xfrm: Reinject transport-mode packets through tasklet
[sfrench/cifs-2.6.git] / fs / xfs / xfs_log.c
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_errortag.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_log.h"
30 #include "xfs_log_priv.h"
31 #include "xfs_log_recover.h"
32 #include "xfs_inode.h"
33 #include "xfs_trace.h"
34 #include "xfs_fsops.h"
35 #include "xfs_cksum.h"
36 #include "xfs_sysfs.h"
37 #include "xfs_sb.h"
38
39 kmem_zone_t     *xfs_log_ticket_zone;
40
41 /* Local miscellaneous function prototypes */
42 STATIC int
43 xlog_commit_record(
44         struct xlog             *log,
45         struct xlog_ticket      *ticket,
46         struct xlog_in_core     **iclog,
47         xfs_lsn_t               *commitlsnp);
48
49 STATIC struct xlog *
50 xlog_alloc_log(
51         struct xfs_mount        *mp,
52         struct xfs_buftarg      *log_target,
53         xfs_daddr_t             blk_offset,
54         int                     num_bblks);
55 STATIC int
56 xlog_space_left(
57         struct xlog             *log,
58         atomic64_t              *head);
59 STATIC int
60 xlog_sync(
61         struct xlog             *log,
62         struct xlog_in_core     *iclog);
63 STATIC void
64 xlog_dealloc_log(
65         struct xlog             *log);
66
67 /* local state machine functions */
68 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
69 STATIC void
70 xlog_state_do_callback(
71         struct xlog             *log,
72         int                     aborted,
73         struct xlog_in_core     *iclog);
74 STATIC int
75 xlog_state_get_iclog_space(
76         struct xlog             *log,
77         int                     len,
78         struct xlog_in_core     **iclog,
79         struct xlog_ticket      *ticket,
80         int                     *continued_write,
81         int                     *logoffsetp);
82 STATIC int
83 xlog_state_release_iclog(
84         struct xlog             *log,
85         struct xlog_in_core     *iclog);
86 STATIC void
87 xlog_state_switch_iclogs(
88         struct xlog             *log,
89         struct xlog_in_core     *iclog,
90         int                     eventual_size);
91 STATIC void
92 xlog_state_want_sync(
93         struct xlog             *log,
94         struct xlog_in_core     *iclog);
95
96 STATIC void
97 xlog_grant_push_ail(
98         struct xlog             *log,
99         int                     need_bytes);
100 STATIC void
101 xlog_regrant_reserve_log_space(
102         struct xlog             *log,
103         struct xlog_ticket      *ticket);
104 STATIC void
105 xlog_ungrant_log_space(
106         struct xlog             *log,
107         struct xlog_ticket      *ticket);
108
109 #if defined(DEBUG)
110 STATIC void
111 xlog_verify_dest_ptr(
112         struct xlog             *log,
113         void                    *ptr);
114 STATIC void
115 xlog_verify_grant_tail(
116         struct xlog *log);
117 STATIC void
118 xlog_verify_iclog(
119         struct xlog             *log,
120         struct xlog_in_core     *iclog,
121         int                     count,
122         bool                    syncing);
123 STATIC void
124 xlog_verify_tail_lsn(
125         struct xlog             *log,
126         struct xlog_in_core     *iclog,
127         xfs_lsn_t               tail_lsn);
128 #else
129 #define xlog_verify_dest_ptr(a,b)
130 #define xlog_verify_grant_tail(a)
131 #define xlog_verify_iclog(a,b,c,d)
132 #define xlog_verify_tail_lsn(a,b,c)
133 #endif
134
135 STATIC int
136 xlog_iclogs_empty(
137         struct xlog             *log);
138
139 static void
140 xlog_grant_sub_space(
141         struct xlog             *log,
142         atomic64_t              *head,
143         int                     bytes)
144 {
145         int64_t head_val = atomic64_read(head);
146         int64_t new, old;
147
148         do {
149                 int     cycle, space;
150
151                 xlog_crack_grant_head_val(head_val, &cycle, &space);
152
153                 space -= bytes;
154                 if (space < 0) {
155                         space += log->l_logsize;
156                         cycle--;
157                 }
158
159                 old = head_val;
160                 new = xlog_assign_grant_head_val(cycle, space);
161                 head_val = atomic64_cmpxchg(head, old, new);
162         } while (head_val != old);
163 }
164
165 static void
166 xlog_grant_add_space(
167         struct xlog             *log,
168         atomic64_t              *head,
169         int                     bytes)
170 {
171         int64_t head_val = atomic64_read(head);
172         int64_t new, old;
173
174         do {
175                 int             tmp;
176                 int             cycle, space;
177
178                 xlog_crack_grant_head_val(head_val, &cycle, &space);
179
180                 tmp = log->l_logsize - space;
181                 if (tmp > bytes)
182                         space += bytes;
183                 else {
184                         space = bytes - tmp;
185                         cycle++;
186                 }
187
188                 old = head_val;
189                 new = xlog_assign_grant_head_val(cycle, space);
190                 head_val = atomic64_cmpxchg(head, old, new);
191         } while (head_val != old);
192 }
193
194 STATIC void
195 xlog_grant_head_init(
196         struct xlog_grant_head  *head)
197 {
198         xlog_assign_grant_head(&head->grant, 1, 0);
199         INIT_LIST_HEAD(&head->waiters);
200         spin_lock_init(&head->lock);
201 }
202
203 STATIC void
204 xlog_grant_head_wake_all(
205         struct xlog_grant_head  *head)
206 {
207         struct xlog_ticket      *tic;
208
209         spin_lock(&head->lock);
210         list_for_each_entry(tic, &head->waiters, t_queue)
211                 wake_up_process(tic->t_task);
212         spin_unlock(&head->lock);
213 }
214
215 static inline int
216 xlog_ticket_reservation(
217         struct xlog             *log,
218         struct xlog_grant_head  *head,
219         struct xlog_ticket      *tic)
220 {
221         if (head == &log->l_write_head) {
222                 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
223                 return tic->t_unit_res;
224         } else {
225                 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
226                         return tic->t_unit_res * tic->t_cnt;
227                 else
228                         return tic->t_unit_res;
229         }
230 }
231
232 STATIC bool
233 xlog_grant_head_wake(
234         struct xlog             *log,
235         struct xlog_grant_head  *head,
236         int                     *free_bytes)
237 {
238         struct xlog_ticket      *tic;
239         int                     need_bytes;
240
241         list_for_each_entry(tic, &head->waiters, t_queue) {
242                 need_bytes = xlog_ticket_reservation(log, head, tic);
243                 if (*free_bytes < need_bytes)
244                         return false;
245
246                 *free_bytes -= need_bytes;
247                 trace_xfs_log_grant_wake_up(log, tic);
248                 wake_up_process(tic->t_task);
249         }
250
251         return true;
252 }
253
254 STATIC int
255 xlog_grant_head_wait(
256         struct xlog             *log,
257         struct xlog_grant_head  *head,
258         struct xlog_ticket      *tic,
259         int                     need_bytes) __releases(&head->lock)
260                                             __acquires(&head->lock)
261 {
262         list_add_tail(&tic->t_queue, &head->waiters);
263
264         do {
265                 if (XLOG_FORCED_SHUTDOWN(log))
266                         goto shutdown;
267                 xlog_grant_push_ail(log, need_bytes);
268
269                 __set_current_state(TASK_UNINTERRUPTIBLE);
270                 spin_unlock(&head->lock);
271
272                 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
273
274                 trace_xfs_log_grant_sleep(log, tic);
275                 schedule();
276                 trace_xfs_log_grant_wake(log, tic);
277
278                 spin_lock(&head->lock);
279                 if (XLOG_FORCED_SHUTDOWN(log))
280                         goto shutdown;
281         } while (xlog_space_left(log, &head->grant) < need_bytes);
282
283         list_del_init(&tic->t_queue);
284         return 0;
285 shutdown:
286         list_del_init(&tic->t_queue);
287         return -EIO;
288 }
289
290 /*
291  * Atomically get the log space required for a log ticket.
292  *
293  * Once a ticket gets put onto head->waiters, it will only return after the
294  * needed reservation is satisfied.
295  *
296  * This function is structured so that it has a lock free fast path. This is
297  * necessary because every new transaction reservation will come through this
298  * path. Hence any lock will be globally hot if we take it unconditionally on
299  * every pass.
300  *
301  * As tickets are only ever moved on and off head->waiters under head->lock, we
302  * only need to take that lock if we are going to add the ticket to the queue
303  * and sleep. We can avoid taking the lock if the ticket was never added to
304  * head->waiters because the t_queue list head will be empty and we hold the
305  * only reference to it so it can safely be checked unlocked.
306  */
307 STATIC int
308 xlog_grant_head_check(
309         struct xlog             *log,
310         struct xlog_grant_head  *head,
311         struct xlog_ticket      *tic,
312         int                     *need_bytes)
313 {
314         int                     free_bytes;
315         int                     error = 0;
316
317         ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
318
319         /*
320          * If there are other waiters on the queue then give them a chance at
321          * logspace before us.  Wake up the first waiters, if we do not wake
322          * up all the waiters then go to sleep waiting for more free space,
323          * otherwise try to get some space for this transaction.
324          */
325         *need_bytes = xlog_ticket_reservation(log, head, tic);
326         free_bytes = xlog_space_left(log, &head->grant);
327         if (!list_empty_careful(&head->waiters)) {
328                 spin_lock(&head->lock);
329                 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
330                     free_bytes < *need_bytes) {
331                         error = xlog_grant_head_wait(log, head, tic,
332                                                      *need_bytes);
333                 }
334                 spin_unlock(&head->lock);
335         } else if (free_bytes < *need_bytes) {
336                 spin_lock(&head->lock);
337                 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
338                 spin_unlock(&head->lock);
339         }
340
341         return error;
342 }
343
344 static void
345 xlog_tic_reset_res(xlog_ticket_t *tic)
346 {
347         tic->t_res_num = 0;
348         tic->t_res_arr_sum = 0;
349         tic->t_res_num_ophdrs = 0;
350 }
351
352 static void
353 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
354 {
355         if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
356                 /* add to overflow and start again */
357                 tic->t_res_o_flow += tic->t_res_arr_sum;
358                 tic->t_res_num = 0;
359                 tic->t_res_arr_sum = 0;
360         }
361
362         tic->t_res_arr[tic->t_res_num].r_len = len;
363         tic->t_res_arr[tic->t_res_num].r_type = type;
364         tic->t_res_arr_sum += len;
365         tic->t_res_num++;
366 }
367
368 /*
369  * Replenish the byte reservation required by moving the grant write head.
370  */
371 int
372 xfs_log_regrant(
373         struct xfs_mount        *mp,
374         struct xlog_ticket      *tic)
375 {
376         struct xlog             *log = mp->m_log;
377         int                     need_bytes;
378         int                     error = 0;
379
380         if (XLOG_FORCED_SHUTDOWN(log))
381                 return -EIO;
382
383         XFS_STATS_INC(mp, xs_try_logspace);
384
385         /*
386          * This is a new transaction on the ticket, so we need to change the
387          * transaction ID so that the next transaction has a different TID in
388          * the log. Just add one to the existing tid so that we can see chains
389          * of rolling transactions in the log easily.
390          */
391         tic->t_tid++;
392
393         xlog_grant_push_ail(log, tic->t_unit_res);
394
395         tic->t_curr_res = tic->t_unit_res;
396         xlog_tic_reset_res(tic);
397
398         if (tic->t_cnt > 0)
399                 return 0;
400
401         trace_xfs_log_regrant(log, tic);
402
403         error = xlog_grant_head_check(log, &log->l_write_head, tic,
404                                       &need_bytes);
405         if (error)
406                 goto out_error;
407
408         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
409         trace_xfs_log_regrant_exit(log, tic);
410         xlog_verify_grant_tail(log);
411         return 0;
412
413 out_error:
414         /*
415          * If we are failing, make sure the ticket doesn't have any current
416          * reservations.  We don't want to add this back when the ticket/
417          * transaction gets cancelled.
418          */
419         tic->t_curr_res = 0;
420         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
421         return error;
422 }
423
424 /*
425  * Reserve log space and return a ticket corresponding the reservation.
426  *
427  * Each reservation is going to reserve extra space for a log record header.
428  * When writes happen to the on-disk log, we don't subtract the length of the
429  * log record header from any reservation.  By wasting space in each
430  * reservation, we prevent over allocation problems.
431  */
432 int
433 xfs_log_reserve(
434         struct xfs_mount        *mp,
435         int                     unit_bytes,
436         int                     cnt,
437         struct xlog_ticket      **ticp,
438         uint8_t                 client,
439         bool                    permanent)
440 {
441         struct xlog             *log = mp->m_log;
442         struct xlog_ticket      *tic;
443         int                     need_bytes;
444         int                     error = 0;
445
446         ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447
448         if (XLOG_FORCED_SHUTDOWN(log))
449                 return -EIO;
450
451         XFS_STATS_INC(mp, xs_try_logspace);
452
453         ASSERT(*ticp == NULL);
454         tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455                                 KM_SLEEP | KM_MAYFAIL);
456         if (!tic)
457                 return -ENOMEM;
458
459         *ticp = tic;
460
461         xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
462                                             : tic->t_unit_res);
463
464         trace_xfs_log_reserve(log, tic);
465
466         error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
467                                       &need_bytes);
468         if (error)
469                 goto out_error;
470
471         xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
472         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
473         trace_xfs_log_reserve_exit(log, tic);
474         xlog_verify_grant_tail(log);
475         return 0;
476
477 out_error:
478         /*
479          * If we are failing, make sure the ticket doesn't have any current
480          * reservations.  We don't want to add this back when the ticket/
481          * transaction gets cancelled.
482          */
483         tic->t_curr_res = 0;
484         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
485         return error;
486 }
487
488
489 /*
490  * NOTES:
491  *
492  *      1. currblock field gets updated at startup and after in-core logs
493  *              marked as with WANT_SYNC.
494  */
495
496 /*
497  * This routine is called when a user of a log manager ticket is done with
498  * the reservation.  If the ticket was ever used, then a commit record for
499  * the associated transaction is written out as a log operation header with
500  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
501  * a given ticket.  If the ticket was one with a permanent reservation, then
502  * a few operations are done differently.  Permanent reservation tickets by
503  * default don't release the reservation.  They just commit the current
504  * transaction with the belief that the reservation is still needed.  A flag
505  * must be passed in before permanent reservations are actually released.
506  * When these type of tickets are not released, they need to be set into
507  * the inited state again.  By doing this, a start record will be written
508  * out when the next write occurs.
509  */
510 xfs_lsn_t
511 xfs_log_done(
512         struct xfs_mount        *mp,
513         struct xlog_ticket      *ticket,
514         struct xlog_in_core     **iclog,
515         bool                    regrant)
516 {
517         struct xlog             *log = mp->m_log;
518         xfs_lsn_t               lsn = 0;
519
520         if (XLOG_FORCED_SHUTDOWN(log) ||
521             /*
522              * If nothing was ever written, don't write out commit record.
523              * If we get an error, just continue and give back the log ticket.
524              */
525             (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
526              (xlog_commit_record(log, ticket, iclog, &lsn)))) {
527                 lsn = (xfs_lsn_t) -1;
528                 regrant = false;
529         }
530
531
532         if (!regrant) {
533                 trace_xfs_log_done_nonperm(log, ticket);
534
535                 /*
536                  * Release ticket if not permanent reservation or a specific
537                  * request has been made to release a permanent reservation.
538                  */
539                 xlog_ungrant_log_space(log, ticket);
540         } else {
541                 trace_xfs_log_done_perm(log, ticket);
542
543                 xlog_regrant_reserve_log_space(log, ticket);
544                 /* If this ticket was a permanent reservation and we aren't
545                  * trying to release it, reset the inited flags; so next time
546                  * we write, a start record will be written out.
547                  */
548                 ticket->t_flags |= XLOG_TIC_INITED;
549         }
550
551         xfs_log_ticket_put(ticket);
552         return lsn;
553 }
554
555 /*
556  * Attaches a new iclog I/O completion callback routine during
557  * transaction commit.  If the log is in error state, a non-zero
558  * return code is handed back and the caller is responsible for
559  * executing the callback at an appropriate time.
560  */
561 int
562 xfs_log_notify(
563         struct xfs_mount        *mp,
564         struct xlog_in_core     *iclog,
565         xfs_log_callback_t      *cb)
566 {
567         int     abortflg;
568
569         spin_lock(&iclog->ic_callback_lock);
570         abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
571         if (!abortflg) {
572                 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
573                               (iclog->ic_state == XLOG_STATE_WANT_SYNC));
574                 cb->cb_next = NULL;
575                 *(iclog->ic_callback_tail) = cb;
576                 iclog->ic_callback_tail = &(cb->cb_next);
577         }
578         spin_unlock(&iclog->ic_callback_lock);
579         return abortflg;
580 }
581
582 int
583 xfs_log_release_iclog(
584         struct xfs_mount        *mp,
585         struct xlog_in_core     *iclog)
586 {
587         if (xlog_state_release_iclog(mp->m_log, iclog)) {
588                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
589                 return -EIO;
590         }
591
592         return 0;
593 }
594
595 /*
596  * Mount a log filesystem
597  *
598  * mp           - ubiquitous xfs mount point structure
599  * log_target   - buftarg of on-disk log device
600  * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
601  * num_bblocks  - Number of BBSIZE blocks in on-disk log
602  *
603  * Return error or zero.
604  */
605 int
606 xfs_log_mount(
607         xfs_mount_t     *mp,
608         xfs_buftarg_t   *log_target,
609         xfs_daddr_t     blk_offset,
610         int             num_bblks)
611 {
612         bool            fatal = xfs_sb_version_hascrc(&mp->m_sb);
613         int             error = 0;
614         int             min_logfsbs;
615
616         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
617                 xfs_notice(mp, "Mounting V%d Filesystem",
618                            XFS_SB_VERSION_NUM(&mp->m_sb));
619         } else {
620                 xfs_notice(mp,
621 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
622                            XFS_SB_VERSION_NUM(&mp->m_sb));
623                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
624         }
625
626         mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
627         if (IS_ERR(mp->m_log)) {
628                 error = PTR_ERR(mp->m_log);
629                 goto out;
630         }
631
632         /*
633          * Validate the given log space and drop a critical message via syslog
634          * if the log size is too small that would lead to some unexpected
635          * situations in transaction log space reservation stage.
636          *
637          * Note: we can't just reject the mount if the validation fails.  This
638          * would mean that people would have to downgrade their kernel just to
639          * remedy the situation as there is no way to grow the log (short of
640          * black magic surgery with xfs_db).
641          *
642          * We can, however, reject mounts for CRC format filesystems, as the
643          * mkfs binary being used to make the filesystem should never create a
644          * filesystem with a log that is too small.
645          */
646         min_logfsbs = xfs_log_calc_minimum_size(mp);
647
648         if (mp->m_sb.sb_logblocks < min_logfsbs) {
649                 xfs_warn(mp,
650                 "Log size %d blocks too small, minimum size is %d blocks",
651                          mp->m_sb.sb_logblocks, min_logfsbs);
652                 error = -EINVAL;
653         } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
654                 xfs_warn(mp,
655                 "Log size %d blocks too large, maximum size is %lld blocks",
656                          mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
657                 error = -EINVAL;
658         } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
659                 xfs_warn(mp,
660                 "log size %lld bytes too large, maximum size is %lld bytes",
661                          XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
662                          XFS_MAX_LOG_BYTES);
663                 error = -EINVAL;
664         } else if (mp->m_sb.sb_logsunit > 1 &&
665                    mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
666                 xfs_warn(mp,
667                 "log stripe unit %u bytes must be a multiple of block size",
668                          mp->m_sb.sb_logsunit);
669                 error = -EINVAL;
670                 fatal = true;
671         }
672         if (error) {
673                 /*
674                  * Log check errors are always fatal on v5; or whenever bad
675                  * metadata leads to a crash.
676                  */
677                 if (fatal) {
678                         xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
679                         ASSERT(0);
680                         goto out_free_log;
681                 }
682                 xfs_crit(mp, "Log size out of supported range.");
683                 xfs_crit(mp,
684 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
685         }
686
687         /*
688          * Initialize the AIL now we have a log.
689          */
690         error = xfs_trans_ail_init(mp);
691         if (error) {
692                 xfs_warn(mp, "AIL initialisation failed: error %d", error);
693                 goto out_free_log;
694         }
695         mp->m_log->l_ailp = mp->m_ail;
696
697         /*
698          * skip log recovery on a norecovery mount.  pretend it all
699          * just worked.
700          */
701         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
702                 int     readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
703
704                 if (readonly)
705                         mp->m_flags &= ~XFS_MOUNT_RDONLY;
706
707                 error = xlog_recover(mp->m_log);
708
709                 if (readonly)
710                         mp->m_flags |= XFS_MOUNT_RDONLY;
711                 if (error) {
712                         xfs_warn(mp, "log mount/recovery failed: error %d",
713                                 error);
714                         xlog_recover_cancel(mp->m_log);
715                         goto out_destroy_ail;
716                 }
717         }
718
719         error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
720                                "log");
721         if (error)
722                 goto out_destroy_ail;
723
724         /* Normal transactions can now occur */
725         mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
726
727         /*
728          * Now the log has been fully initialised and we know were our
729          * space grant counters are, we can initialise the permanent ticket
730          * needed for delayed logging to work.
731          */
732         xlog_cil_init_post_recovery(mp->m_log);
733
734         return 0;
735
736 out_destroy_ail:
737         xfs_trans_ail_destroy(mp);
738 out_free_log:
739         xlog_dealloc_log(mp->m_log);
740 out:
741         return error;
742 }
743
744 /*
745  * Finish the recovery of the file system.  This is separate from the
746  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
747  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
748  * here.
749  *
750  * If we finish recovery successfully, start the background log work. If we are
751  * not doing recovery, then we have a RO filesystem and we don't need to start
752  * it.
753  */
754 int
755 xfs_log_mount_finish(
756         struct xfs_mount        *mp)
757 {
758         int     error = 0;
759         bool    readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
760         bool    recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
761
762         if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
763                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
764                 return 0;
765         } else if (readonly) {
766                 /* Allow unlinked processing to proceed */
767                 mp->m_flags &= ~XFS_MOUNT_RDONLY;
768         }
769
770         /*
771          * During the second phase of log recovery, we need iget and
772          * iput to behave like they do for an active filesystem.
773          * xfs_fs_drop_inode needs to be able to prevent the deletion
774          * of inodes before we're done replaying log items on those
775          * inodes.  Turn it off immediately after recovery finishes
776          * so that we don't leak the quota inodes if subsequent mount
777          * activities fail.
778          *
779          * We let all inodes involved in redo item processing end up on
780          * the LRU instead of being evicted immediately so that if we do
781          * something to an unlinked inode, the irele won't cause
782          * premature truncation and freeing of the inode, which results
783          * in log recovery failure.  We have to evict the unreferenced
784          * lru inodes after clearing MS_ACTIVE because we don't
785          * otherwise clean up the lru if there's a subsequent failure in
786          * xfs_mountfs, which leads to us leaking the inodes if nothing
787          * else (e.g. quotacheck) references the inodes before the
788          * mount failure occurs.
789          */
790         mp->m_super->s_flags |= MS_ACTIVE;
791         error = xlog_recover_finish(mp->m_log);
792         if (!error)
793                 xfs_log_work_queue(mp);
794         mp->m_super->s_flags &= ~MS_ACTIVE;
795         evict_inodes(mp->m_super);
796
797         /*
798          * Drain the buffer LRU after log recovery. This is required for v4
799          * filesystems to avoid leaving around buffers with NULL verifier ops,
800          * but we do it unconditionally to make sure we're always in a clean
801          * cache state after mount.
802          *
803          * Don't push in the error case because the AIL may have pending intents
804          * that aren't removed until recovery is cancelled.
805          */
806         if (!error && recovered) {
807                 xfs_log_force(mp, XFS_LOG_SYNC);
808                 xfs_ail_push_all_sync(mp->m_ail);
809         }
810         xfs_wait_buftarg(mp->m_ddev_targp);
811
812         if (readonly)
813                 mp->m_flags |= XFS_MOUNT_RDONLY;
814
815         return error;
816 }
817
818 /*
819  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
820  * the log.
821  */
822 int
823 xfs_log_mount_cancel(
824         struct xfs_mount        *mp)
825 {
826         int                     error;
827
828         error = xlog_recover_cancel(mp->m_log);
829         xfs_log_unmount(mp);
830
831         return error;
832 }
833
834 /*
835  * Final log writes as part of unmount.
836  *
837  * Mark the filesystem clean as unmount happens.  Note that during relocation
838  * this routine needs to be executed as part of source-bag while the
839  * deallocation must not be done until source-end.
840  */
841
842 /*
843  * Unmount record used to have a string "Unmount filesystem--" in the
844  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
845  * We just write the magic number now since that particular field isn't
846  * currently architecture converted and "Unmount" is a bit foo.
847  * As far as I know, there weren't any dependencies on the old behaviour.
848  */
849
850 static int
851 xfs_log_unmount_write(xfs_mount_t *mp)
852 {
853         struct xlog      *log = mp->m_log;
854         xlog_in_core_t   *iclog;
855 #ifdef DEBUG
856         xlog_in_core_t   *first_iclog;
857 #endif
858         xlog_ticket_t   *tic = NULL;
859         xfs_lsn_t        lsn;
860         int              error;
861
862         /*
863          * Don't write out unmount record on norecovery mounts or ro devices.
864          * Or, if we are doing a forced umount (typically because of IO errors).
865          */
866         if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
867             xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
868                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
869                 return 0;
870         }
871
872         error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
873         ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
874
875 #ifdef DEBUG
876         first_iclog = iclog = log->l_iclog;
877         do {
878                 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
879                         ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
880                         ASSERT(iclog->ic_offset == 0);
881                 }
882                 iclog = iclog->ic_next;
883         } while (iclog != first_iclog);
884 #endif
885         if (! (XLOG_FORCED_SHUTDOWN(log))) {
886                 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
887                 if (!error) {
888                         /* the data section must be 32 bit size aligned */
889                         struct {
890                             uint16_t magic;
891                             uint16_t pad1;
892                             uint32_t pad2; /* may as well make it 64 bits */
893                         } magic = {
894                                 .magic = XLOG_UNMOUNT_TYPE,
895                         };
896                         struct xfs_log_iovec reg = {
897                                 .i_addr = &magic,
898                                 .i_len = sizeof(magic),
899                                 .i_type = XLOG_REG_TYPE_UNMOUNT,
900                         };
901                         struct xfs_log_vec vec = {
902                                 .lv_niovecs = 1,
903                                 .lv_iovecp = &reg,
904                         };
905
906                         /* remove inited flag, and account for space used */
907                         tic->t_flags = 0;
908                         tic->t_curr_res -= sizeof(magic);
909                         error = xlog_write(log, &vec, tic, &lsn,
910                                            NULL, XLOG_UNMOUNT_TRANS);
911                         /*
912                          * At this point, we're umounting anyway,
913                          * so there's no point in transitioning log state
914                          * to IOERROR. Just continue...
915                          */
916                 }
917
918                 if (error)
919                         xfs_alert(mp, "%s: unmount record failed", __func__);
920
921
922                 spin_lock(&log->l_icloglock);
923                 iclog = log->l_iclog;
924                 atomic_inc(&iclog->ic_refcnt);
925                 xlog_state_want_sync(log, iclog);
926                 spin_unlock(&log->l_icloglock);
927                 error = xlog_state_release_iclog(log, iclog);
928
929                 spin_lock(&log->l_icloglock);
930                 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
931                       iclog->ic_state == XLOG_STATE_DIRTY)) {
932                         if (!XLOG_FORCED_SHUTDOWN(log)) {
933                                 xlog_wait(&iclog->ic_force_wait,
934                                                         &log->l_icloglock);
935                         } else {
936                                 spin_unlock(&log->l_icloglock);
937                         }
938                 } else {
939                         spin_unlock(&log->l_icloglock);
940                 }
941                 if (tic) {
942                         trace_xfs_log_umount_write(log, tic);
943                         xlog_ungrant_log_space(log, tic);
944                         xfs_log_ticket_put(tic);
945                 }
946         } else {
947                 /*
948                  * We're already in forced_shutdown mode, couldn't
949                  * even attempt to write out the unmount transaction.
950                  *
951                  * Go through the motions of sync'ing and releasing
952                  * the iclog, even though no I/O will actually happen,
953                  * we need to wait for other log I/Os that may already
954                  * be in progress.  Do this as a separate section of
955                  * code so we'll know if we ever get stuck here that
956                  * we're in this odd situation of trying to unmount
957                  * a file system that went into forced_shutdown as
958                  * the result of an unmount..
959                  */
960                 spin_lock(&log->l_icloglock);
961                 iclog = log->l_iclog;
962                 atomic_inc(&iclog->ic_refcnt);
963
964                 xlog_state_want_sync(log, iclog);
965                 spin_unlock(&log->l_icloglock);
966                 error =  xlog_state_release_iclog(log, iclog);
967
968                 spin_lock(&log->l_icloglock);
969
970                 if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
971                         || iclog->ic_state == XLOG_STATE_DIRTY
972                         || iclog->ic_state == XLOG_STATE_IOERROR) ) {
973
974                                 xlog_wait(&iclog->ic_force_wait,
975                                                         &log->l_icloglock);
976                 } else {
977                         spin_unlock(&log->l_icloglock);
978                 }
979         }
980
981         return error;
982 }       /* xfs_log_unmount_write */
983
984 /*
985  * Empty the log for unmount/freeze.
986  *
987  * To do this, we first need to shut down the background log work so it is not
988  * trying to cover the log as we clean up. We then need to unpin all objects in
989  * the log so we can then flush them out. Once they have completed their IO and
990  * run the callbacks removing themselves from the AIL, we can write the unmount
991  * record.
992  */
993 void
994 xfs_log_quiesce(
995         struct xfs_mount        *mp)
996 {
997         cancel_delayed_work_sync(&mp->m_log->l_work);
998         xfs_log_force(mp, XFS_LOG_SYNC);
999
1000         /*
1001          * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1002          * will push it, xfs_wait_buftarg() will not wait for it. Further,
1003          * xfs_buf_iowait() cannot be used because it was pushed with the
1004          * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1005          * the IO to complete.
1006          */
1007         xfs_ail_push_all_sync(mp->m_ail);
1008         xfs_wait_buftarg(mp->m_ddev_targp);
1009         xfs_buf_lock(mp->m_sb_bp);
1010         xfs_buf_unlock(mp->m_sb_bp);
1011
1012         xfs_log_unmount_write(mp);
1013 }
1014
1015 /*
1016  * Shut down and release the AIL and Log.
1017  *
1018  * During unmount, we need to ensure we flush all the dirty metadata objects
1019  * from the AIL so that the log is empty before we write the unmount record to
1020  * the log. Once this is done, we can tear down the AIL and the log.
1021  */
1022 void
1023 xfs_log_unmount(
1024         struct xfs_mount        *mp)
1025 {
1026         xfs_log_quiesce(mp);
1027
1028         xfs_trans_ail_destroy(mp);
1029
1030         xfs_sysfs_del(&mp->m_log->l_kobj);
1031
1032         xlog_dealloc_log(mp->m_log);
1033 }
1034
1035 void
1036 xfs_log_item_init(
1037         struct xfs_mount        *mp,
1038         struct xfs_log_item     *item,
1039         int                     type,
1040         const struct xfs_item_ops *ops)
1041 {
1042         item->li_mountp = mp;
1043         item->li_ailp = mp->m_ail;
1044         item->li_type = type;
1045         item->li_ops = ops;
1046         item->li_lv = NULL;
1047
1048         INIT_LIST_HEAD(&item->li_ail);
1049         INIT_LIST_HEAD(&item->li_cil);
1050 }
1051
1052 /*
1053  * Wake up processes waiting for log space after we have moved the log tail.
1054  */
1055 void
1056 xfs_log_space_wake(
1057         struct xfs_mount        *mp)
1058 {
1059         struct xlog             *log = mp->m_log;
1060         int                     free_bytes;
1061
1062         if (XLOG_FORCED_SHUTDOWN(log))
1063                 return;
1064
1065         if (!list_empty_careful(&log->l_write_head.waiters)) {
1066                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1067
1068                 spin_lock(&log->l_write_head.lock);
1069                 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1070                 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1071                 spin_unlock(&log->l_write_head.lock);
1072         }
1073
1074         if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1075                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1076
1077                 spin_lock(&log->l_reserve_head.lock);
1078                 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1079                 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1080                 spin_unlock(&log->l_reserve_head.lock);
1081         }
1082 }
1083
1084 /*
1085  * Determine if we have a transaction that has gone to disk that needs to be
1086  * covered. To begin the transition to the idle state firstly the log needs to
1087  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1088  * we start attempting to cover the log.
1089  *
1090  * Only if we are then in a state where covering is needed, the caller is
1091  * informed that dummy transactions are required to move the log into the idle
1092  * state.
1093  *
1094  * If there are any items in the AIl or CIL, then we do not want to attempt to
1095  * cover the log as we may be in a situation where there isn't log space
1096  * available to run a dummy transaction and this can lead to deadlocks when the
1097  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1098  * there's no point in running a dummy transaction at this point because we
1099  * can't start trying to idle the log until both the CIL and AIL are empty.
1100  */
1101 static int
1102 xfs_log_need_covered(xfs_mount_t *mp)
1103 {
1104         struct xlog     *log = mp->m_log;
1105         int             needed = 0;
1106
1107         if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1108                 return 0;
1109
1110         if (!xlog_cil_empty(log))
1111                 return 0;
1112
1113         spin_lock(&log->l_icloglock);
1114         switch (log->l_covered_state) {
1115         case XLOG_STATE_COVER_DONE:
1116         case XLOG_STATE_COVER_DONE2:
1117         case XLOG_STATE_COVER_IDLE:
1118                 break;
1119         case XLOG_STATE_COVER_NEED:
1120         case XLOG_STATE_COVER_NEED2:
1121                 if (xfs_ail_min_lsn(log->l_ailp))
1122                         break;
1123                 if (!xlog_iclogs_empty(log))
1124                         break;
1125
1126                 needed = 1;
1127                 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1128                         log->l_covered_state = XLOG_STATE_COVER_DONE;
1129                 else
1130                         log->l_covered_state = XLOG_STATE_COVER_DONE2;
1131                 break;
1132         default:
1133                 needed = 1;
1134                 break;
1135         }
1136         spin_unlock(&log->l_icloglock);
1137         return needed;
1138 }
1139
1140 /*
1141  * We may be holding the log iclog lock upon entering this routine.
1142  */
1143 xfs_lsn_t
1144 xlog_assign_tail_lsn_locked(
1145         struct xfs_mount        *mp)
1146 {
1147         struct xlog             *log = mp->m_log;
1148         struct xfs_log_item     *lip;
1149         xfs_lsn_t               tail_lsn;
1150
1151         assert_spin_locked(&mp->m_ail->xa_lock);
1152
1153         /*
1154          * To make sure we always have a valid LSN for the log tail we keep
1155          * track of the last LSN which was committed in log->l_last_sync_lsn,
1156          * and use that when the AIL was empty.
1157          */
1158         lip = xfs_ail_min(mp->m_ail);
1159         if (lip)
1160                 tail_lsn = lip->li_lsn;
1161         else
1162                 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1163         trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1164         atomic64_set(&log->l_tail_lsn, tail_lsn);
1165         return tail_lsn;
1166 }
1167
1168 xfs_lsn_t
1169 xlog_assign_tail_lsn(
1170         struct xfs_mount        *mp)
1171 {
1172         xfs_lsn_t               tail_lsn;
1173
1174         spin_lock(&mp->m_ail->xa_lock);
1175         tail_lsn = xlog_assign_tail_lsn_locked(mp);
1176         spin_unlock(&mp->m_ail->xa_lock);
1177
1178         return tail_lsn;
1179 }
1180
1181 /*
1182  * Return the space in the log between the tail and the head.  The head
1183  * is passed in the cycle/bytes formal parms.  In the special case where
1184  * the reserve head has wrapped passed the tail, this calculation is no
1185  * longer valid.  In this case, just return 0 which means there is no space
1186  * in the log.  This works for all places where this function is called
1187  * with the reserve head.  Of course, if the write head were to ever
1188  * wrap the tail, we should blow up.  Rather than catch this case here,
1189  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1190  *
1191  * This code also handles the case where the reservation head is behind
1192  * the tail.  The details of this case are described below, but the end
1193  * result is that we return the size of the log as the amount of space left.
1194  */
1195 STATIC int
1196 xlog_space_left(
1197         struct xlog     *log,
1198         atomic64_t      *head)
1199 {
1200         int             free_bytes;
1201         int             tail_bytes;
1202         int             tail_cycle;
1203         int             head_cycle;
1204         int             head_bytes;
1205
1206         xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1207         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1208         tail_bytes = BBTOB(tail_bytes);
1209         if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1210                 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1211         else if (tail_cycle + 1 < head_cycle)
1212                 return 0;
1213         else if (tail_cycle < head_cycle) {
1214                 ASSERT(tail_cycle == (head_cycle - 1));
1215                 free_bytes = tail_bytes - head_bytes;
1216         } else {
1217                 /*
1218                  * The reservation head is behind the tail.
1219                  * In this case we just want to return the size of the
1220                  * log as the amount of space left.
1221                  */
1222                 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1223                 xfs_alert(log->l_mp,
1224                           "  tail_cycle = %d, tail_bytes = %d",
1225                           tail_cycle, tail_bytes);
1226                 xfs_alert(log->l_mp,
1227                           "  GH   cycle = %d, GH   bytes = %d",
1228                           head_cycle, head_bytes);
1229                 ASSERT(0);
1230                 free_bytes = log->l_logsize;
1231         }
1232         return free_bytes;
1233 }
1234
1235
1236 /*
1237  * Log function which is called when an io completes.
1238  *
1239  * The log manager needs its own routine, in order to control what
1240  * happens with the buffer after the write completes.
1241  */
1242 static void
1243 xlog_iodone(xfs_buf_t *bp)
1244 {
1245         struct xlog_in_core     *iclog = bp->b_fspriv;
1246         struct xlog             *l = iclog->ic_log;
1247         int                     aborted = 0;
1248
1249         /*
1250          * Race to shutdown the filesystem if we see an error or the iclog is in
1251          * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1252          * CRC errors into log recovery.
1253          */
1254         if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) ||
1255             iclog->ic_state & XLOG_STATE_IOABORT) {
1256                 if (iclog->ic_state & XLOG_STATE_IOABORT)
1257                         iclog->ic_state &= ~XLOG_STATE_IOABORT;
1258
1259                 xfs_buf_ioerror_alert(bp, __func__);
1260                 xfs_buf_stale(bp);
1261                 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1262                 /*
1263                  * This flag will be propagated to the trans-committed
1264                  * callback routines to let them know that the log-commit
1265                  * didn't succeed.
1266                  */
1267                 aborted = XFS_LI_ABORTED;
1268         } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1269                 aborted = XFS_LI_ABORTED;
1270         }
1271
1272         /* log I/O is always issued ASYNC */
1273         ASSERT(bp->b_flags & XBF_ASYNC);
1274         xlog_state_done_syncing(iclog, aborted);
1275
1276         /*
1277          * drop the buffer lock now that we are done. Nothing references
1278          * the buffer after this, so an unmount waiting on this lock can now
1279          * tear it down safely. As such, it is unsafe to reference the buffer
1280          * (bp) after the unlock as we could race with it being freed.
1281          */
1282         xfs_buf_unlock(bp);
1283 }
1284
1285 /*
1286  * Return size of each in-core log record buffer.
1287  *
1288  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1289  *
1290  * If the filesystem blocksize is too large, we may need to choose a
1291  * larger size since the directory code currently logs entire blocks.
1292  */
1293
1294 STATIC void
1295 xlog_get_iclog_buffer_size(
1296         struct xfs_mount        *mp,
1297         struct xlog             *log)
1298 {
1299         int size;
1300         int xhdrs;
1301
1302         if (mp->m_logbufs <= 0)
1303                 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1304         else
1305                 log->l_iclog_bufs = mp->m_logbufs;
1306
1307         /*
1308          * Buffer size passed in from mount system call.
1309          */
1310         if (mp->m_logbsize > 0) {
1311                 size = log->l_iclog_size = mp->m_logbsize;
1312                 log->l_iclog_size_log = 0;
1313                 while (size != 1) {
1314                         log->l_iclog_size_log++;
1315                         size >>= 1;
1316                 }
1317
1318                 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1319                         /* # headers = size / 32k
1320                          * one header holds cycles from 32k of data
1321                          */
1322
1323                         xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1324                         if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1325                                 xhdrs++;
1326                         log->l_iclog_hsize = xhdrs << BBSHIFT;
1327                         log->l_iclog_heads = xhdrs;
1328                 } else {
1329                         ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1330                         log->l_iclog_hsize = BBSIZE;
1331                         log->l_iclog_heads = 1;
1332                 }
1333                 goto done;
1334         }
1335
1336         /* All machines use 32kB buffers by default. */
1337         log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1338         log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1339
1340         /* the default log size is 16k or 32k which is one header sector */
1341         log->l_iclog_hsize = BBSIZE;
1342         log->l_iclog_heads = 1;
1343
1344 done:
1345         /* are we being asked to make the sizes selected above visible? */
1346         if (mp->m_logbufs == 0)
1347                 mp->m_logbufs = log->l_iclog_bufs;
1348         if (mp->m_logbsize == 0)
1349                 mp->m_logbsize = log->l_iclog_size;
1350 }       /* xlog_get_iclog_buffer_size */
1351
1352
1353 void
1354 xfs_log_work_queue(
1355         struct xfs_mount        *mp)
1356 {
1357         queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1358                                 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1359 }
1360
1361 /*
1362  * Every sync period we need to unpin all items in the AIL and push them to
1363  * disk. If there is nothing dirty, then we might need to cover the log to
1364  * indicate that the filesystem is idle.
1365  */
1366 static void
1367 xfs_log_worker(
1368         struct work_struct      *work)
1369 {
1370         struct xlog             *log = container_of(to_delayed_work(work),
1371                                                 struct xlog, l_work);
1372         struct xfs_mount        *mp = log->l_mp;
1373
1374         /* dgc: errors ignored - not fatal and nowhere to report them */
1375         if (xfs_log_need_covered(mp)) {
1376                 /*
1377                  * Dump a transaction into the log that contains no real change.
1378                  * This is needed to stamp the current tail LSN into the log
1379                  * during the covering operation.
1380                  *
1381                  * We cannot use an inode here for this - that will push dirty
1382                  * state back up into the VFS and then periodic inode flushing
1383                  * will prevent log covering from making progress. Hence we
1384                  * synchronously log the superblock instead to ensure the
1385                  * superblock is immediately unpinned and can be written back.
1386                  */
1387                 xfs_sync_sb(mp, true);
1388         } else
1389                 xfs_log_force(mp, 0);
1390
1391         /* start pushing all the metadata that is currently dirty */
1392         xfs_ail_push_all(mp->m_ail);
1393
1394         /* queue us up again */
1395         xfs_log_work_queue(mp);
1396 }
1397
1398 /*
1399  * This routine initializes some of the log structure for a given mount point.
1400  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1401  * some other stuff may be filled in too.
1402  */
1403 STATIC struct xlog *
1404 xlog_alloc_log(
1405         struct xfs_mount        *mp,
1406         struct xfs_buftarg      *log_target,
1407         xfs_daddr_t             blk_offset,
1408         int                     num_bblks)
1409 {
1410         struct xlog             *log;
1411         xlog_rec_header_t       *head;
1412         xlog_in_core_t          **iclogp;
1413         xlog_in_core_t          *iclog, *prev_iclog=NULL;
1414         xfs_buf_t               *bp;
1415         int                     i;
1416         int                     error = -ENOMEM;
1417         uint                    log2_size = 0;
1418
1419         log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1420         if (!log) {
1421                 xfs_warn(mp, "Log allocation failed: No memory!");
1422                 goto out;
1423         }
1424
1425         log->l_mp          = mp;
1426         log->l_targ        = log_target;
1427         log->l_logsize     = BBTOB(num_bblks);
1428         log->l_logBBstart  = blk_offset;
1429         log->l_logBBsize   = num_bblks;
1430         log->l_covered_state = XLOG_STATE_COVER_IDLE;
1431         log->l_flags       |= XLOG_ACTIVE_RECOVERY;
1432         INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1433
1434         log->l_prev_block  = -1;
1435         /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1436         xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1437         xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1438         log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1439
1440         xlog_grant_head_init(&log->l_reserve_head);
1441         xlog_grant_head_init(&log->l_write_head);
1442
1443         error = -EFSCORRUPTED;
1444         if (xfs_sb_version_hassector(&mp->m_sb)) {
1445                 log2_size = mp->m_sb.sb_logsectlog;
1446                 if (log2_size < BBSHIFT) {
1447                         xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1448                                 log2_size, BBSHIFT);
1449                         goto out_free_log;
1450                 }
1451
1452                 log2_size -= BBSHIFT;
1453                 if (log2_size > mp->m_sectbb_log) {
1454                         xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1455                                 log2_size, mp->m_sectbb_log);
1456                         goto out_free_log;
1457                 }
1458
1459                 /* for larger sector sizes, must have v2 or external log */
1460                 if (log2_size && log->l_logBBstart > 0 &&
1461                             !xfs_sb_version_haslogv2(&mp->m_sb)) {
1462                         xfs_warn(mp,
1463                 "log sector size (0x%x) invalid for configuration.",
1464                                 log2_size);
1465                         goto out_free_log;
1466                 }
1467         }
1468         log->l_sectBBsize = 1 << log2_size;
1469
1470         xlog_get_iclog_buffer_size(mp, log);
1471
1472         /*
1473          * Use a NULL block for the extra log buffer used during splits so that
1474          * it will trigger errors if we ever try to do IO on it without first
1475          * having set it up properly.
1476          */
1477         error = -ENOMEM;
1478         bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1479                            BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1480         if (!bp)
1481                 goto out_free_log;
1482
1483         /*
1484          * The iclogbuf buffer locks are held over IO but we are not going to do
1485          * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1486          * when appropriately.
1487          */
1488         ASSERT(xfs_buf_islocked(bp));
1489         xfs_buf_unlock(bp);
1490
1491         /* use high priority wq for log I/O completion */
1492         bp->b_ioend_wq = mp->m_log_workqueue;
1493         bp->b_iodone = xlog_iodone;
1494         log->l_xbuf = bp;
1495
1496         spin_lock_init(&log->l_icloglock);
1497         init_waitqueue_head(&log->l_flush_wait);
1498
1499         iclogp = &log->l_iclog;
1500         /*
1501          * The amount of memory to allocate for the iclog structure is
1502          * rather funky due to the way the structure is defined.  It is
1503          * done this way so that we can use different sizes for machines
1504          * with different amounts of memory.  See the definition of
1505          * xlog_in_core_t in xfs_log_priv.h for details.
1506          */
1507         ASSERT(log->l_iclog_size >= 4096);
1508         for (i=0; i < log->l_iclog_bufs; i++) {
1509                 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1510                 if (!*iclogp)
1511                         goto out_free_iclog;
1512
1513                 iclog = *iclogp;
1514                 iclog->ic_prev = prev_iclog;
1515                 prev_iclog = iclog;
1516
1517                 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1518                                           BTOBB(log->l_iclog_size),
1519                                           XBF_NO_IOACCT);
1520                 if (!bp)
1521                         goto out_free_iclog;
1522
1523                 ASSERT(xfs_buf_islocked(bp));
1524                 xfs_buf_unlock(bp);
1525
1526                 /* use high priority wq for log I/O completion */
1527                 bp->b_ioend_wq = mp->m_log_workqueue;
1528                 bp->b_iodone = xlog_iodone;
1529                 iclog->ic_bp = bp;
1530                 iclog->ic_data = bp->b_addr;
1531 #ifdef DEBUG
1532                 log->l_iclog_bak[i] = &iclog->ic_header;
1533 #endif
1534                 head = &iclog->ic_header;
1535                 memset(head, 0, sizeof(xlog_rec_header_t));
1536                 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1537                 head->h_version = cpu_to_be32(
1538                         xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1539                 head->h_size = cpu_to_be32(log->l_iclog_size);
1540                 /* new fields */
1541                 head->h_fmt = cpu_to_be32(XLOG_FMT);
1542                 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1543
1544                 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1545                 iclog->ic_state = XLOG_STATE_ACTIVE;
1546                 iclog->ic_log = log;
1547                 atomic_set(&iclog->ic_refcnt, 0);
1548                 spin_lock_init(&iclog->ic_callback_lock);
1549                 iclog->ic_callback_tail = &(iclog->ic_callback);
1550                 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1551
1552                 init_waitqueue_head(&iclog->ic_force_wait);
1553                 init_waitqueue_head(&iclog->ic_write_wait);
1554
1555                 iclogp = &iclog->ic_next;
1556         }
1557         *iclogp = log->l_iclog;                 /* complete ring */
1558         log->l_iclog->ic_prev = prev_iclog;     /* re-write 1st prev ptr */
1559
1560         error = xlog_cil_init(log);
1561         if (error)
1562                 goto out_free_iclog;
1563         return log;
1564
1565 out_free_iclog:
1566         for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1567                 prev_iclog = iclog->ic_next;
1568                 if (iclog->ic_bp)
1569                         xfs_buf_free(iclog->ic_bp);
1570                 kmem_free(iclog);
1571         }
1572         spinlock_destroy(&log->l_icloglock);
1573         xfs_buf_free(log->l_xbuf);
1574 out_free_log:
1575         kmem_free(log);
1576 out:
1577         return ERR_PTR(error);
1578 }       /* xlog_alloc_log */
1579
1580
1581 /*
1582  * Write out the commit record of a transaction associated with the given
1583  * ticket.  Return the lsn of the commit record.
1584  */
1585 STATIC int
1586 xlog_commit_record(
1587         struct xlog             *log,
1588         struct xlog_ticket      *ticket,
1589         struct xlog_in_core     **iclog,
1590         xfs_lsn_t               *commitlsnp)
1591 {
1592         struct xfs_mount *mp = log->l_mp;
1593         int     error;
1594         struct xfs_log_iovec reg = {
1595                 .i_addr = NULL,
1596                 .i_len = 0,
1597                 .i_type = XLOG_REG_TYPE_COMMIT,
1598         };
1599         struct xfs_log_vec vec = {
1600                 .lv_niovecs = 1,
1601                 .lv_iovecp = &reg,
1602         };
1603
1604         ASSERT_ALWAYS(iclog);
1605         error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1606                                         XLOG_COMMIT_TRANS);
1607         if (error)
1608                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1609         return error;
1610 }
1611
1612 /*
1613  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1614  * log space.  This code pushes on the lsn which would supposedly free up
1615  * the 25% which we want to leave free.  We may need to adopt a policy which
1616  * pushes on an lsn which is further along in the log once we reach the high
1617  * water mark.  In this manner, we would be creating a low water mark.
1618  */
1619 STATIC void
1620 xlog_grant_push_ail(
1621         struct xlog     *log,
1622         int             need_bytes)
1623 {
1624         xfs_lsn_t       threshold_lsn = 0;
1625         xfs_lsn_t       last_sync_lsn;
1626         int             free_blocks;
1627         int             free_bytes;
1628         int             threshold_block;
1629         int             threshold_cycle;
1630         int             free_threshold;
1631
1632         ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1633
1634         free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1635         free_blocks = BTOBBT(free_bytes);
1636
1637         /*
1638          * Set the threshold for the minimum number of free blocks in the
1639          * log to the maximum of what the caller needs, one quarter of the
1640          * log, and 256 blocks.
1641          */
1642         free_threshold = BTOBB(need_bytes);
1643         free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1644         free_threshold = MAX(free_threshold, 256);
1645         if (free_blocks >= free_threshold)
1646                 return;
1647
1648         xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1649                                                 &threshold_block);
1650         threshold_block += free_threshold;
1651         if (threshold_block >= log->l_logBBsize) {
1652                 threshold_block -= log->l_logBBsize;
1653                 threshold_cycle += 1;
1654         }
1655         threshold_lsn = xlog_assign_lsn(threshold_cycle,
1656                                         threshold_block);
1657         /*
1658          * Don't pass in an lsn greater than the lsn of the last
1659          * log record known to be on disk. Use a snapshot of the last sync lsn
1660          * so that it doesn't change between the compare and the set.
1661          */
1662         last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1663         if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1664                 threshold_lsn = last_sync_lsn;
1665
1666         /*
1667          * Get the transaction layer to kick the dirty buffers out to
1668          * disk asynchronously. No point in trying to do this if
1669          * the filesystem is shutting down.
1670          */
1671         if (!XLOG_FORCED_SHUTDOWN(log))
1672                 xfs_ail_push(log->l_ailp, threshold_lsn);
1673 }
1674
1675 /*
1676  * Stamp cycle number in every block
1677  */
1678 STATIC void
1679 xlog_pack_data(
1680         struct xlog             *log,
1681         struct xlog_in_core     *iclog,
1682         int                     roundoff)
1683 {
1684         int                     i, j, k;
1685         int                     size = iclog->ic_offset + roundoff;
1686         __be32                  cycle_lsn;
1687         char                    *dp;
1688
1689         cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1690
1691         dp = iclog->ic_datap;
1692         for (i = 0; i < BTOBB(size); i++) {
1693                 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1694                         break;
1695                 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1696                 *(__be32 *)dp = cycle_lsn;
1697                 dp += BBSIZE;
1698         }
1699
1700         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1701                 xlog_in_core_2_t *xhdr = iclog->ic_data;
1702
1703                 for ( ; i < BTOBB(size); i++) {
1704                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1705                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1706                         xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1707                         *(__be32 *)dp = cycle_lsn;
1708                         dp += BBSIZE;
1709                 }
1710
1711                 for (i = 1; i < log->l_iclog_heads; i++)
1712                         xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1713         }
1714 }
1715
1716 /*
1717  * Calculate the checksum for a log buffer.
1718  *
1719  * This is a little more complicated than it should be because the various
1720  * headers and the actual data are non-contiguous.
1721  */
1722 __le32
1723 xlog_cksum(
1724         struct xlog             *log,
1725         struct xlog_rec_header  *rhead,
1726         char                    *dp,
1727         int                     size)
1728 {
1729         uint32_t                crc;
1730
1731         /* first generate the crc for the record header ... */
1732         crc = xfs_start_cksum_update((char *)rhead,
1733                               sizeof(struct xlog_rec_header),
1734                               offsetof(struct xlog_rec_header, h_crc));
1735
1736         /* ... then for additional cycle data for v2 logs ... */
1737         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1738                 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1739                 int             i;
1740                 int             xheads;
1741
1742                 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1743                 if (size % XLOG_HEADER_CYCLE_SIZE)
1744                         xheads++;
1745
1746                 for (i = 1; i < xheads; i++) {
1747                         crc = crc32c(crc, &xhdr[i].hic_xheader,
1748                                      sizeof(struct xlog_rec_ext_header));
1749                 }
1750         }
1751
1752         /* ... and finally for the payload */
1753         crc = crc32c(crc, dp, size);
1754
1755         return xfs_end_cksum(crc);
1756 }
1757
1758 /*
1759  * The bdstrat callback function for log bufs. This gives us a central
1760  * place to trap bufs in case we get hit by a log I/O error and need to
1761  * shutdown. Actually, in practice, even when we didn't get a log error,
1762  * we transition the iclogs to IOERROR state *after* flushing all existing
1763  * iclogs to disk. This is because we don't want anymore new transactions to be
1764  * started or completed afterwards.
1765  *
1766  * We lock the iclogbufs here so that we can serialise against IO completion
1767  * during unmount. We might be processing a shutdown triggered during unmount,
1768  * and that can occur asynchronously to the unmount thread, and hence we need to
1769  * ensure that completes before tearing down the iclogbufs. Hence we need to
1770  * hold the buffer lock across the log IO to acheive that.
1771  */
1772 STATIC int
1773 xlog_bdstrat(
1774         struct xfs_buf          *bp)
1775 {
1776         struct xlog_in_core     *iclog = bp->b_fspriv;
1777
1778         xfs_buf_lock(bp);
1779         if (iclog->ic_state & XLOG_STATE_IOERROR) {
1780                 xfs_buf_ioerror(bp, -EIO);
1781                 xfs_buf_stale(bp);
1782                 xfs_buf_ioend(bp);
1783                 /*
1784                  * It would seem logical to return EIO here, but we rely on
1785                  * the log state machine to propagate I/O errors instead of
1786                  * doing it here. Similarly, IO completion will unlock the
1787                  * buffer, so we don't do it here.
1788                  */
1789                 return 0;
1790         }
1791
1792         xfs_buf_submit(bp);
1793         return 0;
1794 }
1795
1796 /*
1797  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1798  * fashion.  Previously, we should have moved the current iclog
1799  * ptr in the log to point to the next available iclog.  This allows further
1800  * write to continue while this code syncs out an iclog ready to go.
1801  * Before an in-core log can be written out, the data section must be scanned
1802  * to save away the 1st word of each BBSIZE block into the header.  We replace
1803  * it with the current cycle count.  Each BBSIZE block is tagged with the
1804  * cycle count because there in an implicit assumption that drives will
1805  * guarantee that entire 512 byte blocks get written at once.  In other words,
1806  * we can't have part of a 512 byte block written and part not written.  By
1807  * tagging each block, we will know which blocks are valid when recovering
1808  * after an unclean shutdown.
1809  *
1810  * This routine is single threaded on the iclog.  No other thread can be in
1811  * this routine with the same iclog.  Changing contents of iclog can there-
1812  * fore be done without grabbing the state machine lock.  Updating the global
1813  * log will require grabbing the lock though.
1814  *
1815  * The entire log manager uses a logical block numbering scheme.  Only
1816  * log_sync (and then only bwrite()) know about the fact that the log may
1817  * not start with block zero on a given device.  The log block start offset
1818  * is added immediately before calling bwrite().
1819  */
1820
1821 STATIC int
1822 xlog_sync(
1823         struct xlog             *log,
1824         struct xlog_in_core     *iclog)
1825 {
1826         xfs_buf_t       *bp;
1827         int             i;
1828         uint            count;          /* byte count of bwrite */
1829         uint            count_init;     /* initial count before roundup */
1830         int             roundoff;       /* roundoff to BB or stripe */
1831         int             split = 0;      /* split write into two regions */
1832         int             error;
1833         int             v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1834         int             size;
1835
1836         XFS_STATS_INC(log->l_mp, xs_log_writes);
1837         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1838
1839         /* Add for LR header */
1840         count_init = log->l_iclog_hsize + iclog->ic_offset;
1841
1842         /* Round out the log write size */
1843         if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1844                 /* we have a v2 stripe unit to use */
1845                 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1846         } else {
1847                 count = BBTOB(BTOBB(count_init));
1848         }
1849         roundoff = count - count_init;
1850         ASSERT(roundoff >= 0);
1851         ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1852                 roundoff < log->l_mp->m_sb.sb_logsunit)
1853                 || 
1854                 (log->l_mp->m_sb.sb_logsunit <= 1 && 
1855                  roundoff < BBTOB(1)));
1856
1857         /* move grant heads by roundoff in sync */
1858         xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1859         xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1860
1861         /* put cycle number in every block */
1862         xlog_pack_data(log, iclog, roundoff); 
1863
1864         /* real byte length */
1865         size = iclog->ic_offset;
1866         if (v2)
1867                 size += roundoff;
1868         iclog->ic_header.h_len = cpu_to_be32(size);
1869
1870         bp = iclog->ic_bp;
1871         XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1872
1873         XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1874
1875         /* Do we need to split this write into 2 parts? */
1876         if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1877                 char            *dptr;
1878
1879                 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1880                 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1881                 iclog->ic_bwritecnt = 2;
1882
1883                 /*
1884                  * Bump the cycle numbers at the start of each block in the
1885                  * part of the iclog that ends up in the buffer that gets
1886                  * written to the start of the log.
1887                  *
1888                  * Watch out for the header magic number case, though.
1889                  */
1890                 dptr = (char *)&iclog->ic_header + count;
1891                 for (i = 0; i < split; i += BBSIZE) {
1892                         uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1893                         if (++cycle == XLOG_HEADER_MAGIC_NUM)
1894                                 cycle++;
1895                         *(__be32 *)dptr = cpu_to_be32(cycle);
1896
1897                         dptr += BBSIZE;
1898                 }
1899         } else {
1900                 iclog->ic_bwritecnt = 1;
1901         }
1902
1903         /* calculcate the checksum */
1904         iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1905                                             iclog->ic_datap, size);
1906         /*
1907          * Intentionally corrupt the log record CRC based on the error injection
1908          * frequency, if defined. This facilitates testing log recovery in the
1909          * event of torn writes. Hence, set the IOABORT state to abort the log
1910          * write on I/O completion and shutdown the fs. The subsequent mount
1911          * detects the bad CRC and attempts to recover.
1912          */
1913         if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1914                 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1915                 iclog->ic_state |= XLOG_STATE_IOABORT;
1916                 xfs_warn(log->l_mp,
1917         "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1918                          be64_to_cpu(iclog->ic_header.h_lsn));
1919         }
1920
1921         bp->b_io_length = BTOBB(count);
1922         bp->b_fspriv = iclog;
1923         bp->b_flags &= ~XBF_FLUSH;
1924         bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1925
1926         /*
1927          * Flush the data device before flushing the log to make sure all meta
1928          * data written back from the AIL actually made it to disk before
1929          * stamping the new log tail LSN into the log buffer.  For an external
1930          * log we need to issue the flush explicitly, and unfortunately
1931          * synchronously here; for an internal log we can simply use the block
1932          * layer state machine for preflushes.
1933          */
1934         if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1935                 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1936         else
1937                 bp->b_flags |= XBF_FLUSH;
1938
1939         ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1940         ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1941
1942         xlog_verify_iclog(log, iclog, count, true);
1943
1944         /* account for log which doesn't start at block #0 */
1945         XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1946
1947         /*
1948          * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1949          * is shutting down.
1950          */
1951         error = xlog_bdstrat(bp);
1952         if (error) {
1953                 xfs_buf_ioerror_alert(bp, "xlog_sync");
1954                 return error;
1955         }
1956         if (split) {
1957                 bp = iclog->ic_log->l_xbuf;
1958                 XFS_BUF_SET_ADDR(bp, 0);             /* logical 0 */
1959                 xfs_buf_associate_memory(bp,
1960                                 (char *)&iclog->ic_header + count, split);
1961                 bp->b_fspriv = iclog;
1962                 bp->b_flags &= ~XBF_FLUSH;
1963                 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1964
1965                 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1966                 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1967
1968                 /* account for internal log which doesn't start at block #0 */
1969                 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1970                 error = xlog_bdstrat(bp);
1971                 if (error) {
1972                         xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1973                         return error;
1974                 }
1975         }
1976         return 0;
1977 }       /* xlog_sync */
1978
1979 /*
1980  * Deallocate a log structure
1981  */
1982 STATIC void
1983 xlog_dealloc_log(
1984         struct xlog     *log)
1985 {
1986         xlog_in_core_t  *iclog, *next_iclog;
1987         int             i;
1988
1989         xlog_cil_destroy(log);
1990
1991         /*
1992          * Cycle all the iclogbuf locks to make sure all log IO completion
1993          * is done before we tear down these buffers.
1994          */
1995         iclog = log->l_iclog;
1996         for (i = 0; i < log->l_iclog_bufs; i++) {
1997                 xfs_buf_lock(iclog->ic_bp);
1998                 xfs_buf_unlock(iclog->ic_bp);
1999                 iclog = iclog->ic_next;
2000         }
2001
2002         /*
2003          * Always need to ensure that the extra buffer does not point to memory
2004          * owned by another log buffer before we free it. Also, cycle the lock
2005          * first to ensure we've completed IO on it.
2006          */
2007         xfs_buf_lock(log->l_xbuf);
2008         xfs_buf_unlock(log->l_xbuf);
2009         xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
2010         xfs_buf_free(log->l_xbuf);
2011
2012         iclog = log->l_iclog;
2013         for (i = 0; i < log->l_iclog_bufs; i++) {
2014                 xfs_buf_free(iclog->ic_bp);
2015                 next_iclog = iclog->ic_next;
2016                 kmem_free(iclog);
2017                 iclog = next_iclog;
2018         }
2019         spinlock_destroy(&log->l_icloglock);
2020
2021         log->l_mp->m_log = NULL;
2022         kmem_free(log);
2023 }       /* xlog_dealloc_log */
2024
2025 /*
2026  * Update counters atomically now that memcpy is done.
2027  */
2028 /* ARGSUSED */
2029 static inline void
2030 xlog_state_finish_copy(
2031         struct xlog             *log,
2032         struct xlog_in_core     *iclog,
2033         int                     record_cnt,
2034         int                     copy_bytes)
2035 {
2036         spin_lock(&log->l_icloglock);
2037
2038         be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2039         iclog->ic_offset += copy_bytes;
2040
2041         spin_unlock(&log->l_icloglock);
2042 }       /* xlog_state_finish_copy */
2043
2044
2045
2046
2047 /*
2048  * print out info relating to regions written which consume
2049  * the reservation
2050  */
2051 void
2052 xlog_print_tic_res(
2053         struct xfs_mount        *mp,
2054         struct xlog_ticket      *ticket)
2055 {
2056         uint i;
2057         uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2058
2059         /* match with XLOG_REG_TYPE_* in xfs_log.h */
2060 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2061         static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2062             REG_TYPE_STR(BFORMAT, "bformat"),
2063             REG_TYPE_STR(BCHUNK, "bchunk"),
2064             REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2065             REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2066             REG_TYPE_STR(IFORMAT, "iformat"),
2067             REG_TYPE_STR(ICORE, "icore"),
2068             REG_TYPE_STR(IEXT, "iext"),
2069             REG_TYPE_STR(IBROOT, "ibroot"),
2070             REG_TYPE_STR(ILOCAL, "ilocal"),
2071             REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2072             REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2073             REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2074             REG_TYPE_STR(QFORMAT, "qformat"),
2075             REG_TYPE_STR(DQUOT, "dquot"),
2076             REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2077             REG_TYPE_STR(LRHEADER, "LR header"),
2078             REG_TYPE_STR(UNMOUNT, "unmount"),
2079             REG_TYPE_STR(COMMIT, "commit"),
2080             REG_TYPE_STR(TRANSHDR, "trans header"),
2081             REG_TYPE_STR(ICREATE, "inode create")
2082         };
2083 #undef REG_TYPE_STR
2084
2085         xfs_warn(mp, "ticket reservation summary:");
2086         xfs_warn(mp, "  unit res    = %d bytes",
2087                  ticket->t_unit_res);
2088         xfs_warn(mp, "  current res = %d bytes",
2089                  ticket->t_curr_res);
2090         xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2091                  ticket->t_res_arr_sum, ticket->t_res_o_flow);
2092         xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2093                  ticket->t_res_num_ophdrs, ophdr_spc);
2094         xfs_warn(mp, "  ophdr + reg = %u bytes",
2095                  ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2096         xfs_warn(mp, "  num regions = %u",
2097                  ticket->t_res_num);
2098
2099         for (i = 0; i < ticket->t_res_num; i++) {
2100                 uint r_type = ticket->t_res_arr[i].r_type;
2101                 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2102                             ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2103                             "bad-rtype" : res_type_str[r_type]),
2104                             ticket->t_res_arr[i].r_len);
2105         }
2106 }
2107
2108 /*
2109  * Print a summary of the transaction.
2110  */
2111 void
2112 xlog_print_trans(
2113         struct xfs_trans                *tp)
2114 {
2115         struct xfs_mount                *mp = tp->t_mountp;
2116         struct xfs_log_item_desc        *lidp;
2117
2118         /* dump core transaction and ticket info */
2119         xfs_warn(mp, "transaction summary:");
2120         xfs_warn(mp, "  flags   = 0x%x", tp->t_flags);
2121
2122         xlog_print_tic_res(mp, tp->t_ticket);
2123
2124         /* dump each log item */
2125         list_for_each_entry(lidp, &tp->t_items, lid_trans) {
2126                 struct xfs_log_item     *lip = lidp->lid_item;
2127                 struct xfs_log_vec      *lv = lip->li_lv;
2128                 struct xfs_log_iovec    *vec;
2129                 int                     i;
2130
2131                 xfs_warn(mp, "log item: ");
2132                 xfs_warn(mp, "  type    = 0x%x", lip->li_type);
2133                 xfs_warn(mp, "  flags   = 0x%x", lip->li_flags);
2134                 if (!lv)
2135                         continue;
2136                 xfs_warn(mp, "  niovecs = %d", lv->lv_niovecs);
2137                 xfs_warn(mp, "  size    = %d", lv->lv_size);
2138                 xfs_warn(mp, "  bytes   = %d", lv->lv_bytes);
2139                 xfs_warn(mp, "  buf len = %d", lv->lv_buf_len);
2140
2141                 /* dump each iovec for the log item */
2142                 vec = lv->lv_iovecp;
2143                 for (i = 0; i < lv->lv_niovecs; i++) {
2144                         int dumplen = min(vec->i_len, 32);
2145
2146                         xfs_warn(mp, "  iovec[%d]", i);
2147                         xfs_warn(mp, "    type  = 0x%x", vec->i_type);
2148                         xfs_warn(mp, "    len   = %d", vec->i_len);
2149                         xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2150                         xfs_hex_dump(vec->i_addr, dumplen);
2151
2152                         vec++;
2153                 }
2154         }
2155 }
2156
2157 /*
2158  * Calculate the potential space needed by the log vector.  Each region gets
2159  * its own xlog_op_header_t and may need to be double word aligned.
2160  */
2161 static int
2162 xlog_write_calc_vec_length(
2163         struct xlog_ticket      *ticket,
2164         struct xfs_log_vec      *log_vector)
2165 {
2166         struct xfs_log_vec      *lv;
2167         int                     headers = 0;
2168         int                     len = 0;
2169         int                     i;
2170
2171         /* acct for start rec of xact */
2172         if (ticket->t_flags & XLOG_TIC_INITED)
2173                 headers++;
2174
2175         for (lv = log_vector; lv; lv = lv->lv_next) {
2176                 /* we don't write ordered log vectors */
2177                 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2178                         continue;
2179
2180                 headers += lv->lv_niovecs;
2181
2182                 for (i = 0; i < lv->lv_niovecs; i++) {
2183                         struct xfs_log_iovec    *vecp = &lv->lv_iovecp[i];
2184
2185                         len += vecp->i_len;
2186                         xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2187                 }
2188         }
2189
2190         ticket->t_res_num_ophdrs += headers;
2191         len += headers * sizeof(struct xlog_op_header);
2192
2193         return len;
2194 }
2195
2196 /*
2197  * If first write for transaction, insert start record  We can't be trying to
2198  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2199  */
2200 static int
2201 xlog_write_start_rec(
2202         struct xlog_op_header   *ophdr,
2203         struct xlog_ticket      *ticket)
2204 {
2205         if (!(ticket->t_flags & XLOG_TIC_INITED))
2206                 return 0;
2207
2208         ophdr->oh_tid   = cpu_to_be32(ticket->t_tid);
2209         ophdr->oh_clientid = ticket->t_clientid;
2210         ophdr->oh_len = 0;
2211         ophdr->oh_flags = XLOG_START_TRANS;
2212         ophdr->oh_res2 = 0;
2213
2214         ticket->t_flags &= ~XLOG_TIC_INITED;
2215
2216         return sizeof(struct xlog_op_header);
2217 }
2218
2219 static xlog_op_header_t *
2220 xlog_write_setup_ophdr(
2221         struct xlog             *log,
2222         struct xlog_op_header   *ophdr,
2223         struct xlog_ticket      *ticket,
2224         uint                    flags)
2225 {
2226         ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2227         ophdr->oh_clientid = ticket->t_clientid;
2228         ophdr->oh_res2 = 0;
2229
2230         /* are we copying a commit or unmount record? */
2231         ophdr->oh_flags = flags;
2232
2233         /*
2234          * We've seen logs corrupted with bad transaction client ids.  This
2235          * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2236          * and shut down the filesystem.
2237          */
2238         switch (ophdr->oh_clientid)  {
2239         case XFS_TRANSACTION:
2240         case XFS_VOLUME:
2241         case XFS_LOG:
2242                 break;
2243         default:
2244                 xfs_warn(log->l_mp,
2245                         "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2246                         ophdr->oh_clientid, ticket);
2247                 return NULL;
2248         }
2249
2250         return ophdr;
2251 }
2252
2253 /*
2254  * Set up the parameters of the region copy into the log. This has
2255  * to handle region write split across multiple log buffers - this
2256  * state is kept external to this function so that this code can
2257  * be written in an obvious, self documenting manner.
2258  */
2259 static int
2260 xlog_write_setup_copy(
2261         struct xlog_ticket      *ticket,
2262         struct xlog_op_header   *ophdr,
2263         int                     space_available,
2264         int                     space_required,
2265         int                     *copy_off,
2266         int                     *copy_len,
2267         int                     *last_was_partial_copy,
2268         int                     *bytes_consumed)
2269 {
2270         int                     still_to_copy;
2271
2272         still_to_copy = space_required - *bytes_consumed;
2273         *copy_off = *bytes_consumed;
2274
2275         if (still_to_copy <= space_available) {
2276                 /* write of region completes here */
2277                 *copy_len = still_to_copy;
2278                 ophdr->oh_len = cpu_to_be32(*copy_len);
2279                 if (*last_was_partial_copy)
2280                         ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2281                 *last_was_partial_copy = 0;
2282                 *bytes_consumed = 0;
2283                 return 0;
2284         }
2285
2286         /* partial write of region, needs extra log op header reservation */
2287         *copy_len = space_available;
2288         ophdr->oh_len = cpu_to_be32(*copy_len);
2289         ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2290         if (*last_was_partial_copy)
2291                 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2292         *bytes_consumed += *copy_len;
2293         (*last_was_partial_copy)++;
2294
2295         /* account for new log op header */
2296         ticket->t_curr_res -= sizeof(struct xlog_op_header);
2297         ticket->t_res_num_ophdrs++;
2298
2299         return sizeof(struct xlog_op_header);
2300 }
2301
2302 static int
2303 xlog_write_copy_finish(
2304         struct xlog             *log,
2305         struct xlog_in_core     *iclog,
2306         uint                    flags,
2307         int                     *record_cnt,
2308         int                     *data_cnt,
2309         int                     *partial_copy,
2310         int                     *partial_copy_len,
2311         int                     log_offset,
2312         struct xlog_in_core     **commit_iclog)
2313 {
2314         if (*partial_copy) {
2315                 /*
2316                  * This iclog has already been marked WANT_SYNC by
2317                  * xlog_state_get_iclog_space.
2318                  */
2319                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2320                 *record_cnt = 0;
2321                 *data_cnt = 0;
2322                 return xlog_state_release_iclog(log, iclog);
2323         }
2324
2325         *partial_copy = 0;
2326         *partial_copy_len = 0;
2327
2328         if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2329                 /* no more space in this iclog - push it. */
2330                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2331                 *record_cnt = 0;
2332                 *data_cnt = 0;
2333
2334                 spin_lock(&log->l_icloglock);
2335                 xlog_state_want_sync(log, iclog);
2336                 spin_unlock(&log->l_icloglock);
2337
2338                 if (!commit_iclog)
2339                         return xlog_state_release_iclog(log, iclog);
2340                 ASSERT(flags & XLOG_COMMIT_TRANS);
2341                 *commit_iclog = iclog;
2342         }
2343
2344         return 0;
2345 }
2346
2347 /*
2348  * Write some region out to in-core log
2349  *
2350  * This will be called when writing externally provided regions or when
2351  * writing out a commit record for a given transaction.
2352  *
2353  * General algorithm:
2354  *      1. Find total length of this write.  This may include adding to the
2355  *              lengths passed in.
2356  *      2. Check whether we violate the tickets reservation.
2357  *      3. While writing to this iclog
2358  *          A. Reserve as much space in this iclog as can get
2359  *          B. If this is first write, save away start lsn
2360  *          C. While writing this region:
2361  *              1. If first write of transaction, write start record
2362  *              2. Write log operation header (header per region)
2363  *              3. Find out if we can fit entire region into this iclog
2364  *              4. Potentially, verify destination memcpy ptr
2365  *              5. Memcpy (partial) region
2366  *              6. If partial copy, release iclog; otherwise, continue
2367  *                      copying more regions into current iclog
2368  *      4. Mark want sync bit (in simulation mode)
2369  *      5. Release iclog for potential flush to on-disk log.
2370  *
2371  * ERRORS:
2372  * 1.   Panic if reservation is overrun.  This should never happen since
2373  *      reservation amounts are generated internal to the filesystem.
2374  * NOTES:
2375  * 1. Tickets are single threaded data structures.
2376  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2377  *      syncing routine.  When a single log_write region needs to span
2378  *      multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2379  *      on all log operation writes which don't contain the end of the
2380  *      region.  The XLOG_END_TRANS bit is used for the in-core log
2381  *      operation which contains the end of the continued log_write region.
2382  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2383  *      we don't really know exactly how much space will be used.  As a result,
2384  *      we don't update ic_offset until the end when we know exactly how many
2385  *      bytes have been written out.
2386  */
2387 int
2388 xlog_write(
2389         struct xlog             *log,
2390         struct xfs_log_vec      *log_vector,
2391         struct xlog_ticket      *ticket,
2392         xfs_lsn_t               *start_lsn,
2393         struct xlog_in_core     **commit_iclog,
2394         uint                    flags)
2395 {
2396         struct xlog_in_core     *iclog = NULL;
2397         struct xfs_log_iovec    *vecp;
2398         struct xfs_log_vec      *lv;
2399         int                     len;
2400         int                     index;
2401         int                     partial_copy = 0;
2402         int                     partial_copy_len = 0;
2403         int                     contwr = 0;
2404         int                     record_cnt = 0;
2405         int                     data_cnt = 0;
2406         int                     error;
2407
2408         *start_lsn = 0;
2409
2410         len = xlog_write_calc_vec_length(ticket, log_vector);
2411
2412         /*
2413          * Region headers and bytes are already accounted for.
2414          * We only need to take into account start records and
2415          * split regions in this function.
2416          */
2417         if (ticket->t_flags & XLOG_TIC_INITED)
2418                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2419
2420         /*
2421          * Commit record headers need to be accounted for. These
2422          * come in as separate writes so are easy to detect.
2423          */
2424         if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2425                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2426
2427         if (ticket->t_curr_res < 0) {
2428                 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2429                      "ctx ticket reservation ran out. Need to up reservation");
2430                 xlog_print_tic_res(log->l_mp, ticket);
2431                 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2432         }
2433
2434         index = 0;
2435         lv = log_vector;
2436         vecp = lv->lv_iovecp;
2437         while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2438                 void            *ptr;
2439                 int             log_offset;
2440
2441                 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2442                                                    &contwr, &log_offset);
2443                 if (error)
2444                         return error;
2445
2446                 ASSERT(log_offset <= iclog->ic_size - 1);
2447                 ptr = iclog->ic_datap + log_offset;
2448
2449                 /* start_lsn is the first lsn written to. That's all we need. */
2450                 if (!*start_lsn)
2451                         *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2452
2453                 /*
2454                  * This loop writes out as many regions as can fit in the amount
2455                  * of space which was allocated by xlog_state_get_iclog_space().
2456                  */
2457                 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2458                         struct xfs_log_iovec    *reg;
2459                         struct xlog_op_header   *ophdr;
2460                         int                     start_rec_copy;
2461                         int                     copy_len;
2462                         int                     copy_off;
2463                         bool                    ordered = false;
2464
2465                         /* ordered log vectors have no regions to write */
2466                         if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2467                                 ASSERT(lv->lv_niovecs == 0);
2468                                 ordered = true;
2469                                 goto next_lv;
2470                         }
2471
2472                         reg = &vecp[index];
2473                         ASSERT(reg->i_len % sizeof(int32_t) == 0);
2474                         ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2475
2476                         start_rec_copy = xlog_write_start_rec(ptr, ticket);
2477                         if (start_rec_copy) {
2478                                 record_cnt++;
2479                                 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2480                                                    start_rec_copy);
2481                         }
2482
2483                         ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2484                         if (!ophdr)
2485                                 return -EIO;
2486
2487                         xlog_write_adv_cnt(&ptr, &len, &log_offset,
2488                                            sizeof(struct xlog_op_header));
2489
2490                         len += xlog_write_setup_copy(ticket, ophdr,
2491                                                      iclog->ic_size-log_offset,
2492                                                      reg->i_len,
2493                                                      &copy_off, &copy_len,
2494                                                      &partial_copy,
2495                                                      &partial_copy_len);
2496                         xlog_verify_dest_ptr(log, ptr);
2497
2498                         /*
2499                          * Copy region.
2500                          *
2501                          * Unmount records just log an opheader, so can have
2502                          * empty payloads with no data region to copy. Hence we
2503                          * only copy the payload if the vector says it has data
2504                          * to copy.
2505                          */
2506                         ASSERT(copy_len >= 0);
2507                         if (copy_len > 0) {
2508                                 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2509                                 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2510                                                    copy_len);
2511                         }
2512                         copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2513                         record_cnt++;
2514                         data_cnt += contwr ? copy_len : 0;
2515
2516                         error = xlog_write_copy_finish(log, iclog, flags,
2517                                                        &record_cnt, &data_cnt,
2518                                                        &partial_copy,
2519                                                        &partial_copy_len,
2520                                                        log_offset,
2521                                                        commit_iclog);
2522                         if (error)
2523                                 return error;
2524
2525                         /*
2526                          * if we had a partial copy, we need to get more iclog
2527                          * space but we don't want to increment the region
2528                          * index because there is still more is this region to
2529                          * write.
2530                          *
2531                          * If we completed writing this region, and we flushed
2532                          * the iclog (indicated by resetting of the record
2533                          * count), then we also need to get more log space. If
2534                          * this was the last record, though, we are done and
2535                          * can just return.
2536                          */
2537                         if (partial_copy)
2538                                 break;
2539
2540                         if (++index == lv->lv_niovecs) {
2541 next_lv:
2542                                 lv = lv->lv_next;
2543                                 index = 0;
2544                                 if (lv)
2545                                         vecp = lv->lv_iovecp;
2546                         }
2547                         if (record_cnt == 0 && !ordered) {
2548                                 if (!lv)
2549                                         return 0;
2550                                 break;
2551                         }
2552                 }
2553         }
2554
2555         ASSERT(len == 0);
2556
2557         xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2558         if (!commit_iclog)
2559                 return xlog_state_release_iclog(log, iclog);
2560
2561         ASSERT(flags & XLOG_COMMIT_TRANS);
2562         *commit_iclog = iclog;
2563         return 0;
2564 }
2565
2566
2567 /*****************************************************************************
2568  *
2569  *              State Machine functions
2570  *
2571  *****************************************************************************
2572  */
2573
2574 /* Clean iclogs starting from the head.  This ordering must be
2575  * maintained, so an iclog doesn't become ACTIVE beyond one that
2576  * is SYNCING.  This is also required to maintain the notion that we use
2577  * a ordered wait queue to hold off would be writers to the log when every
2578  * iclog is trying to sync to disk.
2579  *
2580  * State Change: DIRTY -> ACTIVE
2581  */
2582 STATIC void
2583 xlog_state_clean_log(
2584         struct xlog *log)
2585 {
2586         xlog_in_core_t  *iclog;
2587         int changed = 0;
2588
2589         iclog = log->l_iclog;
2590         do {
2591                 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2592                         iclog->ic_state = XLOG_STATE_ACTIVE;
2593                         iclog->ic_offset       = 0;
2594                         ASSERT(iclog->ic_callback == NULL);
2595                         /*
2596                          * If the number of ops in this iclog indicate it just
2597                          * contains the dummy transaction, we can
2598                          * change state into IDLE (the second time around).
2599                          * Otherwise we should change the state into
2600                          * NEED a dummy.
2601                          * We don't need to cover the dummy.
2602                          */
2603                         if (!changed &&
2604                            (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2605                                         XLOG_COVER_OPS)) {
2606                                 changed = 1;
2607                         } else {
2608                                 /*
2609                                  * We have two dirty iclogs so start over
2610                                  * This could also be num of ops indicates
2611                                  * this is not the dummy going out.
2612                                  */
2613                                 changed = 2;
2614                         }
2615                         iclog->ic_header.h_num_logops = 0;
2616                         memset(iclog->ic_header.h_cycle_data, 0,
2617                               sizeof(iclog->ic_header.h_cycle_data));
2618                         iclog->ic_header.h_lsn = 0;
2619                 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2620                         /* do nothing */;
2621                 else
2622                         break;  /* stop cleaning */
2623                 iclog = iclog->ic_next;
2624         } while (iclog != log->l_iclog);
2625
2626         /* log is locked when we are called */
2627         /*
2628          * Change state for the dummy log recording.
2629          * We usually go to NEED. But we go to NEED2 if the changed indicates
2630          * we are done writing the dummy record.
2631          * If we are done with the second dummy recored (DONE2), then
2632          * we go to IDLE.
2633          */
2634         if (changed) {
2635                 switch (log->l_covered_state) {
2636                 case XLOG_STATE_COVER_IDLE:
2637                 case XLOG_STATE_COVER_NEED:
2638                 case XLOG_STATE_COVER_NEED2:
2639                         log->l_covered_state = XLOG_STATE_COVER_NEED;
2640                         break;
2641
2642                 case XLOG_STATE_COVER_DONE:
2643                         if (changed == 1)
2644                                 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2645                         else
2646                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2647                         break;
2648
2649                 case XLOG_STATE_COVER_DONE2:
2650                         if (changed == 1)
2651                                 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2652                         else
2653                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2654                         break;
2655
2656                 default:
2657                         ASSERT(0);
2658                 }
2659         }
2660 }       /* xlog_state_clean_log */
2661
2662 STATIC xfs_lsn_t
2663 xlog_get_lowest_lsn(
2664         struct xlog     *log)
2665 {
2666         xlog_in_core_t  *lsn_log;
2667         xfs_lsn_t       lowest_lsn, lsn;
2668
2669         lsn_log = log->l_iclog;
2670         lowest_lsn = 0;
2671         do {
2672             if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2673                 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2674                 if ((lsn && !lowest_lsn) ||
2675                     (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2676                         lowest_lsn = lsn;
2677                 }
2678             }
2679             lsn_log = lsn_log->ic_next;
2680         } while (lsn_log != log->l_iclog);
2681         return lowest_lsn;
2682 }
2683
2684
2685 STATIC void
2686 xlog_state_do_callback(
2687         struct xlog             *log,
2688         int                     aborted,
2689         struct xlog_in_core     *ciclog)
2690 {
2691         xlog_in_core_t     *iclog;
2692         xlog_in_core_t     *first_iclog;        /* used to know when we've
2693                                                  * processed all iclogs once */
2694         xfs_log_callback_t *cb, *cb_next;
2695         int                flushcnt = 0;
2696         xfs_lsn_t          lowest_lsn;
2697         int                ioerrors;    /* counter: iclogs with errors */
2698         int                loopdidcallbacks; /* flag: inner loop did callbacks*/
2699         int                funcdidcallbacks; /* flag: function did callbacks */
2700         int                repeats;     /* for issuing console warnings if
2701                                          * looping too many times */
2702         int                wake = 0;
2703
2704         spin_lock(&log->l_icloglock);
2705         first_iclog = iclog = log->l_iclog;
2706         ioerrors = 0;
2707         funcdidcallbacks = 0;
2708         repeats = 0;
2709
2710         do {
2711                 /*
2712                  * Scan all iclogs starting with the one pointed to by the
2713                  * log.  Reset this starting point each time the log is
2714                  * unlocked (during callbacks).
2715                  *
2716                  * Keep looping through iclogs until one full pass is made
2717                  * without running any callbacks.
2718                  */
2719                 first_iclog = log->l_iclog;
2720                 iclog = log->l_iclog;
2721                 loopdidcallbacks = 0;
2722                 repeats++;
2723
2724                 do {
2725
2726                         /* skip all iclogs in the ACTIVE & DIRTY states */
2727                         if (iclog->ic_state &
2728                             (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2729                                 iclog = iclog->ic_next;
2730                                 continue;
2731                         }
2732
2733                         /*
2734                          * Between marking a filesystem SHUTDOWN and stopping
2735                          * the log, we do flush all iclogs to disk (if there
2736                          * wasn't a log I/O error). So, we do want things to
2737                          * go smoothly in case of just a SHUTDOWN  w/o a
2738                          * LOG_IO_ERROR.
2739                          */
2740                         if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2741                                 /*
2742                                  * Can only perform callbacks in order.  Since
2743                                  * this iclog is not in the DONE_SYNC/
2744                                  * DO_CALLBACK state, we skip the rest and
2745                                  * just try to clean up.  If we set our iclog
2746                                  * to DO_CALLBACK, we will not process it when
2747                                  * we retry since a previous iclog is in the
2748                                  * CALLBACK and the state cannot change since
2749                                  * we are holding the l_icloglock.
2750                                  */
2751                                 if (!(iclog->ic_state &
2752                                         (XLOG_STATE_DONE_SYNC |
2753                                                  XLOG_STATE_DO_CALLBACK))) {
2754                                         if (ciclog && (ciclog->ic_state ==
2755                                                         XLOG_STATE_DONE_SYNC)) {
2756                                                 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2757                                         }
2758                                         break;
2759                                 }
2760                                 /*
2761                                  * We now have an iclog that is in either the
2762                                  * DO_CALLBACK or DONE_SYNC states. The other
2763                                  * states (WANT_SYNC, SYNCING, or CALLBACK were
2764                                  * caught by the above if and are going to
2765                                  * clean (i.e. we aren't doing their callbacks)
2766                                  * see the above if.
2767                                  */
2768
2769                                 /*
2770                                  * We will do one more check here to see if we
2771                                  * have chased our tail around.
2772                                  */
2773
2774                                 lowest_lsn = xlog_get_lowest_lsn(log);
2775                                 if (lowest_lsn &&
2776                                     XFS_LSN_CMP(lowest_lsn,
2777                                                 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2778                                         iclog = iclog->ic_next;
2779                                         continue; /* Leave this iclog for
2780                                                    * another thread */
2781                                 }
2782
2783                                 iclog->ic_state = XLOG_STATE_CALLBACK;
2784
2785
2786                                 /*
2787                                  * Completion of a iclog IO does not imply that
2788                                  * a transaction has completed, as transactions
2789                                  * can be large enough to span many iclogs. We
2790                                  * cannot change the tail of the log half way
2791                                  * through a transaction as this may be the only
2792                                  * transaction in the log and moving th etail to
2793                                  * point to the middle of it will prevent
2794                                  * recovery from finding the start of the
2795                                  * transaction. Hence we should only update the
2796                                  * last_sync_lsn if this iclog contains
2797                                  * transaction completion callbacks on it.
2798                                  *
2799                                  * We have to do this before we drop the
2800                                  * icloglock to ensure we are the only one that
2801                                  * can update it.
2802                                  */
2803                                 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2804                                         be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2805                                 if (iclog->ic_callback)
2806                                         atomic64_set(&log->l_last_sync_lsn,
2807                                                 be64_to_cpu(iclog->ic_header.h_lsn));
2808
2809                         } else
2810                                 ioerrors++;
2811
2812                         spin_unlock(&log->l_icloglock);
2813
2814                         /*
2815                          * Keep processing entries in the callback list until
2816                          * we come around and it is empty.  We need to
2817                          * atomically see that the list is empty and change the
2818                          * state to DIRTY so that we don't miss any more
2819                          * callbacks being added.
2820                          */
2821                         spin_lock(&iclog->ic_callback_lock);
2822                         cb = iclog->ic_callback;
2823                         while (cb) {
2824                                 iclog->ic_callback_tail = &(iclog->ic_callback);
2825                                 iclog->ic_callback = NULL;
2826                                 spin_unlock(&iclog->ic_callback_lock);
2827
2828                                 /* perform callbacks in the order given */
2829                                 for (; cb; cb = cb_next) {
2830                                         cb_next = cb->cb_next;
2831                                         cb->cb_func(cb->cb_arg, aborted);
2832                                 }
2833                                 spin_lock(&iclog->ic_callback_lock);
2834                                 cb = iclog->ic_callback;
2835                         }
2836
2837                         loopdidcallbacks++;
2838                         funcdidcallbacks++;
2839
2840                         spin_lock(&log->l_icloglock);
2841                         ASSERT(iclog->ic_callback == NULL);
2842                         spin_unlock(&iclog->ic_callback_lock);
2843                         if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2844                                 iclog->ic_state = XLOG_STATE_DIRTY;
2845
2846                         /*
2847                          * Transition from DIRTY to ACTIVE if applicable.
2848                          * NOP if STATE_IOERROR.
2849                          */
2850                         xlog_state_clean_log(log);
2851
2852                         /* wake up threads waiting in xfs_log_force() */
2853                         wake_up_all(&iclog->ic_force_wait);
2854
2855                         iclog = iclog->ic_next;
2856                 } while (first_iclog != iclog);
2857
2858                 if (repeats > 5000) {
2859                         flushcnt += repeats;
2860                         repeats = 0;
2861                         xfs_warn(log->l_mp,
2862                                 "%s: possible infinite loop (%d iterations)",
2863                                 __func__, flushcnt);
2864                 }
2865         } while (!ioerrors && loopdidcallbacks);
2866
2867 #ifdef DEBUG
2868         /*
2869          * Make one last gasp attempt to see if iclogs are being left in limbo.
2870          * If the above loop finds an iclog earlier than the current iclog and
2871          * in one of the syncing states, the current iclog is put into
2872          * DO_CALLBACK and the callbacks are deferred to the completion of the
2873          * earlier iclog. Walk the iclogs in order and make sure that no iclog
2874          * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2875          * states.
2876          *
2877          * Note that SYNCING|IOABORT is a valid state so we cannot just check
2878          * for ic_state == SYNCING.
2879          */
2880         if (funcdidcallbacks) {
2881                 first_iclog = iclog = log->l_iclog;
2882                 do {
2883                         ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2884                         /*
2885                          * Terminate the loop if iclogs are found in states
2886                          * which will cause other threads to clean up iclogs.
2887                          *
2888                          * SYNCING - i/o completion will go through logs
2889                          * DONE_SYNC - interrupt thread should be waiting for
2890                          *              l_icloglock
2891                          * IOERROR - give up hope all ye who enter here
2892                          */
2893                         if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2894                             iclog->ic_state & XLOG_STATE_SYNCING ||
2895                             iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2896                             iclog->ic_state == XLOG_STATE_IOERROR )
2897                                 break;
2898                         iclog = iclog->ic_next;
2899                 } while (first_iclog != iclog);
2900         }
2901 #endif
2902
2903         if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2904                 wake = 1;
2905         spin_unlock(&log->l_icloglock);
2906
2907         if (wake)
2908                 wake_up_all(&log->l_flush_wait);
2909 }
2910
2911
2912 /*
2913  * Finish transitioning this iclog to the dirty state.
2914  *
2915  * Make sure that we completely execute this routine only when this is
2916  * the last call to the iclog.  There is a good chance that iclog flushes,
2917  * when we reach the end of the physical log, get turned into 2 separate
2918  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2919  * routine.  By using the reference count bwritecnt, we guarantee that only
2920  * the second completion goes through.
2921  *
2922  * Callbacks could take time, so they are done outside the scope of the
2923  * global state machine log lock.
2924  */
2925 STATIC void
2926 xlog_state_done_syncing(
2927         xlog_in_core_t  *iclog,
2928         int             aborted)
2929 {
2930         struct xlog        *log = iclog->ic_log;
2931
2932         spin_lock(&log->l_icloglock);
2933
2934         ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2935                iclog->ic_state == XLOG_STATE_IOERROR);
2936         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2937         ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2938
2939
2940         /*
2941          * If we got an error, either on the first buffer, or in the case of
2942          * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2943          * and none should ever be attempted to be written to disk
2944          * again.
2945          */
2946         if (iclog->ic_state != XLOG_STATE_IOERROR) {
2947                 if (--iclog->ic_bwritecnt == 1) {
2948                         spin_unlock(&log->l_icloglock);
2949                         return;
2950                 }
2951                 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2952         }
2953
2954         /*
2955          * Someone could be sleeping prior to writing out the next
2956          * iclog buffer, we wake them all, one will get to do the
2957          * I/O, the others get to wait for the result.
2958          */
2959         wake_up_all(&iclog->ic_write_wait);
2960         spin_unlock(&log->l_icloglock);
2961         xlog_state_do_callback(log, aborted, iclog);    /* also cleans log */
2962 }       /* xlog_state_done_syncing */
2963
2964
2965 /*
2966  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2967  * sleep.  We wait on the flush queue on the head iclog as that should be
2968  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2969  * we will wait here and all new writes will sleep until a sync completes.
2970  *
2971  * The in-core logs are used in a circular fashion. They are not used
2972  * out-of-order even when an iclog past the head is free.
2973  *
2974  * return:
2975  *      * log_offset where xlog_write() can start writing into the in-core
2976  *              log's data space.
2977  *      * in-core log pointer to which xlog_write() should write.
2978  *      * boolean indicating this is a continued write to an in-core log.
2979  *              If this is the last write, then the in-core log's offset field
2980  *              needs to be incremented, depending on the amount of data which
2981  *              is copied.
2982  */
2983 STATIC int
2984 xlog_state_get_iclog_space(
2985         struct xlog             *log,
2986         int                     len,
2987         struct xlog_in_core     **iclogp,
2988         struct xlog_ticket      *ticket,
2989         int                     *continued_write,
2990         int                     *logoffsetp)
2991 {
2992         int               log_offset;
2993         xlog_rec_header_t *head;
2994         xlog_in_core_t    *iclog;
2995         int               error;
2996
2997 restart:
2998         spin_lock(&log->l_icloglock);
2999         if (XLOG_FORCED_SHUTDOWN(log)) {
3000                 spin_unlock(&log->l_icloglock);
3001                 return -EIO;
3002         }
3003
3004         iclog = log->l_iclog;
3005         if (iclog->ic_state != XLOG_STATE_ACTIVE) {
3006                 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
3007
3008                 /* Wait for log writes to have flushed */
3009                 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
3010                 goto restart;
3011         }
3012
3013         head = &iclog->ic_header;
3014
3015         atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
3016         log_offset = iclog->ic_offset;
3017
3018         /* On the 1st write to an iclog, figure out lsn.  This works
3019          * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3020          * committing to.  If the offset is set, that's how many blocks
3021          * must be written.
3022          */
3023         if (log_offset == 0) {
3024                 ticket->t_curr_res -= log->l_iclog_hsize;
3025                 xlog_tic_add_region(ticket,
3026                                     log->l_iclog_hsize,
3027                                     XLOG_REG_TYPE_LRHEADER);
3028                 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3029                 head->h_lsn = cpu_to_be64(
3030                         xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3031                 ASSERT(log->l_curr_block >= 0);
3032         }
3033
3034         /* If there is enough room to write everything, then do it.  Otherwise,
3035          * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3036          * bit is on, so this will get flushed out.  Don't update ic_offset
3037          * until you know exactly how many bytes get copied.  Therefore, wait
3038          * until later to update ic_offset.
3039          *
3040          * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3041          * can fit into remaining data section.
3042          */
3043         if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3044                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3045
3046                 /*
3047                  * If I'm the only one writing to this iclog, sync it to disk.
3048                  * We need to do an atomic compare and decrement here to avoid
3049                  * racing with concurrent atomic_dec_and_lock() calls in
3050                  * xlog_state_release_iclog() when there is more than one
3051                  * reference to the iclog.
3052                  */
3053                 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3054                         /* we are the only one */
3055                         spin_unlock(&log->l_icloglock);
3056                         error = xlog_state_release_iclog(log, iclog);
3057                         if (error)
3058                                 return error;
3059                 } else {
3060                         spin_unlock(&log->l_icloglock);
3061                 }
3062                 goto restart;
3063         }
3064
3065         /* Do we have enough room to write the full amount in the remainder
3066          * of this iclog?  Or must we continue a write on the next iclog and
3067          * mark this iclog as completely taken?  In the case where we switch
3068          * iclogs (to mark it taken), this particular iclog will release/sync
3069          * to disk in xlog_write().
3070          */
3071         if (len <= iclog->ic_size - iclog->ic_offset) {
3072                 *continued_write = 0;
3073                 iclog->ic_offset += len;
3074         } else {
3075                 *continued_write = 1;
3076                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3077         }
3078         *iclogp = iclog;
3079
3080         ASSERT(iclog->ic_offset <= iclog->ic_size);
3081         spin_unlock(&log->l_icloglock);
3082
3083         *logoffsetp = log_offset;
3084         return 0;
3085 }       /* xlog_state_get_iclog_space */
3086
3087 /* The first cnt-1 times through here we don't need to
3088  * move the grant write head because the permanent
3089  * reservation has reserved cnt times the unit amount.
3090  * Release part of current permanent unit reservation and
3091  * reset current reservation to be one units worth.  Also
3092  * move grant reservation head forward.
3093  */
3094 STATIC void
3095 xlog_regrant_reserve_log_space(
3096         struct xlog             *log,
3097         struct xlog_ticket      *ticket)
3098 {
3099         trace_xfs_log_regrant_reserve_enter(log, ticket);
3100
3101         if (ticket->t_cnt > 0)
3102                 ticket->t_cnt--;
3103
3104         xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3105                                         ticket->t_curr_res);
3106         xlog_grant_sub_space(log, &log->l_write_head.grant,
3107                                         ticket->t_curr_res);
3108         ticket->t_curr_res = ticket->t_unit_res;
3109         xlog_tic_reset_res(ticket);
3110
3111         trace_xfs_log_regrant_reserve_sub(log, ticket);
3112
3113         /* just return if we still have some of the pre-reserved space */
3114         if (ticket->t_cnt > 0)
3115                 return;
3116
3117         xlog_grant_add_space(log, &log->l_reserve_head.grant,
3118                                         ticket->t_unit_res);
3119
3120         trace_xfs_log_regrant_reserve_exit(log, ticket);
3121
3122         ticket->t_curr_res = ticket->t_unit_res;
3123         xlog_tic_reset_res(ticket);
3124 }       /* xlog_regrant_reserve_log_space */
3125
3126
3127 /*
3128  * Give back the space left from a reservation.
3129  *
3130  * All the information we need to make a correct determination of space left
3131  * is present.  For non-permanent reservations, things are quite easy.  The
3132  * count should have been decremented to zero.  We only need to deal with the
3133  * space remaining in the current reservation part of the ticket.  If the
3134  * ticket contains a permanent reservation, there may be left over space which
3135  * needs to be released.  A count of N means that N-1 refills of the current
3136  * reservation can be done before we need to ask for more space.  The first
3137  * one goes to fill up the first current reservation.  Once we run out of
3138  * space, the count will stay at zero and the only space remaining will be
3139  * in the current reservation field.
3140  */
3141 STATIC void
3142 xlog_ungrant_log_space(
3143         struct xlog             *log,
3144         struct xlog_ticket      *ticket)
3145 {
3146         int     bytes;
3147
3148         if (ticket->t_cnt > 0)
3149                 ticket->t_cnt--;
3150
3151         trace_xfs_log_ungrant_enter(log, ticket);
3152         trace_xfs_log_ungrant_sub(log, ticket);
3153
3154         /*
3155          * If this is a permanent reservation ticket, we may be able to free
3156          * up more space based on the remaining count.
3157          */
3158         bytes = ticket->t_curr_res;
3159         if (ticket->t_cnt > 0) {
3160                 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3161                 bytes += ticket->t_unit_res*ticket->t_cnt;
3162         }
3163
3164         xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3165         xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3166
3167         trace_xfs_log_ungrant_exit(log, ticket);
3168
3169         xfs_log_space_wake(log->l_mp);
3170 }
3171
3172 /*
3173  * Flush iclog to disk if this is the last reference to the given iclog and
3174  * the WANT_SYNC bit is set.
3175  *
3176  * When this function is entered, the iclog is not necessarily in the
3177  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3178  *
3179  *
3180  */
3181 STATIC int
3182 xlog_state_release_iclog(
3183         struct xlog             *log,
3184         struct xlog_in_core     *iclog)
3185 {
3186         int             sync = 0;       /* do we sync? */
3187
3188         if (iclog->ic_state & XLOG_STATE_IOERROR)
3189                 return -EIO;
3190
3191         ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3192         if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3193                 return 0;
3194
3195         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3196                 spin_unlock(&log->l_icloglock);
3197                 return -EIO;
3198         }
3199         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3200                iclog->ic_state == XLOG_STATE_WANT_SYNC);
3201
3202         if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3203                 /* update tail before writing to iclog */
3204                 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3205                 sync++;
3206                 iclog->ic_state = XLOG_STATE_SYNCING;
3207                 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3208                 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3209                 /* cycle incremented when incrementing curr_block */
3210         }
3211         spin_unlock(&log->l_icloglock);
3212
3213         /*
3214          * We let the log lock go, so it's possible that we hit a log I/O
3215          * error or some other SHUTDOWN condition that marks the iclog
3216          * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3217          * this iclog has consistent data, so we ignore IOERROR
3218          * flags after this point.
3219          */
3220         if (sync)
3221                 return xlog_sync(log, iclog);
3222         return 0;
3223 }       /* xlog_state_release_iclog */
3224
3225
3226 /*
3227  * This routine will mark the current iclog in the ring as WANT_SYNC
3228  * and move the current iclog pointer to the next iclog in the ring.
3229  * When this routine is called from xlog_state_get_iclog_space(), the
3230  * exact size of the iclog has not yet been determined.  All we know is
3231  * that every data block.  We have run out of space in this log record.
3232  */
3233 STATIC void
3234 xlog_state_switch_iclogs(
3235         struct xlog             *log,
3236         struct xlog_in_core     *iclog,
3237         int                     eventual_size)
3238 {
3239         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3240         if (!eventual_size)
3241                 eventual_size = iclog->ic_offset;
3242         iclog->ic_state = XLOG_STATE_WANT_SYNC;
3243         iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3244         log->l_prev_block = log->l_curr_block;
3245         log->l_prev_cycle = log->l_curr_cycle;
3246
3247         /* roll log?: ic_offset changed later */
3248         log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3249
3250         /* Round up to next log-sunit */
3251         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3252             log->l_mp->m_sb.sb_logsunit > 1) {
3253                 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3254                 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3255         }
3256
3257         if (log->l_curr_block >= log->l_logBBsize) {
3258                 /*
3259                  * Rewind the current block before the cycle is bumped to make
3260                  * sure that the combined LSN never transiently moves forward
3261                  * when the log wraps to the next cycle. This is to support the
3262                  * unlocked sample of these fields from xlog_valid_lsn(). Most
3263                  * other cases should acquire l_icloglock.
3264                  */
3265                 log->l_curr_block -= log->l_logBBsize;
3266                 ASSERT(log->l_curr_block >= 0);
3267                 smp_wmb();
3268                 log->l_curr_cycle++;
3269                 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3270                         log->l_curr_cycle++;
3271         }
3272         ASSERT(iclog == log->l_iclog);
3273         log->l_iclog = iclog->ic_next;
3274 }       /* xlog_state_switch_iclogs */
3275
3276 /*
3277  * Write out all data in the in-core log as of this exact moment in time.
3278  *
3279  * Data may be written to the in-core log during this call.  However,
3280  * we don't guarantee this data will be written out.  A change from past
3281  * implementation means this routine will *not* write out zero length LRs.
3282  *
3283  * Basically, we try and perform an intelligent scan of the in-core logs.
3284  * If we determine there is no flushable data, we just return.  There is no
3285  * flushable data if:
3286  *
3287  *      1. the current iclog is active and has no data; the previous iclog
3288  *              is in the active or dirty state.
3289  *      2. the current iclog is drity, and the previous iclog is in the
3290  *              active or dirty state.
3291  *
3292  * We may sleep if:
3293  *
3294  *      1. the current iclog is not in the active nor dirty state.
3295  *      2. the current iclog dirty, and the previous iclog is not in the
3296  *              active nor dirty state.
3297  *      3. the current iclog is active, and there is another thread writing
3298  *              to this particular iclog.
3299  *      4. a) the current iclog is active and has no other writers
3300  *         b) when we return from flushing out this iclog, it is still
3301  *              not in the active nor dirty state.
3302  */
3303 int
3304 _xfs_log_force(
3305         struct xfs_mount        *mp,
3306         uint                    flags,
3307         int                     *log_flushed)
3308 {
3309         struct xlog             *log = mp->m_log;
3310         struct xlog_in_core     *iclog;
3311         xfs_lsn_t               lsn;
3312
3313         XFS_STATS_INC(mp, xs_log_force);
3314
3315         xlog_cil_force(log);
3316
3317         spin_lock(&log->l_icloglock);
3318
3319         iclog = log->l_iclog;
3320         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3321                 spin_unlock(&log->l_icloglock);
3322                 return -EIO;
3323         }
3324
3325         /* If the head iclog is not active nor dirty, we just attach
3326          * ourselves to the head and go to sleep.
3327          */
3328         if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3329             iclog->ic_state == XLOG_STATE_DIRTY) {
3330                 /*
3331                  * If the head is dirty or (active and empty), then
3332                  * we need to look at the previous iclog.  If the previous
3333                  * iclog is active or dirty we are done.  There is nothing
3334                  * to sync out.  Otherwise, we attach ourselves to the
3335                  * previous iclog and go to sleep.
3336                  */
3337                 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3338                     (atomic_read(&iclog->ic_refcnt) == 0
3339                      && iclog->ic_offset == 0)) {
3340                         iclog = iclog->ic_prev;
3341                         if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3342                             iclog->ic_state == XLOG_STATE_DIRTY)
3343                                 goto no_sleep;
3344                         else
3345                                 goto maybe_sleep;
3346                 } else {
3347                         if (atomic_read(&iclog->ic_refcnt) == 0) {
3348                                 /* We are the only one with access to this
3349                                  * iclog.  Flush it out now.  There should
3350                                  * be a roundoff of zero to show that someone
3351                                  * has already taken care of the roundoff from
3352                                  * the previous sync.
3353                                  */
3354                                 atomic_inc(&iclog->ic_refcnt);
3355                                 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3356                                 xlog_state_switch_iclogs(log, iclog, 0);
3357                                 spin_unlock(&log->l_icloglock);
3358
3359                                 if (xlog_state_release_iclog(log, iclog))
3360                                         return -EIO;
3361
3362                                 if (log_flushed)
3363                                         *log_flushed = 1;
3364                                 spin_lock(&log->l_icloglock);
3365                                 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3366                                     iclog->ic_state != XLOG_STATE_DIRTY)
3367                                         goto maybe_sleep;
3368                                 else
3369                                         goto no_sleep;
3370                         } else {
3371                                 /* Someone else is writing to this iclog.
3372                                  * Use its call to flush out the data.  However,
3373                                  * the other thread may not force out this LR,
3374                                  * so we mark it WANT_SYNC.
3375                                  */
3376                                 xlog_state_switch_iclogs(log, iclog, 0);
3377                                 goto maybe_sleep;
3378                         }
3379                 }
3380         }
3381
3382         /* By the time we come around again, the iclog could've been filled
3383          * which would give it another lsn.  If we have a new lsn, just
3384          * return because the relevant data has been flushed.
3385          */
3386 maybe_sleep:
3387         if (flags & XFS_LOG_SYNC) {
3388                 /*
3389                  * We must check if we're shutting down here, before
3390                  * we wait, while we're holding the l_icloglock.
3391                  * Then we check again after waking up, in case our
3392                  * sleep was disturbed by a bad news.
3393                  */
3394                 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3395                         spin_unlock(&log->l_icloglock);
3396                         return -EIO;
3397                 }
3398                 XFS_STATS_INC(mp, xs_log_force_sleep);
3399                 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3400                 /*
3401                  * No need to grab the log lock here since we're
3402                  * only deciding whether or not to return EIO
3403                  * and the memory read should be atomic.
3404                  */
3405                 if (iclog->ic_state & XLOG_STATE_IOERROR)
3406                         return -EIO;
3407         } else {
3408
3409 no_sleep:
3410                 spin_unlock(&log->l_icloglock);
3411         }
3412         return 0;
3413 }
3414
3415 /*
3416  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3417  * about errors or whether the log was flushed or not. This is the normal
3418  * interface to use when trying to unpin items or move the log forward.
3419  */
3420 void
3421 xfs_log_force(
3422         xfs_mount_t     *mp,
3423         uint            flags)
3424 {
3425         trace_xfs_log_force(mp, 0, _RET_IP_);
3426         _xfs_log_force(mp, flags, NULL);
3427 }
3428
3429 /*
3430  * Force the in-core log to disk for a specific LSN.
3431  *
3432  * Find in-core log with lsn.
3433  *      If it is in the DIRTY state, just return.
3434  *      If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3435  *              state and go to sleep or return.
3436  *      If it is in any other state, go to sleep or return.
3437  *
3438  * Synchronous forces are implemented with a signal variable. All callers
3439  * to force a given lsn to disk will wait on a the sv attached to the
3440  * specific in-core log.  When given in-core log finally completes its
3441  * write to disk, that thread will wake up all threads waiting on the
3442  * sv.
3443  */
3444 int
3445 _xfs_log_force_lsn(
3446         struct xfs_mount        *mp,
3447         xfs_lsn_t               lsn,
3448         uint                    flags,
3449         int                     *log_flushed)
3450 {
3451         struct xlog             *log = mp->m_log;
3452         struct xlog_in_core     *iclog;
3453         int                     already_slept = 0;
3454
3455         ASSERT(lsn != 0);
3456
3457         XFS_STATS_INC(mp, xs_log_force);
3458
3459         lsn = xlog_cil_force_lsn(log, lsn);
3460         if (lsn == NULLCOMMITLSN)
3461                 return 0;
3462
3463 try_again:
3464         spin_lock(&log->l_icloglock);
3465         iclog = log->l_iclog;
3466         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3467                 spin_unlock(&log->l_icloglock);
3468                 return -EIO;
3469         }
3470
3471         do {
3472                 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3473                         iclog = iclog->ic_next;
3474                         continue;
3475                 }
3476
3477                 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3478                         spin_unlock(&log->l_icloglock);
3479                         return 0;
3480                 }
3481
3482                 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3483                         /*
3484                          * We sleep here if we haven't already slept (e.g.
3485                          * this is the first time we've looked at the correct
3486                          * iclog buf) and the buffer before us is going to
3487                          * be sync'ed. The reason for this is that if we
3488                          * are doing sync transactions here, by waiting for
3489                          * the previous I/O to complete, we can allow a few
3490                          * more transactions into this iclog before we close
3491                          * it down.
3492                          *
3493                          * Otherwise, we mark the buffer WANT_SYNC, and bump
3494                          * up the refcnt so we can release the log (which
3495                          * drops the ref count).  The state switch keeps new
3496                          * transaction commits from using this buffer.  When
3497                          * the current commits finish writing into the buffer,
3498                          * the refcount will drop to zero and the buffer will
3499                          * go out then.
3500                          */
3501                         if (!already_slept &&
3502                             (iclog->ic_prev->ic_state &
3503                              (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3504                                 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3505
3506                                 XFS_STATS_INC(mp, xs_log_force_sleep);
3507
3508                                 xlog_wait(&iclog->ic_prev->ic_write_wait,
3509                                                         &log->l_icloglock);
3510                                 already_slept = 1;
3511                                 goto try_again;
3512                         }
3513                         atomic_inc(&iclog->ic_refcnt);
3514                         xlog_state_switch_iclogs(log, iclog, 0);
3515                         spin_unlock(&log->l_icloglock);
3516                         if (xlog_state_release_iclog(log, iclog))
3517                                 return -EIO;
3518                         if (log_flushed)
3519                                 *log_flushed = 1;
3520                         spin_lock(&log->l_icloglock);
3521                 }
3522
3523                 if ((flags & XFS_LOG_SYNC) && /* sleep */
3524                     !(iclog->ic_state &
3525                       (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3526                         /*
3527                          * Don't wait on completion if we know that we've
3528                          * gotten a log write error.
3529                          */
3530                         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3531                                 spin_unlock(&log->l_icloglock);
3532                                 return -EIO;
3533                         }
3534                         XFS_STATS_INC(mp, xs_log_force_sleep);
3535                         xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3536                         /*
3537                          * No need to grab the log lock here since we're
3538                          * only deciding whether or not to return EIO
3539                          * and the memory read should be atomic.
3540                          */
3541                         if (iclog->ic_state & XLOG_STATE_IOERROR)
3542                                 return -EIO;
3543                 } else {                /* just return */
3544                         spin_unlock(&log->l_icloglock);
3545                 }
3546
3547                 return 0;
3548         } while (iclog != log->l_iclog);
3549
3550         spin_unlock(&log->l_icloglock);
3551         return 0;
3552 }
3553
3554 /*
3555  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3556  * about errors or whether the log was flushed or not. This is the normal
3557  * interface to use when trying to unpin items or move the log forward.
3558  */
3559 void
3560 xfs_log_force_lsn(
3561         xfs_mount_t     *mp,
3562         xfs_lsn_t       lsn,
3563         uint            flags)
3564 {
3565         trace_xfs_log_force(mp, lsn, _RET_IP_);
3566         _xfs_log_force_lsn(mp, lsn, flags, NULL);
3567 }
3568
3569 /*
3570  * Called when we want to mark the current iclog as being ready to sync to
3571  * disk.
3572  */
3573 STATIC void
3574 xlog_state_want_sync(
3575         struct xlog             *log,
3576         struct xlog_in_core     *iclog)
3577 {
3578         assert_spin_locked(&log->l_icloglock);
3579
3580         if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3581                 xlog_state_switch_iclogs(log, iclog, 0);
3582         } else {
3583                 ASSERT(iclog->ic_state &
3584                         (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3585         }
3586 }
3587
3588
3589 /*****************************************************************************
3590  *
3591  *              TICKET functions
3592  *
3593  *****************************************************************************
3594  */
3595
3596 /*
3597  * Free a used ticket when its refcount falls to zero.
3598  */
3599 void
3600 xfs_log_ticket_put(
3601         xlog_ticket_t   *ticket)
3602 {
3603         ASSERT(atomic_read(&ticket->t_ref) > 0);
3604         if (atomic_dec_and_test(&ticket->t_ref))
3605                 kmem_zone_free(xfs_log_ticket_zone, ticket);
3606 }
3607
3608 xlog_ticket_t *
3609 xfs_log_ticket_get(
3610         xlog_ticket_t   *ticket)
3611 {
3612         ASSERT(atomic_read(&ticket->t_ref) > 0);
3613         atomic_inc(&ticket->t_ref);
3614         return ticket;
3615 }
3616
3617 /*
3618  * Figure out the total log space unit (in bytes) that would be
3619  * required for a log ticket.
3620  */
3621 int
3622 xfs_log_calc_unit_res(
3623         struct xfs_mount        *mp,
3624         int                     unit_bytes)
3625 {
3626         struct xlog             *log = mp->m_log;
3627         int                     iclog_space;
3628         uint                    num_headers;
3629
3630         /*
3631          * Permanent reservations have up to 'cnt'-1 active log operations
3632          * in the log.  A unit in this case is the amount of space for one
3633          * of these log operations.  Normal reservations have a cnt of 1
3634          * and their unit amount is the total amount of space required.
3635          *
3636          * The following lines of code account for non-transaction data
3637          * which occupy space in the on-disk log.
3638          *
3639          * Normal form of a transaction is:
3640          * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3641          * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3642          *
3643          * We need to account for all the leadup data and trailer data
3644          * around the transaction data.
3645          * And then we need to account for the worst case in terms of using
3646          * more space.
3647          * The worst case will happen if:
3648          * - the placement of the transaction happens to be such that the
3649          *   roundoff is at its maximum
3650          * - the transaction data is synced before the commit record is synced
3651          *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3652          *   Therefore the commit record is in its own Log Record.
3653          *   This can happen as the commit record is called with its
3654          *   own region to xlog_write().
3655          *   This then means that in the worst case, roundoff can happen for
3656          *   the commit-rec as well.
3657          *   The commit-rec is smaller than padding in this scenario and so it is
3658          *   not added separately.
3659          */
3660
3661         /* for trans header */
3662         unit_bytes += sizeof(xlog_op_header_t);
3663         unit_bytes += sizeof(xfs_trans_header_t);
3664
3665         /* for start-rec */
3666         unit_bytes += sizeof(xlog_op_header_t);
3667
3668         /*
3669          * for LR headers - the space for data in an iclog is the size minus
3670          * the space used for the headers. If we use the iclog size, then we
3671          * undercalculate the number of headers required.
3672          *
3673          * Furthermore - the addition of op headers for split-recs might
3674          * increase the space required enough to require more log and op
3675          * headers, so take that into account too.
3676          *
3677          * IMPORTANT: This reservation makes the assumption that if this
3678          * transaction is the first in an iclog and hence has the LR headers
3679          * accounted to it, then the remaining space in the iclog is
3680          * exclusively for this transaction.  i.e. if the transaction is larger
3681          * than the iclog, it will be the only thing in that iclog.
3682          * Fundamentally, this means we must pass the entire log vector to
3683          * xlog_write to guarantee this.
3684          */
3685         iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3686         num_headers = howmany(unit_bytes, iclog_space);
3687
3688         /* for split-recs - ophdrs added when data split over LRs */
3689         unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3690
3691         /* add extra header reservations if we overrun */
3692         while (!num_headers ||
3693                howmany(unit_bytes, iclog_space) > num_headers) {
3694                 unit_bytes += sizeof(xlog_op_header_t);
3695                 num_headers++;
3696         }
3697         unit_bytes += log->l_iclog_hsize * num_headers;
3698
3699         /* for commit-rec LR header - note: padding will subsume the ophdr */
3700         unit_bytes += log->l_iclog_hsize;
3701
3702         /* for roundoff padding for transaction data and one for commit record */
3703         if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3704                 /* log su roundoff */
3705                 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3706         } else {
3707                 /* BB roundoff */
3708                 unit_bytes += 2 * BBSIZE;
3709         }
3710
3711         return unit_bytes;
3712 }
3713
3714 /*
3715  * Allocate and initialise a new log ticket.
3716  */
3717 struct xlog_ticket *
3718 xlog_ticket_alloc(
3719         struct xlog             *log,
3720         int                     unit_bytes,
3721         int                     cnt,
3722         char                    client,
3723         bool                    permanent,
3724         xfs_km_flags_t          alloc_flags)
3725 {
3726         struct xlog_ticket      *tic;
3727         int                     unit_res;
3728
3729         tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3730         if (!tic)
3731                 return NULL;
3732
3733         unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3734
3735         atomic_set(&tic->t_ref, 1);
3736         tic->t_task             = current;
3737         INIT_LIST_HEAD(&tic->t_queue);
3738         tic->t_unit_res         = unit_res;
3739         tic->t_curr_res         = unit_res;
3740         tic->t_cnt              = cnt;
3741         tic->t_ocnt             = cnt;
3742         tic->t_tid              = prandom_u32();
3743         tic->t_clientid         = client;
3744         tic->t_flags            = XLOG_TIC_INITED;
3745         if (permanent)
3746                 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3747
3748         xlog_tic_reset_res(tic);
3749
3750         return tic;
3751 }
3752
3753
3754 /******************************************************************************
3755  *
3756  *              Log debug routines
3757  *
3758  ******************************************************************************
3759  */
3760 #if defined(DEBUG)
3761 /*
3762  * Make sure that the destination ptr is within the valid data region of
3763  * one of the iclogs.  This uses backup pointers stored in a different
3764  * part of the log in case we trash the log structure.
3765  */
3766 STATIC void
3767 xlog_verify_dest_ptr(
3768         struct xlog     *log,
3769         void            *ptr)
3770 {
3771         int i;
3772         int good_ptr = 0;
3773
3774         for (i = 0; i < log->l_iclog_bufs; i++) {
3775                 if (ptr >= log->l_iclog_bak[i] &&
3776                     ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3777                         good_ptr++;
3778         }
3779
3780         if (!good_ptr)
3781                 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3782 }
3783
3784 /*
3785  * Check to make sure the grant write head didn't just over lap the tail.  If
3786  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3787  * the cycles differ by exactly one and check the byte count.
3788  *
3789  * This check is run unlocked, so can give false positives. Rather than assert
3790  * on failures, use a warn-once flag and a panic tag to allow the admin to
3791  * determine if they want to panic the machine when such an error occurs. For
3792  * debug kernels this will have the same effect as using an assert but, unlinke
3793  * an assert, it can be turned off at runtime.
3794  */
3795 STATIC void
3796 xlog_verify_grant_tail(
3797         struct xlog     *log)
3798 {
3799         int             tail_cycle, tail_blocks;
3800         int             cycle, space;
3801
3802         xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3803         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3804         if (tail_cycle != cycle) {
3805                 if (cycle - 1 != tail_cycle &&
3806                     !(log->l_flags & XLOG_TAIL_WARN)) {
3807                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3808                                 "%s: cycle - 1 != tail_cycle", __func__);
3809                         log->l_flags |= XLOG_TAIL_WARN;
3810                 }
3811
3812                 if (space > BBTOB(tail_blocks) &&
3813                     !(log->l_flags & XLOG_TAIL_WARN)) {
3814                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3815                                 "%s: space > BBTOB(tail_blocks)", __func__);
3816                         log->l_flags |= XLOG_TAIL_WARN;
3817                 }
3818         }
3819 }
3820
3821 /* check if it will fit */
3822 STATIC void
3823 xlog_verify_tail_lsn(
3824         struct xlog             *log,
3825         struct xlog_in_core     *iclog,
3826         xfs_lsn_t               tail_lsn)
3827 {
3828     int blocks;
3829
3830     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3831         blocks =
3832             log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3833         if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3834                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3835     } else {
3836         ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3837
3838         if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3839                 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3840
3841         blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3842         if (blocks < BTOBB(iclog->ic_offset) + 1)
3843                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3844     }
3845 }       /* xlog_verify_tail_lsn */
3846
3847 /*
3848  * Perform a number of checks on the iclog before writing to disk.
3849  *
3850  * 1. Make sure the iclogs are still circular
3851  * 2. Make sure we have a good magic number
3852  * 3. Make sure we don't have magic numbers in the data
3853  * 4. Check fields of each log operation header for:
3854  *      A. Valid client identifier
3855  *      B. tid ptr value falls in valid ptr space (user space code)
3856  *      C. Length in log record header is correct according to the
3857  *              individual operation headers within record.
3858  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3859  *      log, check the preceding blocks of the physical log to make sure all
3860  *      the cycle numbers agree with the current cycle number.
3861  */
3862 STATIC void
3863 xlog_verify_iclog(
3864         struct xlog             *log,
3865         struct xlog_in_core     *iclog,
3866         int                     count,
3867         bool                    syncing)
3868 {
3869         xlog_op_header_t        *ophead;
3870         xlog_in_core_t          *icptr;
3871         xlog_in_core_2_t        *xhdr;
3872         void                    *base_ptr, *ptr, *p;
3873         ptrdiff_t               field_offset;
3874         uint8_t                 clientid;
3875         int                     len, i, j, k, op_len;
3876         int                     idx;
3877
3878         /* check validity of iclog pointers */
3879         spin_lock(&log->l_icloglock);
3880         icptr = log->l_iclog;
3881         for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3882                 ASSERT(icptr);
3883
3884         if (icptr != log->l_iclog)
3885                 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3886         spin_unlock(&log->l_icloglock);
3887
3888         /* check log magic numbers */
3889         if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3890                 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3891
3892         base_ptr = ptr = &iclog->ic_header;
3893         p = &iclog->ic_header;
3894         for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3895                 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3896                         xfs_emerg(log->l_mp, "%s: unexpected magic num",
3897                                 __func__);
3898         }
3899
3900         /* check fields */
3901         len = be32_to_cpu(iclog->ic_header.h_num_logops);
3902         base_ptr = ptr = iclog->ic_datap;
3903         ophead = ptr;
3904         xhdr = iclog->ic_data;
3905         for (i = 0; i < len; i++) {
3906                 ophead = ptr;
3907
3908                 /* clientid is only 1 byte */
3909                 p = &ophead->oh_clientid;
3910                 field_offset = p - base_ptr;
3911                 if (!syncing || (field_offset & 0x1ff)) {
3912                         clientid = ophead->oh_clientid;
3913                 } else {
3914                         idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3915                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3916                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3917                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3918                                 clientid = xlog_get_client_id(
3919                                         xhdr[j].hic_xheader.xh_cycle_data[k]);
3920                         } else {
3921                                 clientid = xlog_get_client_id(
3922                                         iclog->ic_header.h_cycle_data[idx]);
3923                         }
3924                 }
3925                 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3926                         xfs_warn(log->l_mp,
3927                                 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3928                                 __func__, clientid, ophead,
3929                                 (unsigned long)field_offset);
3930
3931                 /* check length */
3932                 p = &ophead->oh_len;
3933                 field_offset = p - base_ptr;
3934                 if (!syncing || (field_offset & 0x1ff)) {
3935                         op_len = be32_to_cpu(ophead->oh_len);
3936                 } else {
3937                         idx = BTOBBT((uintptr_t)&ophead->oh_len -
3938                                     (uintptr_t)iclog->ic_datap);
3939                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3940                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3941                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3942                                 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3943                         } else {
3944                                 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3945                         }
3946                 }
3947                 ptr += sizeof(xlog_op_header_t) + op_len;
3948         }
3949 }       /* xlog_verify_iclog */
3950 #endif
3951
3952 /*
3953  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3954  */
3955 STATIC int
3956 xlog_state_ioerror(
3957         struct xlog     *log)
3958 {
3959         xlog_in_core_t  *iclog, *ic;
3960
3961         iclog = log->l_iclog;
3962         if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3963                 /*
3964                  * Mark all the incore logs IOERROR.
3965                  * From now on, no log flushes will result.
3966                  */
3967                 ic = iclog;
3968                 do {
3969                         ic->ic_state = XLOG_STATE_IOERROR;
3970                         ic = ic->ic_next;
3971                 } while (ic != iclog);
3972                 return 0;
3973         }
3974         /*
3975          * Return non-zero, if state transition has already happened.
3976          */
3977         return 1;
3978 }
3979
3980 /*
3981  * This is called from xfs_force_shutdown, when we're forcibly
3982  * shutting down the filesystem, typically because of an IO error.
3983  * Our main objectives here are to make sure that:
3984  *      a. if !logerror, flush the logs to disk. Anything modified
3985  *         after this is ignored.
3986  *      b. the filesystem gets marked 'SHUTDOWN' for all interested
3987  *         parties to find out, 'atomically'.
3988  *      c. those who're sleeping on log reservations, pinned objects and
3989  *          other resources get woken up, and be told the bad news.
3990  *      d. nothing new gets queued up after (b) and (c) are done.
3991  *
3992  * Note: for the !logerror case we need to flush the regions held in memory out
3993  * to disk first. This needs to be done before the log is marked as shutdown,
3994  * otherwise the iclog writes will fail.
3995  */
3996 int
3997 xfs_log_force_umount(
3998         struct xfs_mount        *mp,
3999         int                     logerror)
4000 {
4001         struct xlog     *log;
4002         int             retval;
4003
4004         log = mp->m_log;
4005
4006         /*
4007          * If this happens during log recovery, don't worry about
4008          * locking; the log isn't open for business yet.
4009          */
4010         if (!log ||
4011             log->l_flags & XLOG_ACTIVE_RECOVERY) {
4012                 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
4013                 if (mp->m_sb_bp)
4014                         mp->m_sb_bp->b_flags |= XBF_DONE;
4015                 return 0;
4016         }
4017
4018         /*
4019          * Somebody could've already done the hard work for us.
4020          * No need to get locks for this.
4021          */
4022         if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
4023                 ASSERT(XLOG_FORCED_SHUTDOWN(log));
4024                 return 1;
4025         }
4026
4027         /*
4028          * Flush all the completed transactions to disk before marking the log
4029          * being shut down. We need to do it in this order to ensure that
4030          * completed operations are safely on disk before we shut down, and that
4031          * we don't have to issue any buffer IO after the shutdown flags are set
4032          * to guarantee this.
4033          */
4034         if (!logerror)
4035                 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
4036
4037         /*
4038          * mark the filesystem and the as in a shutdown state and wake
4039          * everybody up to tell them the bad news.
4040          */
4041         spin_lock(&log->l_icloglock);
4042         mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
4043         if (mp->m_sb_bp)
4044                 mp->m_sb_bp->b_flags |= XBF_DONE;
4045
4046         /*
4047          * Mark the log and the iclogs with IO error flags to prevent any
4048          * further log IO from being issued or completed.
4049          */
4050         log->l_flags |= XLOG_IO_ERROR;
4051         retval = xlog_state_ioerror(log);
4052         spin_unlock(&log->l_icloglock);
4053
4054         /*
4055          * We don't want anybody waiting for log reservations after this. That
4056          * means we have to wake up everybody queued up on reserveq as well as
4057          * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
4058          * we don't enqueue anything once the SHUTDOWN flag is set, and this
4059          * action is protected by the grant locks.
4060          */
4061         xlog_grant_head_wake_all(&log->l_reserve_head);
4062         xlog_grant_head_wake_all(&log->l_write_head);
4063
4064         /*
4065          * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4066          * as if the log writes were completed. The abort handling in the log
4067          * item committed callback functions will do this again under lock to
4068          * avoid races.
4069          */
4070         wake_up_all(&log->l_cilp->xc_commit_wait);
4071         xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4072
4073 #ifdef XFSERRORDEBUG
4074         {
4075                 xlog_in_core_t  *iclog;
4076
4077                 spin_lock(&log->l_icloglock);
4078                 iclog = log->l_iclog;
4079                 do {
4080                         ASSERT(iclog->ic_callback == 0);
4081                         iclog = iclog->ic_next;
4082                 } while (iclog != log->l_iclog);
4083                 spin_unlock(&log->l_icloglock);
4084         }
4085 #endif
4086         /* return non-zero if log IOERROR transition had already happened */
4087         return retval;
4088 }
4089
4090 STATIC int
4091 xlog_iclogs_empty(
4092         struct xlog     *log)
4093 {
4094         xlog_in_core_t  *iclog;
4095
4096         iclog = log->l_iclog;
4097         do {
4098                 /* endianness does not matter here, zero is zero in
4099                  * any language.
4100                  */
4101                 if (iclog->ic_header.h_num_logops)
4102                         return 0;
4103                 iclog = iclog->ic_next;
4104         } while (iclog != log->l_iclog);
4105         return 1;
4106 }
4107
4108 /*
4109  * Verify that an LSN stamped into a piece of metadata is valid. This is
4110  * intended for use in read verifiers on v5 superblocks.
4111  */
4112 bool
4113 xfs_log_check_lsn(
4114         struct xfs_mount        *mp,
4115         xfs_lsn_t               lsn)
4116 {
4117         struct xlog             *log = mp->m_log;
4118         bool                    valid;
4119
4120         /*
4121          * norecovery mode skips mount-time log processing and unconditionally
4122          * resets the in-core LSN. We can't validate in this mode, but
4123          * modifications are not allowed anyways so just return true.
4124          */
4125         if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4126                 return true;
4127
4128         /*
4129          * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4130          * handled by recovery and thus safe to ignore here.
4131          */
4132         if (lsn == NULLCOMMITLSN)
4133                 return true;
4134
4135         valid = xlog_valid_lsn(mp->m_log, lsn);
4136
4137         /* warn the user about what's gone wrong before verifier failure */
4138         if (!valid) {
4139                 spin_lock(&log->l_icloglock);
4140                 xfs_warn(mp,
4141 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4142 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4143                          CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4144                          log->l_curr_cycle, log->l_curr_block);
4145                 spin_unlock(&log->l_icloglock);
4146         }
4147
4148         return valid;
4149 }