Merge tag 'trace-v4.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[sfrench/cifs-2.6.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/sched/mm.h>
15 #include <linux/swapops.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/page_idle.h>
18 #include <linux/shmem_fs.h>
19
20 #include <asm/elf.h>
21 #include <linux/uaccess.h>
22 #include <asm/tlbflush.h>
23 #include "internal.h"
24
25 void task_mem(struct seq_file *m, struct mm_struct *mm)
26 {
27         unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
28         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
29
30         anon = get_mm_counter(mm, MM_ANONPAGES);
31         file = get_mm_counter(mm, MM_FILEPAGES);
32         shmem = get_mm_counter(mm, MM_SHMEMPAGES);
33
34         /*
35          * Note: to minimize their overhead, mm maintains hiwater_vm and
36          * hiwater_rss only when about to *lower* total_vm or rss.  Any
37          * collector of these hiwater stats must therefore get total_vm
38          * and rss too, which will usually be the higher.  Barriers? not
39          * worth the effort, such snapshots can always be inconsistent.
40          */
41         hiwater_vm = total_vm = mm->total_vm;
42         if (hiwater_vm < mm->hiwater_vm)
43                 hiwater_vm = mm->hiwater_vm;
44         hiwater_rss = total_rss = anon + file + shmem;
45         if (hiwater_rss < mm->hiwater_rss)
46                 hiwater_rss = mm->hiwater_rss;
47
48         text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
49         lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
50         swap = get_mm_counter(mm, MM_SWAPENTS);
51         ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
52         pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
53         seq_printf(m,
54                 "VmPeak:\t%8lu kB\n"
55                 "VmSize:\t%8lu kB\n"
56                 "VmLck:\t%8lu kB\n"
57                 "VmPin:\t%8lu kB\n"
58                 "VmHWM:\t%8lu kB\n"
59                 "VmRSS:\t%8lu kB\n"
60                 "RssAnon:\t%8lu kB\n"
61                 "RssFile:\t%8lu kB\n"
62                 "RssShmem:\t%8lu kB\n"
63                 "VmData:\t%8lu kB\n"
64                 "VmStk:\t%8lu kB\n"
65                 "VmExe:\t%8lu kB\n"
66                 "VmLib:\t%8lu kB\n"
67                 "VmPTE:\t%8lu kB\n"
68                 "VmPMD:\t%8lu kB\n"
69                 "VmSwap:\t%8lu kB\n",
70                 hiwater_vm << (PAGE_SHIFT-10),
71                 total_vm << (PAGE_SHIFT-10),
72                 mm->locked_vm << (PAGE_SHIFT-10),
73                 mm->pinned_vm << (PAGE_SHIFT-10),
74                 hiwater_rss << (PAGE_SHIFT-10),
75                 total_rss << (PAGE_SHIFT-10),
76                 anon << (PAGE_SHIFT-10),
77                 file << (PAGE_SHIFT-10),
78                 shmem << (PAGE_SHIFT-10),
79                 mm->data_vm << (PAGE_SHIFT-10),
80                 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
81                 ptes >> 10,
82                 pmds >> 10,
83                 swap << (PAGE_SHIFT-10));
84         hugetlb_report_usage(m, mm);
85 }
86
87 unsigned long task_vsize(struct mm_struct *mm)
88 {
89         return PAGE_SIZE * mm->total_vm;
90 }
91
92 unsigned long task_statm(struct mm_struct *mm,
93                          unsigned long *shared, unsigned long *text,
94                          unsigned long *data, unsigned long *resident)
95 {
96         *shared = get_mm_counter(mm, MM_FILEPAGES) +
97                         get_mm_counter(mm, MM_SHMEMPAGES);
98         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
99                                                                 >> PAGE_SHIFT;
100         *data = mm->data_vm + mm->stack_vm;
101         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
102         return mm->total_vm;
103 }
104
105 #ifdef CONFIG_NUMA
106 /*
107  * Save get_task_policy() for show_numa_map().
108  */
109 static void hold_task_mempolicy(struct proc_maps_private *priv)
110 {
111         struct task_struct *task = priv->task;
112
113         task_lock(task);
114         priv->task_mempolicy = get_task_policy(task);
115         mpol_get(priv->task_mempolicy);
116         task_unlock(task);
117 }
118 static void release_task_mempolicy(struct proc_maps_private *priv)
119 {
120         mpol_put(priv->task_mempolicy);
121 }
122 #else
123 static void hold_task_mempolicy(struct proc_maps_private *priv)
124 {
125 }
126 static void release_task_mempolicy(struct proc_maps_private *priv)
127 {
128 }
129 #endif
130
131 static void vma_stop(struct proc_maps_private *priv)
132 {
133         struct mm_struct *mm = priv->mm;
134
135         release_task_mempolicy(priv);
136         up_read(&mm->mmap_sem);
137         mmput(mm);
138 }
139
140 static struct vm_area_struct *
141 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
142 {
143         if (vma == priv->tail_vma)
144                 return NULL;
145         return vma->vm_next ?: priv->tail_vma;
146 }
147
148 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
149 {
150         if (m->count < m->size) /* vma is copied successfully */
151                 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
152 }
153
154 static void *m_start(struct seq_file *m, loff_t *ppos)
155 {
156         struct proc_maps_private *priv = m->private;
157         unsigned long last_addr = m->version;
158         struct mm_struct *mm;
159         struct vm_area_struct *vma;
160         unsigned int pos = *ppos;
161
162         /* See m_cache_vma(). Zero at the start or after lseek. */
163         if (last_addr == -1UL)
164                 return NULL;
165
166         priv->task = get_proc_task(priv->inode);
167         if (!priv->task)
168                 return ERR_PTR(-ESRCH);
169
170         mm = priv->mm;
171         if (!mm || !mmget_not_zero(mm))
172                 return NULL;
173
174         down_read(&mm->mmap_sem);
175         hold_task_mempolicy(priv);
176         priv->tail_vma = get_gate_vma(mm);
177
178         if (last_addr) {
179                 vma = find_vma(mm, last_addr - 1);
180                 if (vma && vma->vm_start <= last_addr)
181                         vma = m_next_vma(priv, vma);
182                 if (vma)
183                         return vma;
184         }
185
186         m->version = 0;
187         if (pos < mm->map_count) {
188                 for (vma = mm->mmap; pos; pos--) {
189                         m->version = vma->vm_start;
190                         vma = vma->vm_next;
191                 }
192                 return vma;
193         }
194
195         /* we do not bother to update m->version in this case */
196         if (pos == mm->map_count && priv->tail_vma)
197                 return priv->tail_vma;
198
199         vma_stop(priv);
200         return NULL;
201 }
202
203 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
204 {
205         struct proc_maps_private *priv = m->private;
206         struct vm_area_struct *next;
207
208         (*pos)++;
209         next = m_next_vma(priv, v);
210         if (!next)
211                 vma_stop(priv);
212         return next;
213 }
214
215 static void m_stop(struct seq_file *m, void *v)
216 {
217         struct proc_maps_private *priv = m->private;
218
219         if (!IS_ERR_OR_NULL(v))
220                 vma_stop(priv);
221         if (priv->task) {
222                 put_task_struct(priv->task);
223                 priv->task = NULL;
224         }
225 }
226
227 static int proc_maps_open(struct inode *inode, struct file *file,
228                         const struct seq_operations *ops, int psize)
229 {
230         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
231
232         if (!priv)
233                 return -ENOMEM;
234
235         priv->inode = inode;
236         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
237         if (IS_ERR(priv->mm)) {
238                 int err = PTR_ERR(priv->mm);
239
240                 seq_release_private(inode, file);
241                 return err;
242         }
243
244         return 0;
245 }
246
247 static int proc_map_release(struct inode *inode, struct file *file)
248 {
249         struct seq_file *seq = file->private_data;
250         struct proc_maps_private *priv = seq->private;
251
252         if (priv->mm)
253                 mmdrop(priv->mm);
254
255         return seq_release_private(inode, file);
256 }
257
258 static int do_maps_open(struct inode *inode, struct file *file,
259                         const struct seq_operations *ops)
260 {
261         return proc_maps_open(inode, file, ops,
262                                 sizeof(struct proc_maps_private));
263 }
264
265 /*
266  * Indicate if the VMA is a stack for the given task; for
267  * /proc/PID/maps that is the stack of the main task.
268  */
269 static int is_stack(struct proc_maps_private *priv,
270                     struct vm_area_struct *vma)
271 {
272         /*
273          * We make no effort to guess what a given thread considers to be
274          * its "stack".  It's not even well-defined for programs written
275          * languages like Go.
276          */
277         return vma->vm_start <= vma->vm_mm->start_stack &&
278                 vma->vm_end >= vma->vm_mm->start_stack;
279 }
280
281 static void
282 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
283 {
284         struct mm_struct *mm = vma->vm_mm;
285         struct file *file = vma->vm_file;
286         struct proc_maps_private *priv = m->private;
287         vm_flags_t flags = vma->vm_flags;
288         unsigned long ino = 0;
289         unsigned long long pgoff = 0;
290         unsigned long start, end;
291         dev_t dev = 0;
292         const char *name = NULL;
293
294         if (file) {
295                 struct inode *inode = file_inode(vma->vm_file);
296                 dev = inode->i_sb->s_dev;
297                 ino = inode->i_ino;
298                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
299         }
300
301         /* We don't show the stack guard page in /proc/maps */
302         start = vma->vm_start;
303         if (stack_guard_page_start(vma, start))
304                 start += PAGE_SIZE;
305         end = vma->vm_end;
306         if (stack_guard_page_end(vma, end))
307                 end -= PAGE_SIZE;
308
309         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
310         seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
311                         start,
312                         end,
313                         flags & VM_READ ? 'r' : '-',
314                         flags & VM_WRITE ? 'w' : '-',
315                         flags & VM_EXEC ? 'x' : '-',
316                         flags & VM_MAYSHARE ? 's' : 'p',
317                         pgoff,
318                         MAJOR(dev), MINOR(dev), ino);
319
320         /*
321          * Print the dentry name for named mappings, and a
322          * special [heap] marker for the heap:
323          */
324         if (file) {
325                 seq_pad(m, ' ');
326                 seq_file_path(m, file, "\n");
327                 goto done;
328         }
329
330         if (vma->vm_ops && vma->vm_ops->name) {
331                 name = vma->vm_ops->name(vma);
332                 if (name)
333                         goto done;
334         }
335
336         name = arch_vma_name(vma);
337         if (!name) {
338                 if (!mm) {
339                         name = "[vdso]";
340                         goto done;
341                 }
342
343                 if (vma->vm_start <= mm->brk &&
344                     vma->vm_end >= mm->start_brk) {
345                         name = "[heap]";
346                         goto done;
347                 }
348
349                 if (is_stack(priv, vma))
350                         name = "[stack]";
351         }
352
353 done:
354         if (name) {
355                 seq_pad(m, ' ');
356                 seq_puts(m, name);
357         }
358         seq_putc(m, '\n');
359 }
360
361 static int show_map(struct seq_file *m, void *v, int is_pid)
362 {
363         show_map_vma(m, v, is_pid);
364         m_cache_vma(m, v);
365         return 0;
366 }
367
368 static int show_pid_map(struct seq_file *m, void *v)
369 {
370         return show_map(m, v, 1);
371 }
372
373 static int show_tid_map(struct seq_file *m, void *v)
374 {
375         return show_map(m, v, 0);
376 }
377
378 static const struct seq_operations proc_pid_maps_op = {
379         .start  = m_start,
380         .next   = m_next,
381         .stop   = m_stop,
382         .show   = show_pid_map
383 };
384
385 static const struct seq_operations proc_tid_maps_op = {
386         .start  = m_start,
387         .next   = m_next,
388         .stop   = m_stop,
389         .show   = show_tid_map
390 };
391
392 static int pid_maps_open(struct inode *inode, struct file *file)
393 {
394         return do_maps_open(inode, file, &proc_pid_maps_op);
395 }
396
397 static int tid_maps_open(struct inode *inode, struct file *file)
398 {
399         return do_maps_open(inode, file, &proc_tid_maps_op);
400 }
401
402 const struct file_operations proc_pid_maps_operations = {
403         .open           = pid_maps_open,
404         .read           = seq_read,
405         .llseek         = seq_lseek,
406         .release        = proc_map_release,
407 };
408
409 const struct file_operations proc_tid_maps_operations = {
410         .open           = tid_maps_open,
411         .read           = seq_read,
412         .llseek         = seq_lseek,
413         .release        = proc_map_release,
414 };
415
416 /*
417  * Proportional Set Size(PSS): my share of RSS.
418  *
419  * PSS of a process is the count of pages it has in memory, where each
420  * page is divided by the number of processes sharing it.  So if a
421  * process has 1000 pages all to itself, and 1000 shared with one other
422  * process, its PSS will be 1500.
423  *
424  * To keep (accumulated) division errors low, we adopt a 64bit
425  * fixed-point pss counter to minimize division errors. So (pss >>
426  * PSS_SHIFT) would be the real byte count.
427  *
428  * A shift of 12 before division means (assuming 4K page size):
429  *      - 1M 3-user-pages add up to 8KB errors;
430  *      - supports mapcount up to 2^24, or 16M;
431  *      - supports PSS up to 2^52 bytes, or 4PB.
432  */
433 #define PSS_SHIFT 12
434
435 #ifdef CONFIG_PROC_PAGE_MONITOR
436 struct mem_size_stats {
437         unsigned long resident;
438         unsigned long shared_clean;
439         unsigned long shared_dirty;
440         unsigned long private_clean;
441         unsigned long private_dirty;
442         unsigned long referenced;
443         unsigned long anonymous;
444         unsigned long anonymous_thp;
445         unsigned long shmem_thp;
446         unsigned long swap;
447         unsigned long shared_hugetlb;
448         unsigned long private_hugetlb;
449         u64 pss;
450         u64 swap_pss;
451         bool check_shmem_swap;
452 };
453
454 static void smaps_account(struct mem_size_stats *mss, struct page *page,
455                 bool compound, bool young, bool dirty)
456 {
457         int i, nr = compound ? 1 << compound_order(page) : 1;
458         unsigned long size = nr * PAGE_SIZE;
459
460         if (PageAnon(page))
461                 mss->anonymous += size;
462
463         mss->resident += size;
464         /* Accumulate the size in pages that have been accessed. */
465         if (young || page_is_young(page) || PageReferenced(page))
466                 mss->referenced += size;
467
468         /*
469          * page_count(page) == 1 guarantees the page is mapped exactly once.
470          * If any subpage of the compound page mapped with PTE it would elevate
471          * page_count().
472          */
473         if (page_count(page) == 1) {
474                 if (dirty || PageDirty(page))
475                         mss->private_dirty += size;
476                 else
477                         mss->private_clean += size;
478                 mss->pss += (u64)size << PSS_SHIFT;
479                 return;
480         }
481
482         for (i = 0; i < nr; i++, page++) {
483                 int mapcount = page_mapcount(page);
484
485                 if (mapcount >= 2) {
486                         if (dirty || PageDirty(page))
487                                 mss->shared_dirty += PAGE_SIZE;
488                         else
489                                 mss->shared_clean += PAGE_SIZE;
490                         mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
491                 } else {
492                         if (dirty || PageDirty(page))
493                                 mss->private_dirty += PAGE_SIZE;
494                         else
495                                 mss->private_clean += PAGE_SIZE;
496                         mss->pss += PAGE_SIZE << PSS_SHIFT;
497                 }
498         }
499 }
500
501 #ifdef CONFIG_SHMEM
502 static int smaps_pte_hole(unsigned long addr, unsigned long end,
503                 struct mm_walk *walk)
504 {
505         struct mem_size_stats *mss = walk->private;
506
507         mss->swap += shmem_partial_swap_usage(
508                         walk->vma->vm_file->f_mapping, addr, end);
509
510         return 0;
511 }
512 #endif
513
514 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
515                 struct mm_walk *walk)
516 {
517         struct mem_size_stats *mss = walk->private;
518         struct vm_area_struct *vma = walk->vma;
519         struct page *page = NULL;
520
521         if (pte_present(*pte)) {
522                 page = vm_normal_page(vma, addr, *pte);
523         } else if (is_swap_pte(*pte)) {
524                 swp_entry_t swpent = pte_to_swp_entry(*pte);
525
526                 if (!non_swap_entry(swpent)) {
527                         int mapcount;
528
529                         mss->swap += PAGE_SIZE;
530                         mapcount = swp_swapcount(swpent);
531                         if (mapcount >= 2) {
532                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
533
534                                 do_div(pss_delta, mapcount);
535                                 mss->swap_pss += pss_delta;
536                         } else {
537                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
538                         }
539                 } else if (is_migration_entry(swpent))
540                         page = migration_entry_to_page(swpent);
541         } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
542                                                         && pte_none(*pte))) {
543                 page = find_get_entry(vma->vm_file->f_mapping,
544                                                 linear_page_index(vma, addr));
545                 if (!page)
546                         return;
547
548                 if (radix_tree_exceptional_entry(page))
549                         mss->swap += PAGE_SIZE;
550                 else
551                         put_page(page);
552
553                 return;
554         }
555
556         if (!page)
557                 return;
558
559         smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
560 }
561
562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
563 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
564                 struct mm_walk *walk)
565 {
566         struct mem_size_stats *mss = walk->private;
567         struct vm_area_struct *vma = walk->vma;
568         struct page *page;
569
570         /* FOLL_DUMP will return -EFAULT on huge zero page */
571         page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
572         if (IS_ERR_OR_NULL(page))
573                 return;
574         if (PageAnon(page))
575                 mss->anonymous_thp += HPAGE_PMD_SIZE;
576         else if (PageSwapBacked(page))
577                 mss->shmem_thp += HPAGE_PMD_SIZE;
578         else if (is_zone_device_page(page))
579                 /* pass */;
580         else
581                 VM_BUG_ON_PAGE(1, page);
582         smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
583 }
584 #else
585 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
586                 struct mm_walk *walk)
587 {
588 }
589 #endif
590
591 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
592                            struct mm_walk *walk)
593 {
594         struct vm_area_struct *vma = walk->vma;
595         pte_t *pte;
596         spinlock_t *ptl;
597
598         ptl = pmd_trans_huge_lock(pmd, vma);
599         if (ptl) {
600                 smaps_pmd_entry(pmd, addr, walk);
601                 spin_unlock(ptl);
602                 return 0;
603         }
604
605         if (pmd_trans_unstable(pmd))
606                 return 0;
607         /*
608          * The mmap_sem held all the way back in m_start() is what
609          * keeps khugepaged out of here and from collapsing things
610          * in here.
611          */
612         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
613         for (; addr != end; pte++, addr += PAGE_SIZE)
614                 smaps_pte_entry(pte, addr, walk);
615         pte_unmap_unlock(pte - 1, ptl);
616         cond_resched();
617         return 0;
618 }
619
620 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
621 {
622         /*
623          * Don't forget to update Documentation/ on changes.
624          */
625         static const char mnemonics[BITS_PER_LONG][2] = {
626                 /*
627                  * In case if we meet a flag we don't know about.
628                  */
629                 [0 ... (BITS_PER_LONG-1)] = "??",
630
631                 [ilog2(VM_READ)]        = "rd",
632                 [ilog2(VM_WRITE)]       = "wr",
633                 [ilog2(VM_EXEC)]        = "ex",
634                 [ilog2(VM_SHARED)]      = "sh",
635                 [ilog2(VM_MAYREAD)]     = "mr",
636                 [ilog2(VM_MAYWRITE)]    = "mw",
637                 [ilog2(VM_MAYEXEC)]     = "me",
638                 [ilog2(VM_MAYSHARE)]    = "ms",
639                 [ilog2(VM_GROWSDOWN)]   = "gd",
640                 [ilog2(VM_PFNMAP)]      = "pf",
641                 [ilog2(VM_DENYWRITE)]   = "dw",
642 #ifdef CONFIG_X86_INTEL_MPX
643                 [ilog2(VM_MPX)]         = "mp",
644 #endif
645                 [ilog2(VM_LOCKED)]      = "lo",
646                 [ilog2(VM_IO)]          = "io",
647                 [ilog2(VM_SEQ_READ)]    = "sr",
648                 [ilog2(VM_RAND_READ)]   = "rr",
649                 [ilog2(VM_DONTCOPY)]    = "dc",
650                 [ilog2(VM_DONTEXPAND)]  = "de",
651                 [ilog2(VM_ACCOUNT)]     = "ac",
652                 [ilog2(VM_NORESERVE)]   = "nr",
653                 [ilog2(VM_HUGETLB)]     = "ht",
654                 [ilog2(VM_ARCH_1)]      = "ar",
655                 [ilog2(VM_DONTDUMP)]    = "dd",
656 #ifdef CONFIG_MEM_SOFT_DIRTY
657                 [ilog2(VM_SOFTDIRTY)]   = "sd",
658 #endif
659                 [ilog2(VM_MIXEDMAP)]    = "mm",
660                 [ilog2(VM_HUGEPAGE)]    = "hg",
661                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
662                 [ilog2(VM_MERGEABLE)]   = "mg",
663                 [ilog2(VM_UFFD_MISSING)]= "um",
664                 [ilog2(VM_UFFD_WP)]     = "uw",
665 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
666                 /* These come out via ProtectionKey: */
667                 [ilog2(VM_PKEY_BIT0)]   = "",
668                 [ilog2(VM_PKEY_BIT1)]   = "",
669                 [ilog2(VM_PKEY_BIT2)]   = "",
670                 [ilog2(VM_PKEY_BIT3)]   = "",
671 #endif
672         };
673         size_t i;
674
675         seq_puts(m, "VmFlags: ");
676         for (i = 0; i < BITS_PER_LONG; i++) {
677                 if (!mnemonics[i][0])
678                         continue;
679                 if (vma->vm_flags & (1UL << i)) {
680                         seq_printf(m, "%c%c ",
681                                    mnemonics[i][0], mnemonics[i][1]);
682                 }
683         }
684         seq_putc(m, '\n');
685 }
686
687 #ifdef CONFIG_HUGETLB_PAGE
688 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
689                                  unsigned long addr, unsigned long end,
690                                  struct mm_walk *walk)
691 {
692         struct mem_size_stats *mss = walk->private;
693         struct vm_area_struct *vma = walk->vma;
694         struct page *page = NULL;
695
696         if (pte_present(*pte)) {
697                 page = vm_normal_page(vma, addr, *pte);
698         } else if (is_swap_pte(*pte)) {
699                 swp_entry_t swpent = pte_to_swp_entry(*pte);
700
701                 if (is_migration_entry(swpent))
702                         page = migration_entry_to_page(swpent);
703         }
704         if (page) {
705                 int mapcount = page_mapcount(page);
706
707                 if (mapcount >= 2)
708                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
709                 else
710                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
711         }
712         return 0;
713 }
714 #endif /* HUGETLB_PAGE */
715
716 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
717 {
718 }
719
720 static int show_smap(struct seq_file *m, void *v, int is_pid)
721 {
722         struct vm_area_struct *vma = v;
723         struct mem_size_stats mss;
724         struct mm_walk smaps_walk = {
725                 .pmd_entry = smaps_pte_range,
726 #ifdef CONFIG_HUGETLB_PAGE
727                 .hugetlb_entry = smaps_hugetlb_range,
728 #endif
729                 .mm = vma->vm_mm,
730                 .private = &mss,
731         };
732
733         memset(&mss, 0, sizeof mss);
734
735 #ifdef CONFIG_SHMEM
736         if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
737                 /*
738                  * For shared or readonly shmem mappings we know that all
739                  * swapped out pages belong to the shmem object, and we can
740                  * obtain the swap value much more efficiently. For private
741                  * writable mappings, we might have COW pages that are
742                  * not affected by the parent swapped out pages of the shmem
743                  * object, so we have to distinguish them during the page walk.
744                  * Unless we know that the shmem object (or the part mapped by
745                  * our VMA) has no swapped out pages at all.
746                  */
747                 unsigned long shmem_swapped = shmem_swap_usage(vma);
748
749                 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
750                                         !(vma->vm_flags & VM_WRITE)) {
751                         mss.swap = shmem_swapped;
752                 } else {
753                         mss.check_shmem_swap = true;
754                         smaps_walk.pte_hole = smaps_pte_hole;
755                 }
756         }
757 #endif
758
759         /* mmap_sem is held in m_start */
760         walk_page_vma(vma, &smaps_walk);
761
762         show_map_vma(m, vma, is_pid);
763
764         seq_printf(m,
765                    "Size:           %8lu kB\n"
766                    "Rss:            %8lu kB\n"
767                    "Pss:            %8lu kB\n"
768                    "Shared_Clean:   %8lu kB\n"
769                    "Shared_Dirty:   %8lu kB\n"
770                    "Private_Clean:  %8lu kB\n"
771                    "Private_Dirty:  %8lu kB\n"
772                    "Referenced:     %8lu kB\n"
773                    "Anonymous:      %8lu kB\n"
774                    "AnonHugePages:  %8lu kB\n"
775                    "ShmemPmdMapped: %8lu kB\n"
776                    "Shared_Hugetlb: %8lu kB\n"
777                    "Private_Hugetlb: %7lu kB\n"
778                    "Swap:           %8lu kB\n"
779                    "SwapPss:        %8lu kB\n"
780                    "KernelPageSize: %8lu kB\n"
781                    "MMUPageSize:    %8lu kB\n"
782                    "Locked:         %8lu kB\n",
783                    (vma->vm_end - vma->vm_start) >> 10,
784                    mss.resident >> 10,
785                    (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
786                    mss.shared_clean  >> 10,
787                    mss.shared_dirty  >> 10,
788                    mss.private_clean >> 10,
789                    mss.private_dirty >> 10,
790                    mss.referenced >> 10,
791                    mss.anonymous >> 10,
792                    mss.anonymous_thp >> 10,
793                    mss.shmem_thp >> 10,
794                    mss.shared_hugetlb >> 10,
795                    mss.private_hugetlb >> 10,
796                    mss.swap >> 10,
797                    (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
798                    vma_kernel_pagesize(vma) >> 10,
799                    vma_mmu_pagesize(vma) >> 10,
800                    (vma->vm_flags & VM_LOCKED) ?
801                         (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
802
803         arch_show_smap(m, vma);
804         show_smap_vma_flags(m, vma);
805         m_cache_vma(m, vma);
806         return 0;
807 }
808
809 static int show_pid_smap(struct seq_file *m, void *v)
810 {
811         return show_smap(m, v, 1);
812 }
813
814 static int show_tid_smap(struct seq_file *m, void *v)
815 {
816         return show_smap(m, v, 0);
817 }
818
819 static const struct seq_operations proc_pid_smaps_op = {
820         .start  = m_start,
821         .next   = m_next,
822         .stop   = m_stop,
823         .show   = show_pid_smap
824 };
825
826 static const struct seq_operations proc_tid_smaps_op = {
827         .start  = m_start,
828         .next   = m_next,
829         .stop   = m_stop,
830         .show   = show_tid_smap
831 };
832
833 static int pid_smaps_open(struct inode *inode, struct file *file)
834 {
835         return do_maps_open(inode, file, &proc_pid_smaps_op);
836 }
837
838 static int tid_smaps_open(struct inode *inode, struct file *file)
839 {
840         return do_maps_open(inode, file, &proc_tid_smaps_op);
841 }
842
843 const struct file_operations proc_pid_smaps_operations = {
844         .open           = pid_smaps_open,
845         .read           = seq_read,
846         .llseek         = seq_lseek,
847         .release        = proc_map_release,
848 };
849
850 const struct file_operations proc_tid_smaps_operations = {
851         .open           = tid_smaps_open,
852         .read           = seq_read,
853         .llseek         = seq_lseek,
854         .release        = proc_map_release,
855 };
856
857 enum clear_refs_types {
858         CLEAR_REFS_ALL = 1,
859         CLEAR_REFS_ANON,
860         CLEAR_REFS_MAPPED,
861         CLEAR_REFS_SOFT_DIRTY,
862         CLEAR_REFS_MM_HIWATER_RSS,
863         CLEAR_REFS_LAST,
864 };
865
866 struct clear_refs_private {
867         enum clear_refs_types type;
868 };
869
870 #ifdef CONFIG_MEM_SOFT_DIRTY
871 static inline void clear_soft_dirty(struct vm_area_struct *vma,
872                 unsigned long addr, pte_t *pte)
873 {
874         /*
875          * The soft-dirty tracker uses #PF-s to catch writes
876          * to pages, so write-protect the pte as well. See the
877          * Documentation/vm/soft-dirty.txt for full description
878          * of how soft-dirty works.
879          */
880         pte_t ptent = *pte;
881
882         if (pte_present(ptent)) {
883                 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
884                 ptent = pte_wrprotect(ptent);
885                 ptent = pte_clear_soft_dirty(ptent);
886                 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
887         } else if (is_swap_pte(ptent)) {
888                 ptent = pte_swp_clear_soft_dirty(ptent);
889                 set_pte_at(vma->vm_mm, addr, pte, ptent);
890         }
891 }
892 #else
893 static inline void clear_soft_dirty(struct vm_area_struct *vma,
894                 unsigned long addr, pte_t *pte)
895 {
896 }
897 #endif
898
899 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
900 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
901                 unsigned long addr, pmd_t *pmdp)
902 {
903         pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
904
905         pmd = pmd_wrprotect(pmd);
906         pmd = pmd_clear_soft_dirty(pmd);
907
908         set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
909 }
910 #else
911 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
912                 unsigned long addr, pmd_t *pmdp)
913 {
914 }
915 #endif
916
917 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
918                                 unsigned long end, struct mm_walk *walk)
919 {
920         struct clear_refs_private *cp = walk->private;
921         struct vm_area_struct *vma = walk->vma;
922         pte_t *pte, ptent;
923         spinlock_t *ptl;
924         struct page *page;
925
926         ptl = pmd_trans_huge_lock(pmd, vma);
927         if (ptl) {
928                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
929                         clear_soft_dirty_pmd(vma, addr, pmd);
930                         goto out;
931                 }
932
933                 page = pmd_page(*pmd);
934
935                 /* Clear accessed and referenced bits. */
936                 pmdp_test_and_clear_young(vma, addr, pmd);
937                 test_and_clear_page_young(page);
938                 ClearPageReferenced(page);
939 out:
940                 spin_unlock(ptl);
941                 return 0;
942         }
943
944         if (pmd_trans_unstable(pmd))
945                 return 0;
946
947         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
948         for (; addr != end; pte++, addr += PAGE_SIZE) {
949                 ptent = *pte;
950
951                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
952                         clear_soft_dirty(vma, addr, pte);
953                         continue;
954                 }
955
956                 if (!pte_present(ptent))
957                         continue;
958
959                 page = vm_normal_page(vma, addr, ptent);
960                 if (!page)
961                         continue;
962
963                 /* Clear accessed and referenced bits. */
964                 ptep_test_and_clear_young(vma, addr, pte);
965                 test_and_clear_page_young(page);
966                 ClearPageReferenced(page);
967         }
968         pte_unmap_unlock(pte - 1, ptl);
969         cond_resched();
970         return 0;
971 }
972
973 static int clear_refs_test_walk(unsigned long start, unsigned long end,
974                                 struct mm_walk *walk)
975 {
976         struct clear_refs_private *cp = walk->private;
977         struct vm_area_struct *vma = walk->vma;
978
979         if (vma->vm_flags & VM_PFNMAP)
980                 return 1;
981
982         /*
983          * Writing 1 to /proc/pid/clear_refs affects all pages.
984          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
985          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
986          * Writing 4 to /proc/pid/clear_refs affects all pages.
987          */
988         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
989                 return 1;
990         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
991                 return 1;
992         return 0;
993 }
994
995 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
996                                 size_t count, loff_t *ppos)
997 {
998         struct task_struct *task;
999         char buffer[PROC_NUMBUF];
1000         struct mm_struct *mm;
1001         struct vm_area_struct *vma;
1002         enum clear_refs_types type;
1003         int itype;
1004         int rv;
1005
1006         memset(buffer, 0, sizeof(buffer));
1007         if (count > sizeof(buffer) - 1)
1008                 count = sizeof(buffer) - 1;
1009         if (copy_from_user(buffer, buf, count))
1010                 return -EFAULT;
1011         rv = kstrtoint(strstrip(buffer), 10, &itype);
1012         if (rv < 0)
1013                 return rv;
1014         type = (enum clear_refs_types)itype;
1015         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1016                 return -EINVAL;
1017
1018         task = get_proc_task(file_inode(file));
1019         if (!task)
1020                 return -ESRCH;
1021         mm = get_task_mm(task);
1022         if (mm) {
1023                 struct clear_refs_private cp = {
1024                         .type = type,
1025                 };
1026                 struct mm_walk clear_refs_walk = {
1027                         .pmd_entry = clear_refs_pte_range,
1028                         .test_walk = clear_refs_test_walk,
1029                         .mm = mm,
1030                         .private = &cp,
1031                 };
1032
1033                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1034                         if (down_write_killable(&mm->mmap_sem)) {
1035                                 count = -EINTR;
1036                                 goto out_mm;
1037                         }
1038
1039                         /*
1040                          * Writing 5 to /proc/pid/clear_refs resets the peak
1041                          * resident set size to this mm's current rss value.
1042                          */
1043                         reset_mm_hiwater_rss(mm);
1044                         up_write(&mm->mmap_sem);
1045                         goto out_mm;
1046                 }
1047
1048                 down_read(&mm->mmap_sem);
1049                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1050                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1051                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1052                                         continue;
1053                                 up_read(&mm->mmap_sem);
1054                                 if (down_write_killable(&mm->mmap_sem)) {
1055                                         count = -EINTR;
1056                                         goto out_mm;
1057                                 }
1058                                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1059                                         vma->vm_flags &= ~VM_SOFTDIRTY;
1060                                         vma_set_page_prot(vma);
1061                                 }
1062                                 downgrade_write(&mm->mmap_sem);
1063                                 break;
1064                         }
1065                         mmu_notifier_invalidate_range_start(mm, 0, -1);
1066                 }
1067                 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1068                 if (type == CLEAR_REFS_SOFT_DIRTY)
1069                         mmu_notifier_invalidate_range_end(mm, 0, -1);
1070                 flush_tlb_mm(mm);
1071                 up_read(&mm->mmap_sem);
1072 out_mm:
1073                 mmput(mm);
1074         }
1075         put_task_struct(task);
1076
1077         return count;
1078 }
1079
1080 const struct file_operations proc_clear_refs_operations = {
1081         .write          = clear_refs_write,
1082         .llseek         = noop_llseek,
1083 };
1084
1085 typedef struct {
1086         u64 pme;
1087 } pagemap_entry_t;
1088
1089 struct pagemapread {
1090         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1091         pagemap_entry_t *buffer;
1092         bool show_pfn;
1093 };
1094
1095 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1096 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1097
1098 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1099 #define PM_PFRAME_BITS          55
1100 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1101 #define PM_SOFT_DIRTY           BIT_ULL(55)
1102 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1103 #define PM_FILE                 BIT_ULL(61)
1104 #define PM_SWAP                 BIT_ULL(62)
1105 #define PM_PRESENT              BIT_ULL(63)
1106
1107 #define PM_END_OF_BUFFER    1
1108
1109 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1110 {
1111         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1112 }
1113
1114 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1115                           struct pagemapread *pm)
1116 {
1117         pm->buffer[pm->pos++] = *pme;
1118         if (pm->pos >= pm->len)
1119                 return PM_END_OF_BUFFER;
1120         return 0;
1121 }
1122
1123 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1124                                 struct mm_walk *walk)
1125 {
1126         struct pagemapread *pm = walk->private;
1127         unsigned long addr = start;
1128         int err = 0;
1129
1130         while (addr < end) {
1131                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1132                 pagemap_entry_t pme = make_pme(0, 0);
1133                 /* End of address space hole, which we mark as non-present. */
1134                 unsigned long hole_end;
1135
1136                 if (vma)
1137                         hole_end = min(end, vma->vm_start);
1138                 else
1139                         hole_end = end;
1140
1141                 for (; addr < hole_end; addr += PAGE_SIZE) {
1142                         err = add_to_pagemap(addr, &pme, pm);
1143                         if (err)
1144                                 goto out;
1145                 }
1146
1147                 if (!vma)
1148                         break;
1149
1150                 /* Addresses in the VMA. */
1151                 if (vma->vm_flags & VM_SOFTDIRTY)
1152                         pme = make_pme(0, PM_SOFT_DIRTY);
1153                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1154                         err = add_to_pagemap(addr, &pme, pm);
1155                         if (err)
1156                                 goto out;
1157                 }
1158         }
1159 out:
1160         return err;
1161 }
1162
1163 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1164                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1165 {
1166         u64 frame = 0, flags = 0;
1167         struct page *page = NULL;
1168
1169         if (pte_present(pte)) {
1170                 if (pm->show_pfn)
1171                         frame = pte_pfn(pte);
1172                 flags |= PM_PRESENT;
1173                 page = vm_normal_page(vma, addr, pte);
1174                 if (pte_soft_dirty(pte))
1175                         flags |= PM_SOFT_DIRTY;
1176         } else if (is_swap_pte(pte)) {
1177                 swp_entry_t entry;
1178                 if (pte_swp_soft_dirty(pte))
1179                         flags |= PM_SOFT_DIRTY;
1180                 entry = pte_to_swp_entry(pte);
1181                 frame = swp_type(entry) |
1182                         (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1183                 flags |= PM_SWAP;
1184                 if (is_migration_entry(entry))
1185                         page = migration_entry_to_page(entry);
1186         }
1187
1188         if (page && !PageAnon(page))
1189                 flags |= PM_FILE;
1190         if (page && page_mapcount(page) == 1)
1191                 flags |= PM_MMAP_EXCLUSIVE;
1192         if (vma->vm_flags & VM_SOFTDIRTY)
1193                 flags |= PM_SOFT_DIRTY;
1194
1195         return make_pme(frame, flags);
1196 }
1197
1198 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1199                              struct mm_walk *walk)
1200 {
1201         struct vm_area_struct *vma = walk->vma;
1202         struct pagemapread *pm = walk->private;
1203         spinlock_t *ptl;
1204         pte_t *pte, *orig_pte;
1205         int err = 0;
1206
1207 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1208         ptl = pmd_trans_huge_lock(pmdp, vma);
1209         if (ptl) {
1210                 u64 flags = 0, frame = 0;
1211                 pmd_t pmd = *pmdp;
1212
1213                 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1214                         flags |= PM_SOFT_DIRTY;
1215
1216                 /*
1217                  * Currently pmd for thp is always present because thp
1218                  * can not be swapped-out, migrated, or HWPOISONed
1219                  * (split in such cases instead.)
1220                  * This if-check is just to prepare for future implementation.
1221                  */
1222                 if (pmd_present(pmd)) {
1223                         struct page *page = pmd_page(pmd);
1224
1225                         if (page_mapcount(page) == 1)
1226                                 flags |= PM_MMAP_EXCLUSIVE;
1227
1228                         flags |= PM_PRESENT;
1229                         if (pm->show_pfn)
1230                                 frame = pmd_pfn(pmd) +
1231                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1232                 }
1233
1234                 for (; addr != end; addr += PAGE_SIZE) {
1235                         pagemap_entry_t pme = make_pme(frame, flags);
1236
1237                         err = add_to_pagemap(addr, &pme, pm);
1238                         if (err)
1239                                 break;
1240                         if (pm->show_pfn && (flags & PM_PRESENT))
1241                                 frame++;
1242                 }
1243                 spin_unlock(ptl);
1244                 return err;
1245         }
1246
1247         if (pmd_trans_unstable(pmdp))
1248                 return 0;
1249 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1250
1251         /*
1252          * We can assume that @vma always points to a valid one and @end never
1253          * goes beyond vma->vm_end.
1254          */
1255         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1256         for (; addr < end; pte++, addr += PAGE_SIZE) {
1257                 pagemap_entry_t pme;
1258
1259                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1260                 err = add_to_pagemap(addr, &pme, pm);
1261                 if (err)
1262                         break;
1263         }
1264         pte_unmap_unlock(orig_pte, ptl);
1265
1266         cond_resched();
1267
1268         return err;
1269 }
1270
1271 #ifdef CONFIG_HUGETLB_PAGE
1272 /* This function walks within one hugetlb entry in the single call */
1273 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1274                                  unsigned long addr, unsigned long end,
1275                                  struct mm_walk *walk)
1276 {
1277         struct pagemapread *pm = walk->private;
1278         struct vm_area_struct *vma = walk->vma;
1279         u64 flags = 0, frame = 0;
1280         int err = 0;
1281         pte_t pte;
1282
1283         if (vma->vm_flags & VM_SOFTDIRTY)
1284                 flags |= PM_SOFT_DIRTY;
1285
1286         pte = huge_ptep_get(ptep);
1287         if (pte_present(pte)) {
1288                 struct page *page = pte_page(pte);
1289
1290                 if (!PageAnon(page))
1291                         flags |= PM_FILE;
1292
1293                 if (page_mapcount(page) == 1)
1294                         flags |= PM_MMAP_EXCLUSIVE;
1295
1296                 flags |= PM_PRESENT;
1297                 if (pm->show_pfn)
1298                         frame = pte_pfn(pte) +
1299                                 ((addr & ~hmask) >> PAGE_SHIFT);
1300         }
1301
1302         for (; addr != end; addr += PAGE_SIZE) {
1303                 pagemap_entry_t pme = make_pme(frame, flags);
1304
1305                 err = add_to_pagemap(addr, &pme, pm);
1306                 if (err)
1307                         return err;
1308                 if (pm->show_pfn && (flags & PM_PRESENT))
1309                         frame++;
1310         }
1311
1312         cond_resched();
1313
1314         return err;
1315 }
1316 #endif /* HUGETLB_PAGE */
1317
1318 /*
1319  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1320  *
1321  * For each page in the address space, this file contains one 64-bit entry
1322  * consisting of the following:
1323  *
1324  * Bits 0-54  page frame number (PFN) if present
1325  * Bits 0-4   swap type if swapped
1326  * Bits 5-54  swap offset if swapped
1327  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1328  * Bit  56    page exclusively mapped
1329  * Bits 57-60 zero
1330  * Bit  61    page is file-page or shared-anon
1331  * Bit  62    page swapped
1332  * Bit  63    page present
1333  *
1334  * If the page is not present but in swap, then the PFN contains an
1335  * encoding of the swap file number and the page's offset into the
1336  * swap. Unmapped pages return a null PFN. This allows determining
1337  * precisely which pages are mapped (or in swap) and comparing mapped
1338  * pages between processes.
1339  *
1340  * Efficient users of this interface will use /proc/pid/maps to
1341  * determine which areas of memory are actually mapped and llseek to
1342  * skip over unmapped regions.
1343  */
1344 static ssize_t pagemap_read(struct file *file, char __user *buf,
1345                             size_t count, loff_t *ppos)
1346 {
1347         struct mm_struct *mm = file->private_data;
1348         struct pagemapread pm;
1349         struct mm_walk pagemap_walk = {};
1350         unsigned long src;
1351         unsigned long svpfn;
1352         unsigned long start_vaddr;
1353         unsigned long end_vaddr;
1354         int ret = 0, copied = 0;
1355
1356         if (!mm || !mmget_not_zero(mm))
1357                 goto out;
1358
1359         ret = -EINVAL;
1360         /* file position must be aligned */
1361         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1362                 goto out_mm;
1363
1364         ret = 0;
1365         if (!count)
1366                 goto out_mm;
1367
1368         /* do not disclose physical addresses: attack vector */
1369         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1370
1371         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1372         pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1373         ret = -ENOMEM;
1374         if (!pm.buffer)
1375                 goto out_mm;
1376
1377         pagemap_walk.pmd_entry = pagemap_pmd_range;
1378         pagemap_walk.pte_hole = pagemap_pte_hole;
1379 #ifdef CONFIG_HUGETLB_PAGE
1380         pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1381 #endif
1382         pagemap_walk.mm = mm;
1383         pagemap_walk.private = &pm;
1384
1385         src = *ppos;
1386         svpfn = src / PM_ENTRY_BYTES;
1387         start_vaddr = svpfn << PAGE_SHIFT;
1388         end_vaddr = mm->task_size;
1389
1390         /* watch out for wraparound */
1391         if (svpfn > mm->task_size >> PAGE_SHIFT)
1392                 start_vaddr = end_vaddr;
1393
1394         /*
1395          * The odds are that this will stop walking way
1396          * before end_vaddr, because the length of the
1397          * user buffer is tracked in "pm", and the walk
1398          * will stop when we hit the end of the buffer.
1399          */
1400         ret = 0;
1401         while (count && (start_vaddr < end_vaddr)) {
1402                 int len;
1403                 unsigned long end;
1404
1405                 pm.pos = 0;
1406                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1407                 /* overflow ? */
1408                 if (end < start_vaddr || end > end_vaddr)
1409                         end = end_vaddr;
1410                 down_read(&mm->mmap_sem);
1411                 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1412                 up_read(&mm->mmap_sem);
1413                 start_vaddr = end;
1414
1415                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1416                 if (copy_to_user(buf, pm.buffer, len)) {
1417                         ret = -EFAULT;
1418                         goto out_free;
1419                 }
1420                 copied += len;
1421                 buf += len;
1422                 count -= len;
1423         }
1424         *ppos += copied;
1425         if (!ret || ret == PM_END_OF_BUFFER)
1426                 ret = copied;
1427
1428 out_free:
1429         kfree(pm.buffer);
1430 out_mm:
1431         mmput(mm);
1432 out:
1433         return ret;
1434 }
1435
1436 static int pagemap_open(struct inode *inode, struct file *file)
1437 {
1438         struct mm_struct *mm;
1439
1440         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1441         if (IS_ERR(mm))
1442                 return PTR_ERR(mm);
1443         file->private_data = mm;
1444         return 0;
1445 }
1446
1447 static int pagemap_release(struct inode *inode, struct file *file)
1448 {
1449         struct mm_struct *mm = file->private_data;
1450
1451         if (mm)
1452                 mmdrop(mm);
1453         return 0;
1454 }
1455
1456 const struct file_operations proc_pagemap_operations = {
1457         .llseek         = mem_lseek, /* borrow this */
1458         .read           = pagemap_read,
1459         .open           = pagemap_open,
1460         .release        = pagemap_release,
1461 };
1462 #endif /* CONFIG_PROC_PAGE_MONITOR */
1463
1464 #ifdef CONFIG_NUMA
1465
1466 struct numa_maps {
1467         unsigned long pages;
1468         unsigned long anon;
1469         unsigned long active;
1470         unsigned long writeback;
1471         unsigned long mapcount_max;
1472         unsigned long dirty;
1473         unsigned long swapcache;
1474         unsigned long node[MAX_NUMNODES];
1475 };
1476
1477 struct numa_maps_private {
1478         struct proc_maps_private proc_maps;
1479         struct numa_maps md;
1480 };
1481
1482 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1483                         unsigned long nr_pages)
1484 {
1485         int count = page_mapcount(page);
1486
1487         md->pages += nr_pages;
1488         if (pte_dirty || PageDirty(page))
1489                 md->dirty += nr_pages;
1490
1491         if (PageSwapCache(page))
1492                 md->swapcache += nr_pages;
1493
1494         if (PageActive(page) || PageUnevictable(page))
1495                 md->active += nr_pages;
1496
1497         if (PageWriteback(page))
1498                 md->writeback += nr_pages;
1499
1500         if (PageAnon(page))
1501                 md->anon += nr_pages;
1502
1503         if (count > md->mapcount_max)
1504                 md->mapcount_max = count;
1505
1506         md->node[page_to_nid(page)] += nr_pages;
1507 }
1508
1509 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1510                 unsigned long addr)
1511 {
1512         struct page *page;
1513         int nid;
1514
1515         if (!pte_present(pte))
1516                 return NULL;
1517
1518         page = vm_normal_page(vma, addr, pte);
1519         if (!page)
1520                 return NULL;
1521
1522         if (PageReserved(page))
1523                 return NULL;
1524
1525         nid = page_to_nid(page);
1526         if (!node_isset(nid, node_states[N_MEMORY]))
1527                 return NULL;
1528
1529         return page;
1530 }
1531
1532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1533 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1534                                               struct vm_area_struct *vma,
1535                                               unsigned long addr)
1536 {
1537         struct page *page;
1538         int nid;
1539
1540         if (!pmd_present(pmd))
1541                 return NULL;
1542
1543         page = vm_normal_page_pmd(vma, addr, pmd);
1544         if (!page)
1545                 return NULL;
1546
1547         if (PageReserved(page))
1548                 return NULL;
1549
1550         nid = page_to_nid(page);
1551         if (!node_isset(nid, node_states[N_MEMORY]))
1552                 return NULL;
1553
1554         return page;
1555 }
1556 #endif
1557
1558 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1559                 unsigned long end, struct mm_walk *walk)
1560 {
1561         struct numa_maps *md = walk->private;
1562         struct vm_area_struct *vma = walk->vma;
1563         spinlock_t *ptl;
1564         pte_t *orig_pte;
1565         pte_t *pte;
1566
1567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1568         ptl = pmd_trans_huge_lock(pmd, vma);
1569         if (ptl) {
1570                 struct page *page;
1571
1572                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1573                 if (page)
1574                         gather_stats(page, md, pmd_dirty(*pmd),
1575                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1576                 spin_unlock(ptl);
1577                 return 0;
1578         }
1579
1580         if (pmd_trans_unstable(pmd))
1581                 return 0;
1582 #endif
1583         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1584         do {
1585                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1586                 if (!page)
1587                         continue;
1588                 gather_stats(page, md, pte_dirty(*pte), 1);
1589
1590         } while (pte++, addr += PAGE_SIZE, addr != end);
1591         pte_unmap_unlock(orig_pte, ptl);
1592         cond_resched();
1593         return 0;
1594 }
1595 #ifdef CONFIG_HUGETLB_PAGE
1596 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1597                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1598 {
1599         pte_t huge_pte = huge_ptep_get(pte);
1600         struct numa_maps *md;
1601         struct page *page;
1602
1603         if (!pte_present(huge_pte))
1604                 return 0;
1605
1606         page = pte_page(huge_pte);
1607         if (!page)
1608                 return 0;
1609
1610         md = walk->private;
1611         gather_stats(page, md, pte_dirty(huge_pte), 1);
1612         return 0;
1613 }
1614
1615 #else
1616 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1617                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1618 {
1619         return 0;
1620 }
1621 #endif
1622
1623 /*
1624  * Display pages allocated per node and memory policy via /proc.
1625  */
1626 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1627 {
1628         struct numa_maps_private *numa_priv = m->private;
1629         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1630         struct vm_area_struct *vma = v;
1631         struct numa_maps *md = &numa_priv->md;
1632         struct file *file = vma->vm_file;
1633         struct mm_struct *mm = vma->vm_mm;
1634         struct mm_walk walk = {
1635                 .hugetlb_entry = gather_hugetlb_stats,
1636                 .pmd_entry = gather_pte_stats,
1637                 .private = md,
1638                 .mm = mm,
1639         };
1640         struct mempolicy *pol;
1641         char buffer[64];
1642         int nid;
1643
1644         if (!mm)
1645                 return 0;
1646
1647         /* Ensure we start with an empty set of numa_maps statistics. */
1648         memset(md, 0, sizeof(*md));
1649
1650         pol = __get_vma_policy(vma, vma->vm_start);
1651         if (pol) {
1652                 mpol_to_str(buffer, sizeof(buffer), pol);
1653                 mpol_cond_put(pol);
1654         } else {
1655                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1656         }
1657
1658         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1659
1660         if (file) {
1661                 seq_puts(m, " file=");
1662                 seq_file_path(m, file, "\n\t= ");
1663         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1664                 seq_puts(m, " heap");
1665         } else if (is_stack(proc_priv, vma)) {
1666                 seq_puts(m, " stack");
1667         }
1668
1669         if (is_vm_hugetlb_page(vma))
1670                 seq_puts(m, " huge");
1671
1672         /* mmap_sem is held by m_start */
1673         walk_page_vma(vma, &walk);
1674
1675         if (!md->pages)
1676                 goto out;
1677
1678         if (md->anon)
1679                 seq_printf(m, " anon=%lu", md->anon);
1680
1681         if (md->dirty)
1682                 seq_printf(m, " dirty=%lu", md->dirty);
1683
1684         if (md->pages != md->anon && md->pages != md->dirty)
1685                 seq_printf(m, " mapped=%lu", md->pages);
1686
1687         if (md->mapcount_max > 1)
1688                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1689
1690         if (md->swapcache)
1691                 seq_printf(m, " swapcache=%lu", md->swapcache);
1692
1693         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1694                 seq_printf(m, " active=%lu", md->active);
1695
1696         if (md->writeback)
1697                 seq_printf(m, " writeback=%lu", md->writeback);
1698
1699         for_each_node_state(nid, N_MEMORY)
1700                 if (md->node[nid])
1701                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1702
1703         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1704 out:
1705         seq_putc(m, '\n');
1706         m_cache_vma(m, vma);
1707         return 0;
1708 }
1709
1710 static int show_pid_numa_map(struct seq_file *m, void *v)
1711 {
1712         return show_numa_map(m, v, 1);
1713 }
1714
1715 static int show_tid_numa_map(struct seq_file *m, void *v)
1716 {
1717         return show_numa_map(m, v, 0);
1718 }
1719
1720 static const struct seq_operations proc_pid_numa_maps_op = {
1721         .start  = m_start,
1722         .next   = m_next,
1723         .stop   = m_stop,
1724         .show   = show_pid_numa_map,
1725 };
1726
1727 static const struct seq_operations proc_tid_numa_maps_op = {
1728         .start  = m_start,
1729         .next   = m_next,
1730         .stop   = m_stop,
1731         .show   = show_tid_numa_map,
1732 };
1733
1734 static int numa_maps_open(struct inode *inode, struct file *file,
1735                           const struct seq_operations *ops)
1736 {
1737         return proc_maps_open(inode, file, ops,
1738                                 sizeof(struct numa_maps_private));
1739 }
1740
1741 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1742 {
1743         return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1744 }
1745
1746 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1747 {
1748         return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1749 }
1750
1751 const struct file_operations proc_pid_numa_maps_operations = {
1752         .open           = pid_numa_maps_open,
1753         .read           = seq_read,
1754         .llseek         = seq_lseek,
1755         .release        = proc_map_release,
1756 };
1757
1758 const struct file_operations proc_tid_numa_maps_operations = {
1759         .open           = tid_numa_maps_open,
1760         .read           = seq_read,
1761         .llseek         = seq_lseek,
1762         .release        = proc_map_release,
1763 };
1764 #endif /* CONFIG_NUMA */