kill dentry_update_name_case()
[sfrench/cifs-2.6.git] / fs / userfaultfd.c
1 /*
2  *  fs/userfaultfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
5  *  Copyright (C) 2008-2009 Red Hat, Inc.
6  *  Copyright (C) 2015  Red Hat, Inc.
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  *
11  *  Some part derived from fs/eventfd.c (anon inode setup) and
12  *  mm/ksm.c (mm hashing).
13  */
14
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36         UFFD_STATE_WAIT_API,
37         UFFD_STATE_RUNNING,
38 };
39
40 /*
41  * Start with fault_pending_wqh and fault_wqh so they're more likely
42  * to be in the same cacheline.
43  */
44 struct userfaultfd_ctx {
45         /* waitqueue head for the pending (i.e. not read) userfaults */
46         wait_queue_head_t fault_pending_wqh;
47         /* waitqueue head for the userfaults */
48         wait_queue_head_t fault_wqh;
49         /* waitqueue head for the pseudo fd to wakeup poll/read */
50         wait_queue_head_t fd_wqh;
51         /* waitqueue head for events */
52         wait_queue_head_t event_wqh;
53         /* a refile sequence protected by fault_pending_wqh lock */
54         struct seqcount refile_seq;
55         /* pseudo fd refcounting */
56         atomic_t refcount;
57         /* userfaultfd syscall flags */
58         unsigned int flags;
59         /* features requested from the userspace */
60         unsigned int features;
61         /* state machine */
62         enum userfaultfd_state state;
63         /* released */
64         bool released;
65         /* memory mappings are changing because of non-cooperative event */
66         bool mmap_changing;
67         /* mm with one ore more vmas attached to this userfaultfd_ctx */
68         struct mm_struct *mm;
69 };
70
71 struct userfaultfd_fork_ctx {
72         struct userfaultfd_ctx *orig;
73         struct userfaultfd_ctx *new;
74         struct list_head list;
75 };
76
77 struct userfaultfd_unmap_ctx {
78         struct userfaultfd_ctx *ctx;
79         unsigned long start;
80         unsigned long end;
81         struct list_head list;
82 };
83
84 struct userfaultfd_wait_queue {
85         struct uffd_msg msg;
86         wait_queue_entry_t wq;
87         struct userfaultfd_ctx *ctx;
88         bool waken;
89 };
90
91 struct userfaultfd_wake_range {
92         unsigned long start;
93         unsigned long len;
94 };
95
96 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
97                                      int wake_flags, void *key)
98 {
99         struct userfaultfd_wake_range *range = key;
100         int ret;
101         struct userfaultfd_wait_queue *uwq;
102         unsigned long start, len;
103
104         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
105         ret = 0;
106         /* len == 0 means wake all */
107         start = range->start;
108         len = range->len;
109         if (len && (start > uwq->msg.arg.pagefault.address ||
110                     start + len <= uwq->msg.arg.pagefault.address))
111                 goto out;
112         WRITE_ONCE(uwq->waken, true);
113         /*
114          * The Program-Order guarantees provided by the scheduler
115          * ensure uwq->waken is visible before the task is woken.
116          */
117         ret = wake_up_state(wq->private, mode);
118         if (ret) {
119                 /*
120                  * Wake only once, autoremove behavior.
121                  *
122                  * After the effect of list_del_init is visible to the other
123                  * CPUs, the waitqueue may disappear from under us, see the
124                  * !list_empty_careful() in handle_userfault().
125                  *
126                  * try_to_wake_up() has an implicit smp_mb(), and the
127                  * wq->private is read before calling the extern function
128                  * "wake_up_state" (which in turns calls try_to_wake_up).
129                  */
130                 list_del_init(&wq->entry);
131         }
132 out:
133         return ret;
134 }
135
136 /**
137  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
138  * context.
139  * @ctx: [in] Pointer to the userfaultfd context.
140  */
141 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
142 {
143         if (!atomic_inc_not_zero(&ctx->refcount))
144                 BUG();
145 }
146
147 /**
148  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
149  * context.
150  * @ctx: [in] Pointer to userfaultfd context.
151  *
152  * The userfaultfd context reference must have been previously acquired either
153  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
154  */
155 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
156 {
157         if (atomic_dec_and_test(&ctx->refcount)) {
158                 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
159                 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
160                 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
161                 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
162                 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
163                 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
164                 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
165                 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
166                 mmdrop(ctx->mm);
167                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
168         }
169 }
170
171 static inline void msg_init(struct uffd_msg *msg)
172 {
173         BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
174         /*
175          * Must use memset to zero out the paddings or kernel data is
176          * leaked to userland.
177          */
178         memset(msg, 0, sizeof(struct uffd_msg));
179 }
180
181 static inline struct uffd_msg userfault_msg(unsigned long address,
182                                             unsigned int flags,
183                                             unsigned long reason,
184                                             unsigned int features)
185 {
186         struct uffd_msg msg;
187         msg_init(&msg);
188         msg.event = UFFD_EVENT_PAGEFAULT;
189         msg.arg.pagefault.address = address;
190         if (flags & FAULT_FLAG_WRITE)
191                 /*
192                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
193                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
194                  * was not set in a UFFD_EVENT_PAGEFAULT, it means it
195                  * was a read fault, otherwise if set it means it's
196                  * a write fault.
197                  */
198                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
199         if (reason & VM_UFFD_WP)
200                 /*
201                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
203                  * not set in a UFFD_EVENT_PAGEFAULT, it means it was
204                  * a missing fault, otherwise if set it means it's a
205                  * write protect fault.
206                  */
207                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
208         if (features & UFFD_FEATURE_THREAD_ID)
209                 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
210         return msg;
211 }
212
213 #ifdef CONFIG_HUGETLB_PAGE
214 /*
215  * Same functionality as userfaultfd_must_wait below with modifications for
216  * hugepmd ranges.
217  */
218 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
219                                          struct vm_area_struct *vma,
220                                          unsigned long address,
221                                          unsigned long flags,
222                                          unsigned long reason)
223 {
224         struct mm_struct *mm = ctx->mm;
225         pte_t *pte;
226         bool ret = true;
227
228         VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
229
230         pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
231         if (!pte)
232                 goto out;
233
234         ret = false;
235
236         /*
237          * Lockless access: we're in a wait_event so it's ok if it
238          * changes under us.
239          */
240         if (huge_pte_none(*pte))
241                 ret = true;
242         if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
243                 ret = true;
244 out:
245         return ret;
246 }
247 #else
248 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
249                                          struct vm_area_struct *vma,
250                                          unsigned long address,
251                                          unsigned long flags,
252                                          unsigned long reason)
253 {
254         return false;   /* should never get here */
255 }
256 #endif /* CONFIG_HUGETLB_PAGE */
257
258 /*
259  * Verify the pagetables are still not ok after having reigstered into
260  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
261  * userfault that has already been resolved, if userfaultfd_read and
262  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
263  * threads.
264  */
265 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
266                                          unsigned long address,
267                                          unsigned long flags,
268                                          unsigned long reason)
269 {
270         struct mm_struct *mm = ctx->mm;
271         pgd_t *pgd;
272         p4d_t *p4d;
273         pud_t *pud;
274         pmd_t *pmd, _pmd;
275         pte_t *pte;
276         bool ret = true;
277
278         VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
279
280         pgd = pgd_offset(mm, address);
281         if (!pgd_present(*pgd))
282                 goto out;
283         p4d = p4d_offset(pgd, address);
284         if (!p4d_present(*p4d))
285                 goto out;
286         pud = pud_offset(p4d, address);
287         if (!pud_present(*pud))
288                 goto out;
289         pmd = pmd_offset(pud, address);
290         /*
291          * READ_ONCE must function as a barrier with narrower scope
292          * and it must be equivalent to:
293          *      _pmd = *pmd; barrier();
294          *
295          * This is to deal with the instability (as in
296          * pmd_trans_unstable) of the pmd.
297          */
298         _pmd = READ_ONCE(*pmd);
299         if (pmd_none(_pmd))
300                 goto out;
301
302         ret = false;
303         if (!pmd_present(_pmd))
304                 goto out;
305
306         if (pmd_trans_huge(_pmd))
307                 goto out;
308
309         /*
310          * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
311          * and use the standard pte_offset_map() instead of parsing _pmd.
312          */
313         pte = pte_offset_map(pmd, address);
314         /*
315          * Lockless access: we're in a wait_event so it's ok if it
316          * changes under us.
317          */
318         if (pte_none(*pte))
319                 ret = true;
320         pte_unmap(pte);
321
322 out:
323         return ret;
324 }
325
326 /*
327  * The locking rules involved in returning VM_FAULT_RETRY depending on
328  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
329  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
330  * recommendation in __lock_page_or_retry is not an understatement.
331  *
332  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
333  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
334  * not set.
335  *
336  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
337  * set, VM_FAULT_RETRY can still be returned if and only if there are
338  * fatal_signal_pending()s, and the mmap_sem must be released before
339  * returning it.
340  */
341 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
342 {
343         struct mm_struct *mm = vmf->vma->vm_mm;
344         struct userfaultfd_ctx *ctx;
345         struct userfaultfd_wait_queue uwq;
346         int ret;
347         bool must_wait, return_to_userland;
348         long blocking_state;
349
350         ret = VM_FAULT_SIGBUS;
351
352         /*
353          * We don't do userfault handling for the final child pid update.
354          *
355          * We also don't do userfault handling during
356          * coredumping. hugetlbfs has the special
357          * follow_hugetlb_page() to skip missing pages in the
358          * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
359          * the no_page_table() helper in follow_page_mask(), but the
360          * shmem_vm_ops->fault method is invoked even during
361          * coredumping without mmap_sem and it ends up here.
362          */
363         if (current->flags & (PF_EXITING|PF_DUMPCORE))
364                 goto out;
365
366         /*
367          * Coredumping runs without mmap_sem so we can only check that
368          * the mmap_sem is held, if PF_DUMPCORE was not set.
369          */
370         WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
371
372         ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
373         if (!ctx)
374                 goto out;
375
376         BUG_ON(ctx->mm != mm);
377
378         VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
379         VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
380
381         if (ctx->features & UFFD_FEATURE_SIGBUS)
382                 goto out;
383
384         /*
385          * If it's already released don't get it. This avoids to loop
386          * in __get_user_pages if userfaultfd_release waits on the
387          * caller of handle_userfault to release the mmap_sem.
388          */
389         if (unlikely(READ_ONCE(ctx->released))) {
390                 /*
391                  * Don't return VM_FAULT_SIGBUS in this case, so a non
392                  * cooperative manager can close the uffd after the
393                  * last UFFDIO_COPY, without risking to trigger an
394                  * involuntary SIGBUS if the process was starting the
395                  * userfaultfd while the userfaultfd was still armed
396                  * (but after the last UFFDIO_COPY). If the uffd
397                  * wasn't already closed when the userfault reached
398                  * this point, that would normally be solved by
399                  * userfaultfd_must_wait returning 'false'.
400                  *
401                  * If we were to return VM_FAULT_SIGBUS here, the non
402                  * cooperative manager would be instead forced to
403                  * always call UFFDIO_UNREGISTER before it can safely
404                  * close the uffd.
405                  */
406                 ret = VM_FAULT_NOPAGE;
407                 goto out;
408         }
409
410         /*
411          * Check that we can return VM_FAULT_RETRY.
412          *
413          * NOTE: it should become possible to return VM_FAULT_RETRY
414          * even if FAULT_FLAG_TRIED is set without leading to gup()
415          * -EBUSY failures, if the userfaultfd is to be extended for
416          * VM_UFFD_WP tracking and we intend to arm the userfault
417          * without first stopping userland access to the memory. For
418          * VM_UFFD_MISSING userfaults this is enough for now.
419          */
420         if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
421                 /*
422                  * Validate the invariant that nowait must allow retry
423                  * to be sure not to return SIGBUS erroneously on
424                  * nowait invocations.
425                  */
426                 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
427 #ifdef CONFIG_DEBUG_VM
428                 if (printk_ratelimit()) {
429                         printk(KERN_WARNING
430                                "FAULT_FLAG_ALLOW_RETRY missing %x\n",
431                                vmf->flags);
432                         dump_stack();
433                 }
434 #endif
435                 goto out;
436         }
437
438         /*
439          * Handle nowait, not much to do other than tell it to retry
440          * and wait.
441          */
442         ret = VM_FAULT_RETRY;
443         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
444                 goto out;
445
446         /* take the reference before dropping the mmap_sem */
447         userfaultfd_ctx_get(ctx);
448
449         init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
450         uwq.wq.private = current;
451         uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
452                         ctx->features);
453         uwq.ctx = ctx;
454         uwq.waken = false;
455
456         return_to_userland =
457                 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
458                 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
459         blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
460                          TASK_KILLABLE;
461
462         spin_lock(&ctx->fault_pending_wqh.lock);
463         /*
464          * After the __add_wait_queue the uwq is visible to userland
465          * through poll/read().
466          */
467         __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
468         /*
469          * The smp_mb() after __set_current_state prevents the reads
470          * following the spin_unlock to happen before the list_add in
471          * __add_wait_queue.
472          */
473         set_current_state(blocking_state);
474         spin_unlock(&ctx->fault_pending_wqh.lock);
475
476         if (!is_vm_hugetlb_page(vmf->vma))
477                 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
478                                                   reason);
479         else
480                 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
481                                                        vmf->address,
482                                                        vmf->flags, reason);
483         up_read(&mm->mmap_sem);
484
485         if (likely(must_wait && !READ_ONCE(ctx->released) &&
486                    (return_to_userland ? !signal_pending(current) :
487                     !fatal_signal_pending(current)))) {
488                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
489                 schedule();
490                 ret |= VM_FAULT_MAJOR;
491
492                 /*
493                  * False wakeups can orginate even from rwsem before
494                  * up_read() however userfaults will wait either for a
495                  * targeted wakeup on the specific uwq waitqueue from
496                  * wake_userfault() or for signals or for uffd
497                  * release.
498                  */
499                 while (!READ_ONCE(uwq.waken)) {
500                         /*
501                          * This needs the full smp_store_mb()
502                          * guarantee as the state write must be
503                          * visible to other CPUs before reading
504                          * uwq.waken from other CPUs.
505                          */
506                         set_current_state(blocking_state);
507                         if (READ_ONCE(uwq.waken) ||
508                             READ_ONCE(ctx->released) ||
509                             (return_to_userland ? signal_pending(current) :
510                              fatal_signal_pending(current)))
511                                 break;
512                         schedule();
513                 }
514         }
515
516         __set_current_state(TASK_RUNNING);
517
518         if (return_to_userland) {
519                 if (signal_pending(current) &&
520                     !fatal_signal_pending(current)) {
521                         /*
522                          * If we got a SIGSTOP or SIGCONT and this is
523                          * a normal userland page fault, just let
524                          * userland return so the signal will be
525                          * handled and gdb debugging works.  The page
526                          * fault code immediately after we return from
527                          * this function is going to release the
528                          * mmap_sem and it's not depending on it
529                          * (unlike gup would if we were not to return
530                          * VM_FAULT_RETRY).
531                          *
532                          * If a fatal signal is pending we still take
533                          * the streamlined VM_FAULT_RETRY failure path
534                          * and there's no need to retake the mmap_sem
535                          * in such case.
536                          */
537                         down_read(&mm->mmap_sem);
538                         ret = VM_FAULT_NOPAGE;
539                 }
540         }
541
542         /*
543          * Here we race with the list_del; list_add in
544          * userfaultfd_ctx_read(), however because we don't ever run
545          * list_del_init() to refile across the two lists, the prev
546          * and next pointers will never point to self. list_add also
547          * would never let any of the two pointers to point to
548          * self. So list_empty_careful won't risk to see both pointers
549          * pointing to self at any time during the list refile. The
550          * only case where list_del_init() is called is the full
551          * removal in the wake function and there we don't re-list_add
552          * and it's fine not to block on the spinlock. The uwq on this
553          * kernel stack can be released after the list_del_init.
554          */
555         if (!list_empty_careful(&uwq.wq.entry)) {
556                 spin_lock(&ctx->fault_pending_wqh.lock);
557                 /*
558                  * No need of list_del_init(), the uwq on the stack
559                  * will be freed shortly anyway.
560                  */
561                 list_del(&uwq.wq.entry);
562                 spin_unlock(&ctx->fault_pending_wqh.lock);
563         }
564
565         /*
566          * ctx may go away after this if the userfault pseudo fd is
567          * already released.
568          */
569         userfaultfd_ctx_put(ctx);
570
571 out:
572         return ret;
573 }
574
575 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
576                                               struct userfaultfd_wait_queue *ewq)
577 {
578         struct userfaultfd_ctx *release_new_ctx;
579
580         if (WARN_ON_ONCE(current->flags & PF_EXITING))
581                 goto out;
582
583         ewq->ctx = ctx;
584         init_waitqueue_entry(&ewq->wq, current);
585         release_new_ctx = NULL;
586
587         spin_lock(&ctx->event_wqh.lock);
588         /*
589          * After the __add_wait_queue the uwq is visible to userland
590          * through poll/read().
591          */
592         __add_wait_queue(&ctx->event_wqh, &ewq->wq);
593         for (;;) {
594                 set_current_state(TASK_KILLABLE);
595                 if (ewq->msg.event == 0)
596                         break;
597                 if (READ_ONCE(ctx->released) ||
598                     fatal_signal_pending(current)) {
599                         /*
600                          * &ewq->wq may be queued in fork_event, but
601                          * __remove_wait_queue ignores the head
602                          * parameter. It would be a problem if it
603                          * didn't.
604                          */
605                         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
606                         if (ewq->msg.event == UFFD_EVENT_FORK) {
607                                 struct userfaultfd_ctx *new;
608
609                                 new = (struct userfaultfd_ctx *)
610                                         (unsigned long)
611                                         ewq->msg.arg.reserved.reserved1;
612                                 release_new_ctx = new;
613                         }
614                         break;
615                 }
616
617                 spin_unlock(&ctx->event_wqh.lock);
618
619                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
620                 schedule();
621
622                 spin_lock(&ctx->event_wqh.lock);
623         }
624         __set_current_state(TASK_RUNNING);
625         spin_unlock(&ctx->event_wqh.lock);
626
627         if (release_new_ctx) {
628                 struct vm_area_struct *vma;
629                 struct mm_struct *mm = release_new_ctx->mm;
630
631                 /* the various vma->vm_userfaultfd_ctx still points to it */
632                 down_write(&mm->mmap_sem);
633                 for (vma = mm->mmap; vma; vma = vma->vm_next)
634                         if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx)
635                                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
636                 up_write(&mm->mmap_sem);
637
638                 userfaultfd_ctx_put(release_new_ctx);
639         }
640
641         /*
642          * ctx may go away after this if the userfault pseudo fd is
643          * already released.
644          */
645 out:
646         WRITE_ONCE(ctx->mmap_changing, false);
647         userfaultfd_ctx_put(ctx);
648 }
649
650 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
651                                        struct userfaultfd_wait_queue *ewq)
652 {
653         ewq->msg.event = 0;
654         wake_up_locked(&ctx->event_wqh);
655         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
656 }
657
658 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
659 {
660         struct userfaultfd_ctx *ctx = NULL, *octx;
661         struct userfaultfd_fork_ctx *fctx;
662
663         octx = vma->vm_userfaultfd_ctx.ctx;
664         if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
665                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
666                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
667                 return 0;
668         }
669
670         list_for_each_entry(fctx, fcs, list)
671                 if (fctx->orig == octx) {
672                         ctx = fctx->new;
673                         break;
674                 }
675
676         if (!ctx) {
677                 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
678                 if (!fctx)
679                         return -ENOMEM;
680
681                 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
682                 if (!ctx) {
683                         kfree(fctx);
684                         return -ENOMEM;
685                 }
686
687                 atomic_set(&ctx->refcount, 1);
688                 ctx->flags = octx->flags;
689                 ctx->state = UFFD_STATE_RUNNING;
690                 ctx->features = octx->features;
691                 ctx->released = false;
692                 ctx->mmap_changing = false;
693                 ctx->mm = vma->vm_mm;
694                 mmgrab(ctx->mm);
695
696                 userfaultfd_ctx_get(octx);
697                 WRITE_ONCE(octx->mmap_changing, true);
698                 fctx->orig = octx;
699                 fctx->new = ctx;
700                 list_add_tail(&fctx->list, fcs);
701         }
702
703         vma->vm_userfaultfd_ctx.ctx = ctx;
704         return 0;
705 }
706
707 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
708 {
709         struct userfaultfd_ctx *ctx = fctx->orig;
710         struct userfaultfd_wait_queue ewq;
711
712         msg_init(&ewq.msg);
713
714         ewq.msg.event = UFFD_EVENT_FORK;
715         ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
716
717         userfaultfd_event_wait_completion(ctx, &ewq);
718 }
719
720 void dup_userfaultfd_complete(struct list_head *fcs)
721 {
722         struct userfaultfd_fork_ctx *fctx, *n;
723
724         list_for_each_entry_safe(fctx, n, fcs, list) {
725                 dup_fctx(fctx);
726                 list_del(&fctx->list);
727                 kfree(fctx);
728         }
729 }
730
731 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
732                              struct vm_userfaultfd_ctx *vm_ctx)
733 {
734         struct userfaultfd_ctx *ctx;
735
736         ctx = vma->vm_userfaultfd_ctx.ctx;
737         if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
738                 vm_ctx->ctx = ctx;
739                 userfaultfd_ctx_get(ctx);
740                 WRITE_ONCE(ctx->mmap_changing, true);
741         }
742 }
743
744 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
745                                  unsigned long from, unsigned long to,
746                                  unsigned long len)
747 {
748         struct userfaultfd_ctx *ctx = vm_ctx->ctx;
749         struct userfaultfd_wait_queue ewq;
750
751         if (!ctx)
752                 return;
753
754         if (to & ~PAGE_MASK) {
755                 userfaultfd_ctx_put(ctx);
756                 return;
757         }
758
759         msg_init(&ewq.msg);
760
761         ewq.msg.event = UFFD_EVENT_REMAP;
762         ewq.msg.arg.remap.from = from;
763         ewq.msg.arg.remap.to = to;
764         ewq.msg.arg.remap.len = len;
765
766         userfaultfd_event_wait_completion(ctx, &ewq);
767 }
768
769 bool userfaultfd_remove(struct vm_area_struct *vma,
770                         unsigned long start, unsigned long end)
771 {
772         struct mm_struct *mm = vma->vm_mm;
773         struct userfaultfd_ctx *ctx;
774         struct userfaultfd_wait_queue ewq;
775
776         ctx = vma->vm_userfaultfd_ctx.ctx;
777         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
778                 return true;
779
780         userfaultfd_ctx_get(ctx);
781         WRITE_ONCE(ctx->mmap_changing, true);
782         up_read(&mm->mmap_sem);
783
784         msg_init(&ewq.msg);
785
786         ewq.msg.event = UFFD_EVENT_REMOVE;
787         ewq.msg.arg.remove.start = start;
788         ewq.msg.arg.remove.end = end;
789
790         userfaultfd_event_wait_completion(ctx, &ewq);
791
792         return false;
793 }
794
795 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
796                           unsigned long start, unsigned long end)
797 {
798         struct userfaultfd_unmap_ctx *unmap_ctx;
799
800         list_for_each_entry(unmap_ctx, unmaps, list)
801                 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
802                     unmap_ctx->end == end)
803                         return true;
804
805         return false;
806 }
807
808 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
809                            unsigned long start, unsigned long end,
810                            struct list_head *unmaps)
811 {
812         for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
813                 struct userfaultfd_unmap_ctx *unmap_ctx;
814                 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
815
816                 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
817                     has_unmap_ctx(ctx, unmaps, start, end))
818                         continue;
819
820                 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
821                 if (!unmap_ctx)
822                         return -ENOMEM;
823
824                 userfaultfd_ctx_get(ctx);
825                 WRITE_ONCE(ctx->mmap_changing, true);
826                 unmap_ctx->ctx = ctx;
827                 unmap_ctx->start = start;
828                 unmap_ctx->end = end;
829                 list_add_tail(&unmap_ctx->list, unmaps);
830         }
831
832         return 0;
833 }
834
835 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
836 {
837         struct userfaultfd_unmap_ctx *ctx, *n;
838         struct userfaultfd_wait_queue ewq;
839
840         list_for_each_entry_safe(ctx, n, uf, list) {
841                 msg_init(&ewq.msg);
842
843                 ewq.msg.event = UFFD_EVENT_UNMAP;
844                 ewq.msg.arg.remove.start = ctx->start;
845                 ewq.msg.arg.remove.end = ctx->end;
846
847                 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
848
849                 list_del(&ctx->list);
850                 kfree(ctx);
851         }
852 }
853
854 static int userfaultfd_release(struct inode *inode, struct file *file)
855 {
856         struct userfaultfd_ctx *ctx = file->private_data;
857         struct mm_struct *mm = ctx->mm;
858         struct vm_area_struct *vma, *prev;
859         /* len == 0 means wake all */
860         struct userfaultfd_wake_range range = { .len = 0, };
861         unsigned long new_flags;
862
863         WRITE_ONCE(ctx->released, true);
864
865         if (!mmget_not_zero(mm))
866                 goto wakeup;
867
868         /*
869          * Flush page faults out of all CPUs. NOTE: all page faults
870          * must be retried without returning VM_FAULT_SIGBUS if
871          * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
872          * changes while handle_userfault released the mmap_sem. So
873          * it's critical that released is set to true (above), before
874          * taking the mmap_sem for writing.
875          */
876         down_write(&mm->mmap_sem);
877         prev = NULL;
878         for (vma = mm->mmap; vma; vma = vma->vm_next) {
879                 cond_resched();
880                 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
881                        !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
882                 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
883                         prev = vma;
884                         continue;
885                 }
886                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
887                 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
888                                  new_flags, vma->anon_vma,
889                                  vma->vm_file, vma->vm_pgoff,
890                                  vma_policy(vma),
891                                  NULL_VM_UFFD_CTX);
892                 if (prev)
893                         vma = prev;
894                 else
895                         prev = vma;
896                 vma->vm_flags = new_flags;
897                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
898         }
899         up_write(&mm->mmap_sem);
900         mmput(mm);
901 wakeup:
902         /*
903          * After no new page faults can wait on this fault_*wqh, flush
904          * the last page faults that may have been already waiting on
905          * the fault_*wqh.
906          */
907         spin_lock(&ctx->fault_pending_wqh.lock);
908         __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
909         __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
910         spin_unlock(&ctx->fault_pending_wqh.lock);
911
912         /* Flush pending events that may still wait on event_wqh */
913         wake_up_all(&ctx->event_wqh);
914
915         wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
916         userfaultfd_ctx_put(ctx);
917         return 0;
918 }
919
920 /* fault_pending_wqh.lock must be hold by the caller */
921 static inline struct userfaultfd_wait_queue *find_userfault_in(
922                 wait_queue_head_t *wqh)
923 {
924         wait_queue_entry_t *wq;
925         struct userfaultfd_wait_queue *uwq;
926
927         VM_BUG_ON(!spin_is_locked(&wqh->lock));
928
929         uwq = NULL;
930         if (!waitqueue_active(wqh))
931                 goto out;
932         /* walk in reverse to provide FIFO behavior to read userfaults */
933         wq = list_last_entry(&wqh->head, typeof(*wq), entry);
934         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
935 out:
936         return uwq;
937 }
938
939 static inline struct userfaultfd_wait_queue *find_userfault(
940                 struct userfaultfd_ctx *ctx)
941 {
942         return find_userfault_in(&ctx->fault_pending_wqh);
943 }
944
945 static inline struct userfaultfd_wait_queue *find_userfault_evt(
946                 struct userfaultfd_ctx *ctx)
947 {
948         return find_userfault_in(&ctx->event_wqh);
949 }
950
951 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
952 {
953         struct userfaultfd_ctx *ctx = file->private_data;
954         __poll_t ret;
955
956         poll_wait(file, &ctx->fd_wqh, wait);
957
958         switch (ctx->state) {
959         case UFFD_STATE_WAIT_API:
960                 return EPOLLERR;
961         case UFFD_STATE_RUNNING:
962                 /*
963                  * poll() never guarantees that read won't block.
964                  * userfaults can be waken before they're read().
965                  */
966                 if (unlikely(!(file->f_flags & O_NONBLOCK)))
967                         return EPOLLERR;
968                 /*
969                  * lockless access to see if there are pending faults
970                  * __pollwait last action is the add_wait_queue but
971                  * the spin_unlock would allow the waitqueue_active to
972                  * pass above the actual list_add inside
973                  * add_wait_queue critical section. So use a full
974                  * memory barrier to serialize the list_add write of
975                  * add_wait_queue() with the waitqueue_active read
976                  * below.
977                  */
978                 ret = 0;
979                 smp_mb();
980                 if (waitqueue_active(&ctx->fault_pending_wqh))
981                         ret = EPOLLIN;
982                 else if (waitqueue_active(&ctx->event_wqh))
983                         ret = EPOLLIN;
984
985                 return ret;
986         default:
987                 WARN_ON_ONCE(1);
988                 return EPOLLERR;
989         }
990 }
991
992 static const struct file_operations userfaultfd_fops;
993
994 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
995                                   struct userfaultfd_ctx *new,
996                                   struct uffd_msg *msg)
997 {
998         int fd;
999
1000         fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1001                               O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1002         if (fd < 0)
1003                 return fd;
1004
1005         msg->arg.reserved.reserved1 = 0;
1006         msg->arg.fork.ufd = fd;
1007         return 0;
1008 }
1009
1010 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1011                                     struct uffd_msg *msg)
1012 {
1013         ssize_t ret;
1014         DECLARE_WAITQUEUE(wait, current);
1015         struct userfaultfd_wait_queue *uwq;
1016         /*
1017          * Handling fork event requires sleeping operations, so
1018          * we drop the event_wqh lock, then do these ops, then
1019          * lock it back and wake up the waiter. While the lock is
1020          * dropped the ewq may go away so we keep track of it
1021          * carefully.
1022          */
1023         LIST_HEAD(fork_event);
1024         struct userfaultfd_ctx *fork_nctx = NULL;
1025
1026         /* always take the fd_wqh lock before the fault_pending_wqh lock */
1027         spin_lock(&ctx->fd_wqh.lock);
1028         __add_wait_queue(&ctx->fd_wqh, &wait);
1029         for (;;) {
1030                 set_current_state(TASK_INTERRUPTIBLE);
1031                 spin_lock(&ctx->fault_pending_wqh.lock);
1032                 uwq = find_userfault(ctx);
1033                 if (uwq) {
1034                         /*
1035                          * Use a seqcount to repeat the lockless check
1036                          * in wake_userfault() to avoid missing
1037                          * wakeups because during the refile both
1038                          * waitqueue could become empty if this is the
1039                          * only userfault.
1040                          */
1041                         write_seqcount_begin(&ctx->refile_seq);
1042
1043                         /*
1044                          * The fault_pending_wqh.lock prevents the uwq
1045                          * to disappear from under us.
1046                          *
1047                          * Refile this userfault from
1048                          * fault_pending_wqh to fault_wqh, it's not
1049                          * pending anymore after we read it.
1050                          *
1051                          * Use list_del() by hand (as
1052                          * userfaultfd_wake_function also uses
1053                          * list_del_init() by hand) to be sure nobody
1054                          * changes __remove_wait_queue() to use
1055                          * list_del_init() in turn breaking the
1056                          * !list_empty_careful() check in
1057                          * handle_userfault(). The uwq->wq.head list
1058                          * must never be empty at any time during the
1059                          * refile, or the waitqueue could disappear
1060                          * from under us. The "wait_queue_head_t"
1061                          * parameter of __remove_wait_queue() is unused
1062                          * anyway.
1063                          */
1064                         list_del(&uwq->wq.entry);
1065                         __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1066
1067                         write_seqcount_end(&ctx->refile_seq);
1068
1069                         /* careful to always initialize msg if ret == 0 */
1070                         *msg = uwq->msg;
1071                         spin_unlock(&ctx->fault_pending_wqh.lock);
1072                         ret = 0;
1073                         break;
1074                 }
1075                 spin_unlock(&ctx->fault_pending_wqh.lock);
1076
1077                 spin_lock(&ctx->event_wqh.lock);
1078                 uwq = find_userfault_evt(ctx);
1079                 if (uwq) {
1080                         *msg = uwq->msg;
1081
1082                         if (uwq->msg.event == UFFD_EVENT_FORK) {
1083                                 fork_nctx = (struct userfaultfd_ctx *)
1084                                         (unsigned long)
1085                                         uwq->msg.arg.reserved.reserved1;
1086                                 list_move(&uwq->wq.entry, &fork_event);
1087                                 /*
1088                                  * fork_nctx can be freed as soon as
1089                                  * we drop the lock, unless we take a
1090                                  * reference on it.
1091                                  */
1092                                 userfaultfd_ctx_get(fork_nctx);
1093                                 spin_unlock(&ctx->event_wqh.lock);
1094                                 ret = 0;
1095                                 break;
1096                         }
1097
1098                         userfaultfd_event_complete(ctx, uwq);
1099                         spin_unlock(&ctx->event_wqh.lock);
1100                         ret = 0;
1101                         break;
1102                 }
1103                 spin_unlock(&ctx->event_wqh.lock);
1104
1105                 if (signal_pending(current)) {
1106                         ret = -ERESTARTSYS;
1107                         break;
1108                 }
1109                 if (no_wait) {
1110                         ret = -EAGAIN;
1111                         break;
1112                 }
1113                 spin_unlock(&ctx->fd_wqh.lock);
1114                 schedule();
1115                 spin_lock(&ctx->fd_wqh.lock);
1116         }
1117         __remove_wait_queue(&ctx->fd_wqh, &wait);
1118         __set_current_state(TASK_RUNNING);
1119         spin_unlock(&ctx->fd_wqh.lock);
1120
1121         if (!ret && msg->event == UFFD_EVENT_FORK) {
1122                 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1123                 spin_lock(&ctx->event_wqh.lock);
1124                 if (!list_empty(&fork_event)) {
1125                         /*
1126                          * The fork thread didn't abort, so we can
1127                          * drop the temporary refcount.
1128                          */
1129                         userfaultfd_ctx_put(fork_nctx);
1130
1131                         uwq = list_first_entry(&fork_event,
1132                                                typeof(*uwq),
1133                                                wq.entry);
1134                         /*
1135                          * If fork_event list wasn't empty and in turn
1136                          * the event wasn't already released by fork
1137                          * (the event is allocated on fork kernel
1138                          * stack), put the event back to its place in
1139                          * the event_wq. fork_event head will be freed
1140                          * as soon as we return so the event cannot
1141                          * stay queued there no matter the current
1142                          * "ret" value.
1143                          */
1144                         list_del(&uwq->wq.entry);
1145                         __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1146
1147                         /*
1148                          * Leave the event in the waitqueue and report
1149                          * error to userland if we failed to resolve
1150                          * the userfault fork.
1151                          */
1152                         if (likely(!ret))
1153                                 userfaultfd_event_complete(ctx, uwq);
1154                 } else {
1155                         /*
1156                          * Here the fork thread aborted and the
1157                          * refcount from the fork thread on fork_nctx
1158                          * has already been released. We still hold
1159                          * the reference we took before releasing the
1160                          * lock above. If resolve_userfault_fork
1161                          * failed we've to drop it because the
1162                          * fork_nctx has to be freed in such case. If
1163                          * it succeeded we'll hold it because the new
1164                          * uffd references it.
1165                          */
1166                         if (ret)
1167                                 userfaultfd_ctx_put(fork_nctx);
1168                 }
1169                 spin_unlock(&ctx->event_wqh.lock);
1170         }
1171
1172         return ret;
1173 }
1174
1175 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1176                                 size_t count, loff_t *ppos)
1177 {
1178         struct userfaultfd_ctx *ctx = file->private_data;
1179         ssize_t _ret, ret = 0;
1180         struct uffd_msg msg;
1181         int no_wait = file->f_flags & O_NONBLOCK;
1182
1183         if (ctx->state == UFFD_STATE_WAIT_API)
1184                 return -EINVAL;
1185
1186         for (;;) {
1187                 if (count < sizeof(msg))
1188                         return ret ? ret : -EINVAL;
1189                 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1190                 if (_ret < 0)
1191                         return ret ? ret : _ret;
1192                 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1193                         return ret ? ret : -EFAULT;
1194                 ret += sizeof(msg);
1195                 buf += sizeof(msg);
1196                 count -= sizeof(msg);
1197                 /*
1198                  * Allow to read more than one fault at time but only
1199                  * block if waiting for the very first one.
1200                  */
1201                 no_wait = O_NONBLOCK;
1202         }
1203 }
1204
1205 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1206                              struct userfaultfd_wake_range *range)
1207 {
1208         spin_lock(&ctx->fault_pending_wqh.lock);
1209         /* wake all in the range and autoremove */
1210         if (waitqueue_active(&ctx->fault_pending_wqh))
1211                 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1212                                      range);
1213         if (waitqueue_active(&ctx->fault_wqh))
1214                 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1215         spin_unlock(&ctx->fault_pending_wqh.lock);
1216 }
1217
1218 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1219                                            struct userfaultfd_wake_range *range)
1220 {
1221         unsigned seq;
1222         bool need_wakeup;
1223
1224         /*
1225          * To be sure waitqueue_active() is not reordered by the CPU
1226          * before the pagetable update, use an explicit SMP memory
1227          * barrier here. PT lock release or up_read(mmap_sem) still
1228          * have release semantics that can allow the
1229          * waitqueue_active() to be reordered before the pte update.
1230          */
1231         smp_mb();
1232
1233         /*
1234          * Use waitqueue_active because it's very frequent to
1235          * change the address space atomically even if there are no
1236          * userfaults yet. So we take the spinlock only when we're
1237          * sure we've userfaults to wake.
1238          */
1239         do {
1240                 seq = read_seqcount_begin(&ctx->refile_seq);
1241                 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1242                         waitqueue_active(&ctx->fault_wqh);
1243                 cond_resched();
1244         } while (read_seqcount_retry(&ctx->refile_seq, seq));
1245         if (need_wakeup)
1246                 __wake_userfault(ctx, range);
1247 }
1248
1249 static __always_inline int validate_range(struct mm_struct *mm,
1250                                           __u64 start, __u64 len)
1251 {
1252         __u64 task_size = mm->task_size;
1253
1254         if (start & ~PAGE_MASK)
1255                 return -EINVAL;
1256         if (len & ~PAGE_MASK)
1257                 return -EINVAL;
1258         if (!len)
1259                 return -EINVAL;
1260         if (start < mmap_min_addr)
1261                 return -EINVAL;
1262         if (start >= task_size)
1263                 return -EINVAL;
1264         if (len > task_size - start)
1265                 return -EINVAL;
1266         return 0;
1267 }
1268
1269 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1270 {
1271         return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1272                 vma_is_shmem(vma);
1273 }
1274
1275 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1276                                 unsigned long arg)
1277 {
1278         struct mm_struct *mm = ctx->mm;
1279         struct vm_area_struct *vma, *prev, *cur;
1280         int ret;
1281         struct uffdio_register uffdio_register;
1282         struct uffdio_register __user *user_uffdio_register;
1283         unsigned long vm_flags, new_flags;
1284         bool found;
1285         bool basic_ioctls;
1286         unsigned long start, end, vma_end;
1287
1288         user_uffdio_register = (struct uffdio_register __user *) arg;
1289
1290         ret = -EFAULT;
1291         if (copy_from_user(&uffdio_register, user_uffdio_register,
1292                            sizeof(uffdio_register)-sizeof(__u64)))
1293                 goto out;
1294
1295         ret = -EINVAL;
1296         if (!uffdio_register.mode)
1297                 goto out;
1298         if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1299                                      UFFDIO_REGISTER_MODE_WP))
1300                 goto out;
1301         vm_flags = 0;
1302         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1303                 vm_flags |= VM_UFFD_MISSING;
1304         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1305                 vm_flags |= VM_UFFD_WP;
1306                 /*
1307                  * FIXME: remove the below error constraint by
1308                  * implementing the wprotect tracking mode.
1309                  */
1310                 ret = -EINVAL;
1311                 goto out;
1312         }
1313
1314         ret = validate_range(mm, uffdio_register.range.start,
1315                              uffdio_register.range.len);
1316         if (ret)
1317                 goto out;
1318
1319         start = uffdio_register.range.start;
1320         end = start + uffdio_register.range.len;
1321
1322         ret = -ENOMEM;
1323         if (!mmget_not_zero(mm))
1324                 goto out;
1325
1326         down_write(&mm->mmap_sem);
1327         vma = find_vma_prev(mm, start, &prev);
1328         if (!vma)
1329                 goto out_unlock;
1330
1331         /* check that there's at least one vma in the range */
1332         ret = -EINVAL;
1333         if (vma->vm_start >= end)
1334                 goto out_unlock;
1335
1336         /*
1337          * If the first vma contains huge pages, make sure start address
1338          * is aligned to huge page size.
1339          */
1340         if (is_vm_hugetlb_page(vma)) {
1341                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1342
1343                 if (start & (vma_hpagesize - 1))
1344                         goto out_unlock;
1345         }
1346
1347         /*
1348          * Search for not compatible vmas.
1349          */
1350         found = false;
1351         basic_ioctls = false;
1352         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1353                 cond_resched();
1354
1355                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1356                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1357
1358                 /* check not compatible vmas */
1359                 ret = -EINVAL;
1360                 if (!vma_can_userfault(cur))
1361                         goto out_unlock;
1362                 /*
1363                  * If this vma contains ending address, and huge pages
1364                  * check alignment.
1365                  */
1366                 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1367                     end > cur->vm_start) {
1368                         unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1369
1370                         ret = -EINVAL;
1371
1372                         if (end & (vma_hpagesize - 1))
1373                                 goto out_unlock;
1374                 }
1375
1376                 /*
1377                  * Check that this vma isn't already owned by a
1378                  * different userfaultfd. We can't allow more than one
1379                  * userfaultfd to own a single vma simultaneously or we
1380                  * wouldn't know which one to deliver the userfaults to.
1381                  */
1382                 ret = -EBUSY;
1383                 if (cur->vm_userfaultfd_ctx.ctx &&
1384                     cur->vm_userfaultfd_ctx.ctx != ctx)
1385                         goto out_unlock;
1386
1387                 /*
1388                  * Note vmas containing huge pages
1389                  */
1390                 if (is_vm_hugetlb_page(cur))
1391                         basic_ioctls = true;
1392
1393                 found = true;
1394         }
1395         BUG_ON(!found);
1396
1397         if (vma->vm_start < start)
1398                 prev = vma;
1399
1400         ret = 0;
1401         do {
1402                 cond_resched();
1403
1404                 BUG_ON(!vma_can_userfault(vma));
1405                 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1406                        vma->vm_userfaultfd_ctx.ctx != ctx);
1407
1408                 /*
1409                  * Nothing to do: this vma is already registered into this
1410                  * userfaultfd and with the right tracking mode too.
1411                  */
1412                 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1413                     (vma->vm_flags & vm_flags) == vm_flags)
1414                         goto skip;
1415
1416                 if (vma->vm_start > start)
1417                         start = vma->vm_start;
1418                 vma_end = min(end, vma->vm_end);
1419
1420                 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1421                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1422                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1423                                  vma_policy(vma),
1424                                  ((struct vm_userfaultfd_ctx){ ctx }));
1425                 if (prev) {
1426                         vma = prev;
1427                         goto next;
1428                 }
1429                 if (vma->vm_start < start) {
1430                         ret = split_vma(mm, vma, start, 1);
1431                         if (ret)
1432                                 break;
1433                 }
1434                 if (vma->vm_end > end) {
1435                         ret = split_vma(mm, vma, end, 0);
1436                         if (ret)
1437                                 break;
1438                 }
1439         next:
1440                 /*
1441                  * In the vma_merge() successful mprotect-like case 8:
1442                  * the next vma was merged into the current one and
1443                  * the current one has not been updated yet.
1444                  */
1445                 vma->vm_flags = new_flags;
1446                 vma->vm_userfaultfd_ctx.ctx = ctx;
1447
1448         skip:
1449                 prev = vma;
1450                 start = vma->vm_end;
1451                 vma = vma->vm_next;
1452         } while (vma && vma->vm_start < end);
1453 out_unlock:
1454         up_write(&mm->mmap_sem);
1455         mmput(mm);
1456         if (!ret) {
1457                 /*
1458                  * Now that we scanned all vmas we can already tell
1459                  * userland which ioctls methods are guaranteed to
1460                  * succeed on this range.
1461                  */
1462                 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1463                              UFFD_API_RANGE_IOCTLS,
1464                              &user_uffdio_register->ioctls))
1465                         ret = -EFAULT;
1466         }
1467 out:
1468         return ret;
1469 }
1470
1471 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1472                                   unsigned long arg)
1473 {
1474         struct mm_struct *mm = ctx->mm;
1475         struct vm_area_struct *vma, *prev, *cur;
1476         int ret;
1477         struct uffdio_range uffdio_unregister;
1478         unsigned long new_flags;
1479         bool found;
1480         unsigned long start, end, vma_end;
1481         const void __user *buf = (void __user *)arg;
1482
1483         ret = -EFAULT;
1484         if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1485                 goto out;
1486
1487         ret = validate_range(mm, uffdio_unregister.start,
1488                              uffdio_unregister.len);
1489         if (ret)
1490                 goto out;
1491
1492         start = uffdio_unregister.start;
1493         end = start + uffdio_unregister.len;
1494
1495         ret = -ENOMEM;
1496         if (!mmget_not_zero(mm))
1497                 goto out;
1498
1499         down_write(&mm->mmap_sem);
1500         vma = find_vma_prev(mm, start, &prev);
1501         if (!vma)
1502                 goto out_unlock;
1503
1504         /* check that there's at least one vma in the range */
1505         ret = -EINVAL;
1506         if (vma->vm_start >= end)
1507                 goto out_unlock;
1508
1509         /*
1510          * If the first vma contains huge pages, make sure start address
1511          * is aligned to huge page size.
1512          */
1513         if (is_vm_hugetlb_page(vma)) {
1514                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1515
1516                 if (start & (vma_hpagesize - 1))
1517                         goto out_unlock;
1518         }
1519
1520         /*
1521          * Search for not compatible vmas.
1522          */
1523         found = false;
1524         ret = -EINVAL;
1525         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1526                 cond_resched();
1527
1528                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1529                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1530
1531                 /*
1532                  * Check not compatible vmas, not strictly required
1533                  * here as not compatible vmas cannot have an
1534                  * userfaultfd_ctx registered on them, but this
1535                  * provides for more strict behavior to notice
1536                  * unregistration errors.
1537                  */
1538                 if (!vma_can_userfault(cur))
1539                         goto out_unlock;
1540
1541                 found = true;
1542         }
1543         BUG_ON(!found);
1544
1545         if (vma->vm_start < start)
1546                 prev = vma;
1547
1548         ret = 0;
1549         do {
1550                 cond_resched();
1551
1552                 BUG_ON(!vma_can_userfault(vma));
1553
1554                 /*
1555                  * Nothing to do: this vma is already registered into this
1556                  * userfaultfd and with the right tracking mode too.
1557                  */
1558                 if (!vma->vm_userfaultfd_ctx.ctx)
1559                         goto skip;
1560
1561                 if (vma->vm_start > start)
1562                         start = vma->vm_start;
1563                 vma_end = min(end, vma->vm_end);
1564
1565                 if (userfaultfd_missing(vma)) {
1566                         /*
1567                          * Wake any concurrent pending userfault while
1568                          * we unregister, so they will not hang
1569                          * permanently and it avoids userland to call
1570                          * UFFDIO_WAKE explicitly.
1571                          */
1572                         struct userfaultfd_wake_range range;
1573                         range.start = start;
1574                         range.len = vma_end - start;
1575                         wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1576                 }
1577
1578                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1579                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1580                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1581                                  vma_policy(vma),
1582                                  NULL_VM_UFFD_CTX);
1583                 if (prev) {
1584                         vma = prev;
1585                         goto next;
1586                 }
1587                 if (vma->vm_start < start) {
1588                         ret = split_vma(mm, vma, start, 1);
1589                         if (ret)
1590                                 break;
1591                 }
1592                 if (vma->vm_end > end) {
1593                         ret = split_vma(mm, vma, end, 0);
1594                         if (ret)
1595                                 break;
1596                 }
1597         next:
1598                 /*
1599                  * In the vma_merge() successful mprotect-like case 8:
1600                  * the next vma was merged into the current one and
1601                  * the current one has not been updated yet.
1602                  */
1603                 vma->vm_flags = new_flags;
1604                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1605
1606         skip:
1607                 prev = vma;
1608                 start = vma->vm_end;
1609                 vma = vma->vm_next;
1610         } while (vma && vma->vm_start < end);
1611 out_unlock:
1612         up_write(&mm->mmap_sem);
1613         mmput(mm);
1614 out:
1615         return ret;
1616 }
1617
1618 /*
1619  * userfaultfd_wake may be used in combination with the
1620  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1621  */
1622 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1623                             unsigned long arg)
1624 {
1625         int ret;
1626         struct uffdio_range uffdio_wake;
1627         struct userfaultfd_wake_range range;
1628         const void __user *buf = (void __user *)arg;
1629
1630         ret = -EFAULT;
1631         if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1632                 goto out;
1633
1634         ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1635         if (ret)
1636                 goto out;
1637
1638         range.start = uffdio_wake.start;
1639         range.len = uffdio_wake.len;
1640
1641         /*
1642          * len == 0 means wake all and we don't want to wake all here,
1643          * so check it again to be sure.
1644          */
1645         VM_BUG_ON(!range.len);
1646
1647         wake_userfault(ctx, &range);
1648         ret = 0;
1649
1650 out:
1651         return ret;
1652 }
1653
1654 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1655                             unsigned long arg)
1656 {
1657         __s64 ret;
1658         struct uffdio_copy uffdio_copy;
1659         struct uffdio_copy __user *user_uffdio_copy;
1660         struct userfaultfd_wake_range range;
1661
1662         user_uffdio_copy = (struct uffdio_copy __user *) arg;
1663
1664         ret = -EAGAIN;
1665         if (READ_ONCE(ctx->mmap_changing))
1666                 goto out;
1667
1668         ret = -EFAULT;
1669         if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1670                            /* don't copy "copy" last field */
1671                            sizeof(uffdio_copy)-sizeof(__s64)))
1672                 goto out;
1673
1674         ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1675         if (ret)
1676                 goto out;
1677         /*
1678          * double check for wraparound just in case. copy_from_user()
1679          * will later check uffdio_copy.src + uffdio_copy.len to fit
1680          * in the userland range.
1681          */
1682         ret = -EINVAL;
1683         if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1684                 goto out;
1685         if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1686                 goto out;
1687         if (mmget_not_zero(ctx->mm)) {
1688                 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1689                                    uffdio_copy.len, &ctx->mmap_changing);
1690                 mmput(ctx->mm);
1691         } else {
1692                 return -ESRCH;
1693         }
1694         if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1695                 return -EFAULT;
1696         if (ret < 0)
1697                 goto out;
1698         BUG_ON(!ret);
1699         /* len == 0 would wake all */
1700         range.len = ret;
1701         if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1702                 range.start = uffdio_copy.dst;
1703                 wake_userfault(ctx, &range);
1704         }
1705         ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1706 out:
1707         return ret;
1708 }
1709
1710 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1711                                 unsigned long arg)
1712 {
1713         __s64 ret;
1714         struct uffdio_zeropage uffdio_zeropage;
1715         struct uffdio_zeropage __user *user_uffdio_zeropage;
1716         struct userfaultfd_wake_range range;
1717
1718         user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1719
1720         ret = -EAGAIN;
1721         if (READ_ONCE(ctx->mmap_changing))
1722                 goto out;
1723
1724         ret = -EFAULT;
1725         if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1726                            /* don't copy "zeropage" last field */
1727                            sizeof(uffdio_zeropage)-sizeof(__s64)))
1728                 goto out;
1729
1730         ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1731                              uffdio_zeropage.range.len);
1732         if (ret)
1733                 goto out;
1734         ret = -EINVAL;
1735         if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1736                 goto out;
1737
1738         if (mmget_not_zero(ctx->mm)) {
1739                 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1740                                      uffdio_zeropage.range.len,
1741                                      &ctx->mmap_changing);
1742                 mmput(ctx->mm);
1743         } else {
1744                 return -ESRCH;
1745         }
1746         if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1747                 return -EFAULT;
1748         if (ret < 0)
1749                 goto out;
1750         /* len == 0 would wake all */
1751         BUG_ON(!ret);
1752         range.len = ret;
1753         if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1754                 range.start = uffdio_zeropage.range.start;
1755                 wake_userfault(ctx, &range);
1756         }
1757         ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1758 out:
1759         return ret;
1760 }
1761
1762 static inline unsigned int uffd_ctx_features(__u64 user_features)
1763 {
1764         /*
1765          * For the current set of features the bits just coincide
1766          */
1767         return (unsigned int)user_features;
1768 }
1769
1770 /*
1771  * userland asks for a certain API version and we return which bits
1772  * and ioctl commands are implemented in this kernel for such API
1773  * version or -EINVAL if unknown.
1774  */
1775 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1776                            unsigned long arg)
1777 {
1778         struct uffdio_api uffdio_api;
1779         void __user *buf = (void __user *)arg;
1780         int ret;
1781         __u64 features;
1782
1783         ret = -EINVAL;
1784         if (ctx->state != UFFD_STATE_WAIT_API)
1785                 goto out;
1786         ret = -EFAULT;
1787         if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1788                 goto out;
1789         features = uffdio_api.features;
1790         if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1791                 memset(&uffdio_api, 0, sizeof(uffdio_api));
1792                 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1793                         goto out;
1794                 ret = -EINVAL;
1795                 goto out;
1796         }
1797         /* report all available features and ioctls to userland */
1798         uffdio_api.features = UFFD_API_FEATURES;
1799         uffdio_api.ioctls = UFFD_API_IOCTLS;
1800         ret = -EFAULT;
1801         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1802                 goto out;
1803         ctx->state = UFFD_STATE_RUNNING;
1804         /* only enable the requested features for this uffd context */
1805         ctx->features = uffd_ctx_features(features);
1806         ret = 0;
1807 out:
1808         return ret;
1809 }
1810
1811 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1812                               unsigned long arg)
1813 {
1814         int ret = -EINVAL;
1815         struct userfaultfd_ctx *ctx = file->private_data;
1816
1817         if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1818                 return -EINVAL;
1819
1820         switch(cmd) {
1821         case UFFDIO_API:
1822                 ret = userfaultfd_api(ctx, arg);
1823                 break;
1824         case UFFDIO_REGISTER:
1825                 ret = userfaultfd_register(ctx, arg);
1826                 break;
1827         case UFFDIO_UNREGISTER:
1828                 ret = userfaultfd_unregister(ctx, arg);
1829                 break;
1830         case UFFDIO_WAKE:
1831                 ret = userfaultfd_wake(ctx, arg);
1832                 break;
1833         case UFFDIO_COPY:
1834                 ret = userfaultfd_copy(ctx, arg);
1835                 break;
1836         case UFFDIO_ZEROPAGE:
1837                 ret = userfaultfd_zeropage(ctx, arg);
1838                 break;
1839         }
1840         return ret;
1841 }
1842
1843 #ifdef CONFIG_PROC_FS
1844 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1845 {
1846         struct userfaultfd_ctx *ctx = f->private_data;
1847         wait_queue_entry_t *wq;
1848         struct userfaultfd_wait_queue *uwq;
1849         unsigned long pending = 0, total = 0;
1850
1851         spin_lock(&ctx->fault_pending_wqh.lock);
1852         list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1853                 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1854                 pending++;
1855                 total++;
1856         }
1857         list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1858                 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1859                 total++;
1860         }
1861         spin_unlock(&ctx->fault_pending_wqh.lock);
1862
1863         /*
1864          * If more protocols will be added, there will be all shown
1865          * separated by a space. Like this:
1866          *      protocols: aa:... bb:...
1867          */
1868         seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1869                    pending, total, UFFD_API, ctx->features,
1870                    UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1871 }
1872 #endif
1873
1874 static const struct file_operations userfaultfd_fops = {
1875 #ifdef CONFIG_PROC_FS
1876         .show_fdinfo    = userfaultfd_show_fdinfo,
1877 #endif
1878         .release        = userfaultfd_release,
1879         .poll           = userfaultfd_poll,
1880         .read           = userfaultfd_read,
1881         .unlocked_ioctl = userfaultfd_ioctl,
1882         .compat_ioctl   = userfaultfd_ioctl,
1883         .llseek         = noop_llseek,
1884 };
1885
1886 static void init_once_userfaultfd_ctx(void *mem)
1887 {
1888         struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1889
1890         init_waitqueue_head(&ctx->fault_pending_wqh);
1891         init_waitqueue_head(&ctx->fault_wqh);
1892         init_waitqueue_head(&ctx->event_wqh);
1893         init_waitqueue_head(&ctx->fd_wqh);
1894         seqcount_init(&ctx->refile_seq);
1895 }
1896
1897 SYSCALL_DEFINE1(userfaultfd, int, flags)
1898 {
1899         struct userfaultfd_ctx *ctx;
1900         int fd;
1901
1902         BUG_ON(!current->mm);
1903
1904         /* Check the UFFD_* constants for consistency.  */
1905         BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1906         BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1907
1908         if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1909                 return -EINVAL;
1910
1911         ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1912         if (!ctx)
1913                 return -ENOMEM;
1914
1915         atomic_set(&ctx->refcount, 1);
1916         ctx->flags = flags;
1917         ctx->features = 0;
1918         ctx->state = UFFD_STATE_WAIT_API;
1919         ctx->released = false;
1920         ctx->mmap_changing = false;
1921         ctx->mm = current->mm;
1922         /* prevent the mm struct to be freed */
1923         mmgrab(ctx->mm);
1924
1925         fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1926                               O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1927         if (fd < 0) {
1928                 mmdrop(ctx->mm);
1929                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1930         }
1931         return fd;
1932 }
1933
1934 static int __init userfaultfd_init(void)
1935 {
1936         userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1937                                                 sizeof(struct userfaultfd_ctx),
1938                                                 0,
1939                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1940                                                 init_once_userfaultfd_ctx);
1941         return 0;
1942 }
1943 __initcall(userfaultfd_init);