Merge tag 'acpi-fixes-4.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/sched/mm.h>
15 #include <linux/swapops.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/page_idle.h>
18 #include <linux/shmem_fs.h>
19
20 #include <asm/elf.h>
21 #include <linux/uaccess.h>
22 #include <asm/tlbflush.h>
23 #include "internal.h"
24
25 void task_mem(struct seq_file *m, struct mm_struct *mm)
26 {
27         unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
28         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
29
30         anon = get_mm_counter(mm, MM_ANONPAGES);
31         file = get_mm_counter(mm, MM_FILEPAGES);
32         shmem = get_mm_counter(mm, MM_SHMEMPAGES);
33
34         /*
35          * Note: to minimize their overhead, mm maintains hiwater_vm and
36          * hiwater_rss only when about to *lower* total_vm or rss.  Any
37          * collector of these hiwater stats must therefore get total_vm
38          * and rss too, which will usually be the higher.  Barriers? not
39          * worth the effort, such snapshots can always be inconsistent.
40          */
41         hiwater_vm = total_vm = mm->total_vm;
42         if (hiwater_vm < mm->hiwater_vm)
43                 hiwater_vm = mm->hiwater_vm;
44         hiwater_rss = total_rss = anon + file + shmem;
45         if (hiwater_rss < mm->hiwater_rss)
46                 hiwater_rss = mm->hiwater_rss;
47
48         text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
49         lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
50         swap = get_mm_counter(mm, MM_SWAPENTS);
51         ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
52         pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
53         seq_printf(m,
54                 "VmPeak:\t%8lu kB\n"
55                 "VmSize:\t%8lu kB\n"
56                 "VmLck:\t%8lu kB\n"
57                 "VmPin:\t%8lu kB\n"
58                 "VmHWM:\t%8lu kB\n"
59                 "VmRSS:\t%8lu kB\n"
60                 "RssAnon:\t%8lu kB\n"
61                 "RssFile:\t%8lu kB\n"
62                 "RssShmem:\t%8lu kB\n"
63                 "VmData:\t%8lu kB\n"
64                 "VmStk:\t%8lu kB\n"
65                 "VmExe:\t%8lu kB\n"
66                 "VmLib:\t%8lu kB\n"
67                 "VmPTE:\t%8lu kB\n"
68                 "VmPMD:\t%8lu kB\n"
69                 "VmSwap:\t%8lu kB\n",
70                 hiwater_vm << (PAGE_SHIFT-10),
71                 total_vm << (PAGE_SHIFT-10),
72                 mm->locked_vm << (PAGE_SHIFT-10),
73                 mm->pinned_vm << (PAGE_SHIFT-10),
74                 hiwater_rss << (PAGE_SHIFT-10),
75                 total_rss << (PAGE_SHIFT-10),
76                 anon << (PAGE_SHIFT-10),
77                 file << (PAGE_SHIFT-10),
78                 shmem << (PAGE_SHIFT-10),
79                 mm->data_vm << (PAGE_SHIFT-10),
80                 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
81                 ptes >> 10,
82                 pmds >> 10,
83                 swap << (PAGE_SHIFT-10));
84         hugetlb_report_usage(m, mm);
85 }
86
87 unsigned long task_vsize(struct mm_struct *mm)
88 {
89         return PAGE_SIZE * mm->total_vm;
90 }
91
92 unsigned long task_statm(struct mm_struct *mm,
93                          unsigned long *shared, unsigned long *text,
94                          unsigned long *data, unsigned long *resident)
95 {
96         *shared = get_mm_counter(mm, MM_FILEPAGES) +
97                         get_mm_counter(mm, MM_SHMEMPAGES);
98         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
99                                                                 >> PAGE_SHIFT;
100         *data = mm->data_vm + mm->stack_vm;
101         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
102         return mm->total_vm;
103 }
104
105 #ifdef CONFIG_NUMA
106 /*
107  * Save get_task_policy() for show_numa_map().
108  */
109 static void hold_task_mempolicy(struct proc_maps_private *priv)
110 {
111         struct task_struct *task = priv->task;
112
113         task_lock(task);
114         priv->task_mempolicy = get_task_policy(task);
115         mpol_get(priv->task_mempolicy);
116         task_unlock(task);
117 }
118 static void release_task_mempolicy(struct proc_maps_private *priv)
119 {
120         mpol_put(priv->task_mempolicy);
121 }
122 #else
123 static void hold_task_mempolicy(struct proc_maps_private *priv)
124 {
125 }
126 static void release_task_mempolicy(struct proc_maps_private *priv)
127 {
128 }
129 #endif
130
131 static void vma_stop(struct proc_maps_private *priv)
132 {
133         struct mm_struct *mm = priv->mm;
134
135         release_task_mempolicy(priv);
136         up_read(&mm->mmap_sem);
137         mmput(mm);
138 }
139
140 static struct vm_area_struct *
141 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
142 {
143         if (vma == priv->tail_vma)
144                 return NULL;
145         return vma->vm_next ?: priv->tail_vma;
146 }
147
148 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
149 {
150         if (m->count < m->size) /* vma is copied successfully */
151                 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
152 }
153
154 static void *m_start(struct seq_file *m, loff_t *ppos)
155 {
156         struct proc_maps_private *priv = m->private;
157         unsigned long last_addr = m->version;
158         struct mm_struct *mm;
159         struct vm_area_struct *vma;
160         unsigned int pos = *ppos;
161
162         /* See m_cache_vma(). Zero at the start or after lseek. */
163         if (last_addr == -1UL)
164                 return NULL;
165
166         priv->task = get_proc_task(priv->inode);
167         if (!priv->task)
168                 return ERR_PTR(-ESRCH);
169
170         mm = priv->mm;
171         if (!mm || !mmget_not_zero(mm))
172                 return NULL;
173
174         down_read(&mm->mmap_sem);
175         hold_task_mempolicy(priv);
176         priv->tail_vma = get_gate_vma(mm);
177
178         if (last_addr) {
179                 vma = find_vma(mm, last_addr - 1);
180                 if (vma && vma->vm_start <= last_addr)
181                         vma = m_next_vma(priv, vma);
182                 if (vma)
183                         return vma;
184         }
185
186         m->version = 0;
187         if (pos < mm->map_count) {
188                 for (vma = mm->mmap; pos; pos--) {
189                         m->version = vma->vm_start;
190                         vma = vma->vm_next;
191                 }
192                 return vma;
193         }
194
195         /* we do not bother to update m->version in this case */
196         if (pos == mm->map_count && priv->tail_vma)
197                 return priv->tail_vma;
198
199         vma_stop(priv);
200         return NULL;
201 }
202
203 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
204 {
205         struct proc_maps_private *priv = m->private;
206         struct vm_area_struct *next;
207
208         (*pos)++;
209         next = m_next_vma(priv, v);
210         if (!next)
211                 vma_stop(priv);
212         return next;
213 }
214
215 static void m_stop(struct seq_file *m, void *v)
216 {
217         struct proc_maps_private *priv = m->private;
218
219         if (!IS_ERR_OR_NULL(v))
220                 vma_stop(priv);
221         if (priv->task) {
222                 put_task_struct(priv->task);
223                 priv->task = NULL;
224         }
225 }
226
227 static int proc_maps_open(struct inode *inode, struct file *file,
228                         const struct seq_operations *ops, int psize)
229 {
230         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
231
232         if (!priv)
233                 return -ENOMEM;
234
235         priv->inode = inode;
236         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
237         if (IS_ERR(priv->mm)) {
238                 int err = PTR_ERR(priv->mm);
239
240                 seq_release_private(inode, file);
241                 return err;
242         }
243
244         return 0;
245 }
246
247 static int proc_map_release(struct inode *inode, struct file *file)
248 {
249         struct seq_file *seq = file->private_data;
250         struct proc_maps_private *priv = seq->private;
251
252         if (priv->mm)
253                 mmdrop(priv->mm);
254
255         return seq_release_private(inode, file);
256 }
257
258 static int do_maps_open(struct inode *inode, struct file *file,
259                         const struct seq_operations *ops)
260 {
261         return proc_maps_open(inode, file, ops,
262                                 sizeof(struct proc_maps_private));
263 }
264
265 /*
266  * Indicate if the VMA is a stack for the given task; for
267  * /proc/PID/maps that is the stack of the main task.
268  */
269 static int is_stack(struct proc_maps_private *priv,
270                     struct vm_area_struct *vma)
271 {
272         /*
273          * We make no effort to guess what a given thread considers to be
274          * its "stack".  It's not even well-defined for programs written
275          * languages like Go.
276          */
277         return vma->vm_start <= vma->vm_mm->start_stack &&
278                 vma->vm_end >= vma->vm_mm->start_stack;
279 }
280
281 static void
282 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
283 {
284         struct mm_struct *mm = vma->vm_mm;
285         struct file *file = vma->vm_file;
286         struct proc_maps_private *priv = m->private;
287         vm_flags_t flags = vma->vm_flags;
288         unsigned long ino = 0;
289         unsigned long long pgoff = 0;
290         unsigned long start, end;
291         dev_t dev = 0;
292         const char *name = NULL;
293
294         if (file) {
295                 struct inode *inode = file_inode(vma->vm_file);
296                 dev = inode->i_sb->s_dev;
297                 ino = inode->i_ino;
298                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
299         }
300
301         start = vma->vm_start;
302         end = vma->vm_end;
303
304         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
305         seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
306                         start,
307                         end,
308                         flags & VM_READ ? 'r' : '-',
309                         flags & VM_WRITE ? 'w' : '-',
310                         flags & VM_EXEC ? 'x' : '-',
311                         flags & VM_MAYSHARE ? 's' : 'p',
312                         pgoff,
313                         MAJOR(dev), MINOR(dev), ino);
314
315         /*
316          * Print the dentry name for named mappings, and a
317          * special [heap] marker for the heap:
318          */
319         if (file) {
320                 seq_pad(m, ' ');
321                 seq_file_path(m, file, "\n");
322                 goto done;
323         }
324
325         if (vma->vm_ops && vma->vm_ops->name) {
326                 name = vma->vm_ops->name(vma);
327                 if (name)
328                         goto done;
329         }
330
331         name = arch_vma_name(vma);
332         if (!name) {
333                 if (!mm) {
334                         name = "[vdso]";
335                         goto done;
336                 }
337
338                 if (vma->vm_start <= mm->brk &&
339                     vma->vm_end >= mm->start_brk) {
340                         name = "[heap]";
341                         goto done;
342                 }
343
344                 if (is_stack(priv, vma))
345                         name = "[stack]";
346         }
347
348 done:
349         if (name) {
350                 seq_pad(m, ' ');
351                 seq_puts(m, name);
352         }
353         seq_putc(m, '\n');
354 }
355
356 static int show_map(struct seq_file *m, void *v, int is_pid)
357 {
358         show_map_vma(m, v, is_pid);
359         m_cache_vma(m, v);
360         return 0;
361 }
362
363 static int show_pid_map(struct seq_file *m, void *v)
364 {
365         return show_map(m, v, 1);
366 }
367
368 static int show_tid_map(struct seq_file *m, void *v)
369 {
370         return show_map(m, v, 0);
371 }
372
373 static const struct seq_operations proc_pid_maps_op = {
374         .start  = m_start,
375         .next   = m_next,
376         .stop   = m_stop,
377         .show   = show_pid_map
378 };
379
380 static const struct seq_operations proc_tid_maps_op = {
381         .start  = m_start,
382         .next   = m_next,
383         .stop   = m_stop,
384         .show   = show_tid_map
385 };
386
387 static int pid_maps_open(struct inode *inode, struct file *file)
388 {
389         return do_maps_open(inode, file, &proc_pid_maps_op);
390 }
391
392 static int tid_maps_open(struct inode *inode, struct file *file)
393 {
394         return do_maps_open(inode, file, &proc_tid_maps_op);
395 }
396
397 const struct file_operations proc_pid_maps_operations = {
398         .open           = pid_maps_open,
399         .read           = seq_read,
400         .llseek         = seq_lseek,
401         .release        = proc_map_release,
402 };
403
404 const struct file_operations proc_tid_maps_operations = {
405         .open           = tid_maps_open,
406         .read           = seq_read,
407         .llseek         = seq_lseek,
408         .release        = proc_map_release,
409 };
410
411 /*
412  * Proportional Set Size(PSS): my share of RSS.
413  *
414  * PSS of a process is the count of pages it has in memory, where each
415  * page is divided by the number of processes sharing it.  So if a
416  * process has 1000 pages all to itself, and 1000 shared with one other
417  * process, its PSS will be 1500.
418  *
419  * To keep (accumulated) division errors low, we adopt a 64bit
420  * fixed-point pss counter to minimize division errors. So (pss >>
421  * PSS_SHIFT) would be the real byte count.
422  *
423  * A shift of 12 before division means (assuming 4K page size):
424  *      - 1M 3-user-pages add up to 8KB errors;
425  *      - supports mapcount up to 2^24, or 16M;
426  *      - supports PSS up to 2^52 bytes, or 4PB.
427  */
428 #define PSS_SHIFT 12
429
430 #ifdef CONFIG_PROC_PAGE_MONITOR
431 struct mem_size_stats {
432         unsigned long resident;
433         unsigned long shared_clean;
434         unsigned long shared_dirty;
435         unsigned long private_clean;
436         unsigned long private_dirty;
437         unsigned long referenced;
438         unsigned long anonymous;
439         unsigned long lazyfree;
440         unsigned long anonymous_thp;
441         unsigned long shmem_thp;
442         unsigned long swap;
443         unsigned long shared_hugetlb;
444         unsigned long private_hugetlb;
445         u64 pss;
446         u64 swap_pss;
447         bool check_shmem_swap;
448 };
449
450 static void smaps_account(struct mem_size_stats *mss, struct page *page,
451                 bool compound, bool young, bool dirty)
452 {
453         int i, nr = compound ? 1 << compound_order(page) : 1;
454         unsigned long size = nr * PAGE_SIZE;
455
456         if (PageAnon(page)) {
457                 mss->anonymous += size;
458                 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
459                         mss->lazyfree += size;
460         }
461
462         mss->resident += size;
463         /* Accumulate the size in pages that have been accessed. */
464         if (young || page_is_young(page) || PageReferenced(page))
465                 mss->referenced += size;
466
467         /*
468          * page_count(page) == 1 guarantees the page is mapped exactly once.
469          * If any subpage of the compound page mapped with PTE it would elevate
470          * page_count().
471          */
472         if (page_count(page) == 1) {
473                 if (dirty || PageDirty(page))
474                         mss->private_dirty += size;
475                 else
476                         mss->private_clean += size;
477                 mss->pss += (u64)size << PSS_SHIFT;
478                 return;
479         }
480
481         for (i = 0; i < nr; i++, page++) {
482                 int mapcount = page_mapcount(page);
483
484                 if (mapcount >= 2) {
485                         if (dirty || PageDirty(page))
486                                 mss->shared_dirty += PAGE_SIZE;
487                         else
488                                 mss->shared_clean += PAGE_SIZE;
489                         mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
490                 } else {
491                         if (dirty || PageDirty(page))
492                                 mss->private_dirty += PAGE_SIZE;
493                         else
494                                 mss->private_clean += PAGE_SIZE;
495                         mss->pss += PAGE_SIZE << PSS_SHIFT;
496                 }
497         }
498 }
499
500 #ifdef CONFIG_SHMEM
501 static int smaps_pte_hole(unsigned long addr, unsigned long end,
502                 struct mm_walk *walk)
503 {
504         struct mem_size_stats *mss = walk->private;
505
506         mss->swap += shmem_partial_swap_usage(
507                         walk->vma->vm_file->f_mapping, addr, end);
508
509         return 0;
510 }
511 #endif
512
513 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
514                 struct mm_walk *walk)
515 {
516         struct mem_size_stats *mss = walk->private;
517         struct vm_area_struct *vma = walk->vma;
518         struct page *page = NULL;
519
520         if (pte_present(*pte)) {
521                 page = vm_normal_page(vma, addr, *pte);
522         } else if (is_swap_pte(*pte)) {
523                 swp_entry_t swpent = pte_to_swp_entry(*pte);
524
525                 if (!non_swap_entry(swpent)) {
526                         int mapcount;
527
528                         mss->swap += PAGE_SIZE;
529                         mapcount = swp_swapcount(swpent);
530                         if (mapcount >= 2) {
531                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
532
533                                 do_div(pss_delta, mapcount);
534                                 mss->swap_pss += pss_delta;
535                         } else {
536                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
537                         }
538                 } else if (is_migration_entry(swpent))
539                         page = migration_entry_to_page(swpent);
540         } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
541                                                         && pte_none(*pte))) {
542                 page = find_get_entry(vma->vm_file->f_mapping,
543                                                 linear_page_index(vma, addr));
544                 if (!page)
545                         return;
546
547                 if (radix_tree_exceptional_entry(page))
548                         mss->swap += PAGE_SIZE;
549                 else
550                         put_page(page);
551
552                 return;
553         }
554
555         if (!page)
556                 return;
557
558         smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
559 }
560
561 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
562 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
563                 struct mm_walk *walk)
564 {
565         struct mem_size_stats *mss = walk->private;
566         struct vm_area_struct *vma = walk->vma;
567         struct page *page;
568
569         /* FOLL_DUMP will return -EFAULT on huge zero page */
570         page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
571         if (IS_ERR_OR_NULL(page))
572                 return;
573         if (PageAnon(page))
574                 mss->anonymous_thp += HPAGE_PMD_SIZE;
575         else if (PageSwapBacked(page))
576                 mss->shmem_thp += HPAGE_PMD_SIZE;
577         else if (is_zone_device_page(page))
578                 /* pass */;
579         else
580                 VM_BUG_ON_PAGE(1, page);
581         smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
582 }
583 #else
584 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
585                 struct mm_walk *walk)
586 {
587 }
588 #endif
589
590 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
591                            struct mm_walk *walk)
592 {
593         struct vm_area_struct *vma = walk->vma;
594         pte_t *pte;
595         spinlock_t *ptl;
596
597         ptl = pmd_trans_huge_lock(pmd, vma);
598         if (ptl) {
599                 smaps_pmd_entry(pmd, addr, walk);
600                 spin_unlock(ptl);
601                 return 0;
602         }
603
604         if (pmd_trans_unstable(pmd))
605                 return 0;
606         /*
607          * The mmap_sem held all the way back in m_start() is what
608          * keeps khugepaged out of here and from collapsing things
609          * in here.
610          */
611         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
612         for (; addr != end; pte++, addr += PAGE_SIZE)
613                 smaps_pte_entry(pte, addr, walk);
614         pte_unmap_unlock(pte - 1, ptl);
615         cond_resched();
616         return 0;
617 }
618
619 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
620 {
621         /*
622          * Don't forget to update Documentation/ on changes.
623          */
624         static const char mnemonics[BITS_PER_LONG][2] = {
625                 /*
626                  * In case if we meet a flag we don't know about.
627                  */
628                 [0 ... (BITS_PER_LONG-1)] = "??",
629
630                 [ilog2(VM_READ)]        = "rd",
631                 [ilog2(VM_WRITE)]       = "wr",
632                 [ilog2(VM_EXEC)]        = "ex",
633                 [ilog2(VM_SHARED)]      = "sh",
634                 [ilog2(VM_MAYREAD)]     = "mr",
635                 [ilog2(VM_MAYWRITE)]    = "mw",
636                 [ilog2(VM_MAYEXEC)]     = "me",
637                 [ilog2(VM_MAYSHARE)]    = "ms",
638                 [ilog2(VM_GROWSDOWN)]   = "gd",
639                 [ilog2(VM_PFNMAP)]      = "pf",
640                 [ilog2(VM_DENYWRITE)]   = "dw",
641 #ifdef CONFIG_X86_INTEL_MPX
642                 [ilog2(VM_MPX)]         = "mp",
643 #endif
644                 [ilog2(VM_LOCKED)]      = "lo",
645                 [ilog2(VM_IO)]          = "io",
646                 [ilog2(VM_SEQ_READ)]    = "sr",
647                 [ilog2(VM_RAND_READ)]   = "rr",
648                 [ilog2(VM_DONTCOPY)]    = "dc",
649                 [ilog2(VM_DONTEXPAND)]  = "de",
650                 [ilog2(VM_ACCOUNT)]     = "ac",
651                 [ilog2(VM_NORESERVE)]   = "nr",
652                 [ilog2(VM_HUGETLB)]     = "ht",
653                 [ilog2(VM_ARCH_1)]      = "ar",
654                 [ilog2(VM_DONTDUMP)]    = "dd",
655 #ifdef CONFIG_MEM_SOFT_DIRTY
656                 [ilog2(VM_SOFTDIRTY)]   = "sd",
657 #endif
658                 [ilog2(VM_MIXEDMAP)]    = "mm",
659                 [ilog2(VM_HUGEPAGE)]    = "hg",
660                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
661                 [ilog2(VM_MERGEABLE)]   = "mg",
662                 [ilog2(VM_UFFD_MISSING)]= "um",
663                 [ilog2(VM_UFFD_WP)]     = "uw",
664 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
665                 /* These come out via ProtectionKey: */
666                 [ilog2(VM_PKEY_BIT0)]   = "",
667                 [ilog2(VM_PKEY_BIT1)]   = "",
668                 [ilog2(VM_PKEY_BIT2)]   = "",
669                 [ilog2(VM_PKEY_BIT3)]   = "",
670 #endif
671         };
672         size_t i;
673
674         seq_puts(m, "VmFlags: ");
675         for (i = 0; i < BITS_PER_LONG; i++) {
676                 if (!mnemonics[i][0])
677                         continue;
678                 if (vma->vm_flags & (1UL << i)) {
679                         seq_printf(m, "%c%c ",
680                                    mnemonics[i][0], mnemonics[i][1]);
681                 }
682         }
683         seq_putc(m, '\n');
684 }
685
686 #ifdef CONFIG_HUGETLB_PAGE
687 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
688                                  unsigned long addr, unsigned long end,
689                                  struct mm_walk *walk)
690 {
691         struct mem_size_stats *mss = walk->private;
692         struct vm_area_struct *vma = walk->vma;
693         struct page *page = NULL;
694
695         if (pte_present(*pte)) {
696                 page = vm_normal_page(vma, addr, *pte);
697         } else if (is_swap_pte(*pte)) {
698                 swp_entry_t swpent = pte_to_swp_entry(*pte);
699
700                 if (is_migration_entry(swpent))
701                         page = migration_entry_to_page(swpent);
702         }
703         if (page) {
704                 int mapcount = page_mapcount(page);
705
706                 if (mapcount >= 2)
707                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
708                 else
709                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
710         }
711         return 0;
712 }
713 #endif /* HUGETLB_PAGE */
714
715 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
716 {
717 }
718
719 static int show_smap(struct seq_file *m, void *v, int is_pid)
720 {
721         struct vm_area_struct *vma = v;
722         struct mem_size_stats mss;
723         struct mm_walk smaps_walk = {
724                 .pmd_entry = smaps_pte_range,
725 #ifdef CONFIG_HUGETLB_PAGE
726                 .hugetlb_entry = smaps_hugetlb_range,
727 #endif
728                 .mm = vma->vm_mm,
729                 .private = &mss,
730         };
731
732         memset(&mss, 0, sizeof mss);
733
734 #ifdef CONFIG_SHMEM
735         if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
736                 /*
737                  * For shared or readonly shmem mappings we know that all
738                  * swapped out pages belong to the shmem object, and we can
739                  * obtain the swap value much more efficiently. For private
740                  * writable mappings, we might have COW pages that are
741                  * not affected by the parent swapped out pages of the shmem
742                  * object, so we have to distinguish them during the page walk.
743                  * Unless we know that the shmem object (or the part mapped by
744                  * our VMA) has no swapped out pages at all.
745                  */
746                 unsigned long shmem_swapped = shmem_swap_usage(vma);
747
748                 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
749                                         !(vma->vm_flags & VM_WRITE)) {
750                         mss.swap = shmem_swapped;
751                 } else {
752                         mss.check_shmem_swap = true;
753                         smaps_walk.pte_hole = smaps_pte_hole;
754                 }
755         }
756 #endif
757
758         /* mmap_sem is held in m_start */
759         walk_page_vma(vma, &smaps_walk);
760
761         show_map_vma(m, vma, is_pid);
762
763         seq_printf(m,
764                    "Size:           %8lu kB\n"
765                    "Rss:            %8lu kB\n"
766                    "Pss:            %8lu kB\n"
767                    "Shared_Clean:   %8lu kB\n"
768                    "Shared_Dirty:   %8lu kB\n"
769                    "Private_Clean:  %8lu kB\n"
770                    "Private_Dirty:  %8lu kB\n"
771                    "Referenced:     %8lu kB\n"
772                    "Anonymous:      %8lu kB\n"
773                    "LazyFree:       %8lu kB\n"
774                    "AnonHugePages:  %8lu kB\n"
775                    "ShmemPmdMapped: %8lu kB\n"
776                    "Shared_Hugetlb: %8lu kB\n"
777                    "Private_Hugetlb: %7lu kB\n"
778                    "Swap:           %8lu kB\n"
779                    "SwapPss:        %8lu kB\n"
780                    "KernelPageSize: %8lu kB\n"
781                    "MMUPageSize:    %8lu kB\n"
782                    "Locked:         %8lu kB\n",
783                    (vma->vm_end - vma->vm_start) >> 10,
784                    mss.resident >> 10,
785                    (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
786                    mss.shared_clean  >> 10,
787                    mss.shared_dirty  >> 10,
788                    mss.private_clean >> 10,
789                    mss.private_dirty >> 10,
790                    mss.referenced >> 10,
791                    mss.anonymous >> 10,
792                    mss.lazyfree >> 10,
793                    mss.anonymous_thp >> 10,
794                    mss.shmem_thp >> 10,
795                    mss.shared_hugetlb >> 10,
796                    mss.private_hugetlb >> 10,
797                    mss.swap >> 10,
798                    (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
799                    vma_kernel_pagesize(vma) >> 10,
800                    vma_mmu_pagesize(vma) >> 10,
801                    (vma->vm_flags & VM_LOCKED) ?
802                         (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
803
804         arch_show_smap(m, vma);
805         show_smap_vma_flags(m, vma);
806         m_cache_vma(m, vma);
807         return 0;
808 }
809
810 static int show_pid_smap(struct seq_file *m, void *v)
811 {
812         return show_smap(m, v, 1);
813 }
814
815 static int show_tid_smap(struct seq_file *m, void *v)
816 {
817         return show_smap(m, v, 0);
818 }
819
820 static const struct seq_operations proc_pid_smaps_op = {
821         .start  = m_start,
822         .next   = m_next,
823         .stop   = m_stop,
824         .show   = show_pid_smap
825 };
826
827 static const struct seq_operations proc_tid_smaps_op = {
828         .start  = m_start,
829         .next   = m_next,
830         .stop   = m_stop,
831         .show   = show_tid_smap
832 };
833
834 static int pid_smaps_open(struct inode *inode, struct file *file)
835 {
836         return do_maps_open(inode, file, &proc_pid_smaps_op);
837 }
838
839 static int tid_smaps_open(struct inode *inode, struct file *file)
840 {
841         return do_maps_open(inode, file, &proc_tid_smaps_op);
842 }
843
844 const struct file_operations proc_pid_smaps_operations = {
845         .open           = pid_smaps_open,
846         .read           = seq_read,
847         .llseek         = seq_lseek,
848         .release        = proc_map_release,
849 };
850
851 const struct file_operations proc_tid_smaps_operations = {
852         .open           = tid_smaps_open,
853         .read           = seq_read,
854         .llseek         = seq_lseek,
855         .release        = proc_map_release,
856 };
857
858 enum clear_refs_types {
859         CLEAR_REFS_ALL = 1,
860         CLEAR_REFS_ANON,
861         CLEAR_REFS_MAPPED,
862         CLEAR_REFS_SOFT_DIRTY,
863         CLEAR_REFS_MM_HIWATER_RSS,
864         CLEAR_REFS_LAST,
865 };
866
867 struct clear_refs_private {
868         enum clear_refs_types type;
869 };
870
871 #ifdef CONFIG_MEM_SOFT_DIRTY
872 static inline void clear_soft_dirty(struct vm_area_struct *vma,
873                 unsigned long addr, pte_t *pte)
874 {
875         /*
876          * The soft-dirty tracker uses #PF-s to catch writes
877          * to pages, so write-protect the pte as well. See the
878          * Documentation/vm/soft-dirty.txt for full description
879          * of how soft-dirty works.
880          */
881         pte_t ptent = *pte;
882
883         if (pte_present(ptent)) {
884                 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
885                 ptent = pte_wrprotect(ptent);
886                 ptent = pte_clear_soft_dirty(ptent);
887                 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
888         } else if (is_swap_pte(ptent)) {
889                 ptent = pte_swp_clear_soft_dirty(ptent);
890                 set_pte_at(vma->vm_mm, addr, pte, ptent);
891         }
892 }
893 #else
894 static inline void clear_soft_dirty(struct vm_area_struct *vma,
895                 unsigned long addr, pte_t *pte)
896 {
897 }
898 #endif
899
900 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
901 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
902                 unsigned long addr, pmd_t *pmdp)
903 {
904         pmd_t pmd = *pmdp;
905
906         /* See comment in change_huge_pmd() */
907         pmdp_invalidate(vma, addr, pmdp);
908         if (pmd_dirty(*pmdp))
909                 pmd = pmd_mkdirty(pmd);
910         if (pmd_young(*pmdp))
911                 pmd = pmd_mkyoung(pmd);
912
913         pmd = pmd_wrprotect(pmd);
914         pmd = pmd_clear_soft_dirty(pmd);
915
916         set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
917 }
918 #else
919 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
920                 unsigned long addr, pmd_t *pmdp)
921 {
922 }
923 #endif
924
925 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
926                                 unsigned long end, struct mm_walk *walk)
927 {
928         struct clear_refs_private *cp = walk->private;
929         struct vm_area_struct *vma = walk->vma;
930         pte_t *pte, ptent;
931         spinlock_t *ptl;
932         struct page *page;
933
934         ptl = pmd_trans_huge_lock(pmd, vma);
935         if (ptl) {
936                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
937                         clear_soft_dirty_pmd(vma, addr, pmd);
938                         goto out;
939                 }
940
941                 page = pmd_page(*pmd);
942
943                 /* Clear accessed and referenced bits. */
944                 pmdp_test_and_clear_young(vma, addr, pmd);
945                 test_and_clear_page_young(page);
946                 ClearPageReferenced(page);
947 out:
948                 spin_unlock(ptl);
949                 return 0;
950         }
951
952         if (pmd_trans_unstable(pmd))
953                 return 0;
954
955         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
956         for (; addr != end; pte++, addr += PAGE_SIZE) {
957                 ptent = *pte;
958
959                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
960                         clear_soft_dirty(vma, addr, pte);
961                         continue;
962                 }
963
964                 if (!pte_present(ptent))
965                         continue;
966
967                 page = vm_normal_page(vma, addr, ptent);
968                 if (!page)
969                         continue;
970
971                 /* Clear accessed and referenced bits. */
972                 ptep_test_and_clear_young(vma, addr, pte);
973                 test_and_clear_page_young(page);
974                 ClearPageReferenced(page);
975         }
976         pte_unmap_unlock(pte - 1, ptl);
977         cond_resched();
978         return 0;
979 }
980
981 static int clear_refs_test_walk(unsigned long start, unsigned long end,
982                                 struct mm_walk *walk)
983 {
984         struct clear_refs_private *cp = walk->private;
985         struct vm_area_struct *vma = walk->vma;
986
987         if (vma->vm_flags & VM_PFNMAP)
988                 return 1;
989
990         /*
991          * Writing 1 to /proc/pid/clear_refs affects all pages.
992          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
993          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
994          * Writing 4 to /proc/pid/clear_refs affects all pages.
995          */
996         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
997                 return 1;
998         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
999                 return 1;
1000         return 0;
1001 }
1002
1003 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1004                                 size_t count, loff_t *ppos)
1005 {
1006         struct task_struct *task;
1007         char buffer[PROC_NUMBUF];
1008         struct mm_struct *mm;
1009         struct vm_area_struct *vma;
1010         enum clear_refs_types type;
1011         int itype;
1012         int rv;
1013
1014         memset(buffer, 0, sizeof(buffer));
1015         if (count > sizeof(buffer) - 1)
1016                 count = sizeof(buffer) - 1;
1017         if (copy_from_user(buffer, buf, count))
1018                 return -EFAULT;
1019         rv = kstrtoint(strstrip(buffer), 10, &itype);
1020         if (rv < 0)
1021                 return rv;
1022         type = (enum clear_refs_types)itype;
1023         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1024                 return -EINVAL;
1025
1026         task = get_proc_task(file_inode(file));
1027         if (!task)
1028                 return -ESRCH;
1029         mm = get_task_mm(task);
1030         if (mm) {
1031                 struct clear_refs_private cp = {
1032                         .type = type,
1033                 };
1034                 struct mm_walk clear_refs_walk = {
1035                         .pmd_entry = clear_refs_pte_range,
1036                         .test_walk = clear_refs_test_walk,
1037                         .mm = mm,
1038                         .private = &cp,
1039                 };
1040
1041                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1042                         if (down_write_killable(&mm->mmap_sem)) {
1043                                 count = -EINTR;
1044                                 goto out_mm;
1045                         }
1046
1047                         /*
1048                          * Writing 5 to /proc/pid/clear_refs resets the peak
1049                          * resident set size to this mm's current rss value.
1050                          */
1051                         reset_mm_hiwater_rss(mm);
1052                         up_write(&mm->mmap_sem);
1053                         goto out_mm;
1054                 }
1055
1056                 down_read(&mm->mmap_sem);
1057                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1058                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1059                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1060                                         continue;
1061                                 up_read(&mm->mmap_sem);
1062                                 if (down_write_killable(&mm->mmap_sem)) {
1063                                         count = -EINTR;
1064                                         goto out_mm;
1065                                 }
1066                                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1067                                         vma->vm_flags &= ~VM_SOFTDIRTY;
1068                                         vma_set_page_prot(vma);
1069                                 }
1070                                 downgrade_write(&mm->mmap_sem);
1071                                 break;
1072                         }
1073                         mmu_notifier_invalidate_range_start(mm, 0, -1);
1074                 }
1075                 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1076                 if (type == CLEAR_REFS_SOFT_DIRTY)
1077                         mmu_notifier_invalidate_range_end(mm, 0, -1);
1078                 flush_tlb_mm(mm);
1079                 up_read(&mm->mmap_sem);
1080 out_mm:
1081                 mmput(mm);
1082         }
1083         put_task_struct(task);
1084
1085         return count;
1086 }
1087
1088 const struct file_operations proc_clear_refs_operations = {
1089         .write          = clear_refs_write,
1090         .llseek         = noop_llseek,
1091 };
1092
1093 typedef struct {
1094         u64 pme;
1095 } pagemap_entry_t;
1096
1097 struct pagemapread {
1098         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1099         pagemap_entry_t *buffer;
1100         bool show_pfn;
1101 };
1102
1103 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1104 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1105
1106 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1107 #define PM_PFRAME_BITS          55
1108 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1109 #define PM_SOFT_DIRTY           BIT_ULL(55)
1110 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1111 #define PM_FILE                 BIT_ULL(61)
1112 #define PM_SWAP                 BIT_ULL(62)
1113 #define PM_PRESENT              BIT_ULL(63)
1114
1115 #define PM_END_OF_BUFFER    1
1116
1117 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1118 {
1119         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1120 }
1121
1122 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1123                           struct pagemapread *pm)
1124 {
1125         pm->buffer[pm->pos++] = *pme;
1126         if (pm->pos >= pm->len)
1127                 return PM_END_OF_BUFFER;
1128         return 0;
1129 }
1130
1131 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1132                                 struct mm_walk *walk)
1133 {
1134         struct pagemapread *pm = walk->private;
1135         unsigned long addr = start;
1136         int err = 0;
1137
1138         while (addr < end) {
1139                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1140                 pagemap_entry_t pme = make_pme(0, 0);
1141                 /* End of address space hole, which we mark as non-present. */
1142                 unsigned long hole_end;
1143
1144                 if (vma)
1145                         hole_end = min(end, vma->vm_start);
1146                 else
1147                         hole_end = end;
1148
1149                 for (; addr < hole_end; addr += PAGE_SIZE) {
1150                         err = add_to_pagemap(addr, &pme, pm);
1151                         if (err)
1152                                 goto out;
1153                 }
1154
1155                 if (!vma)
1156                         break;
1157
1158                 /* Addresses in the VMA. */
1159                 if (vma->vm_flags & VM_SOFTDIRTY)
1160                         pme = make_pme(0, PM_SOFT_DIRTY);
1161                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1162                         err = add_to_pagemap(addr, &pme, pm);
1163                         if (err)
1164                                 goto out;
1165                 }
1166         }
1167 out:
1168         return err;
1169 }
1170
1171 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1172                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1173 {
1174         u64 frame = 0, flags = 0;
1175         struct page *page = NULL;
1176
1177         if (pte_present(pte)) {
1178                 if (pm->show_pfn)
1179                         frame = pte_pfn(pte);
1180                 flags |= PM_PRESENT;
1181                 page = vm_normal_page(vma, addr, pte);
1182                 if (pte_soft_dirty(pte))
1183                         flags |= PM_SOFT_DIRTY;
1184         } else if (is_swap_pte(pte)) {
1185                 swp_entry_t entry;
1186                 if (pte_swp_soft_dirty(pte))
1187                         flags |= PM_SOFT_DIRTY;
1188                 entry = pte_to_swp_entry(pte);
1189                 frame = swp_type(entry) |
1190                         (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1191                 flags |= PM_SWAP;
1192                 if (is_migration_entry(entry))
1193                         page = migration_entry_to_page(entry);
1194         }
1195
1196         if (page && !PageAnon(page))
1197                 flags |= PM_FILE;
1198         if (page && page_mapcount(page) == 1)
1199                 flags |= PM_MMAP_EXCLUSIVE;
1200         if (vma->vm_flags & VM_SOFTDIRTY)
1201                 flags |= PM_SOFT_DIRTY;
1202
1203         return make_pme(frame, flags);
1204 }
1205
1206 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1207                              struct mm_walk *walk)
1208 {
1209         struct vm_area_struct *vma = walk->vma;
1210         struct pagemapread *pm = walk->private;
1211         spinlock_t *ptl;
1212         pte_t *pte, *orig_pte;
1213         int err = 0;
1214
1215 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1216         ptl = pmd_trans_huge_lock(pmdp, vma);
1217         if (ptl) {
1218                 u64 flags = 0, frame = 0;
1219                 pmd_t pmd = *pmdp;
1220
1221                 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1222                         flags |= PM_SOFT_DIRTY;
1223
1224                 /*
1225                  * Currently pmd for thp is always present because thp
1226                  * can not be swapped-out, migrated, or HWPOISONed
1227                  * (split in such cases instead.)
1228                  * This if-check is just to prepare for future implementation.
1229                  */
1230                 if (pmd_present(pmd)) {
1231                         struct page *page = pmd_page(pmd);
1232
1233                         if (page_mapcount(page) == 1)
1234                                 flags |= PM_MMAP_EXCLUSIVE;
1235
1236                         flags |= PM_PRESENT;
1237                         if (pm->show_pfn)
1238                                 frame = pmd_pfn(pmd) +
1239                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1240                 }
1241
1242                 for (; addr != end; addr += PAGE_SIZE) {
1243                         pagemap_entry_t pme = make_pme(frame, flags);
1244
1245                         err = add_to_pagemap(addr, &pme, pm);
1246                         if (err)
1247                                 break;
1248                         if (pm->show_pfn && (flags & PM_PRESENT))
1249                                 frame++;
1250                 }
1251                 spin_unlock(ptl);
1252                 return err;
1253         }
1254
1255         if (pmd_trans_unstable(pmdp))
1256                 return 0;
1257 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1258
1259         /*
1260          * We can assume that @vma always points to a valid one and @end never
1261          * goes beyond vma->vm_end.
1262          */
1263         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1264         for (; addr < end; pte++, addr += PAGE_SIZE) {
1265                 pagemap_entry_t pme;
1266
1267                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1268                 err = add_to_pagemap(addr, &pme, pm);
1269                 if (err)
1270                         break;
1271         }
1272         pte_unmap_unlock(orig_pte, ptl);
1273
1274         cond_resched();
1275
1276         return err;
1277 }
1278
1279 #ifdef CONFIG_HUGETLB_PAGE
1280 /* This function walks within one hugetlb entry in the single call */
1281 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1282                                  unsigned long addr, unsigned long end,
1283                                  struct mm_walk *walk)
1284 {
1285         struct pagemapread *pm = walk->private;
1286         struct vm_area_struct *vma = walk->vma;
1287         u64 flags = 0, frame = 0;
1288         int err = 0;
1289         pte_t pte;
1290
1291         if (vma->vm_flags & VM_SOFTDIRTY)
1292                 flags |= PM_SOFT_DIRTY;
1293
1294         pte = huge_ptep_get(ptep);
1295         if (pte_present(pte)) {
1296                 struct page *page = pte_page(pte);
1297
1298                 if (!PageAnon(page))
1299                         flags |= PM_FILE;
1300
1301                 if (page_mapcount(page) == 1)
1302                         flags |= PM_MMAP_EXCLUSIVE;
1303
1304                 flags |= PM_PRESENT;
1305                 if (pm->show_pfn)
1306                         frame = pte_pfn(pte) +
1307                                 ((addr & ~hmask) >> PAGE_SHIFT);
1308         }
1309
1310         for (; addr != end; addr += PAGE_SIZE) {
1311                 pagemap_entry_t pme = make_pme(frame, flags);
1312
1313                 err = add_to_pagemap(addr, &pme, pm);
1314                 if (err)
1315                         return err;
1316                 if (pm->show_pfn && (flags & PM_PRESENT))
1317                         frame++;
1318         }
1319
1320         cond_resched();
1321
1322         return err;
1323 }
1324 #endif /* HUGETLB_PAGE */
1325
1326 /*
1327  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1328  *
1329  * For each page in the address space, this file contains one 64-bit entry
1330  * consisting of the following:
1331  *
1332  * Bits 0-54  page frame number (PFN) if present
1333  * Bits 0-4   swap type if swapped
1334  * Bits 5-54  swap offset if swapped
1335  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1336  * Bit  56    page exclusively mapped
1337  * Bits 57-60 zero
1338  * Bit  61    page is file-page or shared-anon
1339  * Bit  62    page swapped
1340  * Bit  63    page present
1341  *
1342  * If the page is not present but in swap, then the PFN contains an
1343  * encoding of the swap file number and the page's offset into the
1344  * swap. Unmapped pages return a null PFN. This allows determining
1345  * precisely which pages are mapped (or in swap) and comparing mapped
1346  * pages between processes.
1347  *
1348  * Efficient users of this interface will use /proc/pid/maps to
1349  * determine which areas of memory are actually mapped and llseek to
1350  * skip over unmapped regions.
1351  */
1352 static ssize_t pagemap_read(struct file *file, char __user *buf,
1353                             size_t count, loff_t *ppos)
1354 {
1355         struct mm_struct *mm = file->private_data;
1356         struct pagemapread pm;
1357         struct mm_walk pagemap_walk = {};
1358         unsigned long src;
1359         unsigned long svpfn;
1360         unsigned long start_vaddr;
1361         unsigned long end_vaddr;
1362         int ret = 0, copied = 0;
1363
1364         if (!mm || !mmget_not_zero(mm))
1365                 goto out;
1366
1367         ret = -EINVAL;
1368         /* file position must be aligned */
1369         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1370                 goto out_mm;
1371
1372         ret = 0;
1373         if (!count)
1374                 goto out_mm;
1375
1376         /* do not disclose physical addresses: attack vector */
1377         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1378
1379         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1380         pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1381         ret = -ENOMEM;
1382         if (!pm.buffer)
1383                 goto out_mm;
1384
1385         pagemap_walk.pmd_entry = pagemap_pmd_range;
1386         pagemap_walk.pte_hole = pagemap_pte_hole;
1387 #ifdef CONFIG_HUGETLB_PAGE
1388         pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1389 #endif
1390         pagemap_walk.mm = mm;
1391         pagemap_walk.private = &pm;
1392
1393         src = *ppos;
1394         svpfn = src / PM_ENTRY_BYTES;
1395         start_vaddr = svpfn << PAGE_SHIFT;
1396         end_vaddr = mm->task_size;
1397
1398         /* watch out for wraparound */
1399         if (svpfn > mm->task_size >> PAGE_SHIFT)
1400                 start_vaddr = end_vaddr;
1401
1402         /*
1403          * The odds are that this will stop walking way
1404          * before end_vaddr, because the length of the
1405          * user buffer is tracked in "pm", and the walk
1406          * will stop when we hit the end of the buffer.
1407          */
1408         ret = 0;
1409         while (count && (start_vaddr < end_vaddr)) {
1410                 int len;
1411                 unsigned long end;
1412
1413                 pm.pos = 0;
1414                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1415                 /* overflow ? */
1416                 if (end < start_vaddr || end > end_vaddr)
1417                         end = end_vaddr;
1418                 down_read(&mm->mmap_sem);
1419                 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1420                 up_read(&mm->mmap_sem);
1421                 start_vaddr = end;
1422
1423                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1424                 if (copy_to_user(buf, pm.buffer, len)) {
1425                         ret = -EFAULT;
1426                         goto out_free;
1427                 }
1428                 copied += len;
1429                 buf += len;
1430                 count -= len;
1431         }
1432         *ppos += copied;
1433         if (!ret || ret == PM_END_OF_BUFFER)
1434                 ret = copied;
1435
1436 out_free:
1437         kfree(pm.buffer);
1438 out_mm:
1439         mmput(mm);
1440 out:
1441         return ret;
1442 }
1443
1444 static int pagemap_open(struct inode *inode, struct file *file)
1445 {
1446         struct mm_struct *mm;
1447
1448         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1449         if (IS_ERR(mm))
1450                 return PTR_ERR(mm);
1451         file->private_data = mm;
1452         return 0;
1453 }
1454
1455 static int pagemap_release(struct inode *inode, struct file *file)
1456 {
1457         struct mm_struct *mm = file->private_data;
1458
1459         if (mm)
1460                 mmdrop(mm);
1461         return 0;
1462 }
1463
1464 const struct file_operations proc_pagemap_operations = {
1465         .llseek         = mem_lseek, /* borrow this */
1466         .read           = pagemap_read,
1467         .open           = pagemap_open,
1468         .release        = pagemap_release,
1469 };
1470 #endif /* CONFIG_PROC_PAGE_MONITOR */
1471
1472 #ifdef CONFIG_NUMA
1473
1474 struct numa_maps {
1475         unsigned long pages;
1476         unsigned long anon;
1477         unsigned long active;
1478         unsigned long writeback;
1479         unsigned long mapcount_max;
1480         unsigned long dirty;
1481         unsigned long swapcache;
1482         unsigned long node[MAX_NUMNODES];
1483 };
1484
1485 struct numa_maps_private {
1486         struct proc_maps_private proc_maps;
1487         struct numa_maps md;
1488 };
1489
1490 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1491                         unsigned long nr_pages)
1492 {
1493         int count = page_mapcount(page);
1494
1495         md->pages += nr_pages;
1496         if (pte_dirty || PageDirty(page))
1497                 md->dirty += nr_pages;
1498
1499         if (PageSwapCache(page))
1500                 md->swapcache += nr_pages;
1501
1502         if (PageActive(page) || PageUnevictable(page))
1503                 md->active += nr_pages;
1504
1505         if (PageWriteback(page))
1506                 md->writeback += nr_pages;
1507
1508         if (PageAnon(page))
1509                 md->anon += nr_pages;
1510
1511         if (count > md->mapcount_max)
1512                 md->mapcount_max = count;
1513
1514         md->node[page_to_nid(page)] += nr_pages;
1515 }
1516
1517 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1518                 unsigned long addr)
1519 {
1520         struct page *page;
1521         int nid;
1522
1523         if (!pte_present(pte))
1524                 return NULL;
1525
1526         page = vm_normal_page(vma, addr, pte);
1527         if (!page)
1528                 return NULL;
1529
1530         if (PageReserved(page))
1531                 return NULL;
1532
1533         nid = page_to_nid(page);
1534         if (!node_isset(nid, node_states[N_MEMORY]))
1535                 return NULL;
1536
1537         return page;
1538 }
1539
1540 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1541 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1542                                               struct vm_area_struct *vma,
1543                                               unsigned long addr)
1544 {
1545         struct page *page;
1546         int nid;
1547
1548         if (!pmd_present(pmd))
1549                 return NULL;
1550
1551         page = vm_normal_page_pmd(vma, addr, pmd);
1552         if (!page)
1553                 return NULL;
1554
1555         if (PageReserved(page))
1556                 return NULL;
1557
1558         nid = page_to_nid(page);
1559         if (!node_isset(nid, node_states[N_MEMORY]))
1560                 return NULL;
1561
1562         return page;
1563 }
1564 #endif
1565
1566 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1567                 unsigned long end, struct mm_walk *walk)
1568 {
1569         struct numa_maps *md = walk->private;
1570         struct vm_area_struct *vma = walk->vma;
1571         spinlock_t *ptl;
1572         pte_t *orig_pte;
1573         pte_t *pte;
1574
1575 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1576         ptl = pmd_trans_huge_lock(pmd, vma);
1577         if (ptl) {
1578                 struct page *page;
1579
1580                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1581                 if (page)
1582                         gather_stats(page, md, pmd_dirty(*pmd),
1583                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1584                 spin_unlock(ptl);
1585                 return 0;
1586         }
1587
1588         if (pmd_trans_unstable(pmd))
1589                 return 0;
1590 #endif
1591         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1592         do {
1593                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1594                 if (!page)
1595                         continue;
1596                 gather_stats(page, md, pte_dirty(*pte), 1);
1597
1598         } while (pte++, addr += PAGE_SIZE, addr != end);
1599         pte_unmap_unlock(orig_pte, ptl);
1600         cond_resched();
1601         return 0;
1602 }
1603 #ifdef CONFIG_HUGETLB_PAGE
1604 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1605                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1606 {
1607         pte_t huge_pte = huge_ptep_get(pte);
1608         struct numa_maps *md;
1609         struct page *page;
1610
1611         if (!pte_present(huge_pte))
1612                 return 0;
1613
1614         page = pte_page(huge_pte);
1615         if (!page)
1616                 return 0;
1617
1618         md = walk->private;
1619         gather_stats(page, md, pte_dirty(huge_pte), 1);
1620         return 0;
1621 }
1622
1623 #else
1624 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1625                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1626 {
1627         return 0;
1628 }
1629 #endif
1630
1631 /*
1632  * Display pages allocated per node and memory policy via /proc.
1633  */
1634 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1635 {
1636         struct numa_maps_private *numa_priv = m->private;
1637         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1638         struct vm_area_struct *vma = v;
1639         struct numa_maps *md = &numa_priv->md;
1640         struct file *file = vma->vm_file;
1641         struct mm_struct *mm = vma->vm_mm;
1642         struct mm_walk walk = {
1643                 .hugetlb_entry = gather_hugetlb_stats,
1644                 .pmd_entry = gather_pte_stats,
1645                 .private = md,
1646                 .mm = mm,
1647         };
1648         struct mempolicy *pol;
1649         char buffer[64];
1650         int nid;
1651
1652         if (!mm)
1653                 return 0;
1654
1655         /* Ensure we start with an empty set of numa_maps statistics. */
1656         memset(md, 0, sizeof(*md));
1657
1658         pol = __get_vma_policy(vma, vma->vm_start);
1659         if (pol) {
1660                 mpol_to_str(buffer, sizeof(buffer), pol);
1661                 mpol_cond_put(pol);
1662         } else {
1663                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1664         }
1665
1666         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1667
1668         if (file) {
1669                 seq_puts(m, " file=");
1670                 seq_file_path(m, file, "\n\t= ");
1671         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1672                 seq_puts(m, " heap");
1673         } else if (is_stack(proc_priv, vma)) {
1674                 seq_puts(m, " stack");
1675         }
1676
1677         if (is_vm_hugetlb_page(vma))
1678                 seq_puts(m, " huge");
1679
1680         /* mmap_sem is held by m_start */
1681         walk_page_vma(vma, &walk);
1682
1683         if (!md->pages)
1684                 goto out;
1685
1686         if (md->anon)
1687                 seq_printf(m, " anon=%lu", md->anon);
1688
1689         if (md->dirty)
1690                 seq_printf(m, " dirty=%lu", md->dirty);
1691
1692         if (md->pages != md->anon && md->pages != md->dirty)
1693                 seq_printf(m, " mapped=%lu", md->pages);
1694
1695         if (md->mapcount_max > 1)
1696                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1697
1698         if (md->swapcache)
1699                 seq_printf(m, " swapcache=%lu", md->swapcache);
1700
1701         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1702                 seq_printf(m, " active=%lu", md->active);
1703
1704         if (md->writeback)
1705                 seq_printf(m, " writeback=%lu", md->writeback);
1706
1707         for_each_node_state(nid, N_MEMORY)
1708                 if (md->node[nid])
1709                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1710
1711         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1712 out:
1713         seq_putc(m, '\n');
1714         m_cache_vma(m, vma);
1715         return 0;
1716 }
1717
1718 static int show_pid_numa_map(struct seq_file *m, void *v)
1719 {
1720         return show_numa_map(m, v, 1);
1721 }
1722
1723 static int show_tid_numa_map(struct seq_file *m, void *v)
1724 {
1725         return show_numa_map(m, v, 0);
1726 }
1727
1728 static const struct seq_operations proc_pid_numa_maps_op = {
1729         .start  = m_start,
1730         .next   = m_next,
1731         .stop   = m_stop,
1732         .show   = show_pid_numa_map,
1733 };
1734
1735 static const struct seq_operations proc_tid_numa_maps_op = {
1736         .start  = m_start,
1737         .next   = m_next,
1738         .stop   = m_stop,
1739         .show   = show_tid_numa_map,
1740 };
1741
1742 static int numa_maps_open(struct inode *inode, struct file *file,
1743                           const struct seq_operations *ops)
1744 {
1745         return proc_maps_open(inode, file, ops,
1746                                 sizeof(struct numa_maps_private));
1747 }
1748
1749 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1750 {
1751         return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1752 }
1753
1754 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1755 {
1756         return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1757 }
1758
1759 const struct file_operations proc_pid_numa_maps_operations = {
1760         .open           = pid_numa_maps_open,
1761         .read           = seq_read,
1762         .llseek         = seq_lseek,
1763         .release        = proc_map_release,
1764 };
1765
1766 const struct file_operations proc_tid_numa_maps_operations = {
1767         .open           = tid_numa_maps_open,
1768         .read           = seq_read,
1769         .llseek         = seq_lseek,
1770         .release        = proc_map_release,
1771 };
1772 #endif /* CONFIG_NUMA */