Merge branch 'x86-vdso-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
36
37 /*
38  * Attempt to steal a page from a pipe buffer. This should perhaps go into
39  * a vm helper function, it's already simplified quite a bit by the
40  * addition of remove_mapping(). If success is returned, the caller may
41  * attempt to reuse this page for another destination.
42  */
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44                                      struct pipe_buffer *buf)
45 {
46         struct page *page = buf->page;
47         struct address_space *mapping;
48
49         lock_page(page);
50
51         mapping = page_mapping(page);
52         if (mapping) {
53                 WARN_ON(!PageUptodate(page));
54
55                 /*
56                  * At least for ext2 with nobh option, we need to wait on
57                  * writeback completing on this page, since we'll remove it
58                  * from the pagecache.  Otherwise truncate wont wait on the
59                  * page, allowing the disk blocks to be reused by someone else
60                  * before we actually wrote our data to them. fs corruption
61                  * ensues.
62                  */
63                 wait_on_page_writeback(page);
64
65                 if (page_has_private(page) &&
66                     !try_to_release_page(page, GFP_KERNEL))
67                         goto out_unlock;
68
69                 /*
70                  * If we succeeded in removing the mapping, set LRU flag
71                  * and return good.
72                  */
73                 if (remove_mapping(mapping, page)) {
74                         buf->flags |= PIPE_BUF_FLAG_LRU;
75                         return 0;
76                 }
77         }
78
79         /*
80          * Raced with truncate or failed to remove page from current
81          * address space, unlock and return failure.
82          */
83 out_unlock:
84         unlock_page(page);
85         return 1;
86 }
87
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89                                         struct pipe_buffer *buf)
90 {
91         page_cache_release(buf->page);
92         buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 }
94
95 /*
96  * Check whether the contents of buf is OK to access. Since the content
97  * is a page cache page, IO may be in flight.
98  */
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100                                        struct pipe_buffer *buf)
101 {
102         struct page *page = buf->page;
103         int err;
104
105         if (!PageUptodate(page)) {
106                 lock_page(page);
107
108                 /*
109                  * Page got truncated/unhashed. This will cause a 0-byte
110                  * splice, if this is the first page.
111                  */
112                 if (!page->mapping) {
113                         err = -ENODATA;
114                         goto error;
115                 }
116
117                 /*
118                  * Uh oh, read-error from disk.
119                  */
120                 if (!PageUptodate(page)) {
121                         err = -EIO;
122                         goto error;
123                 }
124
125                 /*
126                  * Page is ok afterall, we are done.
127                  */
128                 unlock_page(page);
129         }
130
131         return 0;
132 error:
133         unlock_page(page);
134         return err;
135 }
136
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138         .can_merge = 0,
139         .confirm = page_cache_pipe_buf_confirm,
140         .release = page_cache_pipe_buf_release,
141         .steal = page_cache_pipe_buf_steal,
142         .get = generic_pipe_buf_get,
143 };
144
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146                                     struct pipe_buffer *buf)
147 {
148         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149                 return 1;
150
151         buf->flags |= PIPE_BUF_FLAG_LRU;
152         return generic_pipe_buf_steal(pipe, buf);
153 }
154
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156         .can_merge = 0,
157         .confirm = generic_pipe_buf_confirm,
158         .release = page_cache_pipe_buf_release,
159         .steal = user_page_pipe_buf_steal,
160         .get = generic_pipe_buf_get,
161 };
162
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164 {
165         smp_mb();
166         if (waitqueue_active(&pipe->wait))
167                 wake_up_interruptible(&pipe->wait);
168         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169 }
170
171 /**
172  * splice_to_pipe - fill passed data into a pipe
173  * @pipe:       pipe to fill
174  * @spd:        data to fill
175  *
176  * Description:
177  *    @spd contains a map of pages and len/offset tuples, along with
178  *    the struct pipe_buf_operations associated with these pages. This
179  *    function will link that data to the pipe.
180  *
181  */
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183                        struct splice_pipe_desc *spd)
184 {
185         unsigned int spd_pages = spd->nr_pages;
186         int ret, do_wakeup, page_nr;
187
188         ret = 0;
189         do_wakeup = 0;
190         page_nr = 0;
191
192         pipe_lock(pipe);
193
194         for (;;) {
195                 if (!pipe->readers) {
196                         send_sig(SIGPIPE, current, 0);
197                         if (!ret)
198                                 ret = -EPIPE;
199                         break;
200                 }
201
202                 if (pipe->nrbufs < pipe->buffers) {
203                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
204                         struct pipe_buffer *buf = pipe->bufs + newbuf;
205
206                         buf->page = spd->pages[page_nr];
207                         buf->offset = spd->partial[page_nr].offset;
208                         buf->len = spd->partial[page_nr].len;
209                         buf->private = spd->partial[page_nr].private;
210                         buf->ops = spd->ops;
211                         if (spd->flags & SPLICE_F_GIFT)
212                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
213
214                         pipe->nrbufs++;
215                         page_nr++;
216                         ret += buf->len;
217
218                         if (pipe->files)
219                                 do_wakeup = 1;
220
221                         if (!--spd->nr_pages)
222                                 break;
223                         if (pipe->nrbufs < pipe->buffers)
224                                 continue;
225
226                         break;
227                 }
228
229                 if (spd->flags & SPLICE_F_NONBLOCK) {
230                         if (!ret)
231                                 ret = -EAGAIN;
232                         break;
233                 }
234
235                 if (signal_pending(current)) {
236                         if (!ret)
237                                 ret = -ERESTARTSYS;
238                         break;
239                 }
240
241                 if (do_wakeup) {
242                         smp_mb();
243                         if (waitqueue_active(&pipe->wait))
244                                 wake_up_interruptible_sync(&pipe->wait);
245                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
246                         do_wakeup = 0;
247                 }
248
249                 pipe->waiting_writers++;
250                 pipe_wait(pipe);
251                 pipe->waiting_writers--;
252         }
253
254         pipe_unlock(pipe);
255
256         if (do_wakeup)
257                 wakeup_pipe_readers(pipe);
258
259         while (page_nr < spd_pages)
260                 spd->spd_release(spd, page_nr++);
261
262         return ret;
263 }
264
265 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
266 {
267         page_cache_release(spd->pages[i]);
268 }
269
270 /*
271  * Check if we need to grow the arrays holding pages and partial page
272  * descriptions.
273  */
274 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
275 {
276         unsigned int buffers = ACCESS_ONCE(pipe->buffers);
277
278         spd->nr_pages_max = buffers;
279         if (buffers <= PIPE_DEF_BUFFERS)
280                 return 0;
281
282         spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
283         spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
284
285         if (spd->pages && spd->partial)
286                 return 0;
287
288         kfree(spd->pages);
289         kfree(spd->partial);
290         return -ENOMEM;
291 }
292
293 void splice_shrink_spd(struct splice_pipe_desc *spd)
294 {
295         if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
296                 return;
297
298         kfree(spd->pages);
299         kfree(spd->partial);
300 }
301
302 static int
303 __generic_file_splice_read(struct file *in, loff_t *ppos,
304                            struct pipe_inode_info *pipe, size_t len,
305                            unsigned int flags)
306 {
307         struct address_space *mapping = in->f_mapping;
308         unsigned int loff, nr_pages, req_pages;
309         struct page *pages[PIPE_DEF_BUFFERS];
310         struct partial_page partial[PIPE_DEF_BUFFERS];
311         struct page *page;
312         pgoff_t index, end_index;
313         loff_t isize;
314         int error, page_nr;
315         struct splice_pipe_desc spd = {
316                 .pages = pages,
317                 .partial = partial,
318                 .nr_pages_max = PIPE_DEF_BUFFERS,
319                 .flags = flags,
320                 .ops = &page_cache_pipe_buf_ops,
321                 .spd_release = spd_release_page,
322         };
323
324         if (splice_grow_spd(pipe, &spd))
325                 return -ENOMEM;
326
327         index = *ppos >> PAGE_CACHE_SHIFT;
328         loff = *ppos & ~PAGE_CACHE_MASK;
329         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
330         nr_pages = min(req_pages, spd.nr_pages_max);
331
332         /*
333          * Lookup the (hopefully) full range of pages we need.
334          */
335         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
336         index += spd.nr_pages;
337
338         /*
339          * If find_get_pages_contig() returned fewer pages than we needed,
340          * readahead/allocate the rest and fill in the holes.
341          */
342         if (spd.nr_pages < nr_pages)
343                 page_cache_sync_readahead(mapping, &in->f_ra, in,
344                                 index, req_pages - spd.nr_pages);
345
346         error = 0;
347         while (spd.nr_pages < nr_pages) {
348                 /*
349                  * Page could be there, find_get_pages_contig() breaks on
350                  * the first hole.
351                  */
352                 page = find_get_page(mapping, index);
353                 if (!page) {
354                         /*
355                          * page didn't exist, allocate one.
356                          */
357                         page = page_cache_alloc_cold(mapping);
358                         if (!page)
359                                 break;
360
361                         error = add_to_page_cache_lru(page, mapping, index,
362                                                 GFP_KERNEL);
363                         if (unlikely(error)) {
364                                 page_cache_release(page);
365                                 if (error == -EEXIST)
366                                         continue;
367                                 break;
368                         }
369                         /*
370                          * add_to_page_cache() locks the page, unlock it
371                          * to avoid convoluting the logic below even more.
372                          */
373                         unlock_page(page);
374                 }
375
376                 spd.pages[spd.nr_pages++] = page;
377                 index++;
378         }
379
380         /*
381          * Now loop over the map and see if we need to start IO on any
382          * pages, fill in the partial map, etc.
383          */
384         index = *ppos >> PAGE_CACHE_SHIFT;
385         nr_pages = spd.nr_pages;
386         spd.nr_pages = 0;
387         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
388                 unsigned int this_len;
389
390                 if (!len)
391                         break;
392
393                 /*
394                  * this_len is the max we'll use from this page
395                  */
396                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
397                 page = spd.pages[page_nr];
398
399                 if (PageReadahead(page))
400                         page_cache_async_readahead(mapping, &in->f_ra, in,
401                                         page, index, req_pages - page_nr);
402
403                 /*
404                  * If the page isn't uptodate, we may need to start io on it
405                  */
406                 if (!PageUptodate(page)) {
407                         lock_page(page);
408
409                         /*
410                          * Page was truncated, or invalidated by the
411                          * filesystem.  Redo the find/create, but this time the
412                          * page is kept locked, so there's no chance of another
413                          * race with truncate/invalidate.
414                          */
415                         if (!page->mapping) {
416                                 unlock_page(page);
417                                 page = find_or_create_page(mapping, index,
418                                                 mapping_gfp_mask(mapping));
419
420                                 if (!page) {
421                                         error = -ENOMEM;
422                                         break;
423                                 }
424                                 page_cache_release(spd.pages[page_nr]);
425                                 spd.pages[page_nr] = page;
426                         }
427                         /*
428                          * page was already under io and is now done, great
429                          */
430                         if (PageUptodate(page)) {
431                                 unlock_page(page);
432                                 goto fill_it;
433                         }
434
435                         /*
436                          * need to read in the page
437                          */
438                         error = mapping->a_ops->readpage(in, page);
439                         if (unlikely(error)) {
440                                 /*
441                                  * We really should re-lookup the page here,
442                                  * but it complicates things a lot. Instead
443                                  * lets just do what we already stored, and
444                                  * we'll get it the next time we are called.
445                                  */
446                                 if (error == AOP_TRUNCATED_PAGE)
447                                         error = 0;
448
449                                 break;
450                         }
451                 }
452 fill_it:
453                 /*
454                  * i_size must be checked after PageUptodate.
455                  */
456                 isize = i_size_read(mapping->host);
457                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
458                 if (unlikely(!isize || index > end_index))
459                         break;
460
461                 /*
462                  * if this is the last page, see if we need to shrink
463                  * the length and stop
464                  */
465                 if (end_index == index) {
466                         unsigned int plen;
467
468                         /*
469                          * max good bytes in this page
470                          */
471                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
472                         if (plen <= loff)
473                                 break;
474
475                         /*
476                          * force quit after adding this page
477                          */
478                         this_len = min(this_len, plen - loff);
479                         len = this_len;
480                 }
481
482                 spd.partial[page_nr].offset = loff;
483                 spd.partial[page_nr].len = this_len;
484                 len -= this_len;
485                 loff = 0;
486                 spd.nr_pages++;
487                 index++;
488         }
489
490         /*
491          * Release any pages at the end, if we quit early. 'page_nr' is how far
492          * we got, 'nr_pages' is how many pages are in the map.
493          */
494         while (page_nr < nr_pages)
495                 page_cache_release(spd.pages[page_nr++]);
496         in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
497
498         if (spd.nr_pages)
499                 error = splice_to_pipe(pipe, &spd);
500
501         splice_shrink_spd(&spd);
502         return error;
503 }
504
505 /**
506  * generic_file_splice_read - splice data from file to a pipe
507  * @in:         file to splice from
508  * @ppos:       position in @in
509  * @pipe:       pipe to splice to
510  * @len:        number of bytes to splice
511  * @flags:      splice modifier flags
512  *
513  * Description:
514  *    Will read pages from given file and fill them into a pipe. Can be
515  *    used as long as the address_space operations for the source implements
516  *    a readpage() hook.
517  *
518  */
519 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
520                                  struct pipe_inode_info *pipe, size_t len,
521                                  unsigned int flags)
522 {
523         loff_t isize, left;
524         int ret;
525
526         isize = i_size_read(in->f_mapping->host);
527         if (unlikely(*ppos >= isize))
528                 return 0;
529
530         left = isize - *ppos;
531         if (unlikely(left < len))
532                 len = left;
533
534         ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
535         if (ret > 0) {
536                 *ppos += ret;
537                 file_accessed(in);
538         }
539
540         return ret;
541 }
542 EXPORT_SYMBOL(generic_file_splice_read);
543
544 static const struct pipe_buf_operations default_pipe_buf_ops = {
545         .can_merge = 0,
546         .confirm = generic_pipe_buf_confirm,
547         .release = generic_pipe_buf_release,
548         .steal = generic_pipe_buf_steal,
549         .get = generic_pipe_buf_get,
550 };
551
552 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
553                                     struct pipe_buffer *buf)
554 {
555         return 1;
556 }
557
558 /* Pipe buffer operations for a socket and similar. */
559 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
560         .can_merge = 0,
561         .confirm = generic_pipe_buf_confirm,
562         .release = generic_pipe_buf_release,
563         .steal = generic_pipe_buf_nosteal,
564         .get = generic_pipe_buf_get,
565 };
566 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
567
568 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
569                             unsigned long vlen, loff_t offset)
570 {
571         mm_segment_t old_fs;
572         loff_t pos = offset;
573         ssize_t res;
574
575         old_fs = get_fs();
576         set_fs(get_ds());
577         /* The cast to a user pointer is valid due to the set_fs() */
578         res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
579         set_fs(old_fs);
580
581         return res;
582 }
583
584 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
585                             loff_t pos)
586 {
587         mm_segment_t old_fs;
588         ssize_t res;
589
590         old_fs = get_fs();
591         set_fs(get_ds());
592         /* The cast to a user pointer is valid due to the set_fs() */
593         res = vfs_write(file, (__force const char __user *)buf, count, &pos);
594         set_fs(old_fs);
595
596         return res;
597 }
598 EXPORT_SYMBOL(kernel_write);
599
600 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
601                                  struct pipe_inode_info *pipe, size_t len,
602                                  unsigned int flags)
603 {
604         unsigned int nr_pages;
605         unsigned int nr_freed;
606         size_t offset;
607         struct page *pages[PIPE_DEF_BUFFERS];
608         struct partial_page partial[PIPE_DEF_BUFFERS];
609         struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
610         ssize_t res;
611         size_t this_len;
612         int error;
613         int i;
614         struct splice_pipe_desc spd = {
615                 .pages = pages,
616                 .partial = partial,
617                 .nr_pages_max = PIPE_DEF_BUFFERS,
618                 .flags = flags,
619                 .ops = &default_pipe_buf_ops,
620                 .spd_release = spd_release_page,
621         };
622
623         if (splice_grow_spd(pipe, &spd))
624                 return -ENOMEM;
625
626         res = -ENOMEM;
627         vec = __vec;
628         if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
629                 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
630                 if (!vec)
631                         goto shrink_ret;
632         }
633
634         offset = *ppos & ~PAGE_CACHE_MASK;
635         nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
636
637         for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
638                 struct page *page;
639
640                 page = alloc_page(GFP_USER);
641                 error = -ENOMEM;
642                 if (!page)
643                         goto err;
644
645                 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
646                 vec[i].iov_base = (void __user *) page_address(page);
647                 vec[i].iov_len = this_len;
648                 spd.pages[i] = page;
649                 spd.nr_pages++;
650                 len -= this_len;
651                 offset = 0;
652         }
653
654         res = kernel_readv(in, vec, spd.nr_pages, *ppos);
655         if (res < 0) {
656                 error = res;
657                 goto err;
658         }
659
660         error = 0;
661         if (!res)
662                 goto err;
663
664         nr_freed = 0;
665         for (i = 0; i < spd.nr_pages; i++) {
666                 this_len = min_t(size_t, vec[i].iov_len, res);
667                 spd.partial[i].offset = 0;
668                 spd.partial[i].len = this_len;
669                 if (!this_len) {
670                         __free_page(spd.pages[i]);
671                         spd.pages[i] = NULL;
672                         nr_freed++;
673                 }
674                 res -= this_len;
675         }
676         spd.nr_pages -= nr_freed;
677
678         res = splice_to_pipe(pipe, &spd);
679         if (res > 0)
680                 *ppos += res;
681
682 shrink_ret:
683         if (vec != __vec)
684                 kfree(vec);
685         splice_shrink_spd(&spd);
686         return res;
687
688 err:
689         for (i = 0; i < spd.nr_pages; i++)
690                 __free_page(spd.pages[i]);
691
692         res = error;
693         goto shrink_ret;
694 }
695 EXPORT_SYMBOL(default_file_splice_read);
696
697 /*
698  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
699  * using sendpage(). Return the number of bytes sent.
700  */
701 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
702                             struct pipe_buffer *buf, struct splice_desc *sd)
703 {
704         struct file *file = sd->u.file;
705         loff_t pos = sd->pos;
706         int more;
707
708         if (!likely(file->f_op->sendpage))
709                 return -EINVAL;
710
711         more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
712
713         if (sd->len < sd->total_len && pipe->nrbufs > 1)
714                 more |= MSG_SENDPAGE_NOTLAST;
715
716         return file->f_op->sendpage(file, buf->page, buf->offset,
717                                     sd->len, &pos, more);
718 }
719
720 /*
721  * This is a little more tricky than the file -> pipe splicing. There are
722  * basically three cases:
723  *
724  *      - Destination page already exists in the address space and there
725  *        are users of it. For that case we have no other option that
726  *        copying the data. Tough luck.
727  *      - Destination page already exists in the address space, but there
728  *        are no users of it. Make sure it's uptodate, then drop it. Fall
729  *        through to last case.
730  *      - Destination page does not exist, we can add the pipe page to
731  *        the page cache and avoid the copy.
732  *
733  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
734  * sd->flags), we attempt to migrate pages from the pipe to the output
735  * file address space page cache. This is possible if no one else has
736  * the pipe page referenced outside of the pipe and page cache. If
737  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
738  * a new page in the output file page cache and fill/dirty that.
739  */
740 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
741                  struct splice_desc *sd)
742 {
743         struct file *file = sd->u.file;
744         struct address_space *mapping = file->f_mapping;
745         unsigned int offset, this_len;
746         struct page *page;
747         void *fsdata;
748         int ret;
749
750         offset = sd->pos & ~PAGE_CACHE_MASK;
751
752         this_len = sd->len;
753         if (this_len + offset > PAGE_CACHE_SIZE)
754                 this_len = PAGE_CACHE_SIZE - offset;
755
756         ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
757                                 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
758         if (unlikely(ret))
759                 goto out;
760
761         if (buf->page != page) {
762                 char *src = kmap_atomic(buf->page);
763                 char *dst = kmap_atomic(page);
764
765                 memcpy(dst + offset, src + buf->offset, this_len);
766                 flush_dcache_page(page);
767                 kunmap_atomic(dst);
768                 kunmap_atomic(src);
769         }
770         ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
771                                 page, fsdata);
772 out:
773         return ret;
774 }
775 EXPORT_SYMBOL(pipe_to_file);
776
777 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
778 {
779         smp_mb();
780         if (waitqueue_active(&pipe->wait))
781                 wake_up_interruptible(&pipe->wait);
782         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
783 }
784
785 /**
786  * splice_from_pipe_feed - feed available data from a pipe to a file
787  * @pipe:       pipe to splice from
788  * @sd:         information to @actor
789  * @actor:      handler that splices the data
790  *
791  * Description:
792  *    This function loops over the pipe and calls @actor to do the
793  *    actual moving of a single struct pipe_buffer to the desired
794  *    destination.  It returns when there's no more buffers left in
795  *    the pipe or if the requested number of bytes (@sd->total_len)
796  *    have been copied.  It returns a positive number (one) if the
797  *    pipe needs to be filled with more data, zero if the required
798  *    number of bytes have been copied and -errno on error.
799  *
800  *    This, together with splice_from_pipe_{begin,end,next}, may be
801  *    used to implement the functionality of __splice_from_pipe() when
802  *    locking is required around copying the pipe buffers to the
803  *    destination.
804  */
805 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
806                           splice_actor *actor)
807 {
808         int ret;
809
810         while (pipe->nrbufs) {
811                 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
812                 const struct pipe_buf_operations *ops = buf->ops;
813
814                 sd->len = buf->len;
815                 if (sd->len > sd->total_len)
816                         sd->len = sd->total_len;
817
818                 ret = buf->ops->confirm(pipe, buf);
819                 if (unlikely(ret)) {
820                         if (ret == -ENODATA)
821                                 ret = 0;
822                         return ret;
823                 }
824
825                 ret = actor(pipe, buf, sd);
826                 if (ret <= 0)
827                         return ret;
828
829                 buf->offset += ret;
830                 buf->len -= ret;
831
832                 sd->num_spliced += ret;
833                 sd->len -= ret;
834                 sd->pos += ret;
835                 sd->total_len -= ret;
836
837                 if (!buf->len) {
838                         buf->ops = NULL;
839                         ops->release(pipe, buf);
840                         pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
841                         pipe->nrbufs--;
842                         if (pipe->files)
843                                 sd->need_wakeup = true;
844                 }
845
846                 if (!sd->total_len)
847                         return 0;
848         }
849
850         return 1;
851 }
852 EXPORT_SYMBOL(splice_from_pipe_feed);
853
854 /**
855  * splice_from_pipe_next - wait for some data to splice from
856  * @pipe:       pipe to splice from
857  * @sd:         information about the splice operation
858  *
859  * Description:
860  *    This function will wait for some data and return a positive
861  *    value (one) if pipe buffers are available.  It will return zero
862  *    or -errno if no more data needs to be spliced.
863  */
864 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
865 {
866         while (!pipe->nrbufs) {
867                 if (!pipe->writers)
868                         return 0;
869
870                 if (!pipe->waiting_writers && sd->num_spliced)
871                         return 0;
872
873                 if (sd->flags & SPLICE_F_NONBLOCK)
874                         return -EAGAIN;
875
876                 if (signal_pending(current))
877                         return -ERESTARTSYS;
878
879                 if (sd->need_wakeup) {
880                         wakeup_pipe_writers(pipe);
881                         sd->need_wakeup = false;
882                 }
883
884                 pipe_wait(pipe);
885         }
886
887         return 1;
888 }
889 EXPORT_SYMBOL(splice_from_pipe_next);
890
891 /**
892  * splice_from_pipe_begin - start splicing from pipe
893  * @sd:         information about the splice operation
894  *
895  * Description:
896  *    This function should be called before a loop containing
897  *    splice_from_pipe_next() and splice_from_pipe_feed() to
898  *    initialize the necessary fields of @sd.
899  */
900 void splice_from_pipe_begin(struct splice_desc *sd)
901 {
902         sd->num_spliced = 0;
903         sd->need_wakeup = false;
904 }
905 EXPORT_SYMBOL(splice_from_pipe_begin);
906
907 /**
908  * splice_from_pipe_end - finish splicing from pipe
909  * @pipe:       pipe to splice from
910  * @sd:         information about the splice operation
911  *
912  * Description:
913  *    This function will wake up pipe writers if necessary.  It should
914  *    be called after a loop containing splice_from_pipe_next() and
915  *    splice_from_pipe_feed().
916  */
917 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
918 {
919         if (sd->need_wakeup)
920                 wakeup_pipe_writers(pipe);
921 }
922 EXPORT_SYMBOL(splice_from_pipe_end);
923
924 /**
925  * __splice_from_pipe - splice data from a pipe to given actor
926  * @pipe:       pipe to splice from
927  * @sd:         information to @actor
928  * @actor:      handler that splices the data
929  *
930  * Description:
931  *    This function does little more than loop over the pipe and call
932  *    @actor to do the actual moving of a single struct pipe_buffer to
933  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
934  *    pipe_to_user.
935  *
936  */
937 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
938                            splice_actor *actor)
939 {
940         int ret;
941
942         splice_from_pipe_begin(sd);
943         do {
944                 ret = splice_from_pipe_next(pipe, sd);
945                 if (ret > 0)
946                         ret = splice_from_pipe_feed(pipe, sd, actor);
947         } while (ret > 0);
948         splice_from_pipe_end(pipe, sd);
949
950         return sd->num_spliced ? sd->num_spliced : ret;
951 }
952 EXPORT_SYMBOL(__splice_from_pipe);
953
954 /**
955  * splice_from_pipe - splice data from a pipe to a file
956  * @pipe:       pipe to splice from
957  * @out:        file to splice to
958  * @ppos:       position in @out
959  * @len:        how many bytes to splice
960  * @flags:      splice modifier flags
961  * @actor:      handler that splices the data
962  *
963  * Description:
964  *    See __splice_from_pipe. This function locks the pipe inode,
965  *    otherwise it's identical to __splice_from_pipe().
966  *
967  */
968 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
969                          loff_t *ppos, size_t len, unsigned int flags,
970                          splice_actor *actor)
971 {
972         ssize_t ret;
973         struct splice_desc sd = {
974                 .total_len = len,
975                 .flags = flags,
976                 .pos = *ppos,
977                 .u.file = out,
978         };
979
980         pipe_lock(pipe);
981         ret = __splice_from_pipe(pipe, &sd, actor);
982         pipe_unlock(pipe);
983
984         return ret;
985 }
986
987 /**
988  * generic_file_splice_write - splice data from a pipe to a file
989  * @pipe:       pipe info
990  * @out:        file to write to
991  * @ppos:       position in @out
992  * @len:        number of bytes to splice
993  * @flags:      splice modifier flags
994  *
995  * Description:
996  *    Will either move or copy pages (determined by @flags options) from
997  *    the given pipe inode to the given file.
998  *
999  */
1000 ssize_t
1001 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
1002                           loff_t *ppos, size_t len, unsigned int flags)
1003 {
1004         struct address_space *mapping = out->f_mapping;
1005         struct inode *inode = mapping->host;
1006         struct splice_desc sd = {
1007                 .total_len = len,
1008                 .flags = flags,
1009                 .pos = *ppos,
1010                 .u.file = out,
1011         };
1012         ssize_t ret;
1013
1014         pipe_lock(pipe);
1015
1016         splice_from_pipe_begin(&sd);
1017         do {
1018                 ret = splice_from_pipe_next(pipe, &sd);
1019                 if (ret <= 0)
1020                         break;
1021
1022                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1023                 ret = file_remove_suid(out);
1024                 if (!ret) {
1025                         ret = file_update_time(out);
1026                         if (!ret)
1027                                 ret = splice_from_pipe_feed(pipe, &sd,
1028                                                             pipe_to_file);
1029                 }
1030                 mutex_unlock(&inode->i_mutex);
1031         } while (ret > 0);
1032         splice_from_pipe_end(pipe, &sd);
1033
1034         pipe_unlock(pipe);
1035
1036         if (sd.num_spliced)
1037                 ret = sd.num_spliced;
1038
1039         if (ret > 0) {
1040                 int err;
1041
1042                 err = generic_write_sync(out, *ppos, ret);
1043                 if (err)
1044                         ret = err;
1045                 else
1046                         *ppos += ret;
1047                 balance_dirty_pages_ratelimited(mapping);
1048         }
1049
1050         return ret;
1051 }
1052
1053 EXPORT_SYMBOL(generic_file_splice_write);
1054
1055 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1056                           struct splice_desc *sd)
1057 {
1058         int ret;
1059         void *data;
1060         loff_t tmp = sd->pos;
1061
1062         data = kmap(buf->page);
1063         ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1064         kunmap(buf->page);
1065
1066         return ret;
1067 }
1068
1069 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1070                                          struct file *out, loff_t *ppos,
1071                                          size_t len, unsigned int flags)
1072 {
1073         ssize_t ret;
1074
1075         ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1076         if (ret > 0)
1077                 *ppos += ret;
1078
1079         return ret;
1080 }
1081
1082 /**
1083  * generic_splice_sendpage - splice data from a pipe to a socket
1084  * @pipe:       pipe to splice from
1085  * @out:        socket to write to
1086  * @ppos:       position in @out
1087  * @len:        number of bytes to splice
1088  * @flags:      splice modifier flags
1089  *
1090  * Description:
1091  *    Will send @len bytes from the pipe to a network socket. No data copying
1092  *    is involved.
1093  *
1094  */
1095 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1096                                 loff_t *ppos, size_t len, unsigned int flags)
1097 {
1098         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1099 }
1100
1101 EXPORT_SYMBOL(generic_splice_sendpage);
1102
1103 /*
1104  * Attempt to initiate a splice from pipe to file.
1105  */
1106 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1107                            loff_t *ppos, size_t len, unsigned int flags)
1108 {
1109         ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1110                                 loff_t *, size_t, unsigned int);
1111
1112         if (out->f_op->splice_write)
1113                 splice_write = out->f_op->splice_write;
1114         else
1115                 splice_write = default_file_splice_write;
1116
1117         return splice_write(pipe, out, ppos, len, flags);
1118 }
1119
1120 /*
1121  * Attempt to initiate a splice from a file to a pipe.
1122  */
1123 static long do_splice_to(struct file *in, loff_t *ppos,
1124                          struct pipe_inode_info *pipe, size_t len,
1125                          unsigned int flags)
1126 {
1127         ssize_t (*splice_read)(struct file *, loff_t *,
1128                                struct pipe_inode_info *, size_t, unsigned int);
1129         int ret;
1130
1131         if (unlikely(!(in->f_mode & FMODE_READ)))
1132                 return -EBADF;
1133
1134         ret = rw_verify_area(READ, in, ppos, len);
1135         if (unlikely(ret < 0))
1136                 return ret;
1137
1138         if (in->f_op->splice_read)
1139                 splice_read = in->f_op->splice_read;
1140         else
1141                 splice_read = default_file_splice_read;
1142
1143         return splice_read(in, ppos, pipe, len, flags);
1144 }
1145
1146 /**
1147  * splice_direct_to_actor - splices data directly between two non-pipes
1148  * @in:         file to splice from
1149  * @sd:         actor information on where to splice to
1150  * @actor:      handles the data splicing
1151  *
1152  * Description:
1153  *    This is a special case helper to splice directly between two
1154  *    points, without requiring an explicit pipe. Internally an allocated
1155  *    pipe is cached in the process, and reused during the lifetime of
1156  *    that process.
1157  *
1158  */
1159 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1160                                splice_direct_actor *actor)
1161 {
1162         struct pipe_inode_info *pipe;
1163         long ret, bytes;
1164         umode_t i_mode;
1165         size_t len;
1166         int i, flags;
1167
1168         /*
1169          * We require the input being a regular file, as we don't want to
1170          * randomly drop data for eg socket -> socket splicing. Use the
1171          * piped splicing for that!
1172          */
1173         i_mode = file_inode(in)->i_mode;
1174         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1175                 return -EINVAL;
1176
1177         /*
1178          * neither in nor out is a pipe, setup an internal pipe attached to
1179          * 'out' and transfer the wanted data from 'in' to 'out' through that
1180          */
1181         pipe = current->splice_pipe;
1182         if (unlikely(!pipe)) {
1183                 pipe = alloc_pipe_info();
1184                 if (!pipe)
1185                         return -ENOMEM;
1186
1187                 /*
1188                  * We don't have an immediate reader, but we'll read the stuff
1189                  * out of the pipe right after the splice_to_pipe(). So set
1190                  * PIPE_READERS appropriately.
1191                  */
1192                 pipe->readers = 1;
1193
1194                 current->splice_pipe = pipe;
1195         }
1196
1197         /*
1198          * Do the splice.
1199          */
1200         ret = 0;
1201         bytes = 0;
1202         len = sd->total_len;
1203         flags = sd->flags;
1204
1205         /*
1206          * Don't block on output, we have to drain the direct pipe.
1207          */
1208         sd->flags &= ~SPLICE_F_NONBLOCK;
1209
1210         while (len) {
1211                 size_t read_len;
1212                 loff_t pos = sd->pos, prev_pos = pos;
1213
1214                 ret = do_splice_to(in, &pos, pipe, len, flags);
1215                 if (unlikely(ret <= 0))
1216                         goto out_release;
1217
1218                 read_len = ret;
1219                 sd->total_len = read_len;
1220
1221                 /*
1222                  * NOTE: nonblocking mode only applies to the input. We
1223                  * must not do the output in nonblocking mode as then we
1224                  * could get stuck data in the internal pipe:
1225                  */
1226                 ret = actor(pipe, sd);
1227                 if (unlikely(ret <= 0)) {
1228                         sd->pos = prev_pos;
1229                         goto out_release;
1230                 }
1231
1232                 bytes += ret;
1233                 len -= ret;
1234                 sd->pos = pos;
1235
1236                 if (ret < read_len) {
1237                         sd->pos = prev_pos + ret;
1238                         goto out_release;
1239                 }
1240         }
1241
1242 done:
1243         pipe->nrbufs = pipe->curbuf = 0;
1244         file_accessed(in);
1245         return bytes;
1246
1247 out_release:
1248         /*
1249          * If we did an incomplete transfer we must release
1250          * the pipe buffers in question:
1251          */
1252         for (i = 0; i < pipe->buffers; i++) {
1253                 struct pipe_buffer *buf = pipe->bufs + i;
1254
1255                 if (buf->ops) {
1256                         buf->ops->release(pipe, buf);
1257                         buf->ops = NULL;
1258                 }
1259         }
1260
1261         if (!bytes)
1262                 bytes = ret;
1263
1264         goto done;
1265 }
1266 EXPORT_SYMBOL(splice_direct_to_actor);
1267
1268 static int direct_splice_actor(struct pipe_inode_info *pipe,
1269                                struct splice_desc *sd)
1270 {
1271         struct file *file = sd->u.file;
1272
1273         return do_splice_from(pipe, file, sd->opos, sd->total_len,
1274                               sd->flags);
1275 }
1276
1277 /**
1278  * do_splice_direct - splices data directly between two files
1279  * @in:         file to splice from
1280  * @ppos:       input file offset
1281  * @out:        file to splice to
1282  * @opos:       output file offset
1283  * @len:        number of bytes to splice
1284  * @flags:      splice modifier flags
1285  *
1286  * Description:
1287  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1288  *    doing it in the application would incur an extra system call
1289  *    (splice in + splice out, as compared to just sendfile()). So this helper
1290  *    can splice directly through a process-private pipe.
1291  *
1292  */
1293 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1294                       loff_t *opos, size_t len, unsigned int flags)
1295 {
1296         struct splice_desc sd = {
1297                 .len            = len,
1298                 .total_len      = len,
1299                 .flags          = flags,
1300                 .pos            = *ppos,
1301                 .u.file         = out,
1302                 .opos           = opos,
1303         };
1304         long ret;
1305
1306         if (unlikely(!(out->f_mode & FMODE_WRITE)))
1307                 return -EBADF;
1308
1309         if (unlikely(out->f_flags & O_APPEND))
1310                 return -EINVAL;
1311
1312         ret = rw_verify_area(WRITE, out, opos, len);
1313         if (unlikely(ret < 0))
1314                 return ret;
1315
1316         ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1317         if (ret > 0)
1318                 *ppos = sd.pos;
1319
1320         return ret;
1321 }
1322
1323 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1324                                struct pipe_inode_info *opipe,
1325                                size_t len, unsigned int flags);
1326
1327 /*
1328  * Determine where to splice to/from.
1329  */
1330 static long do_splice(struct file *in, loff_t __user *off_in,
1331                       struct file *out, loff_t __user *off_out,
1332                       size_t len, unsigned int flags)
1333 {
1334         struct pipe_inode_info *ipipe;
1335         struct pipe_inode_info *opipe;
1336         loff_t offset;
1337         long ret;
1338
1339         ipipe = get_pipe_info(in);
1340         opipe = get_pipe_info(out);
1341
1342         if (ipipe && opipe) {
1343                 if (off_in || off_out)
1344                         return -ESPIPE;
1345
1346                 if (!(in->f_mode & FMODE_READ))
1347                         return -EBADF;
1348
1349                 if (!(out->f_mode & FMODE_WRITE))
1350                         return -EBADF;
1351
1352                 /* Splicing to self would be fun, but... */
1353                 if (ipipe == opipe)
1354                         return -EINVAL;
1355
1356                 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1357         }
1358
1359         if (ipipe) {
1360                 if (off_in)
1361                         return -ESPIPE;
1362                 if (off_out) {
1363                         if (!(out->f_mode & FMODE_PWRITE))
1364                                 return -EINVAL;
1365                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1366                                 return -EFAULT;
1367                 } else {
1368                         offset = out->f_pos;
1369                 }
1370
1371                 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1372                         return -EBADF;
1373
1374                 if (unlikely(out->f_flags & O_APPEND))
1375                         return -EINVAL;
1376
1377                 ret = rw_verify_area(WRITE, out, &offset, len);
1378                 if (unlikely(ret < 0))
1379                         return ret;
1380
1381                 file_start_write(out);
1382                 ret = do_splice_from(ipipe, out, &offset, len, flags);
1383                 file_end_write(out);
1384
1385                 if (!off_out)
1386                         out->f_pos = offset;
1387                 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1388                         ret = -EFAULT;
1389
1390                 return ret;
1391         }
1392
1393         if (opipe) {
1394                 if (off_out)
1395                         return -ESPIPE;
1396                 if (off_in) {
1397                         if (!(in->f_mode & FMODE_PREAD))
1398                                 return -EINVAL;
1399                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1400                                 return -EFAULT;
1401                 } else {
1402                         offset = in->f_pos;
1403                 }
1404
1405                 ret = do_splice_to(in, &offset, opipe, len, flags);
1406
1407                 if (!off_in)
1408                         in->f_pos = offset;
1409                 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1410                         ret = -EFAULT;
1411
1412                 return ret;
1413         }
1414
1415         return -EINVAL;
1416 }
1417
1418 /*
1419  * Map an iov into an array of pages and offset/length tupples. With the
1420  * partial_page structure, we can map several non-contiguous ranges into
1421  * our ones pages[] map instead of splitting that operation into pieces.
1422  * Could easily be exported as a generic helper for other users, in which
1423  * case one would probably want to add a 'max_nr_pages' parameter as well.
1424  */
1425 static int get_iovec_page_array(const struct iovec __user *iov,
1426                                 unsigned int nr_vecs, struct page **pages,
1427                                 struct partial_page *partial, bool aligned,
1428                                 unsigned int pipe_buffers)
1429 {
1430         int buffers = 0, error = 0;
1431
1432         while (nr_vecs) {
1433                 unsigned long off, npages;
1434                 struct iovec entry;
1435                 void __user *base;
1436                 size_t len;
1437                 int i;
1438
1439                 error = -EFAULT;
1440                 if (copy_from_user(&entry, iov, sizeof(entry)))
1441                         break;
1442
1443                 base = entry.iov_base;
1444                 len = entry.iov_len;
1445
1446                 /*
1447                  * Sanity check this iovec. 0 read succeeds.
1448                  */
1449                 error = 0;
1450                 if (unlikely(!len))
1451                         break;
1452                 error = -EFAULT;
1453                 if (!access_ok(VERIFY_READ, base, len))
1454                         break;
1455
1456                 /*
1457                  * Get this base offset and number of pages, then map
1458                  * in the user pages.
1459                  */
1460                 off = (unsigned long) base & ~PAGE_MASK;
1461
1462                 /*
1463                  * If asked for alignment, the offset must be zero and the
1464                  * length a multiple of the PAGE_SIZE.
1465                  */
1466                 error = -EINVAL;
1467                 if (aligned && (off || len & ~PAGE_MASK))
1468                         break;
1469
1470                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1471                 if (npages > pipe_buffers - buffers)
1472                         npages = pipe_buffers - buffers;
1473
1474                 error = get_user_pages_fast((unsigned long)base, npages,
1475                                         0, &pages[buffers]);
1476
1477                 if (unlikely(error <= 0))
1478                         break;
1479
1480                 /*
1481                  * Fill this contiguous range into the partial page map.
1482                  */
1483                 for (i = 0; i < error; i++) {
1484                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1485
1486                         partial[buffers].offset = off;
1487                         partial[buffers].len = plen;
1488
1489                         off = 0;
1490                         len -= plen;
1491                         buffers++;
1492                 }
1493
1494                 /*
1495                  * We didn't complete this iov, stop here since it probably
1496                  * means we have to move some of this into a pipe to
1497                  * be able to continue.
1498                  */
1499                 if (len)
1500                         break;
1501
1502                 /*
1503                  * Don't continue if we mapped fewer pages than we asked for,
1504                  * or if we mapped the max number of pages that we have
1505                  * room for.
1506                  */
1507                 if (error < npages || buffers == pipe_buffers)
1508                         break;
1509
1510                 nr_vecs--;
1511                 iov++;
1512         }
1513
1514         if (buffers)
1515                 return buffers;
1516
1517         return error;
1518 }
1519
1520 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1521                         struct splice_desc *sd)
1522 {
1523         int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1524         return n == sd->len ? n : -EFAULT;
1525 }
1526
1527 /*
1528  * For lack of a better implementation, implement vmsplice() to userspace
1529  * as a simple copy of the pipes pages to the user iov.
1530  */
1531 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1532                              unsigned long nr_segs, unsigned int flags)
1533 {
1534         struct pipe_inode_info *pipe;
1535         struct splice_desc sd;
1536         long ret;
1537         struct iovec iovstack[UIO_FASTIOV];
1538         struct iovec *iov = iovstack;
1539         struct iov_iter iter;
1540         ssize_t count = 0;
1541
1542         pipe = get_pipe_info(file);
1543         if (!pipe)
1544                 return -EBADF;
1545
1546         ret = rw_copy_check_uvector(READ, uiov, nr_segs,
1547                                     ARRAY_SIZE(iovstack), iovstack, &iov);
1548         if (ret <= 0)
1549                 return ret;
1550
1551         iov_iter_init(&iter, iov, nr_segs, count, 0);
1552
1553         sd.len = 0;
1554         sd.total_len = count;
1555         sd.flags = flags;
1556         sd.u.data = &iter;
1557         sd.pos = 0;
1558
1559         pipe_lock(pipe);
1560         ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1561         pipe_unlock(pipe);
1562
1563         if (iov != iovstack)
1564                 kfree(iov);
1565
1566         return ret;
1567 }
1568
1569 /*
1570  * vmsplice splices a user address range into a pipe. It can be thought of
1571  * as splice-from-memory, where the regular splice is splice-from-file (or
1572  * to file). In both cases the output is a pipe, naturally.
1573  */
1574 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1575                              unsigned long nr_segs, unsigned int flags)
1576 {
1577         struct pipe_inode_info *pipe;
1578         struct page *pages[PIPE_DEF_BUFFERS];
1579         struct partial_page partial[PIPE_DEF_BUFFERS];
1580         struct splice_pipe_desc spd = {
1581                 .pages = pages,
1582                 .partial = partial,
1583                 .nr_pages_max = PIPE_DEF_BUFFERS,
1584                 .flags = flags,
1585                 .ops = &user_page_pipe_buf_ops,
1586                 .spd_release = spd_release_page,
1587         };
1588         long ret;
1589
1590         pipe = get_pipe_info(file);
1591         if (!pipe)
1592                 return -EBADF;
1593
1594         if (splice_grow_spd(pipe, &spd))
1595                 return -ENOMEM;
1596
1597         spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1598                                             spd.partial, false,
1599                                             spd.nr_pages_max);
1600         if (spd.nr_pages <= 0)
1601                 ret = spd.nr_pages;
1602         else
1603                 ret = splice_to_pipe(pipe, &spd);
1604
1605         splice_shrink_spd(&spd);
1606         return ret;
1607 }
1608
1609 /*
1610  * Note that vmsplice only really supports true splicing _from_ user memory
1611  * to a pipe, not the other way around. Splicing from user memory is a simple
1612  * operation that can be supported without any funky alignment restrictions
1613  * or nasty vm tricks. We simply map in the user memory and fill them into
1614  * a pipe. The reverse isn't quite as easy, though. There are two possible
1615  * solutions for that:
1616  *
1617  *      - memcpy() the data internally, at which point we might as well just
1618  *        do a regular read() on the buffer anyway.
1619  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1620  *        has restriction limitations on both ends of the pipe).
1621  *
1622  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1623  *
1624  */
1625 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1626                 unsigned long, nr_segs, unsigned int, flags)
1627 {
1628         struct fd f;
1629         long error;
1630
1631         if (unlikely(nr_segs > UIO_MAXIOV))
1632                 return -EINVAL;
1633         else if (unlikely(!nr_segs))
1634                 return 0;
1635
1636         error = -EBADF;
1637         f = fdget(fd);
1638         if (f.file) {
1639                 if (f.file->f_mode & FMODE_WRITE)
1640                         error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1641                 else if (f.file->f_mode & FMODE_READ)
1642                         error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1643
1644                 fdput(f);
1645         }
1646
1647         return error;
1648 }
1649
1650 #ifdef CONFIG_COMPAT
1651 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1652                     unsigned int, nr_segs, unsigned int, flags)
1653 {
1654         unsigned i;
1655         struct iovec __user *iov;
1656         if (nr_segs > UIO_MAXIOV)
1657                 return -EINVAL;
1658         iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1659         for (i = 0; i < nr_segs; i++) {
1660                 struct compat_iovec v;
1661                 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1662                     get_user(v.iov_len, &iov32[i].iov_len) ||
1663                     put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1664                     put_user(v.iov_len, &iov[i].iov_len))
1665                         return -EFAULT;
1666         }
1667         return sys_vmsplice(fd, iov, nr_segs, flags);
1668 }
1669 #endif
1670
1671 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1672                 int, fd_out, loff_t __user *, off_out,
1673                 size_t, len, unsigned int, flags)
1674 {
1675         struct fd in, out;
1676         long error;
1677
1678         if (unlikely(!len))
1679                 return 0;
1680
1681         error = -EBADF;
1682         in = fdget(fd_in);
1683         if (in.file) {
1684                 if (in.file->f_mode & FMODE_READ) {
1685                         out = fdget(fd_out);
1686                         if (out.file) {
1687                                 if (out.file->f_mode & FMODE_WRITE)
1688                                         error = do_splice(in.file, off_in,
1689                                                           out.file, off_out,
1690                                                           len, flags);
1691                                 fdput(out);
1692                         }
1693                 }
1694                 fdput(in);
1695         }
1696         return error;
1697 }
1698
1699 /*
1700  * Make sure there's data to read. Wait for input if we can, otherwise
1701  * return an appropriate error.
1702  */
1703 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1704 {
1705         int ret;
1706
1707         /*
1708          * Check ->nrbufs without the inode lock first. This function
1709          * is speculative anyways, so missing one is ok.
1710          */
1711         if (pipe->nrbufs)
1712                 return 0;
1713
1714         ret = 0;
1715         pipe_lock(pipe);
1716
1717         while (!pipe->nrbufs) {
1718                 if (signal_pending(current)) {
1719                         ret = -ERESTARTSYS;
1720                         break;
1721                 }
1722                 if (!pipe->writers)
1723                         break;
1724                 if (!pipe->waiting_writers) {
1725                         if (flags & SPLICE_F_NONBLOCK) {
1726                                 ret = -EAGAIN;
1727                                 break;
1728                         }
1729                 }
1730                 pipe_wait(pipe);
1731         }
1732
1733         pipe_unlock(pipe);
1734         return ret;
1735 }
1736
1737 /*
1738  * Make sure there's writeable room. Wait for room if we can, otherwise
1739  * return an appropriate error.
1740  */
1741 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1742 {
1743         int ret;
1744
1745         /*
1746          * Check ->nrbufs without the inode lock first. This function
1747          * is speculative anyways, so missing one is ok.
1748          */
1749         if (pipe->nrbufs < pipe->buffers)
1750                 return 0;
1751
1752         ret = 0;
1753         pipe_lock(pipe);
1754
1755         while (pipe->nrbufs >= pipe->buffers) {
1756                 if (!pipe->readers) {
1757                         send_sig(SIGPIPE, current, 0);
1758                         ret = -EPIPE;
1759                         break;
1760                 }
1761                 if (flags & SPLICE_F_NONBLOCK) {
1762                         ret = -EAGAIN;
1763                         break;
1764                 }
1765                 if (signal_pending(current)) {
1766                         ret = -ERESTARTSYS;
1767                         break;
1768                 }
1769                 pipe->waiting_writers++;
1770                 pipe_wait(pipe);
1771                 pipe->waiting_writers--;
1772         }
1773
1774         pipe_unlock(pipe);
1775         return ret;
1776 }
1777
1778 /*
1779  * Splice contents of ipipe to opipe.
1780  */
1781 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1782                                struct pipe_inode_info *opipe,
1783                                size_t len, unsigned int flags)
1784 {
1785         struct pipe_buffer *ibuf, *obuf;
1786         int ret = 0, nbuf;
1787         bool input_wakeup = false;
1788
1789
1790 retry:
1791         ret = ipipe_prep(ipipe, flags);
1792         if (ret)
1793                 return ret;
1794
1795         ret = opipe_prep(opipe, flags);
1796         if (ret)
1797                 return ret;
1798
1799         /*
1800          * Potential ABBA deadlock, work around it by ordering lock
1801          * grabbing by pipe info address. Otherwise two different processes
1802          * could deadlock (one doing tee from A -> B, the other from B -> A).
1803          */
1804         pipe_double_lock(ipipe, opipe);
1805
1806         do {
1807                 if (!opipe->readers) {
1808                         send_sig(SIGPIPE, current, 0);
1809                         if (!ret)
1810                                 ret = -EPIPE;
1811                         break;
1812                 }
1813
1814                 if (!ipipe->nrbufs && !ipipe->writers)
1815                         break;
1816
1817                 /*
1818                  * Cannot make any progress, because either the input
1819                  * pipe is empty or the output pipe is full.
1820                  */
1821                 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1822                         /* Already processed some buffers, break */
1823                         if (ret)
1824                                 break;
1825
1826                         if (flags & SPLICE_F_NONBLOCK) {
1827                                 ret = -EAGAIN;
1828                                 break;
1829                         }
1830
1831                         /*
1832                          * We raced with another reader/writer and haven't
1833                          * managed to process any buffers.  A zero return
1834                          * value means EOF, so retry instead.
1835                          */
1836                         pipe_unlock(ipipe);
1837                         pipe_unlock(opipe);
1838                         goto retry;
1839                 }
1840
1841                 ibuf = ipipe->bufs + ipipe->curbuf;
1842                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1843                 obuf = opipe->bufs + nbuf;
1844
1845                 if (len >= ibuf->len) {
1846                         /*
1847                          * Simply move the whole buffer from ipipe to opipe
1848                          */
1849                         *obuf = *ibuf;
1850                         ibuf->ops = NULL;
1851                         opipe->nrbufs++;
1852                         ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1853                         ipipe->nrbufs--;
1854                         input_wakeup = true;
1855                 } else {
1856                         /*
1857                          * Get a reference to this pipe buffer,
1858                          * so we can copy the contents over.
1859                          */
1860                         ibuf->ops->get(ipipe, ibuf);
1861                         *obuf = *ibuf;
1862
1863                         /*
1864                          * Don't inherit the gift flag, we need to
1865                          * prevent multiple steals of this page.
1866                          */
1867                         obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1868
1869                         obuf->len = len;
1870                         opipe->nrbufs++;
1871                         ibuf->offset += obuf->len;
1872                         ibuf->len -= obuf->len;
1873                 }
1874                 ret += obuf->len;
1875                 len -= obuf->len;
1876         } while (len);
1877
1878         pipe_unlock(ipipe);
1879         pipe_unlock(opipe);
1880
1881         /*
1882          * If we put data in the output pipe, wakeup any potential readers.
1883          */
1884         if (ret > 0)
1885                 wakeup_pipe_readers(opipe);
1886
1887         if (input_wakeup)
1888                 wakeup_pipe_writers(ipipe);
1889
1890         return ret;
1891 }
1892
1893 /*
1894  * Link contents of ipipe to opipe.
1895  */
1896 static int link_pipe(struct pipe_inode_info *ipipe,
1897                      struct pipe_inode_info *opipe,
1898                      size_t len, unsigned int flags)
1899 {
1900         struct pipe_buffer *ibuf, *obuf;
1901         int ret = 0, i = 0, nbuf;
1902
1903         /*
1904          * Potential ABBA deadlock, work around it by ordering lock
1905          * grabbing by pipe info address. Otherwise two different processes
1906          * could deadlock (one doing tee from A -> B, the other from B -> A).
1907          */
1908         pipe_double_lock(ipipe, opipe);
1909
1910         do {
1911                 if (!opipe->readers) {
1912                         send_sig(SIGPIPE, current, 0);
1913                         if (!ret)
1914                                 ret = -EPIPE;
1915                         break;
1916                 }
1917
1918                 /*
1919                  * If we have iterated all input buffers or ran out of
1920                  * output room, break.
1921                  */
1922                 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1923                         break;
1924
1925                 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1926                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1927
1928                 /*
1929                  * Get a reference to this pipe buffer,
1930                  * so we can copy the contents over.
1931                  */
1932                 ibuf->ops->get(ipipe, ibuf);
1933
1934                 obuf = opipe->bufs + nbuf;
1935                 *obuf = *ibuf;
1936
1937                 /*
1938                  * Don't inherit the gift flag, we need to
1939                  * prevent multiple steals of this page.
1940                  */
1941                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1942
1943                 if (obuf->len > len)
1944                         obuf->len = len;
1945
1946                 opipe->nrbufs++;
1947                 ret += obuf->len;
1948                 len -= obuf->len;
1949                 i++;
1950         } while (len);
1951
1952         /*
1953          * return EAGAIN if we have the potential of some data in the
1954          * future, otherwise just return 0
1955          */
1956         if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1957                 ret = -EAGAIN;
1958
1959         pipe_unlock(ipipe);
1960         pipe_unlock(opipe);
1961
1962         /*
1963          * If we put data in the output pipe, wakeup any potential readers.
1964          */
1965         if (ret > 0)
1966                 wakeup_pipe_readers(opipe);
1967
1968         return ret;
1969 }
1970
1971 /*
1972  * This is a tee(1) implementation that works on pipes. It doesn't copy
1973  * any data, it simply references the 'in' pages on the 'out' pipe.
1974  * The 'flags' used are the SPLICE_F_* variants, currently the only
1975  * applicable one is SPLICE_F_NONBLOCK.
1976  */
1977 static long do_tee(struct file *in, struct file *out, size_t len,
1978                    unsigned int flags)
1979 {
1980         struct pipe_inode_info *ipipe = get_pipe_info(in);
1981         struct pipe_inode_info *opipe = get_pipe_info(out);
1982         int ret = -EINVAL;
1983
1984         /*
1985          * Duplicate the contents of ipipe to opipe without actually
1986          * copying the data.
1987          */
1988         if (ipipe && opipe && ipipe != opipe) {
1989                 /*
1990                  * Keep going, unless we encounter an error. The ipipe/opipe
1991                  * ordering doesn't really matter.
1992                  */
1993                 ret = ipipe_prep(ipipe, flags);
1994                 if (!ret) {
1995                         ret = opipe_prep(opipe, flags);
1996                         if (!ret)
1997                                 ret = link_pipe(ipipe, opipe, len, flags);
1998                 }
1999         }
2000
2001         return ret;
2002 }
2003
2004 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2005 {
2006         struct fd in;
2007         int error;
2008
2009         if (unlikely(!len))
2010                 return 0;
2011
2012         error = -EBADF;
2013         in = fdget(fdin);
2014         if (in.file) {
2015                 if (in.file->f_mode & FMODE_READ) {
2016                         struct fd out = fdget(fdout);
2017                         if (out.file) {
2018                                 if (out.file->f_mode & FMODE_WRITE)
2019                                         error = do_tee(in.file, out.file,
2020                                                         len, flags);
2021                                 fdput(out);
2022                         }
2023                 }
2024                 fdput(in);
2025         }
2026
2027         return error;
2028 }