Merge tag 'trace-v4.21-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[sfrench/cifs-2.6.git] / include / linux / edac.h
1 /*
2  * Generic EDAC defs
3  *
4  * Author: Dave Jiang <djiang@mvista.com>
5  *
6  * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under
7  * the terms of the GNU General Public License version 2. This program
8  * is licensed "as is" without any warranty of any kind, whether express
9  * or implied.
10  *
11  */
12 #ifndef _LINUX_EDAC_H_
13 #define _LINUX_EDAC_H_
14
15 #include <linux/atomic.h>
16 #include <linux/device.h>
17 #include <linux/completion.h>
18 #include <linux/workqueue.h>
19 #include <linux/debugfs.h>
20 #include <linux/numa.h>
21
22 #define EDAC_DEVICE_NAME_LEN    31
23
24 struct device;
25
26 #define EDAC_OPSTATE_INVAL      -1
27 #define EDAC_OPSTATE_POLL       0
28 #define EDAC_OPSTATE_NMI        1
29 #define EDAC_OPSTATE_INT        2
30
31 extern int edac_op_state;
32
33 struct bus_type *edac_get_sysfs_subsys(void);
34 int edac_get_report_status(void);
35 void edac_set_report_status(int new);
36
37 enum {
38         EDAC_REPORTING_ENABLED,
39         EDAC_REPORTING_DISABLED,
40         EDAC_REPORTING_FORCE
41 };
42
43 static inline void opstate_init(void)
44 {
45         switch (edac_op_state) {
46         case EDAC_OPSTATE_POLL:
47         case EDAC_OPSTATE_NMI:
48                 break;
49         default:
50                 edac_op_state = EDAC_OPSTATE_POLL;
51         }
52         return;
53 }
54
55 /* Max length of a DIMM label*/
56 #define EDAC_MC_LABEL_LEN       31
57
58 /* Maximum size of the location string */
59 #define LOCATION_SIZE 256
60
61 /* Defines the maximum number of labels that can be reported */
62 #define EDAC_MAX_LABELS         8
63
64 /* String used to join two or more labels */
65 #define OTHER_LABEL " or "
66
67 /**
68  * enum dev_type - describe the type of memory DRAM chips used at the stick
69  * @DEV_UNKNOWN:        Can't be determined, or MC doesn't support detect it
70  * @DEV_X1:             1 bit for data
71  * @DEV_X2:             2 bits for data
72  * @DEV_X4:             4 bits for data
73  * @DEV_X8:             8 bits for data
74  * @DEV_X16:            16 bits for data
75  * @DEV_X32:            32 bits for data
76  * @DEV_X64:            64 bits for data
77  *
78  * Typical values are x4 and x8.
79  */
80 enum dev_type {
81         DEV_UNKNOWN = 0,
82         DEV_X1,
83         DEV_X2,
84         DEV_X4,
85         DEV_X8,
86         DEV_X16,
87         DEV_X32,                /* Do these parts exist? */
88         DEV_X64                 /* Do these parts exist? */
89 };
90
91 #define DEV_FLAG_UNKNOWN        BIT(DEV_UNKNOWN)
92 #define DEV_FLAG_X1             BIT(DEV_X1)
93 #define DEV_FLAG_X2             BIT(DEV_X2)
94 #define DEV_FLAG_X4             BIT(DEV_X4)
95 #define DEV_FLAG_X8             BIT(DEV_X8)
96 #define DEV_FLAG_X16            BIT(DEV_X16)
97 #define DEV_FLAG_X32            BIT(DEV_X32)
98 #define DEV_FLAG_X64            BIT(DEV_X64)
99
100 /**
101  * enum hw_event_mc_err_type - type of the detected error
102  *
103  * @HW_EVENT_ERR_CORRECTED:     Corrected Error - Indicates that an ECC
104  *                              corrected error was detected
105  * @HW_EVENT_ERR_UNCORRECTED:   Uncorrected Error - Indicates an error that
106  *                              can't be corrected by ECC, but it is not
107  *                              fatal (maybe it is on an unused memory area,
108  *                              or the memory controller could recover from
109  *                              it for example, by re-trying the operation).
110  * @HW_EVENT_ERR_DEFERRED:      Deferred Error - Indicates an uncorrectable
111  *                              error whose handling is not urgent. This could
112  *                              be due to hardware data poisoning where the
113  *                              system can continue operation until the poisoned
114  *                              data is consumed. Preemptive measures may also
115  *                              be taken, e.g. offlining pages, etc.
116  * @HW_EVENT_ERR_FATAL:         Fatal Error - Uncorrected error that could not
117  *                              be recovered.
118  * @HW_EVENT_ERR_INFO:          Informational - The CPER spec defines a forth
119  *                              type of error: informational logs.
120  */
121 enum hw_event_mc_err_type {
122         HW_EVENT_ERR_CORRECTED,
123         HW_EVENT_ERR_UNCORRECTED,
124         HW_EVENT_ERR_DEFERRED,
125         HW_EVENT_ERR_FATAL,
126         HW_EVENT_ERR_INFO,
127 };
128
129 static inline char *mc_event_error_type(const unsigned int err_type)
130 {
131         switch (err_type) {
132         case HW_EVENT_ERR_CORRECTED:
133                 return "Corrected";
134         case HW_EVENT_ERR_UNCORRECTED:
135                 return "Uncorrected";
136         case HW_EVENT_ERR_DEFERRED:
137                 return "Deferred";
138         case HW_EVENT_ERR_FATAL:
139                 return "Fatal";
140         default:
141         case HW_EVENT_ERR_INFO:
142                 return "Info";
143         }
144 }
145
146 /**
147  * enum mem_type - memory types. For a more detailed reference, please see
148  *                      http://en.wikipedia.org/wiki/DRAM
149  *
150  * @MEM_EMPTY:          Empty csrow
151  * @MEM_RESERVED:       Reserved csrow type
152  * @MEM_UNKNOWN:        Unknown csrow type
153  * @MEM_FPM:            FPM - Fast Page Mode, used on systems up to 1995.
154  * @MEM_EDO:            EDO - Extended data out, used on systems up to 1998.
155  * @MEM_BEDO:           BEDO - Burst Extended data out, an EDO variant.
156  * @MEM_SDR:            SDR - Single data rate SDRAM
157  *                      http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
158  *                      They use 3 pins for chip select: Pins 0 and 2 are
159  *                      for rank 0; pins 1 and 3 are for rank 1, if the memory
160  *                      is dual-rank.
161  * @MEM_RDR:            Registered SDR SDRAM
162  * @MEM_DDR:            Double data rate SDRAM
163  *                      http://en.wikipedia.org/wiki/DDR_SDRAM
164  * @MEM_RDDR:           Registered Double data rate SDRAM
165  *                      This is a variant of the DDR memories.
166  *                      A registered memory has a buffer inside it, hiding
167  *                      part of the memory details to the memory controller.
168  * @MEM_RMBS:           Rambus DRAM, used on a few Pentium III/IV controllers.
169  * @MEM_DDR2:           DDR2 RAM, as described at JEDEC JESD79-2F.
170  *                      Those memories are labeled as "PC2-" instead of "PC" to
171  *                      differentiate from DDR.
172  * @MEM_FB_DDR2:        Fully-Buffered DDR2, as described at JEDEC Std No. 205
173  *                      and JESD206.
174  *                      Those memories are accessed per DIMM slot, and not by
175  *                      a chip select signal.
176  * @MEM_RDDR2:          Registered DDR2 RAM
177  *                      This is a variant of the DDR2 memories.
178  * @MEM_XDR:            Rambus XDR
179  *                      It is an evolution of the original RAMBUS memories,
180  *                      created to compete with DDR2. Weren't used on any
181  *                      x86 arch, but cell_edac PPC memory controller uses it.
182  * @MEM_DDR3:           DDR3 RAM
183  * @MEM_RDDR3:          Registered DDR3 RAM
184  *                      This is a variant of the DDR3 memories.
185  * @MEM_LRDDR3:         Load-Reduced DDR3 memory.
186  * @MEM_DDR4:           Unbuffered DDR4 RAM
187  * @MEM_RDDR4:          Registered DDR4 RAM
188  *                      This is a variant of the DDR4 memories.
189  * @MEM_LRDDR4:         Load-Reduced DDR4 memory.
190  * @MEM_NVDIMM:         Non-volatile RAM
191  */
192 enum mem_type {
193         MEM_EMPTY = 0,
194         MEM_RESERVED,
195         MEM_UNKNOWN,
196         MEM_FPM,
197         MEM_EDO,
198         MEM_BEDO,
199         MEM_SDR,
200         MEM_RDR,
201         MEM_DDR,
202         MEM_RDDR,
203         MEM_RMBS,
204         MEM_DDR2,
205         MEM_FB_DDR2,
206         MEM_RDDR2,
207         MEM_XDR,
208         MEM_DDR3,
209         MEM_RDDR3,
210         MEM_LRDDR3,
211         MEM_DDR4,
212         MEM_RDDR4,
213         MEM_LRDDR4,
214         MEM_NVDIMM,
215 };
216
217 #define MEM_FLAG_EMPTY          BIT(MEM_EMPTY)
218 #define MEM_FLAG_RESERVED       BIT(MEM_RESERVED)
219 #define MEM_FLAG_UNKNOWN        BIT(MEM_UNKNOWN)
220 #define MEM_FLAG_FPM            BIT(MEM_FPM)
221 #define MEM_FLAG_EDO            BIT(MEM_EDO)
222 #define MEM_FLAG_BEDO           BIT(MEM_BEDO)
223 #define MEM_FLAG_SDR            BIT(MEM_SDR)
224 #define MEM_FLAG_RDR            BIT(MEM_RDR)
225 #define MEM_FLAG_DDR            BIT(MEM_DDR)
226 #define MEM_FLAG_RDDR           BIT(MEM_RDDR)
227 #define MEM_FLAG_RMBS           BIT(MEM_RMBS)
228 #define MEM_FLAG_DDR2           BIT(MEM_DDR2)
229 #define MEM_FLAG_FB_DDR2        BIT(MEM_FB_DDR2)
230 #define MEM_FLAG_RDDR2          BIT(MEM_RDDR2)
231 #define MEM_FLAG_XDR            BIT(MEM_XDR)
232 #define MEM_FLAG_DDR3           BIT(MEM_DDR3)
233 #define MEM_FLAG_RDDR3          BIT(MEM_RDDR3)
234 #define MEM_FLAG_DDR4           BIT(MEM_DDR4)
235 #define MEM_FLAG_RDDR4          BIT(MEM_RDDR4)
236 #define MEM_FLAG_LRDDR4         BIT(MEM_LRDDR4)
237 #define MEM_FLAG_NVDIMM         BIT(MEM_NVDIMM)
238
239 /**
240  * enum edac-type - Error Detection and Correction capabilities and mode
241  * @EDAC_UNKNOWN:       Unknown if ECC is available
242  * @EDAC_NONE:          Doesn't support ECC
243  * @EDAC_RESERVED:      Reserved ECC type
244  * @EDAC_PARITY:        Detects parity errors
245  * @EDAC_EC:            Error Checking - no correction
246  * @EDAC_SECDED:        Single bit error correction, Double detection
247  * @EDAC_S2ECD2ED:      Chipkill x2 devices - do these exist?
248  * @EDAC_S4ECD4ED:      Chipkill x4 devices
249  * @EDAC_S8ECD8ED:      Chipkill x8 devices
250  * @EDAC_S16ECD16ED:    Chipkill x16 devices
251  */
252 enum edac_type {
253         EDAC_UNKNOWN =  0,
254         EDAC_NONE,
255         EDAC_RESERVED,
256         EDAC_PARITY,
257         EDAC_EC,
258         EDAC_SECDED,
259         EDAC_S2ECD2ED,
260         EDAC_S4ECD4ED,
261         EDAC_S8ECD8ED,
262         EDAC_S16ECD16ED,
263 };
264
265 #define EDAC_FLAG_UNKNOWN       BIT(EDAC_UNKNOWN)
266 #define EDAC_FLAG_NONE          BIT(EDAC_NONE)
267 #define EDAC_FLAG_PARITY        BIT(EDAC_PARITY)
268 #define EDAC_FLAG_EC            BIT(EDAC_EC)
269 #define EDAC_FLAG_SECDED        BIT(EDAC_SECDED)
270 #define EDAC_FLAG_S2ECD2ED      BIT(EDAC_S2ECD2ED)
271 #define EDAC_FLAG_S4ECD4ED      BIT(EDAC_S4ECD4ED)
272 #define EDAC_FLAG_S8ECD8ED      BIT(EDAC_S8ECD8ED)
273 #define EDAC_FLAG_S16ECD16ED    BIT(EDAC_S16ECD16ED)
274
275 /**
276  * enum scrub_type - scrubbing capabilities
277  * @SCRUB_UNKNOWN:              Unknown if scrubber is available
278  * @SCRUB_NONE:                 No scrubber
279  * @SCRUB_SW_PROG:              SW progressive (sequential) scrubbing
280  * @SCRUB_SW_SRC:               Software scrub only errors
281  * @SCRUB_SW_PROG_SRC:          Progressive software scrub from an error
282  * @SCRUB_SW_TUNABLE:           Software scrub frequency is tunable
283  * @SCRUB_HW_PROG:              HW progressive (sequential) scrubbing
284  * @SCRUB_HW_SRC:               Hardware scrub only errors
285  * @SCRUB_HW_PROG_SRC:          Progressive hardware scrub from an error
286  * @SCRUB_HW_TUNABLE:           Hardware scrub frequency is tunable
287  */
288 enum scrub_type {
289         SCRUB_UNKNOWN = 0,
290         SCRUB_NONE,
291         SCRUB_SW_PROG,
292         SCRUB_SW_SRC,
293         SCRUB_SW_PROG_SRC,
294         SCRUB_SW_TUNABLE,
295         SCRUB_HW_PROG,
296         SCRUB_HW_SRC,
297         SCRUB_HW_PROG_SRC,
298         SCRUB_HW_TUNABLE
299 };
300
301 #define SCRUB_FLAG_SW_PROG      BIT(SCRUB_SW_PROG)
302 #define SCRUB_FLAG_SW_SRC       BIT(SCRUB_SW_SRC)
303 #define SCRUB_FLAG_SW_PROG_SRC  BIT(SCRUB_SW_PROG_SRC)
304 #define SCRUB_FLAG_SW_TUN       BIT(SCRUB_SW_SCRUB_TUNABLE)
305 #define SCRUB_FLAG_HW_PROG      BIT(SCRUB_HW_PROG)
306 #define SCRUB_FLAG_HW_SRC       BIT(SCRUB_HW_SRC)
307 #define SCRUB_FLAG_HW_PROG_SRC  BIT(SCRUB_HW_PROG_SRC)
308 #define SCRUB_FLAG_HW_TUN       BIT(SCRUB_HW_TUNABLE)
309
310 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
311
312 /* EDAC internal operation states */
313 #define OP_ALLOC                0x100
314 #define OP_RUNNING_POLL         0x201
315 #define OP_RUNNING_INTERRUPT    0x202
316 #define OP_RUNNING_POLL_INTR    0x203
317 #define OP_OFFLINE              0x300
318
319 /**
320  * enum edac_mc_layer - memory controller hierarchy layer
321  *
322  * @EDAC_MC_LAYER_BRANCH:       memory layer is named "branch"
323  * @EDAC_MC_LAYER_CHANNEL:      memory layer is named "channel"
324  * @EDAC_MC_LAYER_SLOT:         memory layer is named "slot"
325  * @EDAC_MC_LAYER_CHIP_SELECT:  memory layer is named "chip select"
326  * @EDAC_MC_LAYER_ALL_MEM:      memory layout is unknown. All memory is mapped
327  *                              as a single memory area. This is used when
328  *                              retrieving errors from a firmware driven driver.
329  *
330  * This enum is used by the drivers to tell edac_mc_sysfs what name should
331  * be used when describing a memory stick location.
332  */
333 enum edac_mc_layer_type {
334         EDAC_MC_LAYER_BRANCH,
335         EDAC_MC_LAYER_CHANNEL,
336         EDAC_MC_LAYER_SLOT,
337         EDAC_MC_LAYER_CHIP_SELECT,
338         EDAC_MC_LAYER_ALL_MEM,
339 };
340
341 /**
342  * struct edac_mc_layer - describes the memory controller hierarchy
343  * @type:               layer type
344  * @size:               number of components per layer. For example,
345  *                      if the channel layer has two channels, size = 2
346  * @is_virt_csrow:      This layer is part of the "csrow" when old API
347  *                      compatibility mode is enabled. Otherwise, it is
348  *                      a channel
349  */
350 struct edac_mc_layer {
351         enum edac_mc_layer_type type;
352         unsigned                size;
353         bool                    is_virt_csrow;
354 };
355
356 /*
357  * Maximum number of layers used by the memory controller to uniquely
358  * identify a single memory stick.
359  * NOTE: Changing this constant requires not only to change the constant
360  * below, but also to change the existing code at the core, as there are
361  * some code there that are optimized for 3 layers.
362  */
363 #define EDAC_MAX_LAYERS         3
364
365 /**
366  * EDAC_DIMM_OFF - Macro responsible to get a pointer offset inside a pointer
367  *                 array for the element given by [layer0,layer1,layer2]
368  *                 position
369  *
370  * @layers:     a struct edac_mc_layer array, describing how many elements
371  *              were allocated for each layer
372  * @nlayers:    Number of layers at the @layers array
373  * @layer0:     layer0 position
374  * @layer1:     layer1 position. Unused if n_layers < 2
375  * @layer2:     layer2 position. Unused if n_layers < 3
376  *
377  * For 1 layer, this macro returns "var[layer0] - var";
378  *
379  * For 2 layers, this macro is similar to allocate a bi-dimensional array
380  * and to return "var[layer0][layer1] - var";
381  *
382  * For 3 layers, this macro is similar to allocate a tri-dimensional array
383  * and to return "var[layer0][layer1][layer2] - var".
384  *
385  * A loop could be used here to make it more generic, but, as we only have
386  * 3 layers, this is a little faster.
387  *
388  * By design, layers can never be 0 or more than 3. If that ever happens,
389  * a NULL is returned, causing an OOPS during the memory allocation routine,
390  * with would point to the developer that he's doing something wrong.
391  */
392 #define EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2) ({               \
393         int __i;                                                        \
394         if ((nlayers) == 1)                                             \
395                 __i = layer0;                                           \
396         else if ((nlayers) == 2)                                        \
397                 __i = (layer1) + ((layers[1]).size * (layer0));         \
398         else if ((nlayers) == 3)                                        \
399                 __i = (layer2) + ((layers[2]).size * ((layer1) +        \
400                             ((layers[1]).size * (layer0))));            \
401         else                                                            \
402                 __i = -EINVAL;                                          \
403         __i;                                                            \
404 })
405
406 /**
407  * EDAC_DIMM_PTR - Macro responsible to get a pointer inside a pointer array
408  *                 for the element given by [layer0,layer1,layer2] position
409  *
410  * @layers:     a struct edac_mc_layer array, describing how many elements
411  *              were allocated for each layer
412  * @var:        name of the var where we want to get the pointer
413  *              (like mci->dimms)
414  * @nlayers:    Number of layers at the @layers array
415  * @layer0:     layer0 position
416  * @layer1:     layer1 position. Unused if n_layers < 2
417  * @layer2:     layer2 position. Unused if n_layers < 3
418  *
419  * For 1 layer, this macro returns "var[layer0]";
420  *
421  * For 2 layers, this macro is similar to allocate a bi-dimensional array
422  * and to return "var[layer0][layer1]";
423  *
424  * For 3 layers, this macro is similar to allocate a tri-dimensional array
425  * and to return "var[layer0][layer1][layer2]";
426  */
427 #define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({  \
428         typeof(*var) __p;                                               \
429         int ___i = EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2);      \
430         if (___i < 0)                                                   \
431                 __p = NULL;                                             \
432         else                                                            \
433                 __p = (var)[___i];                                      \
434         __p;                                                            \
435 })
436
437 struct dimm_info {
438         struct device dev;
439
440         char label[EDAC_MC_LABEL_LEN + 1];      /* DIMM label on motherboard */
441
442         /* Memory location data */
443         unsigned location[EDAC_MAX_LAYERS];
444
445         struct mem_ctl_info *mci;       /* the parent */
446
447         u32 grain;              /* granularity of reported error in bytes */
448         enum dev_type dtype;    /* memory device type */
449         enum mem_type mtype;    /* memory dimm type */
450         enum edac_type edac_mode;       /* EDAC mode for this dimm */
451
452         u32 nr_pages;                   /* number of pages on this dimm */
453
454         unsigned csrow, cschannel;      /* Points to the old API data */
455
456         u16 smbios_handle;              /* Handle for SMBIOS type 17 */
457 };
458
459 /**
460  * struct rank_info - contains the information for one DIMM rank
461  *
462  * @chan_idx:   channel number where the rank is (typically, 0 or 1)
463  * @ce_count:   number of correctable errors for this rank
464  * @csrow:      A pointer to the chip select row structure (the parent
465  *              structure). The location of the rank is given by
466  *              the (csrow->csrow_idx, chan_idx) vector.
467  * @dimm:       A pointer to the DIMM structure, where the DIMM label
468  *              information is stored.
469  *
470  * FIXME: Currently, the EDAC core model will assume one DIMM per rank.
471  *        This is a bad assumption, but it makes this patch easier. Later
472  *        patches in this series will fix this issue.
473  */
474 struct rank_info {
475         int chan_idx;
476         struct csrow_info *csrow;
477         struct dimm_info *dimm;
478
479         u32 ce_count;           /* Correctable Errors for this csrow */
480 };
481
482 struct csrow_info {
483         struct device dev;
484
485         /* Used only by edac_mc_find_csrow_by_page() */
486         unsigned long first_page;       /* first page number in csrow */
487         unsigned long last_page;        /* last page number in csrow */
488         unsigned long page_mask;        /* used for interleaving -
489                                          * 0UL for non intlv */
490
491         int csrow_idx;                  /* the chip-select row */
492
493         u32 ue_count;           /* Uncorrectable Errors for this csrow */
494         u32 ce_count;           /* Correctable Errors for this csrow */
495
496         struct mem_ctl_info *mci;       /* the parent */
497
498         /* channel information for this csrow */
499         u32 nr_channels;
500         struct rank_info **channels;
501 };
502
503 /*
504  * struct errcount_attribute - used to store the several error counts
505  */
506 struct errcount_attribute_data {
507         int n_layers;
508         int pos[EDAC_MAX_LAYERS];
509         int layer0, layer1, layer2;
510 };
511
512 /**
513  * struct edac_raw_error_desc - Raw error report structure
514  * @grain:                      minimum granularity for an error report, in bytes
515  * @error_count:                number of errors of the same type
516  * @top_layer:                  top layer of the error (layer[0])
517  * @mid_layer:                  middle layer of the error (layer[1])
518  * @low_layer:                  low layer of the error (layer[2])
519  * @page_frame_number:          page where the error happened
520  * @offset_in_page:             page offset
521  * @syndrome:                   syndrome of the error (or 0 if unknown or if
522  *                              the syndrome is not applicable)
523  * @msg:                        error message
524  * @location:                   location of the error
525  * @label:                      label of the affected DIMM(s)
526  * @other_detail:               other driver-specific detail about the error
527  * @enable_per_layer_report:    if false, the error affects all layers
528  *                              (typically, a memory controller error)
529  */
530 struct edac_raw_error_desc {
531         /*
532          * NOTE: everything before grain won't be cleaned by
533          * edac_raw_error_desc_clean()
534          */
535         char location[LOCATION_SIZE];
536         char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS];
537         long grain;
538
539         /* the vars below and grain will be cleaned on every new error report */
540         u16 error_count;
541         int top_layer;
542         int mid_layer;
543         int low_layer;
544         unsigned long page_frame_number;
545         unsigned long offset_in_page;
546         unsigned long syndrome;
547         const char *msg;
548         const char *other_detail;
549         bool enable_per_layer_report;
550 };
551
552 /* MEMORY controller information structure
553  */
554 struct mem_ctl_info {
555         struct device                   dev;
556         struct bus_type                 *bus;
557
558         struct list_head link;  /* for global list of mem_ctl_info structs */
559
560         struct module *owner;   /* Module owner of this control struct */
561
562         unsigned long mtype_cap;        /* memory types supported by mc */
563         unsigned long edac_ctl_cap;     /* Mem controller EDAC capabilities */
564         unsigned long edac_cap; /* configuration capabilities - this is
565                                  * closely related to edac_ctl_cap.  The
566                                  * difference is that the controller may be
567                                  * capable of s4ecd4ed which would be listed
568                                  * in edac_ctl_cap, but if channels aren't
569                                  * capable of s4ecd4ed then the edac_cap would
570                                  * not have that capability.
571                                  */
572         unsigned long scrub_cap;        /* chipset scrub capabilities */
573         enum scrub_type scrub_mode;     /* current scrub mode */
574
575         /* Translates sdram memory scrub rate given in bytes/sec to the
576            internal representation and configures whatever else needs
577            to be configured.
578          */
579         int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
580
581         /* Get the current sdram memory scrub rate from the internal
582            representation and converts it to the closest matching
583            bandwidth in bytes/sec.
584          */
585         int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
586
587
588         /* pointer to edac checking routine */
589         void (*edac_check) (struct mem_ctl_info * mci);
590
591         /*
592          * Remaps memory pages: controller pages to physical pages.
593          * For most MC's, this will be NULL.
594          */
595         /* FIXME - why not send the phys page to begin with? */
596         unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
597                                            unsigned long page);
598         int mc_idx;
599         struct csrow_info **csrows;
600         unsigned nr_csrows, num_cschannel;
601
602         /*
603          * Memory Controller hierarchy
604          *
605          * There are basically two types of memory controller: the ones that
606          * sees memory sticks ("dimms"), and the ones that sees memory ranks.
607          * All old memory controllers enumerate memories per rank, but most
608          * of the recent drivers enumerate memories per DIMM, instead.
609          * When the memory controller is per rank, csbased is true.
610          */
611         unsigned n_layers;
612         struct edac_mc_layer *layers;
613         bool csbased;
614
615         /*
616          * DIMM info. Will eventually remove the entire csrows_info some day
617          */
618         unsigned tot_dimms;
619         struct dimm_info **dimms;
620
621         /*
622          * FIXME - what about controllers on other busses? - IDs must be
623          * unique.  dev pointer should be sufficiently unique, but
624          * BUS:SLOT.FUNC numbers may not be unique.
625          */
626         struct device *pdev;
627         const char *mod_name;
628         const char *ctl_name;
629         const char *dev_name;
630         void *pvt_info;
631         unsigned long start_time;       /* mci load start time (in jiffies) */
632
633         /*
634          * drivers shouldn't access those fields directly, as the core
635          * already handles that.
636          */
637         u32 ce_noinfo_count, ue_noinfo_count;
638         u32 ue_mc, ce_mc;
639         u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
640
641         struct completion complete;
642
643         /* Additional top controller level attributes, but specified
644          * by the low level driver.
645          *
646          * Set by the low level driver to provide attributes at the
647          * controller level.
648          * An array of structures, NULL terminated
649          *
650          * If attributes are desired, then set to array of attributes
651          * If no attributes are desired, leave NULL
652          */
653         const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
654
655         /* work struct for this MC */
656         struct delayed_work work;
657
658         /*
659          * Used to report an error - by being at the global struct
660          * makes the memory allocated by the EDAC core
661          */
662         struct edac_raw_error_desc error_desc;
663
664         /* the internal state of this controller instance */
665         int op_state;
666
667         struct dentry *debugfs;
668         u8 fake_inject_layer[EDAC_MAX_LAYERS];
669         bool fake_inject_ue;
670         u16 fake_inject_count;
671 };
672 #endif