Merge remote-tracking branches 'asoc/topic/es7134', 'asoc/topic/es8328', 'asoc/topic...
[sfrench/cifs-2.6.git] / fs / ubifs / debug.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include <linux/ctype.h>
36 #include "ubifs.h"
37
38 static DEFINE_SPINLOCK(dbg_lock);
39
40 static const char *get_key_fmt(int fmt)
41 {
42         switch (fmt) {
43         case UBIFS_SIMPLE_KEY_FMT:
44                 return "simple";
45         default:
46                 return "unknown/invalid format";
47         }
48 }
49
50 static const char *get_key_hash(int hash)
51 {
52         switch (hash) {
53         case UBIFS_KEY_HASH_R5:
54                 return "R5";
55         case UBIFS_KEY_HASH_TEST:
56                 return "test";
57         default:
58                 return "unknown/invalid name hash";
59         }
60 }
61
62 static const char *get_key_type(int type)
63 {
64         switch (type) {
65         case UBIFS_INO_KEY:
66                 return "inode";
67         case UBIFS_DENT_KEY:
68                 return "direntry";
69         case UBIFS_XENT_KEY:
70                 return "xentry";
71         case UBIFS_DATA_KEY:
72                 return "data";
73         case UBIFS_TRUN_KEY:
74                 return "truncate";
75         default:
76                 return "unknown/invalid key";
77         }
78 }
79
80 static const char *get_dent_type(int type)
81 {
82         switch (type) {
83         case UBIFS_ITYPE_REG:
84                 return "file";
85         case UBIFS_ITYPE_DIR:
86                 return "dir";
87         case UBIFS_ITYPE_LNK:
88                 return "symlink";
89         case UBIFS_ITYPE_BLK:
90                 return "blkdev";
91         case UBIFS_ITYPE_CHR:
92                 return "char dev";
93         case UBIFS_ITYPE_FIFO:
94                 return "fifo";
95         case UBIFS_ITYPE_SOCK:
96                 return "socket";
97         default:
98                 return "unknown/invalid type";
99         }
100 }
101
102 const char *dbg_snprintf_key(const struct ubifs_info *c,
103                              const union ubifs_key *key, char *buffer, int len)
104 {
105         char *p = buffer;
106         int type = key_type(c, key);
107
108         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
109                 switch (type) {
110                 case UBIFS_INO_KEY:
111                         len -= snprintf(p, len, "(%lu, %s)",
112                                         (unsigned long)key_inum(c, key),
113                                         get_key_type(type));
114                         break;
115                 case UBIFS_DENT_KEY:
116                 case UBIFS_XENT_KEY:
117                         len -= snprintf(p, len, "(%lu, %s, %#08x)",
118                                         (unsigned long)key_inum(c, key),
119                                         get_key_type(type), key_hash(c, key));
120                         break;
121                 case UBIFS_DATA_KEY:
122                         len -= snprintf(p, len, "(%lu, %s, %u)",
123                                         (unsigned long)key_inum(c, key),
124                                         get_key_type(type), key_block(c, key));
125                         break;
126                 case UBIFS_TRUN_KEY:
127                         len -= snprintf(p, len, "(%lu, %s)",
128                                         (unsigned long)key_inum(c, key),
129                                         get_key_type(type));
130                         break;
131                 default:
132                         len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
133                                         key->u32[0], key->u32[1]);
134                 }
135         } else
136                 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
137         ubifs_assert(len > 0);
138         return p;
139 }
140
141 const char *dbg_ntype(int type)
142 {
143         switch (type) {
144         case UBIFS_PAD_NODE:
145                 return "padding node";
146         case UBIFS_SB_NODE:
147                 return "superblock node";
148         case UBIFS_MST_NODE:
149                 return "master node";
150         case UBIFS_REF_NODE:
151                 return "reference node";
152         case UBIFS_INO_NODE:
153                 return "inode node";
154         case UBIFS_DENT_NODE:
155                 return "direntry node";
156         case UBIFS_XENT_NODE:
157                 return "xentry node";
158         case UBIFS_DATA_NODE:
159                 return "data node";
160         case UBIFS_TRUN_NODE:
161                 return "truncate node";
162         case UBIFS_IDX_NODE:
163                 return "indexing node";
164         case UBIFS_CS_NODE:
165                 return "commit start node";
166         case UBIFS_ORPH_NODE:
167                 return "orphan node";
168         default:
169                 return "unknown node";
170         }
171 }
172
173 static const char *dbg_gtype(int type)
174 {
175         switch (type) {
176         case UBIFS_NO_NODE_GROUP:
177                 return "no node group";
178         case UBIFS_IN_NODE_GROUP:
179                 return "in node group";
180         case UBIFS_LAST_OF_NODE_GROUP:
181                 return "last of node group";
182         default:
183                 return "unknown";
184         }
185 }
186
187 const char *dbg_cstate(int cmt_state)
188 {
189         switch (cmt_state) {
190         case COMMIT_RESTING:
191                 return "commit resting";
192         case COMMIT_BACKGROUND:
193                 return "background commit requested";
194         case COMMIT_REQUIRED:
195                 return "commit required";
196         case COMMIT_RUNNING_BACKGROUND:
197                 return "BACKGROUND commit running";
198         case COMMIT_RUNNING_REQUIRED:
199                 return "commit running and required";
200         case COMMIT_BROKEN:
201                 return "broken commit";
202         default:
203                 return "unknown commit state";
204         }
205 }
206
207 const char *dbg_jhead(int jhead)
208 {
209         switch (jhead) {
210         case GCHD:
211                 return "0 (GC)";
212         case BASEHD:
213                 return "1 (base)";
214         case DATAHD:
215                 return "2 (data)";
216         default:
217                 return "unknown journal head";
218         }
219 }
220
221 static void dump_ch(const struct ubifs_ch *ch)
222 {
223         pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
224         pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
225         pr_err("\tnode_type      %d (%s)\n", ch->node_type,
226                dbg_ntype(ch->node_type));
227         pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
228                dbg_gtype(ch->group_type));
229         pr_err("\tsqnum          %llu\n",
230                (unsigned long long)le64_to_cpu(ch->sqnum));
231         pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
232 }
233
234 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
235 {
236         const struct ubifs_inode *ui = ubifs_inode(inode);
237         struct fscrypt_name nm = {0};
238         union ubifs_key key;
239         struct ubifs_dent_node *dent, *pdent = NULL;
240         int count = 2;
241
242         pr_err("Dump in-memory inode:");
243         pr_err("\tinode          %lu\n", inode->i_ino);
244         pr_err("\tsize           %llu\n",
245                (unsigned long long)i_size_read(inode));
246         pr_err("\tnlink          %u\n", inode->i_nlink);
247         pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
248         pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
249         pr_err("\tatime          %u.%u\n",
250                (unsigned int)inode->i_atime.tv_sec,
251                (unsigned int)inode->i_atime.tv_nsec);
252         pr_err("\tmtime          %u.%u\n",
253                (unsigned int)inode->i_mtime.tv_sec,
254                (unsigned int)inode->i_mtime.tv_nsec);
255         pr_err("\tctime          %u.%u\n",
256                (unsigned int)inode->i_ctime.tv_sec,
257                (unsigned int)inode->i_ctime.tv_nsec);
258         pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
259         pr_err("\txattr_size     %u\n", ui->xattr_size);
260         pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
261         pr_err("\txattr_names    %u\n", ui->xattr_names);
262         pr_err("\tdirty          %u\n", ui->dirty);
263         pr_err("\txattr          %u\n", ui->xattr);
264         pr_err("\tbulk_read      %u\n", ui->bulk_read);
265         pr_err("\tsynced_i_size  %llu\n",
266                (unsigned long long)ui->synced_i_size);
267         pr_err("\tui_size        %llu\n",
268                (unsigned long long)ui->ui_size);
269         pr_err("\tflags          %d\n", ui->flags);
270         pr_err("\tcompr_type     %d\n", ui->compr_type);
271         pr_err("\tlast_page_read %lu\n", ui->last_page_read);
272         pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
273         pr_err("\tdata_len       %d\n", ui->data_len);
274
275         if (!S_ISDIR(inode->i_mode))
276                 return;
277
278         pr_err("List of directory entries:\n");
279         ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
280
281         lowest_dent_key(c, &key, inode->i_ino);
282         while (1) {
283                 dent = ubifs_tnc_next_ent(c, &key, &nm);
284                 if (IS_ERR(dent)) {
285                         if (PTR_ERR(dent) != -ENOENT)
286                                 pr_err("error %ld\n", PTR_ERR(dent));
287                         break;
288                 }
289
290                 pr_err("\t%d: inode %llu, type %s, len %d\n",
291                        count++, (unsigned long long) le64_to_cpu(dent->inum),
292                        get_dent_type(dent->type),
293                        le16_to_cpu(dent->nlen));
294
295                 fname_name(&nm) = dent->name;
296                 fname_len(&nm) = le16_to_cpu(dent->nlen);
297                 kfree(pdent);
298                 pdent = dent;
299                 key_read(c, &dent->key, &key);
300         }
301         kfree(pdent);
302 }
303
304 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
305 {
306         int i, n;
307         union ubifs_key key;
308         const struct ubifs_ch *ch = node;
309         char key_buf[DBG_KEY_BUF_LEN];
310
311         /* If the magic is incorrect, just hexdump the first bytes */
312         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
313                 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
314                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
315                                (void *)node, UBIFS_CH_SZ, 1);
316                 return;
317         }
318
319         spin_lock(&dbg_lock);
320         dump_ch(node);
321
322         switch (ch->node_type) {
323         case UBIFS_PAD_NODE:
324         {
325                 const struct ubifs_pad_node *pad = node;
326
327                 pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
328                 break;
329         }
330         case UBIFS_SB_NODE:
331         {
332                 const struct ubifs_sb_node *sup = node;
333                 unsigned int sup_flags = le32_to_cpu(sup->flags);
334
335                 pr_err("\tkey_hash       %d (%s)\n",
336                        (int)sup->key_hash, get_key_hash(sup->key_hash));
337                 pr_err("\tkey_fmt        %d (%s)\n",
338                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
339                 pr_err("\tflags          %#x\n", sup_flags);
340                 pr_err("\tbig_lpt        %u\n",
341                        !!(sup_flags & UBIFS_FLG_BIGLPT));
342                 pr_err("\tspace_fixup    %u\n",
343                        !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
344                 pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
345                 pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
346                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
347                 pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
348                 pr_err("\tmax_bud_bytes  %llu\n",
349                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
350                 pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
351                 pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
352                 pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
353                 pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
354                 pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
355                 pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
356                 pr_err("\tdefault_compr  %u\n",
357                        (int)le16_to_cpu(sup->default_compr));
358                 pr_err("\trp_size        %llu\n",
359                        (unsigned long long)le64_to_cpu(sup->rp_size));
360                 pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
361                 pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
362                 pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
363                 pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
364                 pr_err("\tUUID           %pUB\n", sup->uuid);
365                 break;
366         }
367         case UBIFS_MST_NODE:
368         {
369                 const struct ubifs_mst_node *mst = node;
370
371                 pr_err("\thighest_inum   %llu\n",
372                        (unsigned long long)le64_to_cpu(mst->highest_inum));
373                 pr_err("\tcommit number  %llu\n",
374                        (unsigned long long)le64_to_cpu(mst->cmt_no));
375                 pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
376                 pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
377                 pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
378                 pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
379                 pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
380                 pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
381                 pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
382                 pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
383                 pr_err("\tindex_size     %llu\n",
384                        (unsigned long long)le64_to_cpu(mst->index_size));
385                 pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
386                 pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
387                 pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
388                 pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
389                 pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
390                 pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
391                 pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
392                 pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
393                 pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
394                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
395                 pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
396                 pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
397                 pr_err("\ttotal_free     %llu\n",
398                        (unsigned long long)le64_to_cpu(mst->total_free));
399                 pr_err("\ttotal_dirty    %llu\n",
400                        (unsigned long long)le64_to_cpu(mst->total_dirty));
401                 pr_err("\ttotal_used     %llu\n",
402                        (unsigned long long)le64_to_cpu(mst->total_used));
403                 pr_err("\ttotal_dead     %llu\n",
404                        (unsigned long long)le64_to_cpu(mst->total_dead));
405                 pr_err("\ttotal_dark     %llu\n",
406                        (unsigned long long)le64_to_cpu(mst->total_dark));
407                 break;
408         }
409         case UBIFS_REF_NODE:
410         {
411                 const struct ubifs_ref_node *ref = node;
412
413                 pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
414                 pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
415                 pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
416                 break;
417         }
418         case UBIFS_INO_NODE:
419         {
420                 const struct ubifs_ino_node *ino = node;
421
422                 key_read(c, &ino->key, &key);
423                 pr_err("\tkey            %s\n",
424                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
425                 pr_err("\tcreat_sqnum    %llu\n",
426                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
427                 pr_err("\tsize           %llu\n",
428                        (unsigned long long)le64_to_cpu(ino->size));
429                 pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
430                 pr_err("\tatime          %lld.%u\n",
431                        (long long)le64_to_cpu(ino->atime_sec),
432                        le32_to_cpu(ino->atime_nsec));
433                 pr_err("\tmtime          %lld.%u\n",
434                        (long long)le64_to_cpu(ino->mtime_sec),
435                        le32_to_cpu(ino->mtime_nsec));
436                 pr_err("\tctime          %lld.%u\n",
437                        (long long)le64_to_cpu(ino->ctime_sec),
438                        le32_to_cpu(ino->ctime_nsec));
439                 pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
440                 pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
441                 pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
442                 pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
443                 pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
444                 pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
445                 pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
446                 pr_err("\tcompr_type     %#x\n",
447                        (int)le16_to_cpu(ino->compr_type));
448                 pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
449                 break;
450         }
451         case UBIFS_DENT_NODE:
452         case UBIFS_XENT_NODE:
453         {
454                 const struct ubifs_dent_node *dent = node;
455                 int nlen = le16_to_cpu(dent->nlen);
456
457                 key_read(c, &dent->key, &key);
458                 pr_err("\tkey            %s\n",
459                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
460                 pr_err("\tinum           %llu\n",
461                        (unsigned long long)le64_to_cpu(dent->inum));
462                 pr_err("\ttype           %d\n", (int)dent->type);
463                 pr_err("\tnlen           %d\n", nlen);
464                 pr_err("\tname           ");
465
466                 if (nlen > UBIFS_MAX_NLEN)
467                         pr_err("(bad name length, not printing, bad or corrupted node)");
468                 else {
469                         for (i = 0; i < nlen && dent->name[i]; i++)
470                                 pr_cont("%c", isprint(dent->name[i]) ?
471                                         dent->name[i] : '?');
472                 }
473                 pr_cont("\n");
474
475                 break;
476         }
477         case UBIFS_DATA_NODE:
478         {
479                 const struct ubifs_data_node *dn = node;
480                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
481
482                 key_read(c, &dn->key, &key);
483                 pr_err("\tkey            %s\n",
484                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
485                 pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
486                 pr_err("\tcompr_typ      %d\n",
487                        (int)le16_to_cpu(dn->compr_type));
488                 pr_err("\tdata size      %d\n", dlen);
489                 pr_err("\tdata:\n");
490                 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
491                                (void *)&dn->data, dlen, 0);
492                 break;
493         }
494         case UBIFS_TRUN_NODE:
495         {
496                 const struct ubifs_trun_node *trun = node;
497
498                 pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
499                 pr_err("\told_size       %llu\n",
500                        (unsigned long long)le64_to_cpu(trun->old_size));
501                 pr_err("\tnew_size       %llu\n",
502                        (unsigned long long)le64_to_cpu(trun->new_size));
503                 break;
504         }
505         case UBIFS_IDX_NODE:
506         {
507                 const struct ubifs_idx_node *idx = node;
508
509                 n = le16_to_cpu(idx->child_cnt);
510                 pr_err("\tchild_cnt      %d\n", n);
511                 pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
512                 pr_err("\tBranches:\n");
513
514                 for (i = 0; i < n && i < c->fanout - 1; i++) {
515                         const struct ubifs_branch *br;
516
517                         br = ubifs_idx_branch(c, idx, i);
518                         key_read(c, &br->key, &key);
519                         pr_err("\t%d: LEB %d:%d len %d key %s\n",
520                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
521                                le32_to_cpu(br->len),
522                                dbg_snprintf_key(c, &key, key_buf,
523                                                 DBG_KEY_BUF_LEN));
524                 }
525                 break;
526         }
527         case UBIFS_CS_NODE:
528                 break;
529         case UBIFS_ORPH_NODE:
530         {
531                 const struct ubifs_orph_node *orph = node;
532
533                 pr_err("\tcommit number  %llu\n",
534                        (unsigned long long)
535                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
536                 pr_err("\tlast node flag %llu\n",
537                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
538                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
539                 pr_err("\t%d orphan inode numbers:\n", n);
540                 for (i = 0; i < n; i++)
541                         pr_err("\t  ino %llu\n",
542                                (unsigned long long)le64_to_cpu(orph->inos[i]));
543                 break;
544         }
545         default:
546                 pr_err("node type %d was not recognized\n",
547                        (int)ch->node_type);
548         }
549         spin_unlock(&dbg_lock);
550 }
551
552 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
553 {
554         spin_lock(&dbg_lock);
555         pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
556                req->new_ino, req->dirtied_ino);
557         pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
558                req->new_ino_d, req->dirtied_ino_d);
559         pr_err("\tnew_page    %d, dirtied_page %d\n",
560                req->new_page, req->dirtied_page);
561         pr_err("\tnew_dent    %d, mod_dent     %d\n",
562                req->new_dent, req->mod_dent);
563         pr_err("\tidx_growth  %d\n", req->idx_growth);
564         pr_err("\tdata_growth %d dd_growth     %d\n",
565                req->data_growth, req->dd_growth);
566         spin_unlock(&dbg_lock);
567 }
568
569 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
570 {
571         spin_lock(&dbg_lock);
572         pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
573                current->pid, lst->empty_lebs, lst->idx_lebs);
574         pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
575                lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
576         pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
577                lst->total_used, lst->total_dark, lst->total_dead);
578         spin_unlock(&dbg_lock);
579 }
580
581 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
582 {
583         int i;
584         struct rb_node *rb;
585         struct ubifs_bud *bud;
586         struct ubifs_gced_idx_leb *idx_gc;
587         long long available, outstanding, free;
588
589         spin_lock(&c->space_lock);
590         spin_lock(&dbg_lock);
591         pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
592                current->pid, bi->data_growth + bi->dd_growth,
593                bi->data_growth + bi->dd_growth + bi->idx_growth);
594         pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
595                bi->data_growth, bi->dd_growth, bi->idx_growth);
596         pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
597                bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
598         pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
599                bi->page_budget, bi->inode_budget, bi->dent_budget);
600         pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
601         pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
602                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
603
604         if (bi != &c->bi)
605                 /*
606                  * If we are dumping saved budgeting data, do not print
607                  * additional information which is about the current state, not
608                  * the old one which corresponded to the saved budgeting data.
609                  */
610                 goto out_unlock;
611
612         pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
613                c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
614         pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
615                atomic_long_read(&c->dirty_pg_cnt),
616                atomic_long_read(&c->dirty_zn_cnt),
617                atomic_long_read(&c->clean_zn_cnt));
618         pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
619
620         /* If we are in R/O mode, journal heads do not exist */
621         if (c->jheads)
622                 for (i = 0; i < c->jhead_cnt; i++)
623                         pr_err("\tjhead %s\t LEB %d\n",
624                                dbg_jhead(c->jheads[i].wbuf.jhead),
625                                c->jheads[i].wbuf.lnum);
626         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
627                 bud = rb_entry(rb, struct ubifs_bud, rb);
628                 pr_err("\tbud LEB %d\n", bud->lnum);
629         }
630         list_for_each_entry(bud, &c->old_buds, list)
631                 pr_err("\told bud LEB %d\n", bud->lnum);
632         list_for_each_entry(idx_gc, &c->idx_gc, list)
633                 pr_err("\tGC'ed idx LEB %d unmap %d\n",
634                        idx_gc->lnum, idx_gc->unmap);
635         pr_err("\tcommit state %d\n", c->cmt_state);
636
637         /* Print budgeting predictions */
638         available = ubifs_calc_available(c, c->bi.min_idx_lebs);
639         outstanding = c->bi.data_growth + c->bi.dd_growth;
640         free = ubifs_get_free_space_nolock(c);
641         pr_err("Budgeting predictions:\n");
642         pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
643                available, outstanding, free);
644 out_unlock:
645         spin_unlock(&dbg_lock);
646         spin_unlock(&c->space_lock);
647 }
648
649 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
650 {
651         int i, spc, dark = 0, dead = 0;
652         struct rb_node *rb;
653         struct ubifs_bud *bud;
654
655         spc = lp->free + lp->dirty;
656         if (spc < c->dead_wm)
657                 dead = spc;
658         else
659                 dark = ubifs_calc_dark(c, spc);
660
661         if (lp->flags & LPROPS_INDEX)
662                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
663                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
664                        lp->flags);
665         else
666                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
667                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
668                        dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
669
670         if (lp->flags & LPROPS_TAKEN) {
671                 if (lp->flags & LPROPS_INDEX)
672                         pr_cont("index, taken");
673                 else
674                         pr_cont("taken");
675         } else {
676                 const char *s;
677
678                 if (lp->flags & LPROPS_INDEX) {
679                         switch (lp->flags & LPROPS_CAT_MASK) {
680                         case LPROPS_DIRTY_IDX:
681                                 s = "dirty index";
682                                 break;
683                         case LPROPS_FRDI_IDX:
684                                 s = "freeable index";
685                                 break;
686                         default:
687                                 s = "index";
688                         }
689                 } else {
690                         switch (lp->flags & LPROPS_CAT_MASK) {
691                         case LPROPS_UNCAT:
692                                 s = "not categorized";
693                                 break;
694                         case LPROPS_DIRTY:
695                                 s = "dirty";
696                                 break;
697                         case LPROPS_FREE:
698                                 s = "free";
699                                 break;
700                         case LPROPS_EMPTY:
701                                 s = "empty";
702                                 break;
703                         case LPROPS_FREEABLE:
704                                 s = "freeable";
705                                 break;
706                         default:
707                                 s = NULL;
708                                 break;
709                         }
710                 }
711                 pr_cont("%s", s);
712         }
713
714         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
715                 bud = rb_entry(rb, struct ubifs_bud, rb);
716                 if (bud->lnum == lp->lnum) {
717                         int head = 0;
718                         for (i = 0; i < c->jhead_cnt; i++) {
719                                 /*
720                                  * Note, if we are in R/O mode or in the middle
721                                  * of mounting/re-mounting, the write-buffers do
722                                  * not exist.
723                                  */
724                                 if (c->jheads &&
725                                     lp->lnum == c->jheads[i].wbuf.lnum) {
726                                         pr_cont(", jhead %s", dbg_jhead(i));
727                                         head = 1;
728                                 }
729                         }
730                         if (!head)
731                                 pr_cont(", bud of jhead %s",
732                                        dbg_jhead(bud->jhead));
733                 }
734         }
735         if (lp->lnum == c->gc_lnum)
736                 pr_cont(", GC LEB");
737         pr_cont(")\n");
738 }
739
740 void ubifs_dump_lprops(struct ubifs_info *c)
741 {
742         int lnum, err;
743         struct ubifs_lprops lp;
744         struct ubifs_lp_stats lst;
745
746         pr_err("(pid %d) start dumping LEB properties\n", current->pid);
747         ubifs_get_lp_stats(c, &lst);
748         ubifs_dump_lstats(&lst);
749
750         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
751                 err = ubifs_read_one_lp(c, lnum, &lp);
752                 if (err) {
753                         ubifs_err(c, "cannot read lprops for LEB %d", lnum);
754                         continue;
755                 }
756
757                 ubifs_dump_lprop(c, &lp);
758         }
759         pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
760 }
761
762 void ubifs_dump_lpt_info(struct ubifs_info *c)
763 {
764         int i;
765
766         spin_lock(&dbg_lock);
767         pr_err("(pid %d) dumping LPT information\n", current->pid);
768         pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
769         pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
770         pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
771         pr_err("\tltab_sz:       %d\n", c->ltab_sz);
772         pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
773         pr_err("\tbig_lpt:       %d\n", c->big_lpt);
774         pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
775         pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
776         pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
777         pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
778         pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
779         pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
780         pr_err("\tspace_bits:    %d\n", c->space_bits);
781         pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
782         pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
783         pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
784         pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
785         pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
786         pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
787         pr_err("\tLPT head is at %d:%d\n",
788                c->nhead_lnum, c->nhead_offs);
789         pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
790         if (c->big_lpt)
791                 pr_err("\tLPT lsave is at %d:%d\n",
792                        c->lsave_lnum, c->lsave_offs);
793         for (i = 0; i < c->lpt_lebs; i++)
794                 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
795                        i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
796                        c->ltab[i].tgc, c->ltab[i].cmt);
797         spin_unlock(&dbg_lock);
798 }
799
800 void ubifs_dump_sleb(const struct ubifs_info *c,
801                      const struct ubifs_scan_leb *sleb, int offs)
802 {
803         struct ubifs_scan_node *snod;
804
805         pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
806                current->pid, sleb->lnum, offs);
807
808         list_for_each_entry(snod, &sleb->nodes, list) {
809                 cond_resched();
810                 pr_err("Dumping node at LEB %d:%d len %d\n",
811                        sleb->lnum, snod->offs, snod->len);
812                 ubifs_dump_node(c, snod->node);
813         }
814 }
815
816 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
817 {
818         struct ubifs_scan_leb *sleb;
819         struct ubifs_scan_node *snod;
820         void *buf;
821
822         pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
823
824         buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
825         if (!buf) {
826                 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
827                 return;
828         }
829
830         sleb = ubifs_scan(c, lnum, 0, buf, 0);
831         if (IS_ERR(sleb)) {
832                 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
833                 goto out;
834         }
835
836         pr_err("LEB %d has %d nodes ending at %d\n", lnum,
837                sleb->nodes_cnt, sleb->endpt);
838
839         list_for_each_entry(snod, &sleb->nodes, list) {
840                 cond_resched();
841                 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
842                        snod->offs, snod->len);
843                 ubifs_dump_node(c, snod->node);
844         }
845
846         pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
847         ubifs_scan_destroy(sleb);
848
849 out:
850         vfree(buf);
851         return;
852 }
853
854 void ubifs_dump_znode(const struct ubifs_info *c,
855                       const struct ubifs_znode *znode)
856 {
857         int n;
858         const struct ubifs_zbranch *zbr;
859         char key_buf[DBG_KEY_BUF_LEN];
860
861         spin_lock(&dbg_lock);
862         if (znode->parent)
863                 zbr = &znode->parent->zbranch[znode->iip];
864         else
865                 zbr = &c->zroot;
866
867         pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
868                znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
869                znode->level, znode->child_cnt, znode->flags);
870
871         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
872                 spin_unlock(&dbg_lock);
873                 return;
874         }
875
876         pr_err("zbranches:\n");
877         for (n = 0; n < znode->child_cnt; n++) {
878                 zbr = &znode->zbranch[n];
879                 if (znode->level > 0)
880                         pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
881                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
882                                dbg_snprintf_key(c, &zbr->key, key_buf,
883                                                 DBG_KEY_BUF_LEN));
884                 else
885                         pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
886                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
887                                dbg_snprintf_key(c, &zbr->key, key_buf,
888                                                 DBG_KEY_BUF_LEN));
889         }
890         spin_unlock(&dbg_lock);
891 }
892
893 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
894 {
895         int i;
896
897         pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
898                current->pid, cat, heap->cnt);
899         for (i = 0; i < heap->cnt; i++) {
900                 struct ubifs_lprops *lprops = heap->arr[i];
901
902                 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
903                        i, lprops->lnum, lprops->hpos, lprops->free,
904                        lprops->dirty, lprops->flags);
905         }
906         pr_err("(pid %d) finish dumping heap\n", current->pid);
907 }
908
909 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
910                       struct ubifs_nnode *parent, int iip)
911 {
912         int i;
913
914         pr_err("(pid %d) dumping pnode:\n", current->pid);
915         pr_err("\taddress %zx parent %zx cnext %zx\n",
916                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
917         pr_err("\tflags %lu iip %d level %d num %d\n",
918                pnode->flags, iip, pnode->level, pnode->num);
919         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
920                 struct ubifs_lprops *lp = &pnode->lprops[i];
921
922                 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
923                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
924         }
925 }
926
927 void ubifs_dump_tnc(struct ubifs_info *c)
928 {
929         struct ubifs_znode *znode;
930         int level;
931
932         pr_err("\n");
933         pr_err("(pid %d) start dumping TNC tree\n", current->pid);
934         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
935         level = znode->level;
936         pr_err("== Level %d ==\n", level);
937         while (znode) {
938                 if (level != znode->level) {
939                         level = znode->level;
940                         pr_err("== Level %d ==\n", level);
941                 }
942                 ubifs_dump_znode(c, znode);
943                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
944         }
945         pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
946 }
947
948 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
949                       void *priv)
950 {
951         ubifs_dump_znode(c, znode);
952         return 0;
953 }
954
955 /**
956  * ubifs_dump_index - dump the on-flash index.
957  * @c: UBIFS file-system description object
958  *
959  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
960  * which dumps only in-memory znodes and does not read znodes which from flash.
961  */
962 void ubifs_dump_index(struct ubifs_info *c)
963 {
964         dbg_walk_index(c, NULL, dump_znode, NULL);
965 }
966
967 /**
968  * dbg_save_space_info - save information about flash space.
969  * @c: UBIFS file-system description object
970  *
971  * This function saves information about UBIFS free space, dirty space, etc, in
972  * order to check it later.
973  */
974 void dbg_save_space_info(struct ubifs_info *c)
975 {
976         struct ubifs_debug_info *d = c->dbg;
977         int freeable_cnt;
978
979         spin_lock(&c->space_lock);
980         memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
981         memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
982         d->saved_idx_gc_cnt = c->idx_gc_cnt;
983
984         /*
985          * We use a dirty hack here and zero out @c->freeable_cnt, because it
986          * affects the free space calculations, and UBIFS might not know about
987          * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
988          * only when we read their lprops, and we do this only lazily, upon the
989          * need. So at any given point of time @c->freeable_cnt might be not
990          * exactly accurate.
991          *
992          * Just one example about the issue we hit when we did not zero
993          * @c->freeable_cnt.
994          * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
995          *    amount of free space in @d->saved_free
996          * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
997          *    information from flash, where we cache LEBs from various
998          *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
999          *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1000          *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1001          *    -> 'ubifs_add_to_cat()').
1002          * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1003          *    becomes %1.
1004          * 4. We calculate the amount of free space when the re-mount is
1005          *    finished in 'dbg_check_space_info()' and it does not match
1006          *    @d->saved_free.
1007          */
1008         freeable_cnt = c->freeable_cnt;
1009         c->freeable_cnt = 0;
1010         d->saved_free = ubifs_get_free_space_nolock(c);
1011         c->freeable_cnt = freeable_cnt;
1012         spin_unlock(&c->space_lock);
1013 }
1014
1015 /**
1016  * dbg_check_space_info - check flash space information.
1017  * @c: UBIFS file-system description object
1018  *
1019  * This function compares current flash space information with the information
1020  * which was saved when the 'dbg_save_space_info()' function was called.
1021  * Returns zero if the information has not changed, and %-EINVAL it it has
1022  * changed.
1023  */
1024 int dbg_check_space_info(struct ubifs_info *c)
1025 {
1026         struct ubifs_debug_info *d = c->dbg;
1027         struct ubifs_lp_stats lst;
1028         long long free;
1029         int freeable_cnt;
1030
1031         spin_lock(&c->space_lock);
1032         freeable_cnt = c->freeable_cnt;
1033         c->freeable_cnt = 0;
1034         free = ubifs_get_free_space_nolock(c);
1035         c->freeable_cnt = freeable_cnt;
1036         spin_unlock(&c->space_lock);
1037
1038         if (free != d->saved_free) {
1039                 ubifs_err(c, "free space changed from %lld to %lld",
1040                           d->saved_free, free);
1041                 goto out;
1042         }
1043
1044         return 0;
1045
1046 out:
1047         ubifs_msg(c, "saved lprops statistics dump");
1048         ubifs_dump_lstats(&d->saved_lst);
1049         ubifs_msg(c, "saved budgeting info dump");
1050         ubifs_dump_budg(c, &d->saved_bi);
1051         ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1052         ubifs_msg(c, "current lprops statistics dump");
1053         ubifs_get_lp_stats(c, &lst);
1054         ubifs_dump_lstats(&lst);
1055         ubifs_msg(c, "current budgeting info dump");
1056         ubifs_dump_budg(c, &c->bi);
1057         dump_stack();
1058         return -EINVAL;
1059 }
1060
1061 /**
1062  * dbg_check_synced_i_size - check synchronized inode size.
1063  * @c: UBIFS file-system description object
1064  * @inode: inode to check
1065  *
1066  * If inode is clean, synchronized inode size has to be equivalent to current
1067  * inode size. This function has to be called only for locked inodes (@i_mutex
1068  * has to be locked). Returns %0 if synchronized inode size if correct, and
1069  * %-EINVAL if not.
1070  */
1071 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1072 {
1073         int err = 0;
1074         struct ubifs_inode *ui = ubifs_inode(inode);
1075
1076         if (!dbg_is_chk_gen(c))
1077                 return 0;
1078         if (!S_ISREG(inode->i_mode))
1079                 return 0;
1080
1081         mutex_lock(&ui->ui_mutex);
1082         spin_lock(&ui->ui_lock);
1083         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1084                 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1085                           ui->ui_size, ui->synced_i_size);
1086                 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1087                           inode->i_mode, i_size_read(inode));
1088                 dump_stack();
1089                 err = -EINVAL;
1090         }
1091         spin_unlock(&ui->ui_lock);
1092         mutex_unlock(&ui->ui_mutex);
1093         return err;
1094 }
1095
1096 /*
1097  * dbg_check_dir - check directory inode size and link count.
1098  * @c: UBIFS file-system description object
1099  * @dir: the directory to calculate size for
1100  * @size: the result is returned here
1101  *
1102  * This function makes sure that directory size and link count are correct.
1103  * Returns zero in case of success and a negative error code in case of
1104  * failure.
1105  *
1106  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1107  * calling this function.
1108  */
1109 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1110 {
1111         unsigned int nlink = 2;
1112         union ubifs_key key;
1113         struct ubifs_dent_node *dent, *pdent = NULL;
1114         struct fscrypt_name nm = {0};
1115         loff_t size = UBIFS_INO_NODE_SZ;
1116
1117         if (!dbg_is_chk_gen(c))
1118                 return 0;
1119
1120         if (!S_ISDIR(dir->i_mode))
1121                 return 0;
1122
1123         lowest_dent_key(c, &key, dir->i_ino);
1124         while (1) {
1125                 int err;
1126
1127                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1128                 if (IS_ERR(dent)) {
1129                         err = PTR_ERR(dent);
1130                         if (err == -ENOENT)
1131                                 break;
1132                         return err;
1133                 }
1134
1135                 fname_name(&nm) = dent->name;
1136                 fname_len(&nm) = le16_to_cpu(dent->nlen);
1137                 size += CALC_DENT_SIZE(fname_len(&nm));
1138                 if (dent->type == UBIFS_ITYPE_DIR)
1139                         nlink += 1;
1140                 kfree(pdent);
1141                 pdent = dent;
1142                 key_read(c, &dent->key, &key);
1143         }
1144         kfree(pdent);
1145
1146         if (i_size_read(dir) != size) {
1147                 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1148                           dir->i_ino, (unsigned long long)i_size_read(dir),
1149                           (unsigned long long)size);
1150                 ubifs_dump_inode(c, dir);
1151                 dump_stack();
1152                 return -EINVAL;
1153         }
1154         if (dir->i_nlink != nlink) {
1155                 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1156                           dir->i_ino, dir->i_nlink, nlink);
1157                 ubifs_dump_inode(c, dir);
1158                 dump_stack();
1159                 return -EINVAL;
1160         }
1161
1162         return 0;
1163 }
1164
1165 /**
1166  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1167  * @c: UBIFS file-system description object
1168  * @zbr1: first zbranch
1169  * @zbr2: following zbranch
1170  *
1171  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1172  * names of the direntries/xentries which are referred by the keys. This
1173  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1174  * sure the name of direntry/xentry referred by @zbr1 is less than
1175  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1176  * and a negative error code in case of failure.
1177  */
1178 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1179                                struct ubifs_zbranch *zbr2)
1180 {
1181         int err, nlen1, nlen2, cmp;
1182         struct ubifs_dent_node *dent1, *dent2;
1183         union ubifs_key key;
1184         char key_buf[DBG_KEY_BUF_LEN];
1185
1186         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1187         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1188         if (!dent1)
1189                 return -ENOMEM;
1190         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1191         if (!dent2) {
1192                 err = -ENOMEM;
1193                 goto out_free;
1194         }
1195
1196         err = ubifs_tnc_read_node(c, zbr1, dent1);
1197         if (err)
1198                 goto out_free;
1199         err = ubifs_validate_entry(c, dent1);
1200         if (err)
1201                 goto out_free;
1202
1203         err = ubifs_tnc_read_node(c, zbr2, dent2);
1204         if (err)
1205                 goto out_free;
1206         err = ubifs_validate_entry(c, dent2);
1207         if (err)
1208                 goto out_free;
1209
1210         /* Make sure node keys are the same as in zbranch */
1211         err = 1;
1212         key_read(c, &dent1->key, &key);
1213         if (keys_cmp(c, &zbr1->key, &key)) {
1214                 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1215                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1216                                                        DBG_KEY_BUF_LEN));
1217                 ubifs_err(c, "but it should have key %s according to tnc",
1218                           dbg_snprintf_key(c, &zbr1->key, key_buf,
1219                                            DBG_KEY_BUF_LEN));
1220                 ubifs_dump_node(c, dent1);
1221                 goto out_free;
1222         }
1223
1224         key_read(c, &dent2->key, &key);
1225         if (keys_cmp(c, &zbr2->key, &key)) {
1226                 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1227                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1228                                                        DBG_KEY_BUF_LEN));
1229                 ubifs_err(c, "but it should have key %s according to tnc",
1230                           dbg_snprintf_key(c, &zbr2->key, key_buf,
1231                                            DBG_KEY_BUF_LEN));
1232                 ubifs_dump_node(c, dent2);
1233                 goto out_free;
1234         }
1235
1236         nlen1 = le16_to_cpu(dent1->nlen);
1237         nlen2 = le16_to_cpu(dent2->nlen);
1238
1239         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1240         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1241                 err = 0;
1242                 goto out_free;
1243         }
1244         if (cmp == 0 && nlen1 == nlen2)
1245                 ubifs_err(c, "2 xent/dent nodes with the same name");
1246         else
1247                 ubifs_err(c, "bad order of colliding key %s",
1248                           dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1249
1250         ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1251         ubifs_dump_node(c, dent1);
1252         ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1253         ubifs_dump_node(c, dent2);
1254
1255 out_free:
1256         kfree(dent2);
1257         kfree(dent1);
1258         return err;
1259 }
1260
1261 /**
1262  * dbg_check_znode - check if znode is all right.
1263  * @c: UBIFS file-system description object
1264  * @zbr: zbranch which points to this znode
1265  *
1266  * This function makes sure that znode referred to by @zbr is all right.
1267  * Returns zero if it is, and %-EINVAL if it is not.
1268  */
1269 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1270 {
1271         struct ubifs_znode *znode = zbr->znode;
1272         struct ubifs_znode *zp = znode->parent;
1273         int n, err, cmp;
1274
1275         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1276                 err = 1;
1277                 goto out;
1278         }
1279         if (znode->level < 0) {
1280                 err = 2;
1281                 goto out;
1282         }
1283         if (znode->iip < 0 || znode->iip >= c->fanout) {
1284                 err = 3;
1285                 goto out;
1286         }
1287
1288         if (zbr->len == 0)
1289                 /* Only dirty zbranch may have no on-flash nodes */
1290                 if (!ubifs_zn_dirty(znode)) {
1291                         err = 4;
1292                         goto out;
1293                 }
1294
1295         if (ubifs_zn_dirty(znode)) {
1296                 /*
1297                  * If znode is dirty, its parent has to be dirty as well. The
1298                  * order of the operation is important, so we have to have
1299                  * memory barriers.
1300                  */
1301                 smp_mb();
1302                 if (zp && !ubifs_zn_dirty(zp)) {
1303                         /*
1304                          * The dirty flag is atomic and is cleared outside the
1305                          * TNC mutex, so znode's dirty flag may now have
1306                          * been cleared. The child is always cleared before the
1307                          * parent, so we just need to check again.
1308                          */
1309                         smp_mb();
1310                         if (ubifs_zn_dirty(znode)) {
1311                                 err = 5;
1312                                 goto out;
1313                         }
1314                 }
1315         }
1316
1317         if (zp) {
1318                 const union ubifs_key *min, *max;
1319
1320                 if (znode->level != zp->level - 1) {
1321                         err = 6;
1322                         goto out;
1323                 }
1324
1325                 /* Make sure the 'parent' pointer in our znode is correct */
1326                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1327                 if (!err) {
1328                         /* This zbranch does not exist in the parent */
1329                         err = 7;
1330                         goto out;
1331                 }
1332
1333                 if (znode->iip >= zp->child_cnt) {
1334                         err = 8;
1335                         goto out;
1336                 }
1337
1338                 if (znode->iip != n) {
1339                         /* This may happen only in case of collisions */
1340                         if (keys_cmp(c, &zp->zbranch[n].key,
1341                                      &zp->zbranch[znode->iip].key)) {
1342                                 err = 9;
1343                                 goto out;
1344                         }
1345                         n = znode->iip;
1346                 }
1347
1348                 /*
1349                  * Make sure that the first key in our znode is greater than or
1350                  * equal to the key in the pointing zbranch.
1351                  */
1352                 min = &zbr->key;
1353                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1354                 if (cmp == 1) {
1355                         err = 10;
1356                         goto out;
1357                 }
1358
1359                 if (n + 1 < zp->child_cnt) {
1360                         max = &zp->zbranch[n + 1].key;
1361
1362                         /*
1363                          * Make sure the last key in our znode is less or
1364                          * equivalent than the key in the zbranch which goes
1365                          * after our pointing zbranch.
1366                          */
1367                         cmp = keys_cmp(c, max,
1368                                 &znode->zbranch[znode->child_cnt - 1].key);
1369                         if (cmp == -1) {
1370                                 err = 11;
1371                                 goto out;
1372                         }
1373                 }
1374         } else {
1375                 /* This may only be root znode */
1376                 if (zbr != &c->zroot) {
1377                         err = 12;
1378                         goto out;
1379                 }
1380         }
1381
1382         /*
1383          * Make sure that next key is greater or equivalent then the previous
1384          * one.
1385          */
1386         for (n = 1; n < znode->child_cnt; n++) {
1387                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1388                                &znode->zbranch[n].key);
1389                 if (cmp > 0) {
1390                         err = 13;
1391                         goto out;
1392                 }
1393                 if (cmp == 0) {
1394                         /* This can only be keys with colliding hash */
1395                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1396                                 err = 14;
1397                                 goto out;
1398                         }
1399
1400                         if (znode->level != 0 || c->replaying)
1401                                 continue;
1402
1403                         /*
1404                          * Colliding keys should follow binary order of
1405                          * corresponding xentry/dentry names.
1406                          */
1407                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1408                                                   &znode->zbranch[n]);
1409                         if (err < 0)
1410                                 return err;
1411                         if (err) {
1412                                 err = 15;
1413                                 goto out;
1414                         }
1415                 }
1416         }
1417
1418         for (n = 0; n < znode->child_cnt; n++) {
1419                 if (!znode->zbranch[n].znode &&
1420                     (znode->zbranch[n].lnum == 0 ||
1421                      znode->zbranch[n].len == 0)) {
1422                         err = 16;
1423                         goto out;
1424                 }
1425
1426                 if (znode->zbranch[n].lnum != 0 &&
1427                     znode->zbranch[n].len == 0) {
1428                         err = 17;
1429                         goto out;
1430                 }
1431
1432                 if (znode->zbranch[n].lnum == 0 &&
1433                     znode->zbranch[n].len != 0) {
1434                         err = 18;
1435                         goto out;
1436                 }
1437
1438                 if (znode->zbranch[n].lnum == 0 &&
1439                     znode->zbranch[n].offs != 0) {
1440                         err = 19;
1441                         goto out;
1442                 }
1443
1444                 if (znode->level != 0 && znode->zbranch[n].znode)
1445                         if (znode->zbranch[n].znode->parent != znode) {
1446                                 err = 20;
1447                                 goto out;
1448                         }
1449         }
1450
1451         return 0;
1452
1453 out:
1454         ubifs_err(c, "failed, error %d", err);
1455         ubifs_msg(c, "dump of the znode");
1456         ubifs_dump_znode(c, znode);
1457         if (zp) {
1458                 ubifs_msg(c, "dump of the parent znode");
1459                 ubifs_dump_znode(c, zp);
1460         }
1461         dump_stack();
1462         return -EINVAL;
1463 }
1464
1465 /**
1466  * dbg_check_tnc - check TNC tree.
1467  * @c: UBIFS file-system description object
1468  * @extra: do extra checks that are possible at start commit
1469  *
1470  * This function traverses whole TNC tree and checks every znode. Returns zero
1471  * if everything is all right and %-EINVAL if something is wrong with TNC.
1472  */
1473 int dbg_check_tnc(struct ubifs_info *c, int extra)
1474 {
1475         struct ubifs_znode *znode;
1476         long clean_cnt = 0, dirty_cnt = 0;
1477         int err, last;
1478
1479         if (!dbg_is_chk_index(c))
1480                 return 0;
1481
1482         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1483         if (!c->zroot.znode)
1484                 return 0;
1485
1486         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1487         while (1) {
1488                 struct ubifs_znode *prev;
1489                 struct ubifs_zbranch *zbr;
1490
1491                 if (!znode->parent)
1492                         zbr = &c->zroot;
1493                 else
1494                         zbr = &znode->parent->zbranch[znode->iip];
1495
1496                 err = dbg_check_znode(c, zbr);
1497                 if (err)
1498                         return err;
1499
1500                 if (extra) {
1501                         if (ubifs_zn_dirty(znode))
1502                                 dirty_cnt += 1;
1503                         else
1504                                 clean_cnt += 1;
1505                 }
1506
1507                 prev = znode;
1508                 znode = ubifs_tnc_postorder_next(znode);
1509                 if (!znode)
1510                         break;
1511
1512                 /*
1513                  * If the last key of this znode is equivalent to the first key
1514                  * of the next znode (collision), then check order of the keys.
1515                  */
1516                 last = prev->child_cnt - 1;
1517                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1518                     !keys_cmp(c, &prev->zbranch[last].key,
1519                               &znode->zbranch[0].key)) {
1520                         err = dbg_check_key_order(c, &prev->zbranch[last],
1521                                                   &znode->zbranch[0]);
1522                         if (err < 0)
1523                                 return err;
1524                         if (err) {
1525                                 ubifs_msg(c, "first znode");
1526                                 ubifs_dump_znode(c, prev);
1527                                 ubifs_msg(c, "second znode");
1528                                 ubifs_dump_znode(c, znode);
1529                                 return -EINVAL;
1530                         }
1531                 }
1532         }
1533
1534         if (extra) {
1535                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1536                         ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1537                                   atomic_long_read(&c->clean_zn_cnt),
1538                                   clean_cnt);
1539                         return -EINVAL;
1540                 }
1541                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1542                         ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1543                                   atomic_long_read(&c->dirty_zn_cnt),
1544                                   dirty_cnt);
1545                         return -EINVAL;
1546                 }
1547         }
1548
1549         return 0;
1550 }
1551
1552 /**
1553  * dbg_walk_index - walk the on-flash index.
1554  * @c: UBIFS file-system description object
1555  * @leaf_cb: called for each leaf node
1556  * @znode_cb: called for each indexing node
1557  * @priv: private data which is passed to callbacks
1558  *
1559  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1560  * node and @znode_cb for each indexing node. Returns zero in case of success
1561  * and a negative error code in case of failure.
1562  *
1563  * It would be better if this function removed every znode it pulled to into
1564  * the TNC, so that the behavior more closely matched the non-debugging
1565  * behavior.
1566  */
1567 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1568                    dbg_znode_callback znode_cb, void *priv)
1569 {
1570         int err;
1571         struct ubifs_zbranch *zbr;
1572         struct ubifs_znode *znode, *child;
1573
1574         mutex_lock(&c->tnc_mutex);
1575         /* If the root indexing node is not in TNC - pull it */
1576         if (!c->zroot.znode) {
1577                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1578                 if (IS_ERR(c->zroot.znode)) {
1579                         err = PTR_ERR(c->zroot.znode);
1580                         c->zroot.znode = NULL;
1581                         goto out_unlock;
1582                 }
1583         }
1584
1585         /*
1586          * We are going to traverse the indexing tree in the postorder manner.
1587          * Go down and find the leftmost indexing node where we are going to
1588          * start from.
1589          */
1590         znode = c->zroot.znode;
1591         while (znode->level > 0) {
1592                 zbr = &znode->zbranch[0];
1593                 child = zbr->znode;
1594                 if (!child) {
1595                         child = ubifs_load_znode(c, zbr, znode, 0);
1596                         if (IS_ERR(child)) {
1597                                 err = PTR_ERR(child);
1598                                 goto out_unlock;
1599                         }
1600                         zbr->znode = child;
1601                 }
1602
1603                 znode = child;
1604         }
1605
1606         /* Iterate over all indexing nodes */
1607         while (1) {
1608                 int idx;
1609
1610                 cond_resched();
1611
1612                 if (znode_cb) {
1613                         err = znode_cb(c, znode, priv);
1614                         if (err) {
1615                                 ubifs_err(c, "znode checking function returned error %d",
1616                                           err);
1617                                 ubifs_dump_znode(c, znode);
1618                                 goto out_dump;
1619                         }
1620                 }
1621                 if (leaf_cb && znode->level == 0) {
1622                         for (idx = 0; idx < znode->child_cnt; idx++) {
1623                                 zbr = &znode->zbranch[idx];
1624                                 err = leaf_cb(c, zbr, priv);
1625                                 if (err) {
1626                                         ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1627                                                   err, zbr->lnum, zbr->offs);
1628                                         goto out_dump;
1629                                 }
1630                         }
1631                 }
1632
1633                 if (!znode->parent)
1634                         break;
1635
1636                 idx = znode->iip + 1;
1637                 znode = znode->parent;
1638                 if (idx < znode->child_cnt) {
1639                         /* Switch to the next index in the parent */
1640                         zbr = &znode->zbranch[idx];
1641                         child = zbr->znode;
1642                         if (!child) {
1643                                 child = ubifs_load_znode(c, zbr, znode, idx);
1644                                 if (IS_ERR(child)) {
1645                                         err = PTR_ERR(child);
1646                                         goto out_unlock;
1647                                 }
1648                                 zbr->znode = child;
1649                         }
1650                         znode = child;
1651                 } else
1652                         /*
1653                          * This is the last child, switch to the parent and
1654                          * continue.
1655                          */
1656                         continue;
1657
1658                 /* Go to the lowest leftmost znode in the new sub-tree */
1659                 while (znode->level > 0) {
1660                         zbr = &znode->zbranch[0];
1661                         child = zbr->znode;
1662                         if (!child) {
1663                                 child = ubifs_load_znode(c, zbr, znode, 0);
1664                                 if (IS_ERR(child)) {
1665                                         err = PTR_ERR(child);
1666                                         goto out_unlock;
1667                                 }
1668                                 zbr->znode = child;
1669                         }
1670                         znode = child;
1671                 }
1672         }
1673
1674         mutex_unlock(&c->tnc_mutex);
1675         return 0;
1676
1677 out_dump:
1678         if (znode->parent)
1679                 zbr = &znode->parent->zbranch[znode->iip];
1680         else
1681                 zbr = &c->zroot;
1682         ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1683         ubifs_dump_znode(c, znode);
1684 out_unlock:
1685         mutex_unlock(&c->tnc_mutex);
1686         return err;
1687 }
1688
1689 /**
1690  * add_size - add znode size to partially calculated index size.
1691  * @c: UBIFS file-system description object
1692  * @znode: znode to add size for
1693  * @priv: partially calculated index size
1694  *
1695  * This is a helper function for 'dbg_check_idx_size()' which is called for
1696  * every indexing node and adds its size to the 'long long' variable pointed to
1697  * by @priv.
1698  */
1699 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1700 {
1701         long long *idx_size = priv;
1702         int add;
1703
1704         add = ubifs_idx_node_sz(c, znode->child_cnt);
1705         add = ALIGN(add, 8);
1706         *idx_size += add;
1707         return 0;
1708 }
1709
1710 /**
1711  * dbg_check_idx_size - check index size.
1712  * @c: UBIFS file-system description object
1713  * @idx_size: size to check
1714  *
1715  * This function walks the UBIFS index, calculates its size and checks that the
1716  * size is equivalent to @idx_size. Returns zero in case of success and a
1717  * negative error code in case of failure.
1718  */
1719 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1720 {
1721         int err;
1722         long long calc = 0;
1723
1724         if (!dbg_is_chk_index(c))
1725                 return 0;
1726
1727         err = dbg_walk_index(c, NULL, add_size, &calc);
1728         if (err) {
1729                 ubifs_err(c, "error %d while walking the index", err);
1730                 return err;
1731         }
1732
1733         if (calc != idx_size) {
1734                 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1735                           calc, idx_size);
1736                 dump_stack();
1737                 return -EINVAL;
1738         }
1739
1740         return 0;
1741 }
1742
1743 /**
1744  * struct fsck_inode - information about an inode used when checking the file-system.
1745  * @rb: link in the RB-tree of inodes
1746  * @inum: inode number
1747  * @mode: inode type, permissions, etc
1748  * @nlink: inode link count
1749  * @xattr_cnt: count of extended attributes
1750  * @references: how many directory/xattr entries refer this inode (calculated
1751  *              while walking the index)
1752  * @calc_cnt: for directory inode count of child directories
1753  * @size: inode size (read from on-flash inode)
1754  * @xattr_sz: summary size of all extended attributes (read from on-flash
1755  *            inode)
1756  * @calc_sz: for directories calculated directory size
1757  * @calc_xcnt: count of extended attributes
1758  * @calc_xsz: calculated summary size of all extended attributes
1759  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1760  *             inode (read from on-flash inode)
1761  * @calc_xnms: calculated sum of lengths of all extended attribute names
1762  */
1763 struct fsck_inode {
1764         struct rb_node rb;
1765         ino_t inum;
1766         umode_t mode;
1767         unsigned int nlink;
1768         unsigned int xattr_cnt;
1769         int references;
1770         int calc_cnt;
1771         long long size;
1772         unsigned int xattr_sz;
1773         long long calc_sz;
1774         long long calc_xcnt;
1775         long long calc_xsz;
1776         unsigned int xattr_nms;
1777         long long calc_xnms;
1778 };
1779
1780 /**
1781  * struct fsck_data - private FS checking information.
1782  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1783  */
1784 struct fsck_data {
1785         struct rb_root inodes;
1786 };
1787
1788 /**
1789  * add_inode - add inode information to RB-tree of inodes.
1790  * @c: UBIFS file-system description object
1791  * @fsckd: FS checking information
1792  * @ino: raw UBIFS inode to add
1793  *
1794  * This is a helper function for 'check_leaf()' which adds information about
1795  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1796  * case of success and a negative error code in case of failure.
1797  */
1798 static struct fsck_inode *add_inode(struct ubifs_info *c,
1799                                     struct fsck_data *fsckd,
1800                                     struct ubifs_ino_node *ino)
1801 {
1802         struct rb_node **p, *parent = NULL;
1803         struct fsck_inode *fscki;
1804         ino_t inum = key_inum_flash(c, &ino->key);
1805         struct inode *inode;
1806         struct ubifs_inode *ui;
1807
1808         p = &fsckd->inodes.rb_node;
1809         while (*p) {
1810                 parent = *p;
1811                 fscki = rb_entry(parent, struct fsck_inode, rb);
1812                 if (inum < fscki->inum)
1813                         p = &(*p)->rb_left;
1814                 else if (inum > fscki->inum)
1815                         p = &(*p)->rb_right;
1816                 else
1817                         return fscki;
1818         }
1819
1820         if (inum > c->highest_inum) {
1821                 ubifs_err(c, "too high inode number, max. is %lu",
1822                           (unsigned long)c->highest_inum);
1823                 return ERR_PTR(-EINVAL);
1824         }
1825
1826         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1827         if (!fscki)
1828                 return ERR_PTR(-ENOMEM);
1829
1830         inode = ilookup(c->vfs_sb, inum);
1831
1832         fscki->inum = inum;
1833         /*
1834          * If the inode is present in the VFS inode cache, use it instead of
1835          * the on-flash inode which might be out-of-date. E.g., the size might
1836          * be out-of-date. If we do not do this, the following may happen, for
1837          * example:
1838          *   1. A power cut happens
1839          *   2. We mount the file-system R/O, the replay process fixes up the
1840          *      inode size in the VFS cache, but on on-flash.
1841          *   3. 'check_leaf()' fails because it hits a data node beyond inode
1842          *      size.
1843          */
1844         if (!inode) {
1845                 fscki->nlink = le32_to_cpu(ino->nlink);
1846                 fscki->size = le64_to_cpu(ino->size);
1847                 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1848                 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1849                 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1850                 fscki->mode = le32_to_cpu(ino->mode);
1851         } else {
1852                 ui = ubifs_inode(inode);
1853                 fscki->nlink = inode->i_nlink;
1854                 fscki->size = inode->i_size;
1855                 fscki->xattr_cnt = ui->xattr_cnt;
1856                 fscki->xattr_sz = ui->xattr_size;
1857                 fscki->xattr_nms = ui->xattr_names;
1858                 fscki->mode = inode->i_mode;
1859                 iput(inode);
1860         }
1861
1862         if (S_ISDIR(fscki->mode)) {
1863                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1864                 fscki->calc_cnt = 2;
1865         }
1866
1867         rb_link_node(&fscki->rb, parent, p);
1868         rb_insert_color(&fscki->rb, &fsckd->inodes);
1869
1870         return fscki;
1871 }
1872
1873 /**
1874  * search_inode - search inode in the RB-tree of inodes.
1875  * @fsckd: FS checking information
1876  * @inum: inode number to search
1877  *
1878  * This is a helper function for 'check_leaf()' which searches inode @inum in
1879  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1880  * the inode was not found.
1881  */
1882 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1883 {
1884         struct rb_node *p;
1885         struct fsck_inode *fscki;
1886
1887         p = fsckd->inodes.rb_node;
1888         while (p) {
1889                 fscki = rb_entry(p, struct fsck_inode, rb);
1890                 if (inum < fscki->inum)
1891                         p = p->rb_left;
1892                 else if (inum > fscki->inum)
1893                         p = p->rb_right;
1894                 else
1895                         return fscki;
1896         }
1897         return NULL;
1898 }
1899
1900 /**
1901  * read_add_inode - read inode node and add it to RB-tree of inodes.
1902  * @c: UBIFS file-system description object
1903  * @fsckd: FS checking information
1904  * @inum: inode number to read
1905  *
1906  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1907  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1908  * information pointer in case of success and a negative error code in case of
1909  * failure.
1910  */
1911 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1912                                          struct fsck_data *fsckd, ino_t inum)
1913 {
1914         int n, err;
1915         union ubifs_key key;
1916         struct ubifs_znode *znode;
1917         struct ubifs_zbranch *zbr;
1918         struct ubifs_ino_node *ino;
1919         struct fsck_inode *fscki;
1920
1921         fscki = search_inode(fsckd, inum);
1922         if (fscki)
1923                 return fscki;
1924
1925         ino_key_init(c, &key, inum);
1926         err = ubifs_lookup_level0(c, &key, &znode, &n);
1927         if (!err) {
1928                 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1929                 return ERR_PTR(-ENOENT);
1930         } else if (err < 0) {
1931                 ubifs_err(c, "error %d while looking up inode %lu",
1932                           err, (unsigned long)inum);
1933                 return ERR_PTR(err);
1934         }
1935
1936         zbr = &znode->zbranch[n];
1937         if (zbr->len < UBIFS_INO_NODE_SZ) {
1938                 ubifs_err(c, "bad node %lu node length %d",
1939                           (unsigned long)inum, zbr->len);
1940                 return ERR_PTR(-EINVAL);
1941         }
1942
1943         ino = kmalloc(zbr->len, GFP_NOFS);
1944         if (!ino)
1945                 return ERR_PTR(-ENOMEM);
1946
1947         err = ubifs_tnc_read_node(c, zbr, ino);
1948         if (err) {
1949                 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1950                           zbr->lnum, zbr->offs, err);
1951                 kfree(ino);
1952                 return ERR_PTR(err);
1953         }
1954
1955         fscki = add_inode(c, fsckd, ino);
1956         kfree(ino);
1957         if (IS_ERR(fscki)) {
1958                 ubifs_err(c, "error %ld while adding inode %lu node",
1959                           PTR_ERR(fscki), (unsigned long)inum);
1960                 return fscki;
1961         }
1962
1963         return fscki;
1964 }
1965
1966 /**
1967  * check_leaf - check leaf node.
1968  * @c: UBIFS file-system description object
1969  * @zbr: zbranch of the leaf node to check
1970  * @priv: FS checking information
1971  *
1972  * This is a helper function for 'dbg_check_filesystem()' which is called for
1973  * every single leaf node while walking the indexing tree. It checks that the
1974  * leaf node referred from the indexing tree exists, has correct CRC, and does
1975  * some other basic validation. This function is also responsible for building
1976  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1977  * calculates reference count, size, etc for each inode in order to later
1978  * compare them to the information stored inside the inodes and detect possible
1979  * inconsistencies. Returns zero in case of success and a negative error code
1980  * in case of failure.
1981  */
1982 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1983                       void *priv)
1984 {
1985         ino_t inum;
1986         void *node;
1987         struct ubifs_ch *ch;
1988         int err, type = key_type(c, &zbr->key);
1989         struct fsck_inode *fscki;
1990
1991         if (zbr->len < UBIFS_CH_SZ) {
1992                 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
1993                           zbr->len, zbr->lnum, zbr->offs);
1994                 return -EINVAL;
1995         }
1996
1997         node = kmalloc(zbr->len, GFP_NOFS);
1998         if (!node)
1999                 return -ENOMEM;
2000
2001         err = ubifs_tnc_read_node(c, zbr, node);
2002         if (err) {
2003                 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2004                           zbr->lnum, zbr->offs, err);
2005                 goto out_free;
2006         }
2007
2008         /* If this is an inode node, add it to RB-tree of inodes */
2009         if (type == UBIFS_INO_KEY) {
2010                 fscki = add_inode(c, priv, node);
2011                 if (IS_ERR(fscki)) {
2012                         err = PTR_ERR(fscki);
2013                         ubifs_err(c, "error %d while adding inode node", err);
2014                         goto out_dump;
2015                 }
2016                 goto out;
2017         }
2018
2019         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2020             type != UBIFS_DATA_KEY) {
2021                 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2022                           type, zbr->lnum, zbr->offs);
2023                 err = -EINVAL;
2024                 goto out_free;
2025         }
2026
2027         ch = node;
2028         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2029                 ubifs_err(c, "too high sequence number, max. is %llu",
2030                           c->max_sqnum);
2031                 err = -EINVAL;
2032                 goto out_dump;
2033         }
2034
2035         if (type == UBIFS_DATA_KEY) {
2036                 long long blk_offs;
2037                 struct ubifs_data_node *dn = node;
2038
2039                 ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2040
2041                 /*
2042                  * Search the inode node this data node belongs to and insert
2043                  * it to the RB-tree of inodes.
2044                  */
2045                 inum = key_inum_flash(c, &dn->key);
2046                 fscki = read_add_inode(c, priv, inum);
2047                 if (IS_ERR(fscki)) {
2048                         err = PTR_ERR(fscki);
2049                         ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2050                                   err, (unsigned long)inum);
2051                         goto out_dump;
2052                 }
2053
2054                 /* Make sure the data node is within inode size */
2055                 blk_offs = key_block_flash(c, &dn->key);
2056                 blk_offs <<= UBIFS_BLOCK_SHIFT;
2057                 blk_offs += le32_to_cpu(dn->size);
2058                 if (blk_offs > fscki->size) {
2059                         ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2060                                   zbr->lnum, zbr->offs, fscki->size);
2061                         err = -EINVAL;
2062                         goto out_dump;
2063                 }
2064         } else {
2065                 int nlen;
2066                 struct ubifs_dent_node *dent = node;
2067                 struct fsck_inode *fscki1;
2068
2069                 ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2070
2071                 err = ubifs_validate_entry(c, dent);
2072                 if (err)
2073                         goto out_dump;
2074
2075                 /*
2076                  * Search the inode node this entry refers to and the parent
2077                  * inode node and insert them to the RB-tree of inodes.
2078                  */
2079                 inum = le64_to_cpu(dent->inum);
2080                 fscki = read_add_inode(c, priv, inum);
2081                 if (IS_ERR(fscki)) {
2082                         err = PTR_ERR(fscki);
2083                         ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2084                                   err, (unsigned long)inum);
2085                         goto out_dump;
2086                 }
2087
2088                 /* Count how many direntries or xentries refers this inode */
2089                 fscki->references += 1;
2090
2091                 inum = key_inum_flash(c, &dent->key);
2092                 fscki1 = read_add_inode(c, priv, inum);
2093                 if (IS_ERR(fscki1)) {
2094                         err = PTR_ERR(fscki1);
2095                         ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2096                                   err, (unsigned long)inum);
2097                         goto out_dump;
2098                 }
2099
2100                 nlen = le16_to_cpu(dent->nlen);
2101                 if (type == UBIFS_XENT_KEY) {
2102                         fscki1->calc_xcnt += 1;
2103                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2104                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2105                         fscki1->calc_xnms += nlen;
2106                 } else {
2107                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2108                         if (dent->type == UBIFS_ITYPE_DIR)
2109                                 fscki1->calc_cnt += 1;
2110                 }
2111         }
2112
2113 out:
2114         kfree(node);
2115         return 0;
2116
2117 out_dump:
2118         ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2119         ubifs_dump_node(c, node);
2120 out_free:
2121         kfree(node);
2122         return err;
2123 }
2124
2125 /**
2126  * free_inodes - free RB-tree of inodes.
2127  * @fsckd: FS checking information
2128  */
2129 static void free_inodes(struct fsck_data *fsckd)
2130 {
2131         struct fsck_inode *fscki, *n;
2132
2133         rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2134                 kfree(fscki);
2135 }
2136
2137 /**
2138  * check_inodes - checks all inodes.
2139  * @c: UBIFS file-system description object
2140  * @fsckd: FS checking information
2141  *
2142  * This is a helper function for 'dbg_check_filesystem()' which walks the
2143  * RB-tree of inodes after the index scan has been finished, and checks that
2144  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2145  * %-EINVAL if not, and a negative error code in case of failure.
2146  */
2147 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2148 {
2149         int n, err;
2150         union ubifs_key key;
2151         struct ubifs_znode *znode;
2152         struct ubifs_zbranch *zbr;
2153         struct ubifs_ino_node *ino;
2154         struct fsck_inode *fscki;
2155         struct rb_node *this = rb_first(&fsckd->inodes);
2156
2157         while (this) {
2158                 fscki = rb_entry(this, struct fsck_inode, rb);
2159                 this = rb_next(this);
2160
2161                 if (S_ISDIR(fscki->mode)) {
2162                         /*
2163                          * Directories have to have exactly one reference (they
2164                          * cannot have hardlinks), although root inode is an
2165                          * exception.
2166                          */
2167                         if (fscki->inum != UBIFS_ROOT_INO &&
2168                             fscki->references != 1) {
2169                                 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2170                                           (unsigned long)fscki->inum,
2171                                           fscki->references);
2172                                 goto out_dump;
2173                         }
2174                         if (fscki->inum == UBIFS_ROOT_INO &&
2175                             fscki->references != 0) {
2176                                 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2177                                           (unsigned long)fscki->inum,
2178                                           fscki->references);
2179                                 goto out_dump;
2180                         }
2181                         if (fscki->calc_sz != fscki->size) {
2182                                 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2183                                           (unsigned long)fscki->inum,
2184                                           fscki->size, fscki->calc_sz);
2185                                 goto out_dump;
2186                         }
2187                         if (fscki->calc_cnt != fscki->nlink) {
2188                                 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2189                                           (unsigned long)fscki->inum,
2190                                           fscki->nlink, fscki->calc_cnt);
2191                                 goto out_dump;
2192                         }
2193                 } else {
2194                         if (fscki->references != fscki->nlink) {
2195                                 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2196                                           (unsigned long)fscki->inum,
2197                                           fscki->nlink, fscki->references);
2198                                 goto out_dump;
2199                         }
2200                 }
2201                 if (fscki->xattr_sz != fscki->calc_xsz) {
2202                         ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2203                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2204                                   fscki->calc_xsz);
2205                         goto out_dump;
2206                 }
2207                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2208                         ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2209                                   (unsigned long)fscki->inum,
2210                                   fscki->xattr_cnt, fscki->calc_xcnt);
2211                         goto out_dump;
2212                 }
2213                 if (fscki->xattr_nms != fscki->calc_xnms) {
2214                         ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2215                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2216                                   fscki->calc_xnms);
2217                         goto out_dump;
2218                 }
2219         }
2220
2221         return 0;
2222
2223 out_dump:
2224         /* Read the bad inode and dump it */
2225         ino_key_init(c, &key, fscki->inum);
2226         err = ubifs_lookup_level0(c, &key, &znode, &n);
2227         if (!err) {
2228                 ubifs_err(c, "inode %lu not found in index",
2229                           (unsigned long)fscki->inum);
2230                 return -ENOENT;
2231         } else if (err < 0) {
2232                 ubifs_err(c, "error %d while looking up inode %lu",
2233                           err, (unsigned long)fscki->inum);
2234                 return err;
2235         }
2236
2237         zbr = &znode->zbranch[n];
2238         ino = kmalloc(zbr->len, GFP_NOFS);
2239         if (!ino)
2240                 return -ENOMEM;
2241
2242         err = ubifs_tnc_read_node(c, zbr, ino);
2243         if (err) {
2244                 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2245                           zbr->lnum, zbr->offs, err);
2246                 kfree(ino);
2247                 return err;
2248         }
2249
2250         ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2251                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2252         ubifs_dump_node(c, ino);
2253         kfree(ino);
2254         return -EINVAL;
2255 }
2256
2257 /**
2258  * dbg_check_filesystem - check the file-system.
2259  * @c: UBIFS file-system description object
2260  *
2261  * This function checks the file system, namely:
2262  * o makes sure that all leaf nodes exist and their CRCs are correct;
2263  * o makes sure inode nlink, size, xattr size/count are correct (for all
2264  *   inodes).
2265  *
2266  * The function reads whole indexing tree and all nodes, so it is pretty
2267  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2268  * not, and a negative error code in case of failure.
2269  */
2270 int dbg_check_filesystem(struct ubifs_info *c)
2271 {
2272         int err;
2273         struct fsck_data fsckd;
2274
2275         if (!dbg_is_chk_fs(c))
2276                 return 0;
2277
2278         fsckd.inodes = RB_ROOT;
2279         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2280         if (err)
2281                 goto out_free;
2282
2283         err = check_inodes(c, &fsckd);
2284         if (err)
2285                 goto out_free;
2286
2287         free_inodes(&fsckd);
2288         return 0;
2289
2290 out_free:
2291         ubifs_err(c, "file-system check failed with error %d", err);
2292         dump_stack();
2293         free_inodes(&fsckd);
2294         return err;
2295 }
2296
2297 /**
2298  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2299  * @c: UBIFS file-system description object
2300  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2301  *
2302  * This function returns zero if the list of data nodes is sorted correctly,
2303  * and %-EINVAL if not.
2304  */
2305 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2306 {
2307         struct list_head *cur;
2308         struct ubifs_scan_node *sa, *sb;
2309
2310         if (!dbg_is_chk_gen(c))
2311                 return 0;
2312
2313         for (cur = head->next; cur->next != head; cur = cur->next) {
2314                 ino_t inuma, inumb;
2315                 uint32_t blka, blkb;
2316
2317                 cond_resched();
2318                 sa = container_of(cur, struct ubifs_scan_node, list);
2319                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2320
2321                 if (sa->type != UBIFS_DATA_NODE) {
2322                         ubifs_err(c, "bad node type %d", sa->type);
2323                         ubifs_dump_node(c, sa->node);
2324                         return -EINVAL;
2325                 }
2326                 if (sb->type != UBIFS_DATA_NODE) {
2327                         ubifs_err(c, "bad node type %d", sb->type);
2328                         ubifs_dump_node(c, sb->node);
2329                         return -EINVAL;
2330                 }
2331
2332                 inuma = key_inum(c, &sa->key);
2333                 inumb = key_inum(c, &sb->key);
2334
2335                 if (inuma < inumb)
2336                         continue;
2337                 if (inuma > inumb) {
2338                         ubifs_err(c, "larger inum %lu goes before inum %lu",
2339                                   (unsigned long)inuma, (unsigned long)inumb);
2340                         goto error_dump;
2341                 }
2342
2343                 blka = key_block(c, &sa->key);
2344                 blkb = key_block(c, &sb->key);
2345
2346                 if (blka > blkb) {
2347                         ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2348                         goto error_dump;
2349                 }
2350                 if (blka == blkb) {
2351                         ubifs_err(c, "two data nodes for the same block");
2352                         goto error_dump;
2353                 }
2354         }
2355
2356         return 0;
2357
2358 error_dump:
2359         ubifs_dump_node(c, sa->node);
2360         ubifs_dump_node(c, sb->node);
2361         return -EINVAL;
2362 }
2363
2364 /**
2365  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2366  * @c: UBIFS file-system description object
2367  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2368  *
2369  * This function returns zero if the list of non-data nodes is sorted correctly,
2370  * and %-EINVAL if not.
2371  */
2372 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2373 {
2374         struct list_head *cur;
2375         struct ubifs_scan_node *sa, *sb;
2376
2377         if (!dbg_is_chk_gen(c))
2378                 return 0;
2379
2380         for (cur = head->next; cur->next != head; cur = cur->next) {
2381                 ino_t inuma, inumb;
2382                 uint32_t hasha, hashb;
2383
2384                 cond_resched();
2385                 sa = container_of(cur, struct ubifs_scan_node, list);
2386                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2387
2388                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2389                     sa->type != UBIFS_XENT_NODE) {
2390                         ubifs_err(c, "bad node type %d", sa->type);
2391                         ubifs_dump_node(c, sa->node);
2392                         return -EINVAL;
2393                 }
2394                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2395                     sa->type != UBIFS_XENT_NODE) {
2396                         ubifs_err(c, "bad node type %d", sb->type);
2397                         ubifs_dump_node(c, sb->node);
2398                         return -EINVAL;
2399                 }
2400
2401                 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2402                         ubifs_err(c, "non-inode node goes before inode node");
2403                         goto error_dump;
2404                 }
2405
2406                 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2407                         continue;
2408
2409                 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2410                         /* Inode nodes are sorted in descending size order */
2411                         if (sa->len < sb->len) {
2412                                 ubifs_err(c, "smaller inode node goes first");
2413                                 goto error_dump;
2414                         }
2415                         continue;
2416                 }
2417
2418                 /*
2419                  * This is either a dentry or xentry, which should be sorted in
2420                  * ascending (parent ino, hash) order.
2421                  */
2422                 inuma = key_inum(c, &sa->key);
2423                 inumb = key_inum(c, &sb->key);
2424
2425                 if (inuma < inumb)
2426                         continue;
2427                 if (inuma > inumb) {
2428                         ubifs_err(c, "larger inum %lu goes before inum %lu",
2429                                   (unsigned long)inuma, (unsigned long)inumb);
2430                         goto error_dump;
2431                 }
2432
2433                 hasha = key_block(c, &sa->key);
2434                 hashb = key_block(c, &sb->key);
2435
2436                 if (hasha > hashb) {
2437                         ubifs_err(c, "larger hash %u goes before %u",
2438                                   hasha, hashb);
2439                         goto error_dump;
2440                 }
2441         }
2442
2443         return 0;
2444
2445 error_dump:
2446         ubifs_msg(c, "dumping first node");
2447         ubifs_dump_node(c, sa->node);
2448         ubifs_msg(c, "dumping second node");
2449         ubifs_dump_node(c, sb->node);
2450         return -EINVAL;
2451         return 0;
2452 }
2453
2454 static inline int chance(unsigned int n, unsigned int out_of)
2455 {
2456         return !!((prandom_u32() % out_of) + 1 <= n);
2457
2458 }
2459
2460 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2461 {
2462         struct ubifs_debug_info *d = c->dbg;
2463
2464         ubifs_assert(dbg_is_tst_rcvry(c));
2465
2466         if (!d->pc_cnt) {
2467                 /* First call - decide delay to the power cut */
2468                 if (chance(1, 2)) {
2469                         unsigned long delay;
2470
2471                         if (chance(1, 2)) {
2472                                 d->pc_delay = 1;
2473                                 /* Fail within 1 minute */
2474                                 delay = prandom_u32() % 60000;
2475                                 d->pc_timeout = jiffies;
2476                                 d->pc_timeout += msecs_to_jiffies(delay);
2477                                 ubifs_warn(c, "failing after %lums", delay);
2478                         } else {
2479                                 d->pc_delay = 2;
2480                                 delay = prandom_u32() % 10000;
2481                                 /* Fail within 10000 operations */
2482                                 d->pc_cnt_max = delay;
2483                                 ubifs_warn(c, "failing after %lu calls", delay);
2484                         }
2485                 }
2486
2487                 d->pc_cnt += 1;
2488         }
2489
2490         /* Determine if failure delay has expired */
2491         if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2492                         return 0;
2493         if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2494                         return 0;
2495
2496         if (lnum == UBIFS_SB_LNUM) {
2497                 if (write && chance(1, 2))
2498                         return 0;
2499                 if (chance(19, 20))
2500                         return 0;
2501                 ubifs_warn(c, "failing in super block LEB %d", lnum);
2502         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2503                 if (chance(19, 20))
2504                         return 0;
2505                 ubifs_warn(c, "failing in master LEB %d", lnum);
2506         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2507                 if (write && chance(99, 100))
2508                         return 0;
2509                 if (chance(399, 400))
2510                         return 0;
2511                 ubifs_warn(c, "failing in log LEB %d", lnum);
2512         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2513                 if (write && chance(7, 8))
2514                         return 0;
2515                 if (chance(19, 20))
2516                         return 0;
2517                 ubifs_warn(c, "failing in LPT LEB %d", lnum);
2518         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2519                 if (write && chance(1, 2))
2520                         return 0;
2521                 if (chance(9, 10))
2522                         return 0;
2523                 ubifs_warn(c, "failing in orphan LEB %d", lnum);
2524         } else if (lnum == c->ihead_lnum) {
2525                 if (chance(99, 100))
2526                         return 0;
2527                 ubifs_warn(c, "failing in index head LEB %d", lnum);
2528         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2529                 if (chance(9, 10))
2530                         return 0;
2531                 ubifs_warn(c, "failing in GC head LEB %d", lnum);
2532         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2533                    !ubifs_search_bud(c, lnum)) {
2534                 if (chance(19, 20))
2535                         return 0;
2536                 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2537         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2538                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2539                 if (chance(999, 1000))
2540                         return 0;
2541                 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2542         } else {
2543                 if (chance(9999, 10000))
2544                         return 0;
2545                 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2546         }
2547
2548         d->pc_happened = 1;
2549         ubifs_warn(c, "========== Power cut emulated ==========");
2550         dump_stack();
2551         return 1;
2552 }
2553
2554 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2555                         unsigned int len)
2556 {
2557         unsigned int from, to, ffs = chance(1, 2);
2558         unsigned char *p = (void *)buf;
2559
2560         from = prandom_u32() % len;
2561         /* Corruption span max to end of write unit */
2562         to = min(len, ALIGN(from + 1, c->max_write_size));
2563
2564         ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2565                    ffs ? "0xFFs" : "random data");
2566
2567         if (ffs)
2568                 memset(p + from, 0xFF, to - from);
2569         else
2570                 prandom_bytes(p + from, to - from);
2571
2572         return to;
2573 }
2574
2575 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2576                   int offs, int len)
2577 {
2578         int err, failing;
2579
2580         if (dbg_is_power_cut(c))
2581                 return -EROFS;
2582
2583         failing = power_cut_emulated(c, lnum, 1);
2584         if (failing) {
2585                 len = corrupt_data(c, buf, len);
2586                 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2587                            len, lnum, offs);
2588         }
2589         err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2590         if (err)
2591                 return err;
2592         if (failing)
2593                 return -EROFS;
2594         return 0;
2595 }
2596
2597 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2598                    int len)
2599 {
2600         int err;
2601
2602         if (dbg_is_power_cut(c))
2603                 return -EROFS;
2604         if (power_cut_emulated(c, lnum, 1))
2605                 return -EROFS;
2606         err = ubi_leb_change(c->ubi, lnum, buf, len);
2607         if (err)
2608                 return err;
2609         if (power_cut_emulated(c, lnum, 1))
2610                 return -EROFS;
2611         return 0;
2612 }
2613
2614 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2615 {
2616         int err;
2617
2618         if (dbg_is_power_cut(c))
2619                 return -EROFS;
2620         if (power_cut_emulated(c, lnum, 0))
2621                 return -EROFS;
2622         err = ubi_leb_unmap(c->ubi, lnum);
2623         if (err)
2624                 return err;
2625         if (power_cut_emulated(c, lnum, 0))
2626                 return -EROFS;
2627         return 0;
2628 }
2629
2630 int dbg_leb_map(struct ubifs_info *c, int lnum)
2631 {
2632         int err;
2633
2634         if (dbg_is_power_cut(c))
2635                 return -EROFS;
2636         if (power_cut_emulated(c, lnum, 0))
2637                 return -EROFS;
2638         err = ubi_leb_map(c->ubi, lnum);
2639         if (err)
2640                 return err;
2641         if (power_cut_emulated(c, lnum, 0))
2642                 return -EROFS;
2643         return 0;
2644 }
2645
2646 /*
2647  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2648  * contain the stuff specific to particular file-system mounts.
2649  */
2650 static struct dentry *dfs_rootdir;
2651
2652 static int dfs_file_open(struct inode *inode, struct file *file)
2653 {
2654         file->private_data = inode->i_private;
2655         return nonseekable_open(inode, file);
2656 }
2657
2658 /**
2659  * provide_user_output - provide output to the user reading a debugfs file.
2660  * @val: boolean value for the answer
2661  * @u: the buffer to store the answer at
2662  * @count: size of the buffer
2663  * @ppos: position in the @u output buffer
2664  *
2665  * This is a simple helper function which stores @val boolean value in the user
2666  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2667  * bytes written to @u in case of success and a negative error code in case of
2668  * failure.
2669  */
2670 static int provide_user_output(int val, char __user *u, size_t count,
2671                                loff_t *ppos)
2672 {
2673         char buf[3];
2674
2675         if (val)
2676                 buf[0] = '1';
2677         else
2678                 buf[0] = '0';
2679         buf[1] = '\n';
2680         buf[2] = 0x00;
2681
2682         return simple_read_from_buffer(u, count, ppos, buf, 2);
2683 }
2684
2685 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2686                              loff_t *ppos)
2687 {
2688         struct dentry *dent = file->f_path.dentry;
2689         struct ubifs_info *c = file->private_data;
2690         struct ubifs_debug_info *d = c->dbg;
2691         int val;
2692
2693         if (dent == d->dfs_chk_gen)
2694                 val = d->chk_gen;
2695         else if (dent == d->dfs_chk_index)
2696                 val = d->chk_index;
2697         else if (dent == d->dfs_chk_orph)
2698                 val = d->chk_orph;
2699         else if (dent == d->dfs_chk_lprops)
2700                 val = d->chk_lprops;
2701         else if (dent == d->dfs_chk_fs)
2702                 val = d->chk_fs;
2703         else if (dent == d->dfs_tst_rcvry)
2704                 val = d->tst_rcvry;
2705         else if (dent == d->dfs_ro_error)
2706                 val = c->ro_error;
2707         else
2708                 return -EINVAL;
2709
2710         return provide_user_output(val, u, count, ppos);
2711 }
2712
2713 /**
2714  * interpret_user_input - interpret user debugfs file input.
2715  * @u: user-provided buffer with the input
2716  * @count: buffer size
2717  *
2718  * This is a helper function which interpret user input to a boolean UBIFS
2719  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2720  * in case of failure.
2721  */
2722 static int interpret_user_input(const char __user *u, size_t count)
2723 {
2724         size_t buf_size;
2725         char buf[8];
2726
2727         buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2728         if (copy_from_user(buf, u, buf_size))
2729                 return -EFAULT;
2730
2731         if (buf[0] == '1')
2732                 return 1;
2733         else if (buf[0] == '0')
2734                 return 0;
2735
2736         return -EINVAL;
2737 }
2738
2739 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2740                               size_t count, loff_t *ppos)
2741 {
2742         struct ubifs_info *c = file->private_data;
2743         struct ubifs_debug_info *d = c->dbg;
2744         struct dentry *dent = file->f_path.dentry;
2745         int val;
2746
2747         /*
2748          * TODO: this is racy - the file-system might have already been
2749          * unmounted and we'd oops in this case. The plan is to fix it with
2750          * help of 'iterate_supers_type()' which we should have in v3.0: when
2751          * a debugfs opened, we rember FS's UUID in file->private_data. Then
2752          * whenever we access the FS via a debugfs file, we iterate all UBIFS
2753          * superblocks and fine the one with the same UUID, and take the
2754          * locking right.
2755          *
2756          * The other way to go suggested by Al Viro is to create a separate
2757          * 'ubifs-debug' file-system instead.
2758          */
2759         if (file->f_path.dentry == d->dfs_dump_lprops) {
2760                 ubifs_dump_lprops(c);
2761                 return count;
2762         }
2763         if (file->f_path.dentry == d->dfs_dump_budg) {
2764                 ubifs_dump_budg(c, &c->bi);
2765                 return count;
2766         }
2767         if (file->f_path.dentry == d->dfs_dump_tnc) {
2768                 mutex_lock(&c->tnc_mutex);
2769                 ubifs_dump_tnc(c);
2770                 mutex_unlock(&c->tnc_mutex);
2771                 return count;
2772         }
2773
2774         val = interpret_user_input(u, count);
2775         if (val < 0)
2776                 return val;
2777
2778         if (dent == d->dfs_chk_gen)
2779                 d->chk_gen = val;
2780         else if (dent == d->dfs_chk_index)
2781                 d->chk_index = val;
2782         else if (dent == d->dfs_chk_orph)
2783                 d->chk_orph = val;
2784         else if (dent == d->dfs_chk_lprops)
2785                 d->chk_lprops = val;
2786         else if (dent == d->dfs_chk_fs)
2787                 d->chk_fs = val;
2788         else if (dent == d->dfs_tst_rcvry)
2789                 d->tst_rcvry = val;
2790         else if (dent == d->dfs_ro_error)
2791                 c->ro_error = !!val;
2792         else
2793                 return -EINVAL;
2794
2795         return count;
2796 }
2797
2798 static const struct file_operations dfs_fops = {
2799         .open = dfs_file_open,
2800         .read = dfs_file_read,
2801         .write = dfs_file_write,
2802         .owner = THIS_MODULE,
2803         .llseek = no_llseek,
2804 };
2805
2806 /**
2807  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2808  * @c: UBIFS file-system description object
2809  *
2810  * This function creates all debugfs files for this instance of UBIFS. Returns
2811  * zero in case of success and a negative error code in case of failure.
2812  *
2813  * Note, the only reason we have not merged this function with the
2814  * 'ubifs_debugging_init()' function is because it is better to initialize
2815  * debugfs interfaces at the very end of the mount process, and remove them at
2816  * the very beginning of the mount process.
2817  */
2818 int dbg_debugfs_init_fs(struct ubifs_info *c)
2819 {
2820         int err, n;
2821         const char *fname;
2822         struct dentry *dent;
2823         struct ubifs_debug_info *d = c->dbg;
2824
2825         if (!IS_ENABLED(CONFIG_DEBUG_FS))
2826                 return 0;
2827
2828         n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2829                      c->vi.ubi_num, c->vi.vol_id);
2830         if (n == UBIFS_DFS_DIR_LEN) {
2831                 /* The array size is too small */
2832                 fname = UBIFS_DFS_DIR_NAME;
2833                 dent = ERR_PTR(-EINVAL);
2834                 goto out;
2835         }
2836
2837         fname = d->dfs_dir_name;
2838         dent = debugfs_create_dir(fname, dfs_rootdir);
2839         if (IS_ERR_OR_NULL(dent))
2840                 goto out;
2841         d->dfs_dir = dent;
2842
2843         fname = "dump_lprops";
2844         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2845         if (IS_ERR_OR_NULL(dent))
2846                 goto out_remove;
2847         d->dfs_dump_lprops = dent;
2848
2849         fname = "dump_budg";
2850         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2851         if (IS_ERR_OR_NULL(dent))
2852                 goto out_remove;
2853         d->dfs_dump_budg = dent;
2854
2855         fname = "dump_tnc";
2856         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2857         if (IS_ERR_OR_NULL(dent))
2858                 goto out_remove;
2859         d->dfs_dump_tnc = dent;
2860
2861         fname = "chk_general";
2862         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2863                                    &dfs_fops);
2864         if (IS_ERR_OR_NULL(dent))
2865                 goto out_remove;
2866         d->dfs_chk_gen = dent;
2867
2868         fname = "chk_index";
2869         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2870                                    &dfs_fops);
2871         if (IS_ERR_OR_NULL(dent))
2872                 goto out_remove;
2873         d->dfs_chk_index = dent;
2874
2875         fname = "chk_orphans";
2876         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2877                                    &dfs_fops);
2878         if (IS_ERR_OR_NULL(dent))
2879                 goto out_remove;
2880         d->dfs_chk_orph = dent;
2881
2882         fname = "chk_lprops";
2883         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2884                                    &dfs_fops);
2885         if (IS_ERR_OR_NULL(dent))
2886                 goto out_remove;
2887         d->dfs_chk_lprops = dent;
2888
2889         fname = "chk_fs";
2890         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2891                                    &dfs_fops);
2892         if (IS_ERR_OR_NULL(dent))
2893                 goto out_remove;
2894         d->dfs_chk_fs = dent;
2895
2896         fname = "tst_recovery";
2897         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2898                                    &dfs_fops);
2899         if (IS_ERR_OR_NULL(dent))
2900                 goto out_remove;
2901         d->dfs_tst_rcvry = dent;
2902
2903         fname = "ro_error";
2904         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2905                                    &dfs_fops);
2906         if (IS_ERR_OR_NULL(dent))
2907                 goto out_remove;
2908         d->dfs_ro_error = dent;
2909
2910         return 0;
2911
2912 out_remove:
2913         debugfs_remove_recursive(d->dfs_dir);
2914 out:
2915         err = dent ? PTR_ERR(dent) : -ENODEV;
2916         ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2917                   fname, err);
2918         return err;
2919 }
2920
2921 /**
2922  * dbg_debugfs_exit_fs - remove all debugfs files.
2923  * @c: UBIFS file-system description object
2924  */
2925 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2926 {
2927         if (IS_ENABLED(CONFIG_DEBUG_FS))
2928                 debugfs_remove_recursive(c->dbg->dfs_dir);
2929 }
2930
2931 struct ubifs_global_debug_info ubifs_dbg;
2932
2933 static struct dentry *dfs_chk_gen;
2934 static struct dentry *dfs_chk_index;
2935 static struct dentry *dfs_chk_orph;
2936 static struct dentry *dfs_chk_lprops;
2937 static struct dentry *dfs_chk_fs;
2938 static struct dentry *dfs_tst_rcvry;
2939
2940 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2941                                     size_t count, loff_t *ppos)
2942 {
2943         struct dentry *dent = file->f_path.dentry;
2944         int val;
2945
2946         if (dent == dfs_chk_gen)
2947                 val = ubifs_dbg.chk_gen;
2948         else if (dent == dfs_chk_index)
2949                 val = ubifs_dbg.chk_index;
2950         else if (dent == dfs_chk_orph)
2951                 val = ubifs_dbg.chk_orph;
2952         else if (dent == dfs_chk_lprops)
2953                 val = ubifs_dbg.chk_lprops;
2954         else if (dent == dfs_chk_fs)
2955                 val = ubifs_dbg.chk_fs;
2956         else if (dent == dfs_tst_rcvry)
2957                 val = ubifs_dbg.tst_rcvry;
2958         else
2959                 return -EINVAL;
2960
2961         return provide_user_output(val, u, count, ppos);
2962 }
2963
2964 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2965                                      size_t count, loff_t *ppos)
2966 {
2967         struct dentry *dent = file->f_path.dentry;
2968         int val;
2969
2970         val = interpret_user_input(u, count);
2971         if (val < 0)
2972                 return val;
2973
2974         if (dent == dfs_chk_gen)
2975                 ubifs_dbg.chk_gen = val;
2976         else if (dent == dfs_chk_index)
2977                 ubifs_dbg.chk_index = val;
2978         else if (dent == dfs_chk_orph)
2979                 ubifs_dbg.chk_orph = val;
2980         else if (dent == dfs_chk_lprops)
2981                 ubifs_dbg.chk_lprops = val;
2982         else if (dent == dfs_chk_fs)
2983                 ubifs_dbg.chk_fs = val;
2984         else if (dent == dfs_tst_rcvry)
2985                 ubifs_dbg.tst_rcvry = val;
2986         else
2987                 return -EINVAL;
2988
2989         return count;
2990 }
2991
2992 static const struct file_operations dfs_global_fops = {
2993         .read = dfs_global_file_read,
2994         .write = dfs_global_file_write,
2995         .owner = THIS_MODULE,
2996         .llseek = no_llseek,
2997 };
2998
2999 /**
3000  * dbg_debugfs_init - initialize debugfs file-system.
3001  *
3002  * UBIFS uses debugfs file-system to expose various debugging knobs to
3003  * user-space. This function creates "ubifs" directory in the debugfs
3004  * file-system. Returns zero in case of success and a negative error code in
3005  * case of failure.
3006  */
3007 int dbg_debugfs_init(void)
3008 {
3009         int err;
3010         const char *fname;
3011         struct dentry *dent;
3012
3013         if (!IS_ENABLED(CONFIG_DEBUG_FS))
3014                 return 0;
3015
3016         fname = "ubifs";
3017         dent = debugfs_create_dir(fname, NULL);
3018         if (IS_ERR_OR_NULL(dent))
3019                 goto out;
3020         dfs_rootdir = dent;
3021
3022         fname = "chk_general";
3023         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3024                                    &dfs_global_fops);
3025         if (IS_ERR_OR_NULL(dent))
3026                 goto out_remove;
3027         dfs_chk_gen = dent;
3028
3029         fname = "chk_index";
3030         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3031                                    &dfs_global_fops);
3032         if (IS_ERR_OR_NULL(dent))
3033                 goto out_remove;
3034         dfs_chk_index = dent;
3035
3036         fname = "chk_orphans";
3037         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3038                                    &dfs_global_fops);
3039         if (IS_ERR_OR_NULL(dent))
3040                 goto out_remove;
3041         dfs_chk_orph = dent;
3042
3043         fname = "chk_lprops";
3044         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3045                                    &dfs_global_fops);
3046         if (IS_ERR_OR_NULL(dent))
3047                 goto out_remove;
3048         dfs_chk_lprops = dent;
3049
3050         fname = "chk_fs";
3051         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3052                                    &dfs_global_fops);
3053         if (IS_ERR_OR_NULL(dent))
3054                 goto out_remove;
3055         dfs_chk_fs = dent;
3056
3057         fname = "tst_recovery";
3058         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3059                                    &dfs_global_fops);
3060         if (IS_ERR_OR_NULL(dent))
3061                 goto out_remove;
3062         dfs_tst_rcvry = dent;
3063
3064         return 0;
3065
3066 out_remove:
3067         debugfs_remove_recursive(dfs_rootdir);
3068 out:
3069         err = dent ? PTR_ERR(dent) : -ENODEV;
3070         pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3071                current->pid, fname, err);
3072         return err;
3073 }
3074
3075 /**
3076  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3077  */
3078 void dbg_debugfs_exit(void)
3079 {
3080         if (IS_ENABLED(CONFIG_DEBUG_FS))
3081                 debugfs_remove_recursive(dfs_rootdir);
3082 }
3083
3084 /**
3085  * ubifs_debugging_init - initialize UBIFS debugging.
3086  * @c: UBIFS file-system description object
3087  *
3088  * This function initializes debugging-related data for the file system.
3089  * Returns zero in case of success and a negative error code in case of
3090  * failure.
3091  */
3092 int ubifs_debugging_init(struct ubifs_info *c)
3093 {
3094         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3095         if (!c->dbg)
3096                 return -ENOMEM;
3097
3098         return 0;
3099 }
3100
3101 /**
3102  * ubifs_debugging_exit - free debugging data.
3103  * @c: UBIFS file-system description object
3104  */
3105 void ubifs_debugging_exit(struct ubifs_info *c)
3106 {
3107         kfree(c->dbg);
3108 }