  * Prepare for ->lookup() in a directory which may be encrypted.  Lookups can be
248  * done with or without the directory's encryption key; without the key,
249  * filenames are presented in encrypted form.  Therefore, we'll try to set up
250  * the directory's encryption key, but even without it the lookup can continue.
251  *
252  * To allow invalidating stale dentries if the directory's encryption key is
253  * added later, we also install a custom ->d_revalidate() method and use the
254  * DCACHE_ENCRYPTED_WITH_KEY flag to indicate whether a given dentry is a
255  * plaintext name (flag set) or a ciphertext name (flag cleared).
256  *
257  * Return: 0 on success, -errno if a problem occurred while setting up the
258  * encryption key
259  */
260 static inline int fscrypt_prepare_lookup(struct inode *dir,
261                                          struct dentry *dentry,
262                                          unsigned int flags)
263 {
264         if (IS_ENCRYPTED(dir))
265                 return __fscrypt_prepare_lookup(dir, dentry);
266         return 0;
267 }
268
269 /**
270  * fscrypt_prepare_setattr - prepare to change a possibly-encrypted inode's attributes
271  * @dentry: dentry through which the inode is being changed
272  * @attr: attributes to change
273  *
274  * Prepare for ->setattr() on a possibly-encrypted inode.  On an encrypted file,
275  * most attribute changes are allowed even without the encryption key.  However,
276  * without the encryption key we do have to forbid truncates.  This is needed
277  * because the size being truncated to may not be a multiple of the filesystem
278  * block size, and in that case we'd have to decrypt the final block, zero the
279  * portion past i_size, and re-encrypt it.  (We *could* allow truncating to a
280  * filesystem block boundary, but it's simpler to just forbid all truncates ---
281  * and we already forbid all other contents modifications without the key.)
282  *
283  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
284  * if a problem occurred while setting up the encryption key.
285  */
286 static inline int fscrypt_prepare_setattr(struct dentry *dentry,
287                                           struct iattr *attr)
288 {
289         if (attr->ia_valid & ATTR_SIZE)
290                 return fscrypt_require_key(d_inode(dentry));
291         return 0;
292 }
293
294 #endif  /* _LINUX_FSCRYPT_H */