ocfs2: fix cluster hang after a node dies
[sfrench/cifs-2.6.git] / fs / ocfs2 / file.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * file.c
5  *
6  * File open, close, extend, truncate
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40 #include <linux/backing-dev.h>
41
42 #include <cluster/masklog.h>
43
44 #include "ocfs2.h"
45
46 #include "alloc.h"
47 #include "aops.h"
48 #include "dir.h"
49 #include "dlmglue.h"
50 #include "extent_map.h"
51 #include "file.h"
52 #include "sysfile.h"
53 #include "inode.h"
54 #include "ioctl.h"
55 #include "journal.h"
56 #include "locks.h"
57 #include "mmap.h"
58 #include "suballoc.h"
59 #include "super.h"
60 #include "xattr.h"
61 #include "acl.h"
62 #include "quota.h"
63 #include "refcounttree.h"
64 #include "ocfs2_trace.h"
65
66 #include "buffer_head_io.h"
67
68 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
69 {
70         struct ocfs2_file_private *fp;
71
72         fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
73         if (!fp)
74                 return -ENOMEM;
75
76         fp->fp_file = file;
77         mutex_init(&fp->fp_mutex);
78         ocfs2_file_lock_res_init(&fp->fp_flock, fp);
79         file->private_data = fp;
80
81         return 0;
82 }
83
84 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
85 {
86         struct ocfs2_file_private *fp = file->private_data;
87         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
88
89         if (fp) {
90                 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
91                 ocfs2_lock_res_free(&fp->fp_flock);
92                 kfree(fp);
93                 file->private_data = NULL;
94         }
95 }
96
97 static int ocfs2_file_open(struct inode *inode, struct file *file)
98 {
99         int status;
100         int mode = file->f_flags;
101         struct ocfs2_inode_info *oi = OCFS2_I(inode);
102
103         trace_ocfs2_file_open(inode, file, file->f_path.dentry,
104                               (unsigned long long)OCFS2_I(inode)->ip_blkno,
105                               file->f_path.dentry->d_name.len,
106                               file->f_path.dentry->d_name.name, mode);
107
108         if (file->f_mode & FMODE_WRITE) {
109                 status = dquot_initialize(inode);
110                 if (status)
111                         goto leave;
112         }
113
114         spin_lock(&oi->ip_lock);
115
116         /* Check that the inode hasn't been wiped from disk by another
117          * node. If it hasn't then we're safe as long as we hold the
118          * spin lock until our increment of open count. */
119         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
120                 spin_unlock(&oi->ip_lock);
121
122                 status = -ENOENT;
123                 goto leave;
124         }
125
126         if (mode & O_DIRECT)
127                 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
128
129         oi->ip_open_count++;
130         spin_unlock(&oi->ip_lock);
131
132         status = ocfs2_init_file_private(inode, file);
133         if (status) {
134                 /*
135                  * We want to set open count back if we're failing the
136                  * open.
137                  */
138                 spin_lock(&oi->ip_lock);
139                 oi->ip_open_count--;
140                 spin_unlock(&oi->ip_lock);
141         }
142
143 leave:
144         return status;
145 }
146
147 static int ocfs2_file_release(struct inode *inode, struct file *file)
148 {
149         struct ocfs2_inode_info *oi = OCFS2_I(inode);
150
151         spin_lock(&oi->ip_lock);
152         if (!--oi->ip_open_count)
153                 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
154
155         trace_ocfs2_file_release(inode, file, file->f_path.dentry,
156                                  oi->ip_blkno,
157                                  file->f_path.dentry->d_name.len,
158                                  file->f_path.dentry->d_name.name,
159                                  oi->ip_open_count);
160         spin_unlock(&oi->ip_lock);
161
162         ocfs2_free_file_private(inode, file);
163
164         return 0;
165 }
166
167 static int ocfs2_dir_open(struct inode *inode, struct file *file)
168 {
169         return ocfs2_init_file_private(inode, file);
170 }
171
172 static int ocfs2_dir_release(struct inode *inode, struct file *file)
173 {
174         ocfs2_free_file_private(inode, file);
175         return 0;
176 }
177
178 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
179                            int datasync)
180 {
181         int err = 0;
182         struct inode *inode = file->f_mapping->host;
183         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
184         struct ocfs2_inode_info *oi = OCFS2_I(inode);
185         journal_t *journal = osb->journal->j_journal;
186         int ret;
187         tid_t commit_tid;
188         bool needs_barrier = false;
189
190         trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
191                               OCFS2_I(inode)->ip_blkno,
192                               file->f_path.dentry->d_name.len,
193                               file->f_path.dentry->d_name.name,
194                               (unsigned long long)datasync);
195
196         if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
197                 return -EROFS;
198
199         err = file_write_and_wait_range(file, start, end);
200         if (err)
201                 return err;
202
203         commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
204         if (journal->j_flags & JBD2_BARRIER &&
205             !jbd2_trans_will_send_data_barrier(journal, commit_tid))
206                 needs_barrier = true;
207         err = jbd2_complete_transaction(journal, commit_tid);
208         if (needs_barrier) {
209                 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
210                 if (!err)
211                         err = ret;
212         }
213
214         if (err)
215                 mlog_errno(err);
216
217         return (err < 0) ? -EIO : 0;
218 }
219
220 int ocfs2_should_update_atime(struct inode *inode,
221                               struct vfsmount *vfsmnt)
222 {
223         struct timespec now;
224         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
225
226         if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
227                 return 0;
228
229         if ((inode->i_flags & S_NOATIME) ||
230             ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
231                 return 0;
232
233         /*
234          * We can be called with no vfsmnt structure - NFSD will
235          * sometimes do this.
236          *
237          * Note that our action here is different than touch_atime() -
238          * if we can't tell whether this is a noatime mount, then we
239          * don't know whether to trust the value of s_atime_quantum.
240          */
241         if (vfsmnt == NULL)
242                 return 0;
243
244         if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
245             ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
246                 return 0;
247
248         if (vfsmnt->mnt_flags & MNT_RELATIME) {
249                 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
250                     (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
251                         return 1;
252
253                 return 0;
254         }
255
256         now = current_time(inode);
257         if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
258                 return 0;
259         else
260                 return 1;
261 }
262
263 int ocfs2_update_inode_atime(struct inode *inode,
264                              struct buffer_head *bh)
265 {
266         int ret;
267         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
268         handle_t *handle;
269         struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
270
271         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
272         if (IS_ERR(handle)) {
273                 ret = PTR_ERR(handle);
274                 mlog_errno(ret);
275                 goto out;
276         }
277
278         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
279                                       OCFS2_JOURNAL_ACCESS_WRITE);
280         if (ret) {
281                 mlog_errno(ret);
282                 goto out_commit;
283         }
284
285         /*
286          * Don't use ocfs2_mark_inode_dirty() here as we don't always
287          * have i_mutex to guard against concurrent changes to other
288          * inode fields.
289          */
290         inode->i_atime = current_time(inode);
291         di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
292         di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
293         ocfs2_update_inode_fsync_trans(handle, inode, 0);
294         ocfs2_journal_dirty(handle, bh);
295
296 out_commit:
297         ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
298 out:
299         return ret;
300 }
301
302 int ocfs2_set_inode_size(handle_t *handle,
303                                 struct inode *inode,
304                                 struct buffer_head *fe_bh,
305                                 u64 new_i_size)
306 {
307         int status;
308
309         i_size_write(inode, new_i_size);
310         inode->i_blocks = ocfs2_inode_sector_count(inode);
311         inode->i_ctime = inode->i_mtime = current_time(inode);
312
313         status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
314         if (status < 0) {
315                 mlog_errno(status);
316                 goto bail;
317         }
318
319 bail:
320         return status;
321 }
322
323 int ocfs2_simple_size_update(struct inode *inode,
324                              struct buffer_head *di_bh,
325                              u64 new_i_size)
326 {
327         int ret;
328         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
329         handle_t *handle = NULL;
330
331         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
332         if (IS_ERR(handle)) {
333                 ret = PTR_ERR(handle);
334                 mlog_errno(ret);
335                 goto out;
336         }
337
338         ret = ocfs2_set_inode_size(handle, inode, di_bh,
339                                    new_i_size);
340         if (ret < 0)
341                 mlog_errno(ret);
342
343         ocfs2_update_inode_fsync_trans(handle, inode, 0);
344         ocfs2_commit_trans(osb, handle);
345 out:
346         return ret;
347 }
348
349 static int ocfs2_cow_file_pos(struct inode *inode,
350                               struct buffer_head *fe_bh,
351                               u64 offset)
352 {
353         int status;
354         u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
355         unsigned int num_clusters = 0;
356         unsigned int ext_flags = 0;
357
358         /*
359          * If the new offset is aligned to the range of the cluster, there is
360          * no space for ocfs2_zero_range_for_truncate to fill, so no need to
361          * CoW either.
362          */
363         if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
364                 return 0;
365
366         status = ocfs2_get_clusters(inode, cpos, &phys,
367                                     &num_clusters, &ext_flags);
368         if (status) {
369                 mlog_errno(status);
370                 goto out;
371         }
372
373         if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
374                 goto out;
375
376         return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
377
378 out:
379         return status;
380 }
381
382 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
383                                      struct inode *inode,
384                                      struct buffer_head *fe_bh,
385                                      u64 new_i_size)
386 {
387         int status;
388         handle_t *handle;
389         struct ocfs2_dinode *di;
390         u64 cluster_bytes;
391
392         /*
393          * We need to CoW the cluster contains the offset if it is reflinked
394          * since we will call ocfs2_zero_range_for_truncate later which will
395          * write "0" from offset to the end of the cluster.
396          */
397         status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
398         if (status) {
399                 mlog_errno(status);
400                 return status;
401         }
402
403         /* TODO: This needs to actually orphan the inode in this
404          * transaction. */
405
406         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
407         if (IS_ERR(handle)) {
408                 status = PTR_ERR(handle);
409                 mlog_errno(status);
410                 goto out;
411         }
412
413         status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
414                                          OCFS2_JOURNAL_ACCESS_WRITE);
415         if (status < 0) {
416                 mlog_errno(status);
417                 goto out_commit;
418         }
419
420         /*
421          * Do this before setting i_size.
422          */
423         cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
424         status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
425                                                cluster_bytes);
426         if (status) {
427                 mlog_errno(status);
428                 goto out_commit;
429         }
430
431         i_size_write(inode, new_i_size);
432         inode->i_ctime = inode->i_mtime = current_time(inode);
433
434         di = (struct ocfs2_dinode *) fe_bh->b_data;
435         di->i_size = cpu_to_le64(new_i_size);
436         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
437         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
438         ocfs2_update_inode_fsync_trans(handle, inode, 0);
439
440         ocfs2_journal_dirty(handle, fe_bh);
441
442 out_commit:
443         ocfs2_commit_trans(osb, handle);
444 out:
445         return status;
446 }
447
448 int ocfs2_truncate_file(struct inode *inode,
449                                struct buffer_head *di_bh,
450                                u64 new_i_size)
451 {
452         int status = 0;
453         struct ocfs2_dinode *fe = NULL;
454         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
455
456         /* We trust di_bh because it comes from ocfs2_inode_lock(), which
457          * already validated it */
458         fe = (struct ocfs2_dinode *) di_bh->b_data;
459
460         trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
461                                   (unsigned long long)le64_to_cpu(fe->i_size),
462                                   (unsigned long long)new_i_size);
463
464         mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
465                         "Inode %llu, inode i_size = %lld != di "
466                         "i_size = %llu, i_flags = 0x%x\n",
467                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
468                         i_size_read(inode),
469                         (unsigned long long)le64_to_cpu(fe->i_size),
470                         le32_to_cpu(fe->i_flags));
471
472         if (new_i_size > le64_to_cpu(fe->i_size)) {
473                 trace_ocfs2_truncate_file_error(
474                         (unsigned long long)le64_to_cpu(fe->i_size),
475                         (unsigned long long)new_i_size);
476                 status = -EINVAL;
477                 mlog_errno(status);
478                 goto bail;
479         }
480
481         down_write(&OCFS2_I(inode)->ip_alloc_sem);
482
483         ocfs2_resv_discard(&osb->osb_la_resmap,
484                            &OCFS2_I(inode)->ip_la_data_resv);
485
486         /*
487          * The inode lock forced other nodes to sync and drop their
488          * pages, which (correctly) happens even if we have a truncate
489          * without allocation change - ocfs2 cluster sizes can be much
490          * greater than page size, so we have to truncate them
491          * anyway.
492          */
493         unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
494         truncate_inode_pages(inode->i_mapping, new_i_size);
495
496         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
497                 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
498                                                i_size_read(inode), 1);
499                 if (status)
500                         mlog_errno(status);
501
502                 goto bail_unlock_sem;
503         }
504
505         /* alright, we're going to need to do a full blown alloc size
506          * change. Orphan the inode so that recovery can complete the
507          * truncate if necessary. This does the task of marking
508          * i_size. */
509         status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
510         if (status < 0) {
511                 mlog_errno(status);
512                 goto bail_unlock_sem;
513         }
514
515         status = ocfs2_commit_truncate(osb, inode, di_bh);
516         if (status < 0) {
517                 mlog_errno(status);
518                 goto bail_unlock_sem;
519         }
520
521         /* TODO: orphan dir cleanup here. */
522 bail_unlock_sem:
523         up_write(&OCFS2_I(inode)->ip_alloc_sem);
524
525 bail:
526         if (!status && OCFS2_I(inode)->ip_clusters == 0)
527                 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
528
529         return status;
530 }
531
532 /*
533  * extend file allocation only here.
534  * we'll update all the disk stuff, and oip->alloc_size
535  *
536  * expect stuff to be locked, a transaction started and enough data /
537  * metadata reservations in the contexts.
538  *
539  * Will return -EAGAIN, and a reason if a restart is needed.
540  * If passed in, *reason will always be set, even in error.
541  */
542 int ocfs2_add_inode_data(struct ocfs2_super *osb,
543                          struct inode *inode,
544                          u32 *logical_offset,
545                          u32 clusters_to_add,
546                          int mark_unwritten,
547                          struct buffer_head *fe_bh,
548                          handle_t *handle,
549                          struct ocfs2_alloc_context *data_ac,
550                          struct ocfs2_alloc_context *meta_ac,
551                          enum ocfs2_alloc_restarted *reason_ret)
552 {
553         int ret;
554         struct ocfs2_extent_tree et;
555
556         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
557         ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
558                                           clusters_to_add, mark_unwritten,
559                                           data_ac, meta_ac, reason_ret);
560
561         return ret;
562 }
563
564 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
565                                      u32 clusters_to_add, int mark_unwritten)
566 {
567         int status = 0;
568         int restart_func = 0;
569         int credits;
570         u32 prev_clusters;
571         struct buffer_head *bh = NULL;
572         struct ocfs2_dinode *fe = NULL;
573         handle_t *handle = NULL;
574         struct ocfs2_alloc_context *data_ac = NULL;
575         struct ocfs2_alloc_context *meta_ac = NULL;
576         enum ocfs2_alloc_restarted why = RESTART_NONE;
577         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
578         struct ocfs2_extent_tree et;
579         int did_quota = 0;
580
581         /*
582          * Unwritten extent only exists for file systems which
583          * support holes.
584          */
585         BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
586
587         status = ocfs2_read_inode_block(inode, &bh);
588         if (status < 0) {
589                 mlog_errno(status);
590                 goto leave;
591         }
592         fe = (struct ocfs2_dinode *) bh->b_data;
593
594 restart_all:
595         BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
596
597         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
598         status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
599                                        &data_ac, &meta_ac);
600         if (status) {
601                 mlog_errno(status);
602                 goto leave;
603         }
604
605         credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
606         handle = ocfs2_start_trans(osb, credits);
607         if (IS_ERR(handle)) {
608                 status = PTR_ERR(handle);
609                 handle = NULL;
610                 mlog_errno(status);
611                 goto leave;
612         }
613
614 restarted_transaction:
615         trace_ocfs2_extend_allocation(
616                 (unsigned long long)OCFS2_I(inode)->ip_blkno,
617                 (unsigned long long)i_size_read(inode),
618                 le32_to_cpu(fe->i_clusters), clusters_to_add,
619                 why, restart_func);
620
621         status = dquot_alloc_space_nodirty(inode,
622                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
623         if (status)
624                 goto leave;
625         did_quota = 1;
626
627         /* reserve a write to the file entry early on - that we if we
628          * run out of credits in the allocation path, we can still
629          * update i_size. */
630         status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
631                                          OCFS2_JOURNAL_ACCESS_WRITE);
632         if (status < 0) {
633                 mlog_errno(status);
634                 goto leave;
635         }
636
637         prev_clusters = OCFS2_I(inode)->ip_clusters;
638
639         status = ocfs2_add_inode_data(osb,
640                                       inode,
641                                       &logical_start,
642                                       clusters_to_add,
643                                       mark_unwritten,
644                                       bh,
645                                       handle,
646                                       data_ac,
647                                       meta_ac,
648                                       &why);
649         if ((status < 0) && (status != -EAGAIN)) {
650                 if (status != -ENOSPC)
651                         mlog_errno(status);
652                 goto leave;
653         }
654         ocfs2_update_inode_fsync_trans(handle, inode, 1);
655         ocfs2_journal_dirty(handle, bh);
656
657         spin_lock(&OCFS2_I(inode)->ip_lock);
658         clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
659         spin_unlock(&OCFS2_I(inode)->ip_lock);
660         /* Release unused quota reservation */
661         dquot_free_space(inode,
662                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
663         did_quota = 0;
664
665         if (why != RESTART_NONE && clusters_to_add) {
666                 if (why == RESTART_META) {
667                         restart_func = 1;
668                         status = 0;
669                 } else {
670                         BUG_ON(why != RESTART_TRANS);
671
672                         status = ocfs2_allocate_extend_trans(handle, 1);
673                         if (status < 0) {
674                                 /* handle still has to be committed at
675                                  * this point. */
676                                 status = -ENOMEM;
677                                 mlog_errno(status);
678                                 goto leave;
679                         }
680                         goto restarted_transaction;
681                 }
682         }
683
684         trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
685              le32_to_cpu(fe->i_clusters),
686              (unsigned long long)le64_to_cpu(fe->i_size),
687              OCFS2_I(inode)->ip_clusters,
688              (unsigned long long)i_size_read(inode));
689
690 leave:
691         if (status < 0 && did_quota)
692                 dquot_free_space(inode,
693                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
694         if (handle) {
695                 ocfs2_commit_trans(osb, handle);
696                 handle = NULL;
697         }
698         if (data_ac) {
699                 ocfs2_free_alloc_context(data_ac);
700                 data_ac = NULL;
701         }
702         if (meta_ac) {
703                 ocfs2_free_alloc_context(meta_ac);
704                 meta_ac = NULL;
705         }
706         if ((!status) && restart_func) {
707                 restart_func = 0;
708                 goto restart_all;
709         }
710         brelse(bh);
711         bh = NULL;
712
713         return status;
714 }
715
716 /*
717  * While a write will already be ordering the data, a truncate will not.
718  * Thus, we need to explicitly order the zeroed pages.
719  */
720 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
721                                                 struct buffer_head *di_bh)
722 {
723         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
724         handle_t *handle = NULL;
725         int ret = 0;
726
727         if (!ocfs2_should_order_data(inode))
728                 goto out;
729
730         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
731         if (IS_ERR(handle)) {
732                 ret = -ENOMEM;
733                 mlog_errno(ret);
734                 goto out;
735         }
736
737         ret = ocfs2_jbd2_file_inode(handle, inode);
738         if (ret < 0) {
739                 mlog_errno(ret);
740                 goto out;
741         }
742
743         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
744                                       OCFS2_JOURNAL_ACCESS_WRITE);
745         if (ret)
746                 mlog_errno(ret);
747         ocfs2_update_inode_fsync_trans(handle, inode, 1);
748
749 out:
750         if (ret) {
751                 if (!IS_ERR(handle))
752                         ocfs2_commit_trans(osb, handle);
753                 handle = ERR_PTR(ret);
754         }
755         return handle;
756 }
757
758 /* Some parts of this taken from generic_cont_expand, which turned out
759  * to be too fragile to do exactly what we need without us having to
760  * worry about recursive locking in ->write_begin() and ->write_end(). */
761 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
762                                  u64 abs_to, struct buffer_head *di_bh)
763 {
764         struct address_space *mapping = inode->i_mapping;
765         struct page *page;
766         unsigned long index = abs_from >> PAGE_SHIFT;
767         handle_t *handle;
768         int ret = 0;
769         unsigned zero_from, zero_to, block_start, block_end;
770         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
771
772         BUG_ON(abs_from >= abs_to);
773         BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
774         BUG_ON(abs_from & (inode->i_blkbits - 1));
775
776         handle = ocfs2_zero_start_ordered_transaction(inode, di_bh);
777         if (IS_ERR(handle)) {
778                 ret = PTR_ERR(handle);
779                 goto out;
780         }
781
782         page = find_or_create_page(mapping, index, GFP_NOFS);
783         if (!page) {
784                 ret = -ENOMEM;
785                 mlog_errno(ret);
786                 goto out_commit_trans;
787         }
788
789         /* Get the offsets within the page that we want to zero */
790         zero_from = abs_from & (PAGE_SIZE - 1);
791         zero_to = abs_to & (PAGE_SIZE - 1);
792         if (!zero_to)
793                 zero_to = PAGE_SIZE;
794
795         trace_ocfs2_write_zero_page(
796                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
797                         (unsigned long long)abs_from,
798                         (unsigned long long)abs_to,
799                         index, zero_from, zero_to);
800
801         /* We know that zero_from is block aligned */
802         for (block_start = zero_from; block_start < zero_to;
803              block_start = block_end) {
804                 block_end = block_start + i_blocksize(inode);
805
806                 /*
807                  * block_start is block-aligned.  Bump it by one to force
808                  * __block_write_begin and block_commit_write to zero the
809                  * whole block.
810                  */
811                 ret = __block_write_begin(page, block_start + 1, 0,
812                                           ocfs2_get_block);
813                 if (ret < 0) {
814                         mlog_errno(ret);
815                         goto out_unlock;
816                 }
817
818
819                 /* must not update i_size! */
820                 ret = block_commit_write(page, block_start + 1,
821                                          block_start + 1);
822                 if (ret < 0)
823                         mlog_errno(ret);
824                 else
825                         ret = 0;
826         }
827
828         /*
829          * fs-writeback will release the dirty pages without page lock
830          * whose offset are over inode size, the release happens at
831          * block_write_full_page().
832          */
833         i_size_write(inode, abs_to);
834         inode->i_blocks = ocfs2_inode_sector_count(inode);
835         di->i_size = cpu_to_le64((u64)i_size_read(inode));
836         inode->i_mtime = inode->i_ctime = current_time(inode);
837         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
838         di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
839         di->i_mtime_nsec = di->i_ctime_nsec;
840         if (handle) {
841                 ocfs2_journal_dirty(handle, di_bh);
842                 ocfs2_update_inode_fsync_trans(handle, inode, 1);
843         }
844
845 out_unlock:
846         unlock_page(page);
847         put_page(page);
848 out_commit_trans:
849         if (handle)
850                 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
851 out:
852         return ret;
853 }
854
855 /*
856  * Find the next range to zero.  We do this in terms of bytes because
857  * that's what ocfs2_zero_extend() wants, and it is dealing with the
858  * pagecache.  We may return multiple extents.
859  *
860  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
861  * needs to be zeroed.  range_start and range_end return the next zeroing
862  * range.  A subsequent call should pass the previous range_end as its
863  * zero_start.  If range_end is 0, there's nothing to do.
864  *
865  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
866  */
867 static int ocfs2_zero_extend_get_range(struct inode *inode,
868                                        struct buffer_head *di_bh,
869                                        u64 zero_start, u64 zero_end,
870                                        u64 *range_start, u64 *range_end)
871 {
872         int rc = 0, needs_cow = 0;
873         u32 p_cpos, zero_clusters = 0;
874         u32 zero_cpos =
875                 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
876         u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
877         unsigned int num_clusters = 0;
878         unsigned int ext_flags = 0;
879
880         while (zero_cpos < last_cpos) {
881                 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
882                                         &num_clusters, &ext_flags);
883                 if (rc) {
884                         mlog_errno(rc);
885                         goto out;
886                 }
887
888                 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
889                         zero_clusters = num_clusters;
890                         if (ext_flags & OCFS2_EXT_REFCOUNTED)
891                                 needs_cow = 1;
892                         break;
893                 }
894
895                 zero_cpos += num_clusters;
896         }
897         if (!zero_clusters) {
898                 *range_end = 0;
899                 goto out;
900         }
901
902         while ((zero_cpos + zero_clusters) < last_cpos) {
903                 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
904                                         &p_cpos, &num_clusters,
905                                         &ext_flags);
906                 if (rc) {
907                         mlog_errno(rc);
908                         goto out;
909                 }
910
911                 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
912                         break;
913                 if (ext_flags & OCFS2_EXT_REFCOUNTED)
914                         needs_cow = 1;
915                 zero_clusters += num_clusters;
916         }
917         if ((zero_cpos + zero_clusters) > last_cpos)
918                 zero_clusters = last_cpos - zero_cpos;
919
920         if (needs_cow) {
921                 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
922                                         zero_clusters, UINT_MAX);
923                 if (rc) {
924                         mlog_errno(rc);
925                         goto out;
926                 }
927         }
928
929         *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
930         *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
931                                              zero_cpos + zero_clusters);
932
933 out:
934         return rc;
935 }
936
937 /*
938  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
939  * has made sure that the entire range needs zeroing.
940  */
941 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
942                                    u64 range_end, struct buffer_head *di_bh)
943 {
944         int rc = 0;
945         u64 next_pos;
946         u64 zero_pos = range_start;
947
948         trace_ocfs2_zero_extend_range(
949                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
950                         (unsigned long long)range_start,
951                         (unsigned long long)range_end);
952         BUG_ON(range_start >= range_end);
953
954         while (zero_pos < range_end) {
955                 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
956                 if (next_pos > range_end)
957                         next_pos = range_end;
958                 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
959                 if (rc < 0) {
960                         mlog_errno(rc);
961                         break;
962                 }
963                 zero_pos = next_pos;
964
965                 /*
966                  * Very large extends have the potential to lock up
967                  * the cpu for extended periods of time.
968                  */
969                 cond_resched();
970         }
971
972         return rc;
973 }
974
975 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
976                       loff_t zero_to_size)
977 {
978         int ret = 0;
979         u64 zero_start, range_start = 0, range_end = 0;
980         struct super_block *sb = inode->i_sb;
981
982         zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
983         trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
984                                 (unsigned long long)zero_start,
985                                 (unsigned long long)i_size_read(inode));
986         while (zero_start < zero_to_size) {
987                 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
988                                                   zero_to_size,
989                                                   &range_start,
990                                                   &range_end);
991                 if (ret) {
992                         mlog_errno(ret);
993                         break;
994                 }
995                 if (!range_end)
996                         break;
997                 /* Trim the ends */
998                 if (range_start < zero_start)
999                         range_start = zero_start;
1000                 if (range_end > zero_to_size)
1001                         range_end = zero_to_size;
1002
1003                 ret = ocfs2_zero_extend_range(inode, range_start,
1004                                               range_end, di_bh);
1005                 if (ret) {
1006                         mlog_errno(ret);
1007                         break;
1008                 }
1009                 zero_start = range_end;
1010         }
1011
1012         return ret;
1013 }
1014
1015 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1016                           u64 new_i_size, u64 zero_to)
1017 {
1018         int ret;
1019         u32 clusters_to_add;
1020         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1021
1022         /*
1023          * Only quota files call this without a bh, and they can't be
1024          * refcounted.
1025          */
1026         BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1027         BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1028
1029         clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1030         if (clusters_to_add < oi->ip_clusters)
1031                 clusters_to_add = 0;
1032         else
1033                 clusters_to_add -= oi->ip_clusters;
1034
1035         if (clusters_to_add) {
1036                 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1037                                                 clusters_to_add, 0);
1038                 if (ret) {
1039                         mlog_errno(ret);
1040                         goto out;
1041                 }
1042         }
1043
1044         /*
1045          * Call this even if we don't add any clusters to the tree. We
1046          * still need to zero the area between the old i_size and the
1047          * new i_size.
1048          */
1049         ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1050         if (ret < 0)
1051                 mlog_errno(ret);
1052
1053 out:
1054         return ret;
1055 }
1056
1057 static int ocfs2_extend_file(struct inode *inode,
1058                              struct buffer_head *di_bh,
1059                              u64 new_i_size)
1060 {
1061         int ret = 0;
1062         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1063
1064         BUG_ON(!di_bh);
1065
1066         /* setattr sometimes calls us like this. */
1067         if (new_i_size == 0)
1068                 goto out;
1069
1070         if (i_size_read(inode) == new_i_size)
1071                 goto out;
1072         BUG_ON(new_i_size < i_size_read(inode));
1073
1074         /*
1075          * The alloc sem blocks people in read/write from reading our
1076          * allocation until we're done changing it. We depend on
1077          * i_mutex to block other extend/truncate calls while we're
1078          * here.  We even have to hold it for sparse files because there
1079          * might be some tail zeroing.
1080          */
1081         down_write(&oi->ip_alloc_sem);
1082
1083         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1084                 /*
1085                  * We can optimize small extends by keeping the inodes
1086                  * inline data.
1087                  */
1088                 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1089                         up_write(&oi->ip_alloc_sem);
1090                         goto out_update_size;
1091                 }
1092
1093                 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1094                 if (ret) {
1095                         up_write(&oi->ip_alloc_sem);
1096                         mlog_errno(ret);
1097                         goto out;
1098                 }
1099         }
1100
1101         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1102                 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1103         else
1104                 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1105                                             new_i_size);
1106
1107         up_write(&oi->ip_alloc_sem);
1108
1109         if (ret < 0) {
1110                 mlog_errno(ret);
1111                 goto out;
1112         }
1113
1114 out_update_size:
1115         ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1116         if (ret < 0)
1117                 mlog_errno(ret);
1118
1119 out:
1120         return ret;
1121 }
1122
1123 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1124 {
1125         int status = 0, size_change;
1126         int inode_locked = 0;
1127         struct inode *inode = d_inode(dentry);
1128         struct super_block *sb = inode->i_sb;
1129         struct ocfs2_super *osb = OCFS2_SB(sb);
1130         struct buffer_head *bh = NULL;
1131         handle_t *handle = NULL;
1132         struct dquot *transfer_to[MAXQUOTAS] = { };
1133         int qtype;
1134         int had_lock;
1135         struct ocfs2_lock_holder oh;
1136
1137         trace_ocfs2_setattr(inode, dentry,
1138                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1139                             dentry->d_name.len, dentry->d_name.name,
1140                             attr->ia_valid, attr->ia_mode,
1141                             from_kuid(&init_user_ns, attr->ia_uid),
1142                             from_kgid(&init_user_ns, attr->ia_gid));
1143
1144         /* ensuring we don't even attempt to truncate a symlink */
1145         if (S_ISLNK(inode->i_mode))
1146                 attr->ia_valid &= ~ATTR_SIZE;
1147
1148 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1149                            | ATTR_GID | ATTR_UID | ATTR_MODE)
1150         if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1151                 return 0;
1152
1153         status = setattr_prepare(dentry, attr);
1154         if (status)
1155                 return status;
1156
1157         if (is_quota_modification(inode, attr)) {
1158                 status = dquot_initialize(inode);
1159                 if (status)
1160                         return status;
1161         }
1162         size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1163         if (size_change) {
1164                 status = ocfs2_rw_lock(inode, 1);
1165                 if (status < 0) {
1166                         mlog_errno(status);
1167                         goto bail;
1168                 }
1169         }
1170
1171         had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1172         if (had_lock < 0) {
1173                 status = had_lock;
1174                 goto bail_unlock_rw;
1175         } else if (had_lock) {
1176                 /*
1177                  * As far as we know, ocfs2_setattr() could only be the first
1178                  * VFS entry point in the call chain of recursive cluster
1179                  * locking issue.
1180                  *
1181                  * For instance:
1182                  * chmod_common()
1183                  *  notify_change()
1184                  *   ocfs2_setattr()
1185                  *    posix_acl_chmod()
1186                  *     ocfs2_iop_get_acl()
1187                  *
1188                  * But, we're not 100% sure if it's always true, because the
1189                  * ordering of the VFS entry points in the call chain is out
1190                  * of our control. So, we'd better dump the stack here to
1191                  * catch the other cases of recursive locking.
1192                  */
1193                 mlog(ML_ERROR, "Another case of recursive locking:\n");
1194                 dump_stack();
1195         }
1196         inode_locked = 1;
1197
1198         if (size_change) {
1199                 status = inode_newsize_ok(inode, attr->ia_size);
1200                 if (status)
1201                         goto bail_unlock;
1202
1203                 inode_dio_wait(inode);
1204
1205                 if (i_size_read(inode) >= attr->ia_size) {
1206                         if (ocfs2_should_order_data(inode)) {
1207                                 status = ocfs2_begin_ordered_truncate(inode,
1208                                                                       attr->ia_size);
1209                                 if (status)
1210                                         goto bail_unlock;
1211                         }
1212                         status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1213                 } else
1214                         status = ocfs2_extend_file(inode, bh, attr->ia_size);
1215                 if (status < 0) {
1216                         if (status != -ENOSPC)
1217                                 mlog_errno(status);
1218                         status = -ENOSPC;
1219                         goto bail_unlock;
1220                 }
1221         }
1222
1223         if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1224             (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1225                 /*
1226                  * Gather pointers to quota structures so that allocation /
1227                  * freeing of quota structures happens here and not inside
1228                  * dquot_transfer() where we have problems with lock ordering
1229                  */
1230                 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1231                     && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1232                     OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1233                         transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1234                         if (IS_ERR(transfer_to[USRQUOTA])) {
1235                                 status = PTR_ERR(transfer_to[USRQUOTA]);
1236                                 goto bail_unlock;
1237                         }
1238                 }
1239                 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1240                     && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1241                     OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1242                         transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1243                         if (IS_ERR(transfer_to[GRPQUOTA])) {
1244                                 status = PTR_ERR(transfer_to[GRPQUOTA]);
1245                                 goto bail_unlock;
1246                         }
1247                 }
1248                 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1249                                            2 * ocfs2_quota_trans_credits(sb));
1250                 if (IS_ERR(handle)) {
1251                         status = PTR_ERR(handle);
1252                         mlog_errno(status);
1253                         goto bail_unlock;
1254                 }
1255                 status = __dquot_transfer(inode, transfer_to);
1256                 if (status < 0)
1257                         goto bail_commit;
1258         } else {
1259                 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1260                 if (IS_ERR(handle)) {
1261                         status = PTR_ERR(handle);
1262                         mlog_errno(status);
1263                         goto bail_unlock;
1264                 }
1265         }
1266
1267         setattr_copy(inode, attr);
1268         mark_inode_dirty(inode);
1269
1270         status = ocfs2_mark_inode_dirty(handle, inode, bh);
1271         if (status < 0)
1272                 mlog_errno(status);
1273
1274 bail_commit:
1275         ocfs2_commit_trans(osb, handle);
1276 bail_unlock:
1277         if (status && inode_locked) {
1278                 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1279                 inode_locked = 0;
1280         }
1281 bail_unlock_rw:
1282         if (size_change)
1283                 ocfs2_rw_unlock(inode, 1);
1284 bail:
1285
1286         /* Release quota pointers in case we acquired them */
1287         for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1288                 dqput(transfer_to[qtype]);
1289
1290         if (!status && attr->ia_valid & ATTR_MODE) {
1291                 status = ocfs2_acl_chmod(inode, bh);
1292                 if (status < 0)
1293                         mlog_errno(status);
1294         }
1295         if (inode_locked)
1296                 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1297
1298         brelse(bh);
1299         return status;
1300 }
1301
1302 int ocfs2_getattr(const struct path *path, struct kstat *stat,
1303                   u32 request_mask, unsigned int flags)
1304 {
1305         struct inode *inode = d_inode(path->dentry);
1306         struct super_block *sb = path->dentry->d_sb;
1307         struct ocfs2_super *osb = sb->s_fs_info;
1308         int err;
1309
1310         err = ocfs2_inode_revalidate(path->dentry);
1311         if (err) {
1312                 if (err != -ENOENT)
1313                         mlog_errno(err);
1314                 goto bail;
1315         }
1316
1317         generic_fillattr(inode, stat);
1318         /*
1319          * If there is inline data in the inode, the inode will normally not
1320          * have data blocks allocated (it may have an external xattr block).
1321          * Report at least one sector for such files, so tools like tar, rsync,
1322          * others don't incorrectly think the file is completely sparse.
1323          */
1324         if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1325                 stat->blocks += (stat->size + 511)>>9;
1326
1327         /* We set the blksize from the cluster size for performance */
1328         stat->blksize = osb->s_clustersize;
1329
1330 bail:
1331         return err;
1332 }
1333
1334 int ocfs2_permission(struct inode *inode, int mask)
1335 {
1336         int ret, had_lock;
1337         struct ocfs2_lock_holder oh;
1338
1339         if (mask & MAY_NOT_BLOCK)
1340                 return -ECHILD;
1341
1342         had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1343         if (had_lock < 0) {
1344                 ret = had_lock;
1345                 goto out;
1346         } else if (had_lock) {
1347                 /* See comments in ocfs2_setattr() for details.
1348                  * The call chain of this case could be:
1349                  * do_sys_open()
1350                  *  may_open()
1351                  *   inode_permission()
1352                  *    ocfs2_permission()
1353                  *     ocfs2_iop_get_acl()
1354                  */
1355                 mlog(ML_ERROR, "Another case of recursive locking:\n");
1356                 dump_stack();
1357         }
1358
1359         ret = generic_permission(inode, mask);
1360
1361         ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1362 out:
1363         return ret;
1364 }
1365
1366 static int __ocfs2_write_remove_suid(struct inode *inode,
1367                                      struct buffer_head *bh)
1368 {
1369         int ret;
1370         handle_t *handle;
1371         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1372         struct ocfs2_dinode *di;
1373
1374         trace_ocfs2_write_remove_suid(
1375                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1376                         inode->i_mode);
1377
1378         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1379         if (IS_ERR(handle)) {
1380                 ret = PTR_ERR(handle);
1381                 mlog_errno(ret);
1382                 goto out;
1383         }
1384
1385         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1386                                       OCFS2_JOURNAL_ACCESS_WRITE);
1387         if (ret < 0) {
1388                 mlog_errno(ret);
1389                 goto out_trans;
1390         }
1391
1392         inode->i_mode &= ~S_ISUID;
1393         if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1394                 inode->i_mode &= ~S_ISGID;
1395
1396         di = (struct ocfs2_dinode *) bh->b_data;
1397         di->i_mode = cpu_to_le16(inode->i_mode);
1398         ocfs2_update_inode_fsync_trans(handle, inode, 0);
1399
1400         ocfs2_journal_dirty(handle, bh);
1401
1402 out_trans:
1403         ocfs2_commit_trans(osb, handle);
1404 out:
1405         return ret;
1406 }
1407
1408 static int ocfs2_write_remove_suid(struct inode *inode)
1409 {
1410         int ret;
1411         struct buffer_head *bh = NULL;
1412
1413         ret = ocfs2_read_inode_block(inode, &bh);
1414         if (ret < 0) {
1415                 mlog_errno(ret);
1416                 goto out;
1417         }
1418
1419         ret =  __ocfs2_write_remove_suid(inode, bh);
1420 out:
1421         brelse(bh);
1422         return ret;
1423 }
1424
1425 /*
1426  * Allocate enough extents to cover the region starting at byte offset
1427  * start for len bytes. Existing extents are skipped, any extents
1428  * added are marked as "unwritten".
1429  */
1430 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1431                                             u64 start, u64 len)
1432 {
1433         int ret;
1434         u32 cpos, phys_cpos, clusters, alloc_size;
1435         u64 end = start + len;
1436         struct buffer_head *di_bh = NULL;
1437
1438         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1439                 ret = ocfs2_read_inode_block(inode, &di_bh);
1440                 if (ret) {
1441                         mlog_errno(ret);
1442                         goto out;
1443                 }
1444
1445                 /*
1446                  * Nothing to do if the requested reservation range
1447                  * fits within the inode.
1448                  */
1449                 if (ocfs2_size_fits_inline_data(di_bh, end))
1450                         goto out;
1451
1452                 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1453                 if (ret) {
1454                         mlog_errno(ret);
1455                         goto out;
1456                 }
1457         }
1458
1459         /*
1460          * We consider both start and len to be inclusive.
1461          */
1462         cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1463         clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1464         clusters -= cpos;
1465
1466         while (clusters) {
1467                 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1468                                          &alloc_size, NULL);
1469                 if (ret) {
1470                         mlog_errno(ret);
1471                         goto out;
1472                 }
1473
1474                 /*
1475                  * Hole or existing extent len can be arbitrary, so
1476                  * cap it to our own allocation request.
1477                  */
1478                 if (alloc_size > clusters)
1479                         alloc_size = clusters;
1480
1481                 if (phys_cpos) {
1482                         /*
1483                          * We already have an allocation at this
1484                          * region so we can safely skip it.
1485                          */
1486                         goto next;
1487                 }
1488
1489                 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1490                 if (ret) {
1491                         if (ret != -ENOSPC)
1492                                 mlog_errno(ret);
1493                         goto out;
1494                 }
1495
1496 next:
1497                 cpos += alloc_size;
1498                 clusters -= alloc_size;
1499         }
1500
1501         ret = 0;
1502 out:
1503
1504         brelse(di_bh);
1505         return ret;
1506 }
1507
1508 /*
1509  * Truncate a byte range, avoiding pages within partial clusters. This
1510  * preserves those pages for the zeroing code to write to.
1511  */
1512 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1513                                          u64 byte_len)
1514 {
1515         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1516         loff_t start, end;
1517         struct address_space *mapping = inode->i_mapping;
1518
1519         start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1520         end = byte_start + byte_len;
1521         end = end & ~(osb->s_clustersize - 1);
1522
1523         if (start < end) {
1524                 unmap_mapping_range(mapping, start, end - start, 0);
1525                 truncate_inode_pages_range(mapping, start, end - 1);
1526         }
1527 }
1528
1529 static int ocfs2_zero_partial_clusters(struct inode *inode,
1530                                        u64 start, u64 len)
1531 {
1532         int ret = 0;
1533         u64 tmpend = 0;
1534         u64 end = start + len;
1535         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1536         unsigned int csize = osb->s_clustersize;
1537         handle_t *handle;
1538
1539         /*
1540          * The "start" and "end" values are NOT necessarily part of
1541          * the range whose allocation is being deleted. Rather, this
1542          * is what the user passed in with the request. We must zero
1543          * partial clusters here. There's no need to worry about
1544          * physical allocation - the zeroing code knows to skip holes.
1545          */
1546         trace_ocfs2_zero_partial_clusters(
1547                 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1548                 (unsigned long long)start, (unsigned long long)end);
1549
1550         /*
1551          * If both edges are on a cluster boundary then there's no
1552          * zeroing required as the region is part of the allocation to
1553          * be truncated.
1554          */
1555         if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1556                 goto out;
1557
1558         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1559         if (IS_ERR(handle)) {
1560                 ret = PTR_ERR(handle);
1561                 mlog_errno(ret);
1562                 goto out;
1563         }
1564
1565         /*
1566          * If start is on a cluster boundary and end is somewhere in another
1567          * cluster, we have not COWed the cluster starting at start, unless
1568          * end is also within the same cluster. So, in this case, we skip this
1569          * first call to ocfs2_zero_range_for_truncate() truncate and move on
1570          * to the next one.
1571          */
1572         if ((start & (csize - 1)) != 0) {
1573                 /*
1574                  * We want to get the byte offset of the end of the 1st
1575                  * cluster.
1576                  */
1577                 tmpend = (u64)osb->s_clustersize +
1578                         (start & ~(osb->s_clustersize - 1));
1579                 if (tmpend > end)
1580                         tmpend = end;
1581
1582                 trace_ocfs2_zero_partial_clusters_range1(
1583                         (unsigned long long)start,
1584                         (unsigned long long)tmpend);
1585
1586                 ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1587                                                     tmpend);
1588                 if (ret)
1589                         mlog_errno(ret);
1590         }
1591
1592         if (tmpend < end) {
1593                 /*
1594                  * This may make start and end equal, but the zeroing
1595                  * code will skip any work in that case so there's no
1596                  * need to catch it up here.
1597                  */
1598                 start = end & ~(osb->s_clustersize - 1);
1599
1600                 trace_ocfs2_zero_partial_clusters_range2(
1601                         (unsigned long long)start, (unsigned long long)end);
1602
1603                 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1604                 if (ret)
1605                         mlog_errno(ret);
1606         }
1607         ocfs2_update_inode_fsync_trans(handle, inode, 1);
1608
1609         ocfs2_commit_trans(osb, handle);
1610 out:
1611         return ret;
1612 }
1613
1614 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1615 {
1616         int i;
1617         struct ocfs2_extent_rec *rec = NULL;
1618
1619         for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1620
1621                 rec = &el->l_recs[i];
1622
1623                 if (le32_to_cpu(rec->e_cpos) < pos)
1624                         break;
1625         }
1626
1627         return i;
1628 }
1629
1630 /*
1631  * Helper to calculate the punching pos and length in one run, we handle the
1632  * following three cases in order:
1633  *
1634  * - remove the entire record
1635  * - remove a partial record
1636  * - no record needs to be removed (hole-punching completed)
1637 */
1638 static void ocfs2_calc_trunc_pos(struct inode *inode,
1639                                  struct ocfs2_extent_list *el,
1640                                  struct ocfs2_extent_rec *rec,
1641                                  u32 trunc_start, u32 *trunc_cpos,
1642                                  u32 *trunc_len, u32 *trunc_end,
1643                                  u64 *blkno, int *done)
1644 {
1645         int ret = 0;
1646         u32 coff, range;
1647
1648         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1649
1650         if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1651                 /*
1652                  * remove an entire extent record.
1653                  */
1654                 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1655                 /*
1656                  * Skip holes if any.
1657                  */
1658                 if (range < *trunc_end)
1659                         *trunc_end = range;
1660                 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1661                 *blkno = le64_to_cpu(rec->e_blkno);
1662                 *trunc_end = le32_to_cpu(rec->e_cpos);
1663         } else if (range > trunc_start) {
1664                 /*
1665                  * remove a partial extent record, which means we're
1666                  * removing the last extent record.
1667                  */
1668                 *trunc_cpos = trunc_start;
1669                 /*
1670                  * skip hole if any.
1671                  */
1672                 if (range < *trunc_end)
1673                         *trunc_end = range;
1674                 *trunc_len = *trunc_end - trunc_start;
1675                 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1676                 *blkno = le64_to_cpu(rec->e_blkno) +
1677                                 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1678                 *trunc_end = trunc_start;
1679         } else {
1680                 /*
1681                  * It may have two following possibilities:
1682                  *
1683                  * - last record has been removed
1684                  * - trunc_start was within a hole
1685                  *
1686                  * both two cases mean the completion of hole punching.
1687                  */
1688                 ret = 1;
1689         }
1690
1691         *done = ret;
1692 }
1693
1694 int ocfs2_remove_inode_range(struct inode *inode,
1695                              struct buffer_head *di_bh, u64 byte_start,
1696                              u64 byte_len)
1697 {
1698         int ret = 0, flags = 0, done = 0, i;
1699         u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1700         u32 cluster_in_el;
1701         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1702         struct ocfs2_cached_dealloc_ctxt dealloc;
1703         struct address_space *mapping = inode->i_mapping;
1704         struct ocfs2_extent_tree et;
1705         struct ocfs2_path *path = NULL;
1706         struct ocfs2_extent_list *el = NULL;
1707         struct ocfs2_extent_rec *rec = NULL;
1708         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1709         u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1710
1711         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1712         ocfs2_init_dealloc_ctxt(&dealloc);
1713
1714         trace_ocfs2_remove_inode_range(
1715                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1716                         (unsigned long long)byte_start,
1717                         (unsigned long long)byte_len);
1718
1719         if (byte_len == 0)
1720                 return 0;
1721
1722         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1723                 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1724                                             byte_start + byte_len, 0);
1725                 if (ret) {
1726                         mlog_errno(ret);
1727                         goto out;
1728                 }
1729                 /*
1730                  * There's no need to get fancy with the page cache
1731                  * truncate of an inline-data inode. We're talking
1732                  * about less than a page here, which will be cached
1733                  * in the dinode buffer anyway.
1734                  */
1735                 unmap_mapping_range(mapping, 0, 0, 0);
1736                 truncate_inode_pages(mapping, 0);
1737                 goto out;
1738         }
1739
1740         /*
1741          * For reflinks, we may need to CoW 2 clusters which might be
1742          * partially zero'd later, if hole's start and end offset were
1743          * within one cluster(means is not exactly aligned to clustersize).
1744          */
1745
1746         if (ocfs2_is_refcount_inode(inode)) {
1747                 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1748                 if (ret) {
1749                         mlog_errno(ret);
1750                         goto out;
1751                 }
1752
1753                 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1754                 if (ret) {
1755                         mlog_errno(ret);
1756                         goto out;
1757                 }
1758         }
1759
1760         trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1761         trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1762         cluster_in_el = trunc_end;
1763
1764         ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1765         if (ret) {
1766                 mlog_errno(ret);
1767                 goto out;
1768         }
1769
1770         path = ocfs2_new_path_from_et(&et);
1771         if (!path) {
1772                 ret = -ENOMEM;
1773                 mlog_errno(ret);
1774                 goto out;
1775         }
1776
1777         while (trunc_end > trunc_start) {
1778
1779                 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1780                                       cluster_in_el);
1781                 if (ret) {
1782                         mlog_errno(ret);
1783                         goto out;
1784                 }
1785
1786                 el = path_leaf_el(path);
1787
1788                 i = ocfs2_find_rec(el, trunc_end);
1789                 /*
1790                  * Need to go to previous extent block.
1791                  */
1792                 if (i < 0) {
1793                         if (path->p_tree_depth == 0)
1794                                 break;
1795
1796                         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1797                                                             path,
1798                                                             &cluster_in_el);
1799                         if (ret) {
1800                                 mlog_errno(ret);
1801                                 goto out;
1802                         }
1803
1804                         /*
1805                          * We've reached the leftmost extent block,
1806                          * it's safe to leave.
1807                          */
1808                         if (cluster_in_el == 0)
1809                                 break;
1810
1811                         /*
1812                          * The 'pos' searched for previous extent block is
1813                          * always one cluster less than actual trunc_end.
1814                          */
1815                         trunc_end = cluster_in_el + 1;
1816
1817                         ocfs2_reinit_path(path, 1);
1818
1819                         continue;
1820
1821                 } else
1822                         rec = &el->l_recs[i];
1823
1824                 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1825                                      &trunc_len, &trunc_end, &blkno, &done);
1826                 if (done)
1827                         break;
1828
1829                 flags = rec->e_flags;
1830                 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1831
1832                 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1833                                                phys_cpos, trunc_len, flags,
1834                                                &dealloc, refcount_loc, false);
1835                 if (ret < 0) {
1836                         mlog_errno(ret);
1837                         goto out;
1838                 }
1839
1840                 cluster_in_el = trunc_end;
1841
1842                 ocfs2_reinit_path(path, 1);
1843         }
1844
1845         ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1846
1847 out:
1848         ocfs2_free_path(path);
1849         ocfs2_schedule_truncate_log_flush(osb, 1);
1850         ocfs2_run_deallocs(osb, &dealloc);
1851
1852         return ret;
1853 }
1854
1855 /*
1856  * Parts of this function taken from xfs_change_file_space()
1857  */
1858 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1859                                      loff_t f_pos, unsigned int cmd,
1860                                      struct ocfs2_space_resv *sr,
1861                                      int change_size)
1862 {
1863         int ret;
1864         s64 llen;
1865         loff_t size;
1866         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1867         struct buffer_head *di_bh = NULL;
1868         handle_t *handle;
1869         unsigned long long max_off = inode->i_sb->s_maxbytes;
1870
1871         if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1872                 return -EROFS;
1873
1874         inode_lock(inode);
1875
1876         /*
1877          * This prevents concurrent writes on other nodes
1878          */
1879         ret = ocfs2_rw_lock(inode, 1);
1880         if (ret) {
1881                 mlog_errno(ret);
1882                 goto out;
1883         }
1884
1885         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1886         if (ret) {
1887                 mlog_errno(ret);
1888                 goto out_rw_unlock;
1889         }
1890
1891         if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1892                 ret = -EPERM;
1893                 goto out_inode_unlock;
1894         }
1895
1896         switch (sr->l_whence) {
1897         case 0: /*SEEK_SET*/
1898                 break;
1899         case 1: /*SEEK_CUR*/
1900                 sr->l_start += f_pos;
1901                 break;
1902         case 2: /*SEEK_END*/
1903                 sr->l_start += i_size_read(inode);
1904                 break;
1905         default:
1906                 ret = -EINVAL;
1907                 goto out_inode_unlock;
1908         }
1909         sr->l_whence = 0;
1910
1911         llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1912
1913         if (sr->l_start < 0
1914             || sr->l_start > max_off
1915             || (sr->l_start + llen) < 0
1916             || (sr->l_start + llen) > max_off) {
1917                 ret = -EINVAL;
1918                 goto out_inode_unlock;
1919         }
1920         size = sr->l_start + sr->l_len;
1921
1922         if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1923             cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1924                 if (sr->l_len <= 0) {
1925                         ret = -EINVAL;
1926                         goto out_inode_unlock;
1927                 }
1928         }
1929
1930         if (file && should_remove_suid(file->f_path.dentry)) {
1931                 ret = __ocfs2_write_remove_suid(inode, di_bh);
1932                 if (ret) {
1933                         mlog_errno(ret);
1934                         goto out_inode_unlock;
1935                 }
1936         }
1937
1938         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1939         switch (cmd) {
1940         case OCFS2_IOC_RESVSP:
1941         case OCFS2_IOC_RESVSP64:
1942                 /*
1943                  * This takes unsigned offsets, but the signed ones we
1944                  * pass have been checked against overflow above.
1945                  */
1946                 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1947                                                        sr->l_len);
1948                 break;
1949         case OCFS2_IOC_UNRESVSP:
1950         case OCFS2_IOC_UNRESVSP64:
1951                 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1952                                                sr->l_len);
1953                 break;
1954         default:
1955                 ret = -EINVAL;
1956         }
1957         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1958         if (ret) {
1959                 mlog_errno(ret);
1960                 goto out_inode_unlock;
1961         }
1962
1963         /*
1964          * We update c/mtime for these changes
1965          */
1966         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1967         if (IS_ERR(handle)) {
1968                 ret = PTR_ERR(handle);
1969                 mlog_errno(ret);
1970                 goto out_inode_unlock;
1971         }
1972
1973         if (change_size && i_size_read(inode) < size)
1974                 i_size_write(inode, size);
1975
1976         inode->i_ctime = inode->i_mtime = current_time(inode);
1977         ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1978         if (ret < 0)
1979                 mlog_errno(ret);
1980
1981         if (file && (file->f_flags & O_SYNC))
1982                 handle->h_sync = 1;
1983
1984         ocfs2_commit_trans(osb, handle);
1985
1986 out_inode_unlock:
1987         brelse(di_bh);
1988         ocfs2_inode_unlock(inode, 1);
1989 out_rw_unlock:
1990         ocfs2_rw_unlock(inode, 1);
1991
1992 out:
1993         inode_unlock(inode);
1994         return ret;
1995 }
1996
1997 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1998                             struct ocfs2_space_resv *sr)
1999 {
2000         struct inode *inode = file_inode(file);
2001         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2002         int ret;
2003
2004         if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2005             !ocfs2_writes_unwritten_extents(osb))
2006                 return -ENOTTY;
2007         else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2008                  !ocfs2_sparse_alloc(osb))
2009                 return -ENOTTY;
2010
2011         if (!S_ISREG(inode->i_mode))
2012                 return -EINVAL;
2013
2014         if (!(file->f_mode & FMODE_WRITE))
2015                 return -EBADF;
2016
2017         ret = mnt_want_write_file(file);
2018         if (ret)
2019                 return ret;
2020         ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2021         mnt_drop_write_file(file);
2022         return ret;
2023 }
2024
2025 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2026                             loff_t len)
2027 {
2028         struct inode *inode = file_inode(file);
2029         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2030         struct ocfs2_space_resv sr;
2031         int change_size = 1;
2032         int cmd = OCFS2_IOC_RESVSP64;
2033
2034         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2035                 return -EOPNOTSUPP;
2036         if (!ocfs2_writes_unwritten_extents(osb))
2037                 return -EOPNOTSUPP;
2038
2039         if (mode & FALLOC_FL_KEEP_SIZE)
2040                 change_size = 0;
2041
2042         if (mode & FALLOC_FL_PUNCH_HOLE)
2043                 cmd = OCFS2_IOC_UNRESVSP64;
2044
2045         sr.l_whence = 0;
2046         sr.l_start = (s64)offset;
2047         sr.l_len = (s64)len;
2048
2049         return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2050                                          change_size);
2051 }
2052
2053 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2054                                    size_t count)
2055 {
2056         int ret = 0;
2057         unsigned int extent_flags;
2058         u32 cpos, clusters, extent_len, phys_cpos;
2059         struct super_block *sb = inode->i_sb;
2060
2061         if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2062             !ocfs2_is_refcount_inode(inode) ||
2063             OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2064                 return 0;
2065
2066         cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2067         clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2068
2069         while (clusters) {
2070                 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2071                                          &extent_flags);
2072                 if (ret < 0) {
2073                         mlog_errno(ret);
2074                         goto out;
2075                 }
2076
2077                 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2078                         ret = 1;
2079                         break;
2080                 }
2081
2082                 if (extent_len > clusters)
2083                         extent_len = clusters;
2084
2085                 clusters -= extent_len;
2086                 cpos += extent_len;
2087         }
2088 out:
2089         return ret;
2090 }
2091
2092 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2093 {
2094         int blockmask = inode->i_sb->s_blocksize - 1;
2095         loff_t final_size = pos + count;
2096
2097         if ((pos & blockmask) || (final_size & blockmask))
2098                 return 1;
2099         return 0;
2100 }
2101
2102 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2103                                             struct file *file,
2104                                             loff_t pos, size_t count,
2105                                             int *meta_level)
2106 {
2107         int ret;
2108         struct buffer_head *di_bh = NULL;
2109         u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2110         u32 clusters =
2111                 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2112
2113         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2114         if (ret) {
2115                 mlog_errno(ret);
2116                 goto out;
2117         }
2118
2119         *meta_level = 1;
2120
2121         ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2122         if (ret)
2123                 mlog_errno(ret);
2124 out:
2125         brelse(di_bh);
2126         return ret;
2127 }
2128
2129 static int ocfs2_prepare_inode_for_write(struct file *file,
2130                                          loff_t pos,
2131                                          size_t count)
2132 {
2133         int ret = 0, meta_level = 0;
2134         struct dentry *dentry = file->f_path.dentry;
2135         struct inode *inode = d_inode(dentry);
2136         loff_t end;
2137
2138         /*
2139          * We start with a read level meta lock and only jump to an ex
2140          * if we need to make modifications here.
2141          */
2142         for(;;) {
2143                 ret = ocfs2_inode_lock(inode, NULL, meta_level);
2144                 if (ret < 0) {
2145                         meta_level = -1;
2146                         mlog_errno(ret);
2147                         goto out;
2148                 }
2149
2150                 /* Clear suid / sgid if necessary. We do this here
2151                  * instead of later in the write path because
2152                  * remove_suid() calls ->setattr without any hint that
2153                  * we may have already done our cluster locking. Since
2154                  * ocfs2_setattr() *must* take cluster locks to
2155                  * proceed, this will lead us to recursively lock the
2156                  * inode. There's also the dinode i_size state which
2157                  * can be lost via setattr during extending writes (we
2158                  * set inode->i_size at the end of a write. */
2159                 if (should_remove_suid(dentry)) {
2160                         if (meta_level == 0) {
2161                                 ocfs2_inode_unlock(inode, meta_level);
2162                                 meta_level = 1;
2163                                 continue;
2164                         }
2165
2166                         ret = ocfs2_write_remove_suid(inode);
2167                         if (ret < 0) {
2168                                 mlog_errno(ret);
2169                                 goto out_unlock;
2170                         }
2171                 }
2172
2173                 end = pos + count;
2174
2175                 ret = ocfs2_check_range_for_refcount(inode, pos, count);
2176                 if (ret == 1) {
2177                         ocfs2_inode_unlock(inode, meta_level);
2178                         meta_level = -1;
2179
2180                         ret = ocfs2_prepare_inode_for_refcount(inode,
2181                                                                file,
2182                                                                pos,
2183                                                                count,
2184                                                                &meta_level);
2185                 }
2186
2187                 if (ret < 0) {
2188                         mlog_errno(ret);
2189                         goto out_unlock;
2190                 }
2191
2192                 break;
2193         }
2194
2195 out_unlock:
2196         trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2197                                             pos, count);
2198
2199         if (meta_level >= 0)
2200                 ocfs2_inode_unlock(inode, meta_level);
2201
2202 out:
2203         return ret;
2204 }
2205
2206 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2207                                     struct iov_iter *from)
2208 {
2209         int direct_io, rw_level;
2210         ssize_t written = 0;
2211         ssize_t ret;
2212         size_t count = iov_iter_count(from);
2213         struct file *file = iocb->ki_filp;
2214         struct inode *inode = file_inode(file);
2215         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2216         int full_coherency = !(osb->s_mount_opt &
2217                                OCFS2_MOUNT_COHERENCY_BUFFERED);
2218         void *saved_ki_complete = NULL;
2219         int append_write = ((iocb->ki_pos + count) >=
2220                         i_size_read(inode) ? 1 : 0);
2221
2222         trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2223                 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2224                 file->f_path.dentry->d_name.len,
2225                 file->f_path.dentry->d_name.name,
2226                 (unsigned int)from->nr_segs);   /* GRRRRR */
2227
2228         if (count == 0)
2229                 return 0;
2230
2231         direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2232
2233         inode_lock(inode);
2234
2235         /*
2236          * Concurrent O_DIRECT writes are allowed with
2237          * mount_option "coherency=buffered".
2238          * For append write, we must take rw EX.
2239          */
2240         rw_level = (!direct_io || full_coherency || append_write);
2241
2242         ret = ocfs2_rw_lock(inode, rw_level);
2243         if (ret < 0) {
2244                 mlog_errno(ret);
2245                 goto out_mutex;
2246         }
2247
2248         /*
2249          * O_DIRECT writes with "coherency=full" need to take EX cluster
2250          * inode_lock to guarantee coherency.
2251          */
2252         if (direct_io && full_coherency) {
2253                 /*
2254                  * We need to take and drop the inode lock to force
2255                  * other nodes to drop their caches.  Buffered I/O
2256                  * already does this in write_begin().
2257                  */
2258                 ret = ocfs2_inode_lock(inode, NULL, 1);
2259                 if (ret < 0) {
2260                         mlog_errno(ret);
2261                         goto out;
2262                 }
2263
2264                 ocfs2_inode_unlock(inode, 1);
2265         }
2266
2267         ret = generic_write_checks(iocb, from);
2268         if (ret <= 0) {
2269                 if (ret)
2270                         mlog_errno(ret);
2271                 goto out;
2272         }
2273         count = ret;
2274
2275         ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count);
2276         if (ret < 0) {
2277                 mlog_errno(ret);
2278                 goto out;
2279         }
2280
2281         if (direct_io && !is_sync_kiocb(iocb) &&
2282             ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2283                 /*
2284                  * Make it a sync io if it's an unaligned aio.
2285                  */
2286                 saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2287         }
2288
2289         /* communicate with ocfs2_dio_end_io */
2290         ocfs2_iocb_set_rw_locked(iocb, rw_level);
2291
2292         written = __generic_file_write_iter(iocb, from);
2293         /* buffered aio wouldn't have proper lock coverage today */
2294         BUG_ON(written == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT));
2295
2296         /*
2297          * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2298          * function pointer which is called when o_direct io completes so that
2299          * it can unlock our rw lock.
2300          * Unfortunately there are error cases which call end_io and others
2301          * that don't.  so we don't have to unlock the rw_lock if either an
2302          * async dio is going to do it in the future or an end_io after an
2303          * error has already done it.
2304          */
2305         if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2306                 rw_level = -1;
2307         }
2308
2309         if (unlikely(written <= 0))
2310                 goto out;
2311
2312         if (((file->f_flags & O_DSYNC) && !direct_io) ||
2313             IS_SYNC(inode)) {
2314                 ret = filemap_fdatawrite_range(file->f_mapping,
2315                                                iocb->ki_pos - written,
2316                                                iocb->ki_pos - 1);
2317                 if (ret < 0)
2318                         written = ret;
2319
2320                 if (!ret) {
2321                         ret = jbd2_journal_force_commit(osb->journal->j_journal);
2322                         if (ret < 0)
2323                                 written = ret;
2324                 }
2325
2326                 if (!ret)
2327                         ret = filemap_fdatawait_range(file->f_mapping,
2328                                                       iocb->ki_pos - written,
2329                                                       iocb->ki_pos - 1);
2330         }
2331
2332 out:
2333         if (saved_ki_complete)
2334                 xchg(&iocb->ki_complete, saved_ki_complete);
2335
2336         if (rw_level != -1)
2337                 ocfs2_rw_unlock(inode, rw_level);
2338
2339 out_mutex:
2340         inode_unlock(inode);
2341
2342         if (written)
2343                 ret = written;
2344         return ret;
2345 }
2346
2347 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2348                                    struct iov_iter *to)
2349 {
2350         int ret = 0, rw_level = -1, lock_level = 0;
2351         struct file *filp = iocb->ki_filp;
2352         struct inode *inode = file_inode(filp);
2353
2354         trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2355                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2356                         filp->f_path.dentry->d_name.len,
2357                         filp->f_path.dentry->d_name.name,
2358                         to->nr_segs);   /* GRRRRR */
2359
2360
2361         if (!inode) {
2362                 ret = -EINVAL;
2363                 mlog_errno(ret);
2364                 goto bail;
2365         }
2366
2367         /*
2368          * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2369          * need locks to protect pending reads from racing with truncate.
2370          */
2371         if (iocb->ki_flags & IOCB_DIRECT) {
2372                 ret = ocfs2_rw_lock(inode, 0);
2373                 if (ret < 0) {
2374                         mlog_errno(ret);
2375                         goto bail;
2376                 }
2377                 rw_level = 0;
2378                 /* communicate with ocfs2_dio_end_io */
2379                 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2380         }
2381
2382         /*
2383          * We're fine letting folks race truncates and extending
2384          * writes with read across the cluster, just like they can
2385          * locally. Hence no rw_lock during read.
2386          *
2387          * Take and drop the meta data lock to update inode fields
2388          * like i_size. This allows the checks down below
2389          * generic_file_aio_read() a chance of actually working.
2390          */
2391         ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level);
2392         if (ret < 0) {
2393                 mlog_errno(ret);
2394                 goto bail;
2395         }
2396         ocfs2_inode_unlock(inode, lock_level);
2397
2398         ret = generic_file_read_iter(iocb, to);
2399         trace_generic_file_aio_read_ret(ret);
2400
2401         /* buffered aio wouldn't have proper lock coverage today */
2402         BUG_ON(ret == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT));
2403
2404         /* see ocfs2_file_write_iter */
2405         if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2406                 rw_level = -1;
2407         }
2408
2409 bail:
2410         if (rw_level != -1)
2411                 ocfs2_rw_unlock(inode, rw_level);
2412
2413         return ret;
2414 }
2415
2416 /* Refer generic_file_llseek_unlocked() */
2417 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2418 {
2419         struct inode *inode = file->f_mapping->host;
2420         int ret = 0;
2421
2422         inode_lock(inode);
2423
2424         switch (whence) {
2425         case SEEK_SET:
2426                 break;
2427         case SEEK_END:
2428                 /* SEEK_END requires the OCFS2 inode lock for the file
2429                  * because it references the file's size.
2430                  */
2431                 ret = ocfs2_inode_lock(inode, NULL, 0);
2432                 if (ret < 0) {
2433                         mlog_errno(ret);
2434                         goto out;
2435                 }
2436                 offset += i_size_read(inode);
2437                 ocfs2_inode_unlock(inode, 0);
2438                 break;
2439         case SEEK_CUR:
2440                 if (offset == 0) {
2441                         offset = file->f_pos;
2442                         goto out;
2443                 }
2444                 offset += file->f_pos;
2445                 break;
2446         case SEEK_DATA:
2447         case SEEK_HOLE:
2448                 ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2449                 if (ret)
2450                         goto out;
2451                 break;
2452         default:
2453                 ret = -EINVAL;
2454                 goto out;
2455         }
2456
2457         offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2458
2459 out:
2460         inode_unlock(inode);
2461         if (ret)
2462                 return ret;
2463         return offset;
2464 }
2465
2466 static int ocfs2_file_clone_range(struct file *file_in,
2467                                   loff_t pos_in,
2468                                   struct file *file_out,
2469                                   loff_t pos_out,
2470                                   u64 len)
2471 {
2472         return ocfs2_reflink_remap_range(file_in, pos_in, file_out, pos_out,
2473                                          len, false);
2474 }
2475
2476 static ssize_t ocfs2_file_dedupe_range(struct file *src_file,
2477                                        u64 loff,
2478                                        u64 len,
2479                                        struct file *dst_file,
2480                                        u64 dst_loff)
2481 {
2482         int error;
2483
2484         error = ocfs2_reflink_remap_range(src_file, loff, dst_file, dst_loff,
2485                                           len, true);
2486         if (error)
2487                 return error;
2488         return len;
2489 }
2490
2491 const struct inode_operations ocfs2_file_iops = {
2492         .setattr        = ocfs2_setattr,
2493         .getattr        = ocfs2_getattr,
2494         .permission     = ocfs2_permission,
2495         .listxattr      = ocfs2_listxattr,
2496         .fiemap         = ocfs2_fiemap,
2497         .get_acl        = ocfs2_iop_get_acl,
2498         .set_acl        = ocfs2_iop_set_acl,
2499 };
2500
2501 const struct inode_operations ocfs2_special_file_iops = {
2502         .setattr        = ocfs2_setattr,
2503         .getattr        = ocfs2_getattr,
2504         .permission     = ocfs2_permission,
2505         .get_acl        = ocfs2_iop_get_acl,
2506         .set_acl        = ocfs2_iop_set_acl,
2507 };
2508
2509 /*
2510  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2511  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2512  */
2513 const struct file_operations ocfs2_fops = {
2514         .llseek         = ocfs2_file_llseek,
2515         .mmap           = ocfs2_mmap,
2516         .fsync          = ocfs2_sync_file,
2517         .release        = ocfs2_file_release,
2518         .open           = ocfs2_file_open,
2519         .read_iter      = ocfs2_file_read_iter,
2520         .write_iter     = ocfs2_file_write_iter,
2521         .unlocked_ioctl = ocfs2_ioctl,
2522 #ifdef CONFIG_COMPAT
2523         .compat_ioctl   = ocfs2_compat_ioctl,
2524 #endif
2525         .lock           = ocfs2_lock,
2526         .flock          = ocfs2_flock,
2527         .splice_read    = generic_file_splice_read,
2528         .splice_write   = iter_file_splice_write,
2529         .fallocate      = ocfs2_fallocate,
2530         .clone_file_range = ocfs2_file_clone_range,
2531         .dedupe_file_range = ocfs2_file_dedupe_range,
2532 };
2533
2534 const struct file_operations ocfs2_dops = {
2535         .llseek         = generic_file_llseek,
2536         .read           = generic_read_dir,
2537         .iterate        = ocfs2_readdir,
2538         .fsync          = ocfs2_sync_file,
2539         .release        = ocfs2_dir_release,
2540         .open           = ocfs2_dir_open,
2541         .unlocked_ioctl = ocfs2_ioctl,
2542 #ifdef CONFIG_COMPAT
2543         .compat_ioctl   = ocfs2_compat_ioctl,
2544 #endif
2545         .lock           = ocfs2_lock,
2546         .flock          = ocfs2_flock,
2547 };
2548
2549 /*
2550  * POSIX-lockless variants of our file_operations.
2551  *
2552  * These will be used if the underlying cluster stack does not support
2553  * posix file locking, if the user passes the "localflocks" mount
2554  * option, or if we have a local-only fs.
2555  *
2556  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2557  * so we still want it in the case of no stack support for
2558  * plocks. Internally, it will do the right thing when asked to ignore
2559  * the cluster.
2560  */
2561 const struct file_operations ocfs2_fops_no_plocks = {
2562         .llseek         = ocfs2_file_llseek,
2563         .mmap           = ocfs2_mmap,
2564         .fsync          = ocfs2_sync_file,
2565         .release        = ocfs2_file_release,
2566         .open           = ocfs2_file_open,
2567         .read_iter      = ocfs2_file_read_iter,
2568         .write_iter     = ocfs2_file_write_iter,
2569         .unlocked_ioctl = ocfs2_ioctl,
2570 #ifdef CONFIG_COMPAT
2571         .compat_ioctl   = ocfs2_compat_ioctl,
2572 #endif
2573         .flock          = ocfs2_flock,
2574         .splice_read    = generic_file_splice_read,
2575         .splice_write   = iter_file_splice_write,
2576         .fallocate      = ocfs2_fallocate,
2577         .clone_file_range = ocfs2_file_clone_range,
2578         .dedupe_file_range = ocfs2_file_dedupe_range,
2579 };
2580
2581 const struct file_operations ocfs2_dops_no_plocks = {
2582         .llseek         = generic_file_llseek,
2583         .read           = generic_read_dir,
2584         .iterate        = ocfs2_readdir,
2585         .fsync          = ocfs2_sync_file,
2586         .release        = ocfs2_dir_release,
2587         .open           = ocfs2_dir_open,
2588         .unlocked_ioctl = ocfs2_ioctl,
2589 #ifdef CONFIG_COMPAT
2590         .compat_ioctl   = ocfs2_compat_ioctl,
2591 #endif
2592         .flock          = ocfs2_flock,
2593 };