spi: SPI_TI_QSPI should depend on HAS_DMA
[sfrench/cifs-2.6.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/sched/mm.h>
15 #include <linux/swapops.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/page_idle.h>
18 #include <linux/shmem_fs.h>
19
20 #include <asm/elf.h>
21 #include <linux/uaccess.h>
22 #include <asm/tlbflush.h>
23 #include "internal.h"
24
25 void task_mem(struct seq_file *m, struct mm_struct *mm)
26 {
27         unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
28         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
29
30         anon = get_mm_counter(mm, MM_ANONPAGES);
31         file = get_mm_counter(mm, MM_FILEPAGES);
32         shmem = get_mm_counter(mm, MM_SHMEMPAGES);
33
34         /*
35          * Note: to minimize their overhead, mm maintains hiwater_vm and
36          * hiwater_rss only when about to *lower* total_vm or rss.  Any
37          * collector of these hiwater stats must therefore get total_vm
38          * and rss too, which will usually be the higher.  Barriers? not
39          * worth the effort, such snapshots can always be inconsistent.
40          */
41         hiwater_vm = total_vm = mm->total_vm;
42         if (hiwater_vm < mm->hiwater_vm)
43                 hiwater_vm = mm->hiwater_vm;
44         hiwater_rss = total_rss = anon + file + shmem;
45         if (hiwater_rss < mm->hiwater_rss)
46                 hiwater_rss = mm->hiwater_rss;
47
48         text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
49         lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
50         swap = get_mm_counter(mm, MM_SWAPENTS);
51         ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
52         pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
53         seq_printf(m,
54                 "VmPeak:\t%8lu kB\n"
55                 "VmSize:\t%8lu kB\n"
56                 "VmLck:\t%8lu kB\n"
57                 "VmPin:\t%8lu kB\n"
58                 "VmHWM:\t%8lu kB\n"
59                 "VmRSS:\t%8lu kB\n"
60                 "RssAnon:\t%8lu kB\n"
61                 "RssFile:\t%8lu kB\n"
62                 "RssShmem:\t%8lu kB\n"
63                 "VmData:\t%8lu kB\n"
64                 "VmStk:\t%8lu kB\n"
65                 "VmExe:\t%8lu kB\n"
66                 "VmLib:\t%8lu kB\n"
67                 "VmPTE:\t%8lu kB\n"
68                 "VmPMD:\t%8lu kB\n"
69                 "VmSwap:\t%8lu kB\n",
70                 hiwater_vm << (PAGE_SHIFT-10),
71                 total_vm << (PAGE_SHIFT-10),
72                 mm->locked_vm << (PAGE_SHIFT-10),
73                 mm->pinned_vm << (PAGE_SHIFT-10),
74                 hiwater_rss << (PAGE_SHIFT-10),
75                 total_rss << (PAGE_SHIFT-10),
76                 anon << (PAGE_SHIFT-10),
77                 file << (PAGE_SHIFT-10),
78                 shmem << (PAGE_SHIFT-10),
79                 mm->data_vm << (PAGE_SHIFT-10),
80                 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
81                 ptes >> 10,
82                 pmds >> 10,
83                 swap << (PAGE_SHIFT-10));
84         hugetlb_report_usage(m, mm);
85 }
86
87 unsigned long task_vsize(struct mm_struct *mm)
88 {
89         return PAGE_SIZE * mm->total_vm;
90 }
91
92 unsigned long task_statm(struct mm_struct *mm,
93                          unsigned long *shared, unsigned long *text,
94                          unsigned long *data, unsigned long *resident)
95 {
96         *shared = get_mm_counter(mm, MM_FILEPAGES) +
97                         get_mm_counter(mm, MM_SHMEMPAGES);
98         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
99                                                                 >> PAGE_SHIFT;
100         *data = mm->data_vm + mm->stack_vm;
101         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
102         return mm->total_vm;
103 }
104
105 #ifdef CONFIG_NUMA
106 /*
107  * Save get_task_policy() for show_numa_map().
108  */
109 static void hold_task_mempolicy(struct proc_maps_private *priv)
110 {
111         struct task_struct *task = priv->task;
112
113         task_lock(task);
114         priv->task_mempolicy = get_task_policy(task);
115         mpol_get(priv->task_mempolicy);
116         task_unlock(task);
117 }
118 static void release_task_mempolicy(struct proc_maps_private *priv)
119 {
120         mpol_put(priv->task_mempolicy);
121 }
122 #else
123 static void hold_task_mempolicy(struct proc_maps_private *priv)
124 {
125 }
126 static void release_task_mempolicy(struct proc_maps_private *priv)
127 {
128 }
129 #endif
130
131 static void vma_stop(struct proc_maps_private *priv)
132 {
133         struct mm_struct *mm = priv->mm;
134
135         release_task_mempolicy(priv);
136         up_read(&mm->mmap_sem);
137         mmput(mm);
138 }
139
140 static struct vm_area_struct *
141 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
142 {
143         if (vma == priv->tail_vma)
144                 return NULL;
145         return vma->vm_next ?: priv->tail_vma;
146 }
147
148 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
149 {
150         if (m->count < m->size) /* vma is copied successfully */
151                 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
152 }
153
154 static void *m_start(struct seq_file *m, loff_t *ppos)
155 {
156         struct proc_maps_private *priv = m->private;
157         unsigned long last_addr = m->version;
158         struct mm_struct *mm;
159         struct vm_area_struct *vma;
160         unsigned int pos = *ppos;
161
162         /* See m_cache_vma(). Zero at the start or after lseek. */
163         if (last_addr == -1UL)
164                 return NULL;
165
166         priv->task = get_proc_task(priv->inode);
167         if (!priv->task)
168                 return ERR_PTR(-ESRCH);
169
170         mm = priv->mm;
171         if (!mm || !mmget_not_zero(mm))
172                 return NULL;
173
174         down_read(&mm->mmap_sem);
175         hold_task_mempolicy(priv);
176         priv->tail_vma = get_gate_vma(mm);
177
178         if (last_addr) {
179                 vma = find_vma(mm, last_addr - 1);
180                 if (vma && vma->vm_start <= last_addr)
181                         vma = m_next_vma(priv, vma);
182                 if (vma)
183                         return vma;
184         }
185
186         m->version = 0;
187         if (pos < mm->map_count) {
188                 for (vma = mm->mmap; pos; pos--) {
189                         m->version = vma->vm_start;
190                         vma = vma->vm_next;
191                 }
192                 return vma;
193         }
194
195         /* we do not bother to update m->version in this case */
196         if (pos == mm->map_count && priv->tail_vma)
197                 return priv->tail_vma;
198
199         vma_stop(priv);
200         return NULL;
201 }
202
203 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
204 {
205         struct proc_maps_private *priv = m->private;
206         struct vm_area_struct *next;
207
208         (*pos)++;
209         next = m_next_vma(priv, v);
210         if (!next)
211                 vma_stop(priv);
212         return next;
213 }
214
215 static void m_stop(struct seq_file *m, void *v)
216 {
217         struct proc_maps_private *priv = m->private;
218
219         if (!IS_ERR_OR_NULL(v))
220                 vma_stop(priv);
221         if (priv->task) {
222                 put_task_struct(priv->task);
223                 priv->task = NULL;
224         }
225 }
226
227 static int proc_maps_open(struct inode *inode, struct file *file,
228                         const struct seq_operations *ops, int psize)
229 {
230         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
231
232         if (!priv)
233                 return -ENOMEM;
234
235         priv->inode = inode;
236         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
237         if (IS_ERR(priv->mm)) {
238                 int err = PTR_ERR(priv->mm);
239
240                 seq_release_private(inode, file);
241                 return err;
242         }
243
244         return 0;
245 }
246
247 static int proc_map_release(struct inode *inode, struct file *file)
248 {
249         struct seq_file *seq = file->private_data;
250         struct proc_maps_private *priv = seq->private;
251
252         if (priv->mm)
253                 mmdrop(priv->mm);
254
255         return seq_release_private(inode, file);
256 }
257
258 static int do_maps_open(struct inode *inode, struct file *file,
259                         const struct seq_operations *ops)
260 {
261         return proc_maps_open(inode, file, ops,
262                                 sizeof(struct proc_maps_private));
263 }
264
265 /*
266  * Indicate if the VMA is a stack for the given task; for
267  * /proc/PID/maps that is the stack of the main task.
268  */
269 static int is_stack(struct proc_maps_private *priv,
270                     struct vm_area_struct *vma)
271 {
272         /*
273          * We make no effort to guess what a given thread considers to be
274          * its "stack".  It's not even well-defined for programs written
275          * languages like Go.
276          */
277         return vma->vm_start <= vma->vm_mm->start_stack &&
278                 vma->vm_end >= vma->vm_mm->start_stack;
279 }
280
281 static void
282 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
283 {
284         struct mm_struct *mm = vma->vm_mm;
285         struct file *file = vma->vm_file;
286         struct proc_maps_private *priv = m->private;
287         vm_flags_t flags = vma->vm_flags;
288         unsigned long ino = 0;
289         unsigned long long pgoff = 0;
290         unsigned long start, end;
291         dev_t dev = 0;
292         const char *name = NULL;
293
294         if (file) {
295                 struct inode *inode = file_inode(vma->vm_file);
296                 dev = inode->i_sb->s_dev;
297                 ino = inode->i_ino;
298                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
299         }
300
301         /* We don't show the stack guard page in /proc/maps */
302         start = vma->vm_start;
303         if (stack_guard_page_start(vma, start))
304                 start += PAGE_SIZE;
305         end = vma->vm_end;
306         if (stack_guard_page_end(vma, end))
307                 end -= PAGE_SIZE;
308
309         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
310         seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
311                         start,
312                         end,
313                         flags & VM_READ ? 'r' : '-',
314                         flags & VM_WRITE ? 'w' : '-',
315                         flags & VM_EXEC ? 'x' : '-',
316                         flags & VM_MAYSHARE ? 's' : 'p',
317                         pgoff,
318                         MAJOR(dev), MINOR(dev), ino);
319
320         /*
321          * Print the dentry name for named mappings, and a
322          * special [heap] marker for the heap:
323          */
324         if (file) {
325                 seq_pad(m, ' ');
326                 seq_file_path(m, file, "\n");
327                 goto done;
328         }
329
330         if (vma->vm_ops && vma->vm_ops->name) {
331                 name = vma->vm_ops->name(vma);
332                 if (name)
333                         goto done;
334         }
335
336         name = arch_vma_name(vma);
337         if (!name) {
338                 if (!mm) {
339                         name = "[vdso]";
340                         goto done;
341                 }
342
343                 if (vma->vm_start <= mm->brk &&
344                     vma->vm_end >= mm->start_brk) {
345                         name = "[heap]";
346                         goto done;
347                 }
348
349                 if (is_stack(priv, vma))
350                         name = "[stack]";
351         }
352
353 done:
354         if (name) {
355                 seq_pad(m, ' ');
356                 seq_puts(m, name);
357         }
358         seq_putc(m, '\n');
359 }
360
361 static int show_map(struct seq_file *m, void *v, int is_pid)
362 {
363         show_map_vma(m, v, is_pid);
364         m_cache_vma(m, v);
365         return 0;
366 }
367
368 static int show_pid_map(struct seq_file *m, void *v)
369 {
370         return show_map(m, v, 1);
371 }
372
373 static int show_tid_map(struct seq_file *m, void *v)
374 {
375         return show_map(m, v, 0);
376 }
377
378 static const struct seq_operations proc_pid_maps_op = {
379         .start  = m_start,
380         .next   = m_next,
381         .stop   = m_stop,
382         .show   = show_pid_map
383 };
384
385 static const struct seq_operations proc_tid_maps_op = {
386         .start  = m_start,
387         .next   = m_next,
388         .stop   = m_stop,
389         .show   = show_tid_map
390 };
391
392 static int pid_maps_open(struct inode *inode, struct file *file)
393 {
394         return do_maps_open(inode, file, &proc_pid_maps_op);
395 }
396
397 static int tid_maps_open(struct inode *inode, struct file *file)
398 {
399         return do_maps_open(inode, file, &proc_tid_maps_op);
400 }
401
402 const struct file_operations proc_pid_maps_operations = {
403         .open           = pid_maps_open,
404         .read           = seq_read,
405         .llseek         = seq_lseek,
406         .release        = proc_map_release,
407 };
408
409 const struct file_operations proc_tid_maps_operations = {
410         .open           = tid_maps_open,
411         .read           = seq_read,
412         .llseek         = seq_lseek,
413         .release        = proc_map_release,
414 };
415
416 /*
417  * Proportional Set Size(PSS): my share of RSS.
418  *
419  * PSS of a process is the count of pages it has in memory, where each
420  * page is divided by the number of processes sharing it.  So if a
421  * process has 1000 pages all to itself, and 1000 shared with one other
422  * process, its PSS will be 1500.
423  *
424  * To keep (accumulated) division errors low, we adopt a 64bit
425  * fixed-point pss counter to minimize division errors. So (pss >>
426  * PSS_SHIFT) would be the real byte count.
427  *
428  * A shift of 12 before division means (assuming 4K page size):
429  *      - 1M 3-user-pages add up to 8KB errors;
430  *      - supports mapcount up to 2^24, or 16M;
431  *      - supports PSS up to 2^52 bytes, or 4PB.
432  */
433 #define PSS_SHIFT 12
434
435 #ifdef CONFIG_PROC_PAGE_MONITOR
436 struct mem_size_stats {
437         unsigned long resident;
438         unsigned long shared_clean;
439         unsigned long shared_dirty;
440         unsigned long private_clean;
441         unsigned long private_dirty;
442         unsigned long referenced;
443         unsigned long anonymous;
444         unsigned long lazyfree;
445         unsigned long anonymous_thp;
446         unsigned long shmem_thp;
447         unsigned long swap;
448         unsigned long shared_hugetlb;
449         unsigned long private_hugetlb;
450         u64 pss;
451         u64 swap_pss;
452         bool check_shmem_swap;
453 };
454
455 static void smaps_account(struct mem_size_stats *mss, struct page *page,
456                 bool compound, bool young, bool dirty)
457 {
458         int i, nr = compound ? 1 << compound_order(page) : 1;
459         unsigned long size = nr * PAGE_SIZE;
460
461         if (PageAnon(page)) {
462                 mss->anonymous += size;
463                 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
464                         mss->lazyfree += size;
465         }
466
467         mss->resident += size;
468         /* Accumulate the size in pages that have been accessed. */
469         if (young || page_is_young(page) || PageReferenced(page))
470                 mss->referenced += size;
471
472         /*
473          * page_count(page) == 1 guarantees the page is mapped exactly once.
474          * If any subpage of the compound page mapped with PTE it would elevate
475          * page_count().
476          */
477         if (page_count(page) == 1) {
478                 if (dirty || PageDirty(page))
479                         mss->private_dirty += size;
480                 else
481                         mss->private_clean += size;
482                 mss->pss += (u64)size << PSS_SHIFT;
483                 return;
484         }
485
486         for (i = 0; i < nr; i++, page++) {
487                 int mapcount = page_mapcount(page);
488
489                 if (mapcount >= 2) {
490                         if (dirty || PageDirty(page))
491                                 mss->shared_dirty += PAGE_SIZE;
492                         else
493                                 mss->shared_clean += PAGE_SIZE;
494                         mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
495                 } else {
496                         if (dirty || PageDirty(page))
497                                 mss->private_dirty += PAGE_SIZE;
498                         else
499                                 mss->private_clean += PAGE_SIZE;
500                         mss->pss += PAGE_SIZE << PSS_SHIFT;
501                 }
502         }
503 }
504
505 #ifdef CONFIG_SHMEM
506 static int smaps_pte_hole(unsigned long addr, unsigned long end,
507                 struct mm_walk *walk)
508 {
509         struct mem_size_stats *mss = walk->private;
510
511         mss->swap += shmem_partial_swap_usage(
512                         walk->vma->vm_file->f_mapping, addr, end);
513
514         return 0;
515 }
516 #endif
517
518 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
519                 struct mm_walk *walk)
520 {
521         struct mem_size_stats *mss = walk->private;
522         struct vm_area_struct *vma = walk->vma;
523         struct page *page = NULL;
524
525         if (pte_present(*pte)) {
526                 page = vm_normal_page(vma, addr, *pte);
527         } else if (is_swap_pte(*pte)) {
528                 swp_entry_t swpent = pte_to_swp_entry(*pte);
529
530                 if (!non_swap_entry(swpent)) {
531                         int mapcount;
532
533                         mss->swap += PAGE_SIZE;
534                         mapcount = swp_swapcount(swpent);
535                         if (mapcount >= 2) {
536                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
537
538                                 do_div(pss_delta, mapcount);
539                                 mss->swap_pss += pss_delta;
540                         } else {
541                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
542                         }
543                 } else if (is_migration_entry(swpent))
544                         page = migration_entry_to_page(swpent);
545         } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
546                                                         && pte_none(*pte))) {
547                 page = find_get_entry(vma->vm_file->f_mapping,
548                                                 linear_page_index(vma, addr));
549                 if (!page)
550                         return;
551
552                 if (radix_tree_exceptional_entry(page))
553                         mss->swap += PAGE_SIZE;
554                 else
555                         put_page(page);
556
557                 return;
558         }
559
560         if (!page)
561                 return;
562
563         smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
564 }
565
566 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
567 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
568                 struct mm_walk *walk)
569 {
570         struct mem_size_stats *mss = walk->private;
571         struct vm_area_struct *vma = walk->vma;
572         struct page *page;
573
574         /* FOLL_DUMP will return -EFAULT on huge zero page */
575         page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
576         if (IS_ERR_OR_NULL(page))
577                 return;
578         if (PageAnon(page))
579                 mss->anonymous_thp += HPAGE_PMD_SIZE;
580         else if (PageSwapBacked(page))
581                 mss->shmem_thp += HPAGE_PMD_SIZE;
582         else if (is_zone_device_page(page))
583                 /* pass */;
584         else
585                 VM_BUG_ON_PAGE(1, page);
586         smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
587 }
588 #else
589 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
590                 struct mm_walk *walk)
591 {
592 }
593 #endif
594
595 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
596                            struct mm_walk *walk)
597 {
598         struct vm_area_struct *vma = walk->vma;
599         pte_t *pte;
600         spinlock_t *ptl;
601
602         ptl = pmd_trans_huge_lock(pmd, vma);
603         if (ptl) {
604                 smaps_pmd_entry(pmd, addr, walk);
605                 spin_unlock(ptl);
606                 return 0;
607         }
608
609         if (pmd_trans_unstable(pmd))
610                 return 0;
611         /*
612          * The mmap_sem held all the way back in m_start() is what
613          * keeps khugepaged out of here and from collapsing things
614          * in here.
615          */
616         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
617         for (; addr != end; pte++, addr += PAGE_SIZE)
618                 smaps_pte_entry(pte, addr, walk);
619         pte_unmap_unlock(pte - 1, ptl);
620         cond_resched();
621         return 0;
622 }
623
624 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
625 {
626         /*
627          * Don't forget to update Documentation/ on changes.
628          */
629         static const char mnemonics[BITS_PER_LONG][2] = {
630                 /*
631                  * In case if we meet a flag we don't know about.
632                  */
633                 [0 ... (BITS_PER_LONG-1)] = "??",
634
635                 [ilog2(VM_READ)]        = "rd",
636                 [ilog2(VM_WRITE)]       = "wr",
637                 [ilog2(VM_EXEC)]        = "ex",
638                 [ilog2(VM_SHARED)]      = "sh",
639                 [ilog2(VM_MAYREAD)]     = "mr",
640                 [ilog2(VM_MAYWRITE)]    = "mw",
641                 [ilog2(VM_MAYEXEC)]     = "me",
642                 [ilog2(VM_MAYSHARE)]    = "ms",
643                 [ilog2(VM_GROWSDOWN)]   = "gd",
644                 [ilog2(VM_PFNMAP)]      = "pf",
645                 [ilog2(VM_DENYWRITE)]   = "dw",
646 #ifdef CONFIG_X86_INTEL_MPX
647                 [ilog2(VM_MPX)]         = "mp",
648 #endif
649                 [ilog2(VM_LOCKED)]      = "lo",
650                 [ilog2(VM_IO)]          = "io",
651                 [ilog2(VM_SEQ_READ)]    = "sr",
652                 [ilog2(VM_RAND_READ)]   = "rr",
653                 [ilog2(VM_DONTCOPY)]    = "dc",
654                 [ilog2(VM_DONTEXPAND)]  = "de",
655                 [ilog2(VM_ACCOUNT)]     = "ac",
656                 [ilog2(VM_NORESERVE)]   = "nr",
657                 [ilog2(VM_HUGETLB)]     = "ht",
658                 [ilog2(VM_ARCH_1)]      = "ar",
659                 [ilog2(VM_DONTDUMP)]    = "dd",
660 #ifdef CONFIG_MEM_SOFT_DIRTY
661                 [ilog2(VM_SOFTDIRTY)]   = "sd",
662 #endif
663                 [ilog2(VM_MIXEDMAP)]    = "mm",
664                 [ilog2(VM_HUGEPAGE)]    = "hg",
665                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
666                 [ilog2(VM_MERGEABLE)]   = "mg",
667                 [ilog2(VM_UFFD_MISSING)]= "um",
668                 [ilog2(VM_UFFD_WP)]     = "uw",
669 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
670                 /* These come out via ProtectionKey: */
671                 [ilog2(VM_PKEY_BIT0)]   = "",
672                 [ilog2(VM_PKEY_BIT1)]   = "",
673                 [ilog2(VM_PKEY_BIT2)]   = "",
674                 [ilog2(VM_PKEY_BIT3)]   = "",
675 #endif
676         };
677         size_t i;
678
679         seq_puts(m, "VmFlags: ");
680         for (i = 0; i < BITS_PER_LONG; i++) {
681                 if (!mnemonics[i][0])
682                         continue;
683                 if (vma->vm_flags & (1UL << i)) {
684                         seq_printf(m, "%c%c ",
685                                    mnemonics[i][0], mnemonics[i][1]);
686                 }
687         }
688         seq_putc(m, '\n');
689 }
690
691 #ifdef CONFIG_HUGETLB_PAGE
692 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
693                                  unsigned long addr, unsigned long end,
694                                  struct mm_walk *walk)
695 {
696         struct mem_size_stats *mss = walk->private;
697         struct vm_area_struct *vma = walk->vma;
698         struct page *page = NULL;
699
700         if (pte_present(*pte)) {
701                 page = vm_normal_page(vma, addr, *pte);
702         } else if (is_swap_pte(*pte)) {
703                 swp_entry_t swpent = pte_to_swp_entry(*pte);
704
705                 if (is_migration_entry(swpent))
706                         page = migration_entry_to_page(swpent);
707         }
708         if (page) {
709                 int mapcount = page_mapcount(page);
710
711                 if (mapcount >= 2)
712                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
713                 else
714                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
715         }
716         return 0;
717 }
718 #endif /* HUGETLB_PAGE */
719
720 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
721 {
722 }
723
724 static int show_smap(struct seq_file *m, void *v, int is_pid)
725 {
726         struct vm_area_struct *vma = v;
727         struct mem_size_stats mss;
728         struct mm_walk smaps_walk = {
729                 .pmd_entry = smaps_pte_range,
730 #ifdef CONFIG_HUGETLB_PAGE
731                 .hugetlb_entry = smaps_hugetlb_range,
732 #endif
733                 .mm = vma->vm_mm,
734                 .private = &mss,
735         };
736
737         memset(&mss, 0, sizeof mss);
738
739 #ifdef CONFIG_SHMEM
740         if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
741                 /*
742                  * For shared or readonly shmem mappings we know that all
743                  * swapped out pages belong to the shmem object, and we can
744                  * obtain the swap value much more efficiently. For private
745                  * writable mappings, we might have COW pages that are
746                  * not affected by the parent swapped out pages of the shmem
747                  * object, so we have to distinguish them during the page walk.
748                  * Unless we know that the shmem object (or the part mapped by
749                  * our VMA) has no swapped out pages at all.
750                  */
751                 unsigned long shmem_swapped = shmem_swap_usage(vma);
752
753                 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
754                                         !(vma->vm_flags & VM_WRITE)) {
755                         mss.swap = shmem_swapped;
756                 } else {
757                         mss.check_shmem_swap = true;
758                         smaps_walk.pte_hole = smaps_pte_hole;
759                 }
760         }
761 #endif
762
763         /* mmap_sem is held in m_start */
764         walk_page_vma(vma, &smaps_walk);
765
766         show_map_vma(m, vma, is_pid);
767
768         seq_printf(m,
769                    "Size:           %8lu kB\n"
770                    "Rss:            %8lu kB\n"
771                    "Pss:            %8lu kB\n"
772                    "Shared_Clean:   %8lu kB\n"
773                    "Shared_Dirty:   %8lu kB\n"
774                    "Private_Clean:  %8lu kB\n"
775                    "Private_Dirty:  %8lu kB\n"
776                    "Referenced:     %8lu kB\n"
777                    "Anonymous:      %8lu kB\n"
778                    "LazyFree:       %8lu kB\n"
779                    "AnonHugePages:  %8lu kB\n"
780                    "ShmemPmdMapped: %8lu kB\n"
781                    "Shared_Hugetlb: %8lu kB\n"
782                    "Private_Hugetlb: %7lu kB\n"
783                    "Swap:           %8lu kB\n"
784                    "SwapPss:        %8lu kB\n"
785                    "KernelPageSize: %8lu kB\n"
786                    "MMUPageSize:    %8lu kB\n"
787                    "Locked:         %8lu kB\n",
788                    (vma->vm_end - vma->vm_start) >> 10,
789                    mss.resident >> 10,
790                    (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
791                    mss.shared_clean  >> 10,
792                    mss.shared_dirty  >> 10,
793                    mss.private_clean >> 10,
794                    mss.private_dirty >> 10,
795                    mss.referenced >> 10,
796                    mss.anonymous >> 10,
797                    mss.lazyfree >> 10,
798                    mss.anonymous_thp >> 10,
799                    mss.shmem_thp >> 10,
800                    mss.shared_hugetlb >> 10,
801                    mss.private_hugetlb >> 10,
802                    mss.swap >> 10,
803                    (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
804                    vma_kernel_pagesize(vma) >> 10,
805                    vma_mmu_pagesize(vma) >> 10,
806                    (vma->vm_flags & VM_LOCKED) ?
807                         (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
808
809         arch_show_smap(m, vma);
810         show_smap_vma_flags(m, vma);
811         m_cache_vma(m, vma);
812         return 0;
813 }
814
815 static int show_pid_smap(struct seq_file *m, void *v)
816 {
817         return show_smap(m, v, 1);
818 }
819
820 static int show_tid_smap(struct seq_file *m, void *v)
821 {
822         return show_smap(m, v, 0);
823 }
824
825 static const struct seq_operations proc_pid_smaps_op = {
826         .start  = m_start,
827         .next   = m_next,
828         .stop   = m_stop,
829         .show   = show_pid_smap
830 };
831
832 static const struct seq_operations proc_tid_smaps_op = {
833         .start  = m_start,
834         .next   = m_next,
835         .stop   = m_stop,
836         .show   = show_tid_smap
837 };
838
839 static int pid_smaps_open(struct inode *inode, struct file *file)
840 {
841         return do_maps_open(inode, file, &proc_pid_smaps_op);
842 }
843
844 static int tid_smaps_open(struct inode *inode, struct file *file)
845 {
846         return do_maps_open(inode, file, &proc_tid_smaps_op);
847 }
848
849 const struct file_operations proc_pid_smaps_operations = {
850         .open           = pid_smaps_open,
851         .read           = seq_read,
852         .llseek         = seq_lseek,
853         .release        = proc_map_release,
854 };
855
856 const struct file_operations proc_tid_smaps_operations = {
857         .open           = tid_smaps_open,
858         .read           = seq_read,
859         .llseek         = seq_lseek,
860         .release        = proc_map_release,
861 };
862
863 enum clear_refs_types {
864         CLEAR_REFS_ALL = 1,
865         CLEAR_REFS_ANON,
866         CLEAR_REFS_MAPPED,
867         CLEAR_REFS_SOFT_DIRTY,
868         CLEAR_REFS_MM_HIWATER_RSS,
869         CLEAR_REFS_LAST,
870 };
871
872 struct clear_refs_private {
873         enum clear_refs_types type;
874 };
875
876 #ifdef CONFIG_MEM_SOFT_DIRTY
877 static inline void clear_soft_dirty(struct vm_area_struct *vma,
878                 unsigned long addr, pte_t *pte)
879 {
880         /*
881          * The soft-dirty tracker uses #PF-s to catch writes
882          * to pages, so write-protect the pte as well. See the
883          * Documentation/vm/soft-dirty.txt for full description
884          * of how soft-dirty works.
885          */
886         pte_t ptent = *pte;
887
888         if (pte_present(ptent)) {
889                 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
890                 ptent = pte_wrprotect(ptent);
891                 ptent = pte_clear_soft_dirty(ptent);
892                 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
893         } else if (is_swap_pte(ptent)) {
894                 ptent = pte_swp_clear_soft_dirty(ptent);
895                 set_pte_at(vma->vm_mm, addr, pte, ptent);
896         }
897 }
898 #else
899 static inline void clear_soft_dirty(struct vm_area_struct *vma,
900                 unsigned long addr, pte_t *pte)
901 {
902 }
903 #endif
904
905 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
906 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
907                 unsigned long addr, pmd_t *pmdp)
908 {
909         pmd_t pmd = *pmdp;
910
911         /* See comment in change_huge_pmd() */
912         pmdp_invalidate(vma, addr, pmdp);
913         if (pmd_dirty(*pmdp))
914                 pmd = pmd_mkdirty(pmd);
915         if (pmd_young(*pmdp))
916                 pmd = pmd_mkyoung(pmd);
917
918         pmd = pmd_wrprotect(pmd);
919         pmd = pmd_clear_soft_dirty(pmd);
920
921         set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
922 }
923 #else
924 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
925                 unsigned long addr, pmd_t *pmdp)
926 {
927 }
928 #endif
929
930 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
931                                 unsigned long end, struct mm_walk *walk)
932 {
933         struct clear_refs_private *cp = walk->private;
934         struct vm_area_struct *vma = walk->vma;
935         pte_t *pte, ptent;
936         spinlock_t *ptl;
937         struct page *page;
938
939         ptl = pmd_trans_huge_lock(pmd, vma);
940         if (ptl) {
941                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
942                         clear_soft_dirty_pmd(vma, addr, pmd);
943                         goto out;
944                 }
945
946                 page = pmd_page(*pmd);
947
948                 /* Clear accessed and referenced bits. */
949                 pmdp_test_and_clear_young(vma, addr, pmd);
950                 test_and_clear_page_young(page);
951                 ClearPageReferenced(page);
952 out:
953                 spin_unlock(ptl);
954                 return 0;
955         }
956
957         if (pmd_trans_unstable(pmd))
958                 return 0;
959
960         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
961         for (; addr != end; pte++, addr += PAGE_SIZE) {
962                 ptent = *pte;
963
964                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
965                         clear_soft_dirty(vma, addr, pte);
966                         continue;
967                 }
968
969                 if (!pte_present(ptent))
970                         continue;
971
972                 page = vm_normal_page(vma, addr, ptent);
973                 if (!page)
974                         continue;
975
976                 /* Clear accessed and referenced bits. */
977                 ptep_test_and_clear_young(vma, addr, pte);
978                 test_and_clear_page_young(page);
979                 ClearPageReferenced(page);
980         }
981         pte_unmap_unlock(pte - 1, ptl);
982         cond_resched();
983         return 0;
984 }
985
986 static int clear_refs_test_walk(unsigned long start, unsigned long end,
987                                 struct mm_walk *walk)
988 {
989         struct clear_refs_private *cp = walk->private;
990         struct vm_area_struct *vma = walk->vma;
991
992         if (vma->vm_flags & VM_PFNMAP)
993                 return 1;
994
995         /*
996          * Writing 1 to /proc/pid/clear_refs affects all pages.
997          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
998          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
999          * Writing 4 to /proc/pid/clear_refs affects all pages.
1000          */
1001         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1002                 return 1;
1003         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1004                 return 1;
1005         return 0;
1006 }
1007
1008 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1009                                 size_t count, loff_t *ppos)
1010 {
1011         struct task_struct *task;
1012         char buffer[PROC_NUMBUF];
1013         struct mm_struct *mm;
1014         struct vm_area_struct *vma;
1015         enum clear_refs_types type;
1016         int itype;
1017         int rv;
1018
1019         memset(buffer, 0, sizeof(buffer));
1020         if (count > sizeof(buffer) - 1)
1021                 count = sizeof(buffer) - 1;
1022         if (copy_from_user(buffer, buf, count))
1023                 return -EFAULT;
1024         rv = kstrtoint(strstrip(buffer), 10, &itype);
1025         if (rv < 0)
1026                 return rv;
1027         type = (enum clear_refs_types)itype;
1028         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1029                 return -EINVAL;
1030
1031         task = get_proc_task(file_inode(file));
1032         if (!task)
1033                 return -ESRCH;
1034         mm = get_task_mm(task);
1035         if (mm) {
1036                 struct clear_refs_private cp = {
1037                         .type = type,
1038                 };
1039                 struct mm_walk clear_refs_walk = {
1040                         .pmd_entry = clear_refs_pte_range,
1041                         .test_walk = clear_refs_test_walk,
1042                         .mm = mm,
1043                         .private = &cp,
1044                 };
1045
1046                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1047                         if (down_write_killable(&mm->mmap_sem)) {
1048                                 count = -EINTR;
1049                                 goto out_mm;
1050                         }
1051
1052                         /*
1053                          * Writing 5 to /proc/pid/clear_refs resets the peak
1054                          * resident set size to this mm's current rss value.
1055                          */
1056                         reset_mm_hiwater_rss(mm);
1057                         up_write(&mm->mmap_sem);
1058                         goto out_mm;
1059                 }
1060
1061                 down_read(&mm->mmap_sem);
1062                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1063                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1064                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1065                                         continue;
1066                                 up_read(&mm->mmap_sem);
1067                                 if (down_write_killable(&mm->mmap_sem)) {
1068                                         count = -EINTR;
1069                                         goto out_mm;
1070                                 }
1071                                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1072                                         vma->vm_flags &= ~VM_SOFTDIRTY;
1073                                         vma_set_page_prot(vma);
1074                                 }
1075                                 downgrade_write(&mm->mmap_sem);
1076                                 break;
1077                         }
1078                         mmu_notifier_invalidate_range_start(mm, 0, -1);
1079                 }
1080                 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1081                 if (type == CLEAR_REFS_SOFT_DIRTY)
1082                         mmu_notifier_invalidate_range_end(mm, 0, -1);
1083                 flush_tlb_mm(mm);
1084                 up_read(&mm->mmap_sem);
1085 out_mm:
1086                 mmput(mm);
1087         }
1088         put_task_struct(task);
1089
1090         return count;
1091 }
1092
1093 const struct file_operations proc_clear_refs_operations = {
1094         .write          = clear_refs_write,
1095         .llseek         = noop_llseek,
1096 };
1097
1098 typedef struct {
1099         u64 pme;
1100 } pagemap_entry_t;
1101
1102 struct pagemapread {
1103         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1104         pagemap_entry_t *buffer;
1105         bool show_pfn;
1106 };
1107
1108 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1109 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1110
1111 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1112 #define PM_PFRAME_BITS          55
1113 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1114 #define PM_SOFT_DIRTY           BIT_ULL(55)
1115 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1116 #define PM_FILE                 BIT_ULL(61)
1117 #define PM_SWAP                 BIT_ULL(62)
1118 #define PM_PRESENT              BIT_ULL(63)
1119
1120 #define PM_END_OF_BUFFER    1
1121
1122 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1123 {
1124         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1125 }
1126
1127 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1128                           struct pagemapread *pm)
1129 {
1130         pm->buffer[pm->pos++] = *pme;
1131         if (pm->pos >= pm->len)
1132                 return PM_END_OF_BUFFER;
1133         return 0;
1134 }
1135
1136 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1137                                 struct mm_walk *walk)
1138 {
1139         struct pagemapread *pm = walk->private;
1140         unsigned long addr = start;
1141         int err = 0;
1142
1143         while (addr < end) {
1144                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1145                 pagemap_entry_t pme = make_pme(0, 0);
1146                 /* End of address space hole, which we mark as non-present. */
1147                 unsigned long hole_end;
1148
1149                 if (vma)
1150                         hole_end = min(end, vma->vm_start);
1151                 else
1152                         hole_end = end;
1153
1154                 for (; addr < hole_end; addr += PAGE_SIZE) {
1155                         err = add_to_pagemap(addr, &pme, pm);
1156                         if (err)
1157                                 goto out;
1158                 }
1159
1160                 if (!vma)
1161                         break;
1162
1163                 /* Addresses in the VMA. */
1164                 if (vma->vm_flags & VM_SOFTDIRTY)
1165                         pme = make_pme(0, PM_SOFT_DIRTY);
1166                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1167                         err = add_to_pagemap(addr, &pme, pm);
1168                         if (err)
1169                                 goto out;
1170                 }
1171         }
1172 out:
1173         return err;
1174 }
1175
1176 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1177                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1178 {
1179         u64 frame = 0, flags = 0;
1180         struct page *page = NULL;
1181
1182         if (pte_present(pte)) {
1183                 if (pm->show_pfn)
1184                         frame = pte_pfn(pte);
1185                 flags |= PM_PRESENT;
1186                 page = vm_normal_page(vma, addr, pte);
1187                 if (pte_soft_dirty(pte))
1188                         flags |= PM_SOFT_DIRTY;
1189         } else if (is_swap_pte(pte)) {
1190                 swp_entry_t entry;
1191                 if (pte_swp_soft_dirty(pte))
1192                         flags |= PM_SOFT_DIRTY;
1193                 entry = pte_to_swp_entry(pte);
1194                 frame = swp_type(entry) |
1195                         (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1196                 flags |= PM_SWAP;
1197                 if (is_migration_entry(entry))
1198                         page = migration_entry_to_page(entry);
1199         }
1200
1201         if (page && !PageAnon(page))
1202                 flags |= PM_FILE;
1203         if (page && page_mapcount(page) == 1)
1204                 flags |= PM_MMAP_EXCLUSIVE;
1205         if (vma->vm_flags & VM_SOFTDIRTY)
1206                 flags |= PM_SOFT_DIRTY;
1207
1208         return make_pme(frame, flags);
1209 }
1210
1211 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1212                              struct mm_walk *walk)
1213 {
1214         struct vm_area_struct *vma = walk->vma;
1215         struct pagemapread *pm = walk->private;
1216         spinlock_t *ptl;
1217         pte_t *pte, *orig_pte;
1218         int err = 0;
1219
1220 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1221         ptl = pmd_trans_huge_lock(pmdp, vma);
1222         if (ptl) {
1223                 u64 flags = 0, frame = 0;
1224                 pmd_t pmd = *pmdp;
1225
1226                 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1227                         flags |= PM_SOFT_DIRTY;
1228
1229                 /*
1230                  * Currently pmd for thp is always present because thp
1231                  * can not be swapped-out, migrated, or HWPOISONed
1232                  * (split in such cases instead.)
1233                  * This if-check is just to prepare for future implementation.
1234                  */
1235                 if (pmd_present(pmd)) {
1236                         struct page *page = pmd_page(pmd);
1237
1238                         if (page_mapcount(page) == 1)
1239                                 flags |= PM_MMAP_EXCLUSIVE;
1240
1241                         flags |= PM_PRESENT;
1242                         if (pm->show_pfn)
1243                                 frame = pmd_pfn(pmd) +
1244                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1245                 }
1246
1247                 for (; addr != end; addr += PAGE_SIZE) {
1248                         pagemap_entry_t pme = make_pme(frame, flags);
1249
1250                         err = add_to_pagemap(addr, &pme, pm);
1251                         if (err)
1252                                 break;
1253                         if (pm->show_pfn && (flags & PM_PRESENT))
1254                                 frame++;
1255                 }
1256                 spin_unlock(ptl);
1257                 return err;
1258         }
1259
1260         if (pmd_trans_unstable(pmdp))
1261                 return 0;
1262 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1263
1264         /*
1265          * We can assume that @vma always points to a valid one and @end never
1266          * goes beyond vma->vm_end.
1267          */
1268         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1269         for (; addr < end; pte++, addr += PAGE_SIZE) {
1270                 pagemap_entry_t pme;
1271
1272                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1273                 err = add_to_pagemap(addr, &pme, pm);
1274                 if (err)
1275                         break;
1276         }
1277         pte_unmap_unlock(orig_pte, ptl);
1278
1279         cond_resched();
1280
1281         return err;
1282 }
1283
1284 #ifdef CONFIG_HUGETLB_PAGE
1285 /* This function walks within one hugetlb entry in the single call */
1286 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1287                                  unsigned long addr, unsigned long end,
1288                                  struct mm_walk *walk)
1289 {
1290         struct pagemapread *pm = walk->private;
1291         struct vm_area_struct *vma = walk->vma;
1292         u64 flags = 0, frame = 0;
1293         int err = 0;
1294         pte_t pte;
1295
1296         if (vma->vm_flags & VM_SOFTDIRTY)
1297                 flags |= PM_SOFT_DIRTY;
1298
1299         pte = huge_ptep_get(ptep);
1300         if (pte_present(pte)) {
1301                 struct page *page = pte_page(pte);
1302
1303                 if (!PageAnon(page))
1304                         flags |= PM_FILE;
1305
1306                 if (page_mapcount(page) == 1)
1307                         flags |= PM_MMAP_EXCLUSIVE;
1308
1309                 flags |= PM_PRESENT;
1310                 if (pm->show_pfn)
1311                         frame = pte_pfn(pte) +
1312                                 ((addr & ~hmask) >> PAGE_SHIFT);
1313         }
1314
1315         for (; addr != end; addr += PAGE_SIZE) {
1316                 pagemap_entry_t pme = make_pme(frame, flags);
1317
1318                 err = add_to_pagemap(addr, &pme, pm);
1319                 if (err)
1320                         return err;
1321                 if (pm->show_pfn && (flags & PM_PRESENT))
1322                         frame++;
1323         }
1324
1325         cond_resched();
1326
1327         return err;
1328 }
1329 #endif /* HUGETLB_PAGE */
1330
1331 /*
1332  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1333  *
1334  * For each page in the address space, this file contains one 64-bit entry
1335  * consisting of the following:
1336  *
1337  * Bits 0-54  page frame number (PFN) if present
1338  * Bits 0-4   swap type if swapped
1339  * Bits 5-54  swap offset if swapped
1340  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1341  * Bit  56    page exclusively mapped
1342  * Bits 57-60 zero
1343  * Bit  61    page is file-page or shared-anon
1344  * Bit  62    page swapped
1345  * Bit  63    page present
1346  *
1347  * If the page is not present but in swap, then the PFN contains an
1348  * encoding of the swap file number and the page's offset into the
1349  * swap. Unmapped pages return a null PFN. This allows determining
1350  * precisely which pages are mapped (or in swap) and comparing mapped
1351  * pages between processes.
1352  *
1353  * Efficient users of this interface will use /proc/pid/maps to
1354  * determine which areas of memory are actually mapped and llseek to
1355  * skip over unmapped regions.
1356  */
1357 static ssize_t pagemap_read(struct file *file, char __user *buf,
1358                             size_t count, loff_t *ppos)
1359 {
1360         struct mm_struct *mm = file->private_data;
1361         struct pagemapread pm;
1362         struct mm_walk pagemap_walk = {};
1363         unsigned long src;
1364         unsigned long svpfn;
1365         unsigned long start_vaddr;
1366         unsigned long end_vaddr;
1367         int ret = 0, copied = 0;
1368
1369         if (!mm || !mmget_not_zero(mm))
1370                 goto out;
1371
1372         ret = -EINVAL;
1373         /* file position must be aligned */
1374         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1375                 goto out_mm;
1376
1377         ret = 0;
1378         if (!count)
1379                 goto out_mm;
1380
1381         /* do not disclose physical addresses: attack vector */
1382         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1383
1384         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1385         pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1386         ret = -ENOMEM;
1387         if (!pm.buffer)
1388                 goto out_mm;
1389
1390         pagemap_walk.pmd_entry = pagemap_pmd_range;
1391         pagemap_walk.pte_hole = pagemap_pte_hole;
1392 #ifdef CONFIG_HUGETLB_PAGE
1393         pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1394 #endif
1395         pagemap_walk.mm = mm;
1396         pagemap_walk.private = &pm;
1397
1398         src = *ppos;
1399         svpfn = src / PM_ENTRY_BYTES;
1400         start_vaddr = svpfn << PAGE_SHIFT;
1401         end_vaddr = mm->task_size;
1402
1403         /* watch out for wraparound */
1404         if (svpfn > mm->task_size >> PAGE_SHIFT)
1405                 start_vaddr = end_vaddr;
1406
1407         /*
1408          * The odds are that this will stop walking way
1409          * before end_vaddr, because the length of the
1410          * user buffer is tracked in "pm", and the walk
1411          * will stop when we hit the end of the buffer.
1412          */
1413         ret = 0;
1414         while (count && (start_vaddr < end_vaddr)) {
1415                 int len;
1416                 unsigned long end;
1417
1418                 pm.pos = 0;
1419                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1420                 /* overflow ? */
1421                 if (end < start_vaddr || end > end_vaddr)
1422                         end = end_vaddr;
1423                 down_read(&mm->mmap_sem);
1424                 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1425                 up_read(&mm->mmap_sem);
1426                 start_vaddr = end;
1427
1428                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1429                 if (copy_to_user(buf, pm.buffer, len)) {
1430                         ret = -EFAULT;
1431                         goto out_free;
1432                 }
1433                 copied += len;
1434                 buf += len;
1435                 count -= len;
1436         }
1437         *ppos += copied;
1438         if (!ret || ret == PM_END_OF_BUFFER)
1439                 ret = copied;
1440
1441 out_free:
1442         kfree(pm.buffer);
1443 out_mm:
1444         mmput(mm);
1445 out:
1446         return ret;
1447 }
1448
1449 static int pagemap_open(struct inode *inode, struct file *file)
1450 {
1451         struct mm_struct *mm;
1452
1453         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1454         if (IS_ERR(mm))
1455                 return PTR_ERR(mm);
1456         file->private_data = mm;
1457         return 0;
1458 }
1459
1460 static int pagemap_release(struct inode *inode, struct file *file)
1461 {
1462         struct mm_struct *mm = file->private_data;
1463
1464         if (mm)
1465                 mmdrop(mm);
1466         return 0;
1467 }
1468
1469 const struct file_operations proc_pagemap_operations = {
1470         .llseek         = mem_lseek, /* borrow this */
1471         .read           = pagemap_read,
1472         .open           = pagemap_open,
1473         .release        = pagemap_release,
1474 };
1475 #endif /* CONFIG_PROC_PAGE_MONITOR */
1476
1477 #ifdef CONFIG_NUMA
1478
1479 struct numa_maps {
1480         unsigned long pages;
1481         unsigned long anon;
1482         unsigned long active;
1483         unsigned long writeback;
1484         unsigned long mapcount_max;
1485         unsigned long dirty;
1486         unsigned long swapcache;
1487         unsigned long node[MAX_NUMNODES];
1488 };
1489
1490 struct numa_maps_private {
1491         struct proc_maps_private proc_maps;
1492         struct numa_maps md;
1493 };
1494
1495 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1496                         unsigned long nr_pages)
1497 {
1498         int count = page_mapcount(page);
1499
1500         md->pages += nr_pages;
1501         if (pte_dirty || PageDirty(page))
1502                 md->dirty += nr_pages;
1503
1504         if (PageSwapCache(page))
1505                 md->swapcache += nr_pages;
1506
1507         if (PageActive(page) || PageUnevictable(page))
1508                 md->active += nr_pages;
1509
1510         if (PageWriteback(page))
1511                 md->writeback += nr_pages;
1512
1513         if (PageAnon(page))
1514                 md->anon += nr_pages;
1515
1516         if (count > md->mapcount_max)
1517                 md->mapcount_max = count;
1518
1519         md->node[page_to_nid(page)] += nr_pages;
1520 }
1521
1522 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1523                 unsigned long addr)
1524 {
1525         struct page *page;
1526         int nid;
1527
1528         if (!pte_present(pte))
1529                 return NULL;
1530
1531         page = vm_normal_page(vma, addr, pte);
1532         if (!page)
1533                 return NULL;
1534
1535         if (PageReserved(page))
1536                 return NULL;
1537
1538         nid = page_to_nid(page);
1539         if (!node_isset(nid, node_states[N_MEMORY]))
1540                 return NULL;
1541
1542         return page;
1543 }
1544
1545 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1546 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1547                                               struct vm_area_struct *vma,
1548                                               unsigned long addr)
1549 {
1550         struct page *page;
1551         int nid;
1552
1553         if (!pmd_present(pmd))
1554                 return NULL;
1555
1556         page = vm_normal_page_pmd(vma, addr, pmd);
1557         if (!page)
1558                 return NULL;
1559
1560         if (PageReserved(page))
1561                 return NULL;
1562
1563         nid = page_to_nid(page);
1564         if (!node_isset(nid, node_states[N_MEMORY]))
1565                 return NULL;
1566
1567         return page;
1568 }
1569 #endif
1570
1571 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1572                 unsigned long end, struct mm_walk *walk)
1573 {
1574         struct numa_maps *md = walk->private;
1575         struct vm_area_struct *vma = walk->vma;
1576         spinlock_t *ptl;
1577         pte_t *orig_pte;
1578         pte_t *pte;
1579
1580 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1581         ptl = pmd_trans_huge_lock(pmd, vma);
1582         if (ptl) {
1583                 struct page *page;
1584
1585                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1586                 if (page)
1587                         gather_stats(page, md, pmd_dirty(*pmd),
1588                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1589                 spin_unlock(ptl);
1590                 return 0;
1591         }
1592
1593         if (pmd_trans_unstable(pmd))
1594                 return 0;
1595 #endif
1596         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1597         do {
1598                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1599                 if (!page)
1600                         continue;
1601                 gather_stats(page, md, pte_dirty(*pte), 1);
1602
1603         } while (pte++, addr += PAGE_SIZE, addr != end);
1604         pte_unmap_unlock(orig_pte, ptl);
1605         cond_resched();
1606         return 0;
1607 }
1608 #ifdef CONFIG_HUGETLB_PAGE
1609 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1610                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1611 {
1612         pte_t huge_pte = huge_ptep_get(pte);
1613         struct numa_maps *md;
1614         struct page *page;
1615
1616         if (!pte_present(huge_pte))
1617                 return 0;
1618
1619         page = pte_page(huge_pte);
1620         if (!page)
1621                 return 0;
1622
1623         md = walk->private;
1624         gather_stats(page, md, pte_dirty(huge_pte), 1);
1625         return 0;
1626 }
1627
1628 #else
1629 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1630                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1631 {
1632         return 0;
1633 }
1634 #endif
1635
1636 /*
1637  * Display pages allocated per node and memory policy via /proc.
1638  */
1639 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1640 {
1641         struct numa_maps_private *numa_priv = m->private;
1642         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1643         struct vm_area_struct *vma = v;
1644         struct numa_maps *md = &numa_priv->md;
1645         struct file *file = vma->vm_file;
1646         struct mm_struct *mm = vma->vm_mm;
1647         struct mm_walk walk = {
1648                 .hugetlb_entry = gather_hugetlb_stats,
1649                 .pmd_entry = gather_pte_stats,
1650                 .private = md,
1651                 .mm = mm,
1652         };
1653         struct mempolicy *pol;
1654         char buffer[64];
1655         int nid;
1656
1657         if (!mm)
1658                 return 0;
1659
1660         /* Ensure we start with an empty set of numa_maps statistics. */
1661         memset(md, 0, sizeof(*md));
1662
1663         pol = __get_vma_policy(vma, vma->vm_start);
1664         if (pol) {
1665                 mpol_to_str(buffer, sizeof(buffer), pol);
1666                 mpol_cond_put(pol);
1667         } else {
1668                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1669         }
1670
1671         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1672
1673         if (file) {
1674                 seq_puts(m, " file=");
1675                 seq_file_path(m, file, "\n\t= ");
1676         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1677                 seq_puts(m, " heap");
1678         } else if (is_stack(proc_priv, vma)) {
1679                 seq_puts(m, " stack");
1680         }
1681
1682         if (is_vm_hugetlb_page(vma))
1683                 seq_puts(m, " huge");
1684
1685         /* mmap_sem is held by m_start */
1686         walk_page_vma(vma, &walk);
1687
1688         if (!md->pages)
1689                 goto out;
1690
1691         if (md->anon)
1692                 seq_printf(m, " anon=%lu", md->anon);
1693
1694         if (md->dirty)
1695                 seq_printf(m, " dirty=%lu", md->dirty);
1696
1697         if (md->pages != md->anon && md->pages != md->dirty)
1698                 seq_printf(m, " mapped=%lu", md->pages);
1699
1700         if (md->mapcount_max > 1)
1701                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1702
1703         if (md->swapcache)
1704                 seq_printf(m, " swapcache=%lu", md->swapcache);
1705
1706         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1707                 seq_printf(m, " active=%lu", md->active);
1708
1709         if (md->writeback)
1710                 seq_printf(m, " writeback=%lu", md->writeback);
1711
1712         for_each_node_state(nid, N_MEMORY)
1713                 if (md->node[nid])
1714                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1715
1716         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1717 out:
1718         seq_putc(m, '\n');
1719         m_cache_vma(m, vma);
1720         return 0;
1721 }
1722
1723 static int show_pid_numa_map(struct seq_file *m, void *v)
1724 {
1725         return show_numa_map(m, v, 1);
1726 }
1727
1728 static int show_tid_numa_map(struct seq_file *m, void *v)
1729 {
1730         return show_numa_map(m, v, 0);
1731 }
1732
1733 static const struct seq_operations proc_pid_numa_maps_op = {
1734         .start  = m_start,
1735         .next   = m_next,
1736         .stop   = m_stop,
1737         .show   = show_pid_numa_map,
1738 };
1739
1740 static const struct seq_operations proc_tid_numa_maps_op = {
1741         .start  = m_start,
1742         .next   = m_next,
1743         .stop   = m_stop,
1744         .show   = show_tid_numa_map,
1745 };
1746
1747 static int numa_maps_open(struct inode *inode, struct file *file,
1748                           const struct seq_operations *ops)
1749 {
1750         return proc_maps_open(inode, file, ops,
1751                                 sizeof(struct numa_maps_private));
1752 }
1753
1754 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1755 {
1756         return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1757 }
1758
1759 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1760 {
1761         return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1762 }
1763
1764 const struct file_operations proc_pid_numa_maps_operations = {
1765         .open           = pid_numa_maps_open,
1766         .read           = seq_read,
1767         .llseek         = seq_lseek,
1768         .release        = proc_map_release,
1769 };
1770
1771 const struct file_operations proc_tid_numa_maps_operations = {
1772         .open           = tid_numa_maps_open,
1773         .read           = seq_read,
1774         .llseek         = seq_lseek,
1775         .release        = proc_map_release,
1776 };
1777 #endif /* CONFIG_NUMA */