Merge tag 'ceph-for-4.18-rc1' of git://github.com/ceph/ceph-client
[sfrench/cifs-2.6.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  * Some corrections by tytso.
10  */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 #include <linux/build_bug.h>
43
44 #include "internal.h"
45 #include "mount.h"
46
47 /* [Feb-1997 T. Schoebel-Theuer]
48  * Fundamental changes in the pathname lookup mechanisms (namei)
49  * were necessary because of omirr.  The reason is that omirr needs
50  * to know the _real_ pathname, not the user-supplied one, in case
51  * of symlinks (and also when transname replacements occur).
52  *
53  * The new code replaces the old recursive symlink resolution with
54  * an iterative one (in case of non-nested symlink chains).  It does
55  * this with calls to <fs>_follow_link().
56  * As a side effect, dir_namei(), _namei() and follow_link() are now 
57  * replaced with a single function lookup_dentry() that can handle all 
58  * the special cases of the former code.
59  *
60  * With the new dcache, the pathname is stored at each inode, at least as
61  * long as the refcount of the inode is positive.  As a side effect, the
62  * size of the dcache depends on the inode cache and thus is dynamic.
63  *
64  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65  * resolution to correspond with current state of the code.
66  *
67  * Note that the symlink resolution is not *completely* iterative.
68  * There is still a significant amount of tail- and mid- recursion in
69  * the algorithm.  Also, note that <fs>_readlink() is not used in
70  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71  * may return different results than <fs>_follow_link().  Many virtual
72  * filesystems (including /proc) exhibit this behavior.
73  */
74
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77  * and the name already exists in form of a symlink, try to create the new
78  * name indicated by the symlink. The old code always complained that the
79  * name already exists, due to not following the symlink even if its target
80  * is nonexistent.  The new semantics affects also mknod() and link() when
81  * the name is a symlink pointing to a non-existent name.
82  *
83  * I don't know which semantics is the right one, since I have no access
84  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86  * "old" one. Personally, I think the new semantics is much more logical.
87  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88  * file does succeed in both HP-UX and SunOs, but not in Solaris
89  * and in the old Linux semantics.
90  */
91
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93  * semantics.  See the comments in "open_namei" and "do_link" below.
94  *
95  * [10-Sep-98 Alan Modra] Another symlink change.
96  */
97
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99  *      inside the path - always follow.
100  *      in the last component in creation/removal/renaming - never follow.
101  *      if LOOKUP_FOLLOW passed - follow.
102  *      if the pathname has trailing slashes - follow.
103  *      otherwise - don't follow.
104  * (applied in that order).
105  *
106  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108  * During the 2.4 we need to fix the userland stuff depending on it -
109  * hopefully we will be able to get rid of that wart in 2.5. So far only
110  * XEmacs seems to be relying on it...
111  */
112 /*
113  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
115  * any extra contention...
116  */
117
118 /* In order to reduce some races, while at the same time doing additional
119  * checking and hopefully speeding things up, we copy filenames to the
120  * kernel data space before using them..
121  *
122  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123  * PATH_MAX includes the nul terminator --RR.
124  */
125
126 #define EMBEDDED_NAME_MAX       (PATH_MAX - offsetof(struct filename, iname))
127
128 struct filename *
129 getname_flags(const char __user *filename, int flags, int *empty)
130 {
131         struct filename *result;
132         char *kname;
133         int len;
134         BUILD_BUG_ON(offsetof(struct filename, iname) % sizeof(long) != 0);
135
136         result = audit_reusename(filename);
137         if (result)
138                 return result;
139
140         result = __getname();
141         if (unlikely(!result))
142                 return ERR_PTR(-ENOMEM);
143
144         /*
145          * First, try to embed the struct filename inside the names_cache
146          * allocation
147          */
148         kname = (char *)result->iname;
149         result->name = kname;
150
151         len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
152         if (unlikely(len < 0)) {
153                 __putname(result);
154                 return ERR_PTR(len);
155         }
156
157         /*
158          * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
159          * separate struct filename so we can dedicate the entire
160          * names_cache allocation for the pathname, and re-do the copy from
161          * userland.
162          */
163         if (unlikely(len == EMBEDDED_NAME_MAX)) {
164                 const size_t size = offsetof(struct filename, iname[1]);
165                 kname = (char *)result;
166
167                 /*
168                  * size is chosen that way we to guarantee that
169                  * result->iname[0] is within the same object and that
170                  * kname can't be equal to result->iname, no matter what.
171                  */
172                 result = kzalloc(size, GFP_KERNEL);
173                 if (unlikely(!result)) {
174                         __putname(kname);
175                         return ERR_PTR(-ENOMEM);
176                 }
177                 result->name = kname;
178                 len = strncpy_from_user(kname, filename, PATH_MAX);
179                 if (unlikely(len < 0)) {
180                         __putname(kname);
181                         kfree(result);
182                         return ERR_PTR(len);
183                 }
184                 if (unlikely(len == PATH_MAX)) {
185                         __putname(kname);
186                         kfree(result);
187                         return ERR_PTR(-ENAMETOOLONG);
188                 }
189         }
190
191         result->refcnt = 1;
192         /* The empty path is special. */
193         if (unlikely(!len)) {
194                 if (empty)
195                         *empty = 1;
196                 if (!(flags & LOOKUP_EMPTY)) {
197                         putname(result);
198                         return ERR_PTR(-ENOENT);
199                 }
200         }
201
202         result->uptr = filename;
203         result->aname = NULL;
204         audit_getname(result);
205         return result;
206 }
207
208 struct filename *
209 getname(const char __user * filename)
210 {
211         return getname_flags(filename, 0, NULL);
212 }
213
214 struct filename *
215 getname_kernel(const char * filename)
216 {
217         struct filename *result;
218         int len = strlen(filename) + 1;
219
220         result = __getname();
221         if (unlikely(!result))
222                 return ERR_PTR(-ENOMEM);
223
224         if (len <= EMBEDDED_NAME_MAX) {
225                 result->name = (char *)result->iname;
226         } else if (len <= PATH_MAX) {
227                 const size_t size = offsetof(struct filename, iname[1]);
228                 struct filename *tmp;
229
230                 tmp = kmalloc(size, GFP_KERNEL);
231                 if (unlikely(!tmp)) {
232                         __putname(result);
233                         return ERR_PTR(-ENOMEM);
234                 }
235                 tmp->name = (char *)result;
236                 result = tmp;
237         } else {
238                 __putname(result);
239                 return ERR_PTR(-ENAMETOOLONG);
240         }
241         memcpy((char *)result->name, filename, len);
242         result->uptr = NULL;
243         result->aname = NULL;
244         result->refcnt = 1;
245         audit_getname(result);
246
247         return result;
248 }
249
250 void putname(struct filename *name)
251 {
252         BUG_ON(name->refcnt <= 0);
253
254         if (--name->refcnt > 0)
255                 return;
256
257         if (name->name != name->iname) {
258                 __putname(name->name);
259                 kfree(name);
260         } else
261                 __putname(name);
262 }
263
264 static int check_acl(struct inode *inode, int mask)
265 {
266 #ifdef CONFIG_FS_POSIX_ACL
267         struct posix_acl *acl;
268
269         if (mask & MAY_NOT_BLOCK) {
270                 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
271                 if (!acl)
272                         return -EAGAIN;
273                 /* no ->get_acl() calls in RCU mode... */
274                 if (is_uncached_acl(acl))
275                         return -ECHILD;
276                 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
277         }
278
279         acl = get_acl(inode, ACL_TYPE_ACCESS);
280         if (IS_ERR(acl))
281                 return PTR_ERR(acl);
282         if (acl) {
283                 int error = posix_acl_permission(inode, acl, mask);
284                 posix_acl_release(acl);
285                 return error;
286         }
287 #endif
288
289         return -EAGAIN;
290 }
291
292 /*
293  * This does the basic permission checking
294  */
295 static int acl_permission_check(struct inode *inode, int mask)
296 {
297         unsigned int mode = inode->i_mode;
298
299         if (likely(uid_eq(current_fsuid(), inode->i_uid)))
300                 mode >>= 6;
301         else {
302                 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
303                         int error = check_acl(inode, mask);
304                         if (error != -EAGAIN)
305                                 return error;
306                 }
307
308                 if (in_group_p(inode->i_gid))
309                         mode >>= 3;
310         }
311
312         /*
313          * If the DACs are ok we don't need any capability check.
314          */
315         if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
316                 return 0;
317         return -EACCES;
318 }
319
320 /**
321  * generic_permission -  check for access rights on a Posix-like filesystem
322  * @inode:      inode to check access rights for
323  * @mask:       right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
324  *
325  * Used to check for read/write/execute permissions on a file.
326  * We use "fsuid" for this, letting us set arbitrary permissions
327  * for filesystem access without changing the "normal" uids which
328  * are used for other things.
329  *
330  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
331  * request cannot be satisfied (eg. requires blocking or too much complexity).
332  * It would then be called again in ref-walk mode.
333  */
334 int generic_permission(struct inode *inode, int mask)
335 {
336         int ret;
337
338         /*
339          * Do the basic permission checks.
340          */
341         ret = acl_permission_check(inode, mask);
342         if (ret != -EACCES)
343                 return ret;
344
345         if (S_ISDIR(inode->i_mode)) {
346                 /* DACs are overridable for directories */
347                 if (!(mask & MAY_WRITE))
348                         if (capable_wrt_inode_uidgid(inode,
349                                                      CAP_DAC_READ_SEARCH))
350                                 return 0;
351                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
352                         return 0;
353                 return -EACCES;
354         }
355
356         /*
357          * Searching includes executable on directories, else just read.
358          */
359         mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
360         if (mask == MAY_READ)
361                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
362                         return 0;
363         /*
364          * Read/write DACs are always overridable.
365          * Executable DACs are overridable when there is
366          * at least one exec bit set.
367          */
368         if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
369                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
370                         return 0;
371
372         return -EACCES;
373 }
374 EXPORT_SYMBOL(generic_permission);
375
376 /*
377  * We _really_ want to just do "generic_permission()" without
378  * even looking at the inode->i_op values. So we keep a cache
379  * flag in inode->i_opflags, that says "this has not special
380  * permission function, use the fast case".
381  */
382 static inline int do_inode_permission(struct inode *inode, int mask)
383 {
384         if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
385                 if (likely(inode->i_op->permission))
386                         return inode->i_op->permission(inode, mask);
387
388                 /* This gets set once for the inode lifetime */
389                 spin_lock(&inode->i_lock);
390                 inode->i_opflags |= IOP_FASTPERM;
391                 spin_unlock(&inode->i_lock);
392         }
393         return generic_permission(inode, mask);
394 }
395
396 /**
397  * sb_permission - Check superblock-level permissions
398  * @sb: Superblock of inode to check permission on
399  * @inode: Inode to check permission on
400  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
401  *
402  * Separate out file-system wide checks from inode-specific permission checks.
403  */
404 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
405 {
406         if (unlikely(mask & MAY_WRITE)) {
407                 umode_t mode = inode->i_mode;
408
409                 /* Nobody gets write access to a read-only fs. */
410                 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
411                         return -EROFS;
412         }
413         return 0;
414 }
415
416 /**
417  * inode_permission - Check for access rights to a given inode
418  * @inode: Inode to check permission on
419  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
420  *
421  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
422  * this, letting us set arbitrary permissions for filesystem access without
423  * changing the "normal" UIDs which are used for other things.
424  *
425  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
426  */
427 int inode_permission(struct inode *inode, int mask)
428 {
429         int retval;
430
431         retval = sb_permission(inode->i_sb, inode, mask);
432         if (retval)
433                 return retval;
434
435         if (unlikely(mask & MAY_WRITE)) {
436                 /*
437                  * Nobody gets write access to an immutable file.
438                  */
439                 if (IS_IMMUTABLE(inode))
440                         return -EPERM;
441
442                 /*
443                  * Updating mtime will likely cause i_uid and i_gid to be
444                  * written back improperly if their true value is unknown
445                  * to the vfs.
446                  */
447                 if (HAS_UNMAPPED_ID(inode))
448                         return -EACCES;
449         }
450
451         retval = do_inode_permission(inode, mask);
452         if (retval)
453                 return retval;
454
455         retval = devcgroup_inode_permission(inode, mask);
456         if (retval)
457                 return retval;
458
459         return security_inode_permission(inode, mask);
460 }
461 EXPORT_SYMBOL(inode_permission);
462
463 /**
464  * path_get - get a reference to a path
465  * @path: path to get the reference to
466  *
467  * Given a path increment the reference count to the dentry and the vfsmount.
468  */
469 void path_get(const struct path *path)
470 {
471         mntget(path->mnt);
472         dget(path->dentry);
473 }
474 EXPORT_SYMBOL(path_get);
475
476 /**
477  * path_put - put a reference to a path
478  * @path: path to put the reference to
479  *
480  * Given a path decrement the reference count to the dentry and the vfsmount.
481  */
482 void path_put(const struct path *path)
483 {
484         dput(path->dentry);
485         mntput(path->mnt);
486 }
487 EXPORT_SYMBOL(path_put);
488
489 #define EMBEDDED_LEVELS 2
490 struct nameidata {
491         struct path     path;
492         struct qstr     last;
493         struct path     root;
494         struct inode    *inode; /* path.dentry.d_inode */
495         unsigned int    flags;
496         unsigned        seq, m_seq;
497         int             last_type;
498         unsigned        depth;
499         int             total_link_count;
500         struct saved {
501                 struct path link;
502                 struct delayed_call done;
503                 const char *name;
504                 unsigned seq;
505         } *stack, internal[EMBEDDED_LEVELS];
506         struct filename *name;
507         struct nameidata *saved;
508         struct inode    *link_inode;
509         unsigned        root_seq;
510         int             dfd;
511 } __randomize_layout;
512
513 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
514 {
515         struct nameidata *old = current->nameidata;
516         p->stack = p->internal;
517         p->dfd = dfd;
518         p->name = name;
519         p->total_link_count = old ? old->total_link_count : 0;
520         p->saved = old;
521         current->nameidata = p;
522 }
523
524 static void restore_nameidata(void)
525 {
526         struct nameidata *now = current->nameidata, *old = now->saved;
527
528         current->nameidata = old;
529         if (old)
530                 old->total_link_count = now->total_link_count;
531         if (now->stack != now->internal)
532                 kfree(now->stack);
533 }
534
535 static int __nd_alloc_stack(struct nameidata *nd)
536 {
537         struct saved *p;
538
539         if (nd->flags & LOOKUP_RCU) {
540                 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
541                                   GFP_ATOMIC);
542                 if (unlikely(!p))
543                         return -ECHILD;
544         } else {
545                 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
546                                   GFP_KERNEL);
547                 if (unlikely(!p))
548                         return -ENOMEM;
549         }
550         memcpy(p, nd->internal, sizeof(nd->internal));
551         nd->stack = p;
552         return 0;
553 }
554
555 /**
556  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
557  * @path: nameidate to verify
558  *
559  * Rename can sometimes move a file or directory outside of a bind
560  * mount, path_connected allows those cases to be detected.
561  */
562 static bool path_connected(const struct path *path)
563 {
564         struct vfsmount *mnt = path->mnt;
565         struct super_block *sb = mnt->mnt_sb;
566
567         /* Bind mounts and multi-root filesystems can have disconnected paths */
568         if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
569                 return true;
570
571         return is_subdir(path->dentry, mnt->mnt_root);
572 }
573
574 static inline int nd_alloc_stack(struct nameidata *nd)
575 {
576         if (likely(nd->depth != EMBEDDED_LEVELS))
577                 return 0;
578         if (likely(nd->stack != nd->internal))
579                 return 0;
580         return __nd_alloc_stack(nd);
581 }
582
583 static void drop_links(struct nameidata *nd)
584 {
585         int i = nd->depth;
586         while (i--) {
587                 struct saved *last = nd->stack + i;
588                 do_delayed_call(&last->done);
589                 clear_delayed_call(&last->done);
590         }
591 }
592
593 static void terminate_walk(struct nameidata *nd)
594 {
595         drop_links(nd);
596         if (!(nd->flags & LOOKUP_RCU)) {
597                 int i;
598                 path_put(&nd->path);
599                 for (i = 0; i < nd->depth; i++)
600                         path_put(&nd->stack[i].link);
601                 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
602                         path_put(&nd->root);
603                         nd->root.mnt = NULL;
604                 }
605         } else {
606                 nd->flags &= ~LOOKUP_RCU;
607                 if (!(nd->flags & LOOKUP_ROOT))
608                         nd->root.mnt = NULL;
609                 rcu_read_unlock();
610         }
611         nd->depth = 0;
612 }
613
614 /* path_put is needed afterwards regardless of success or failure */
615 static bool legitimize_path(struct nameidata *nd,
616                             struct path *path, unsigned seq)
617 {
618         int res = __legitimize_mnt(path->mnt, nd->m_seq);
619         if (unlikely(res)) {
620                 if (res > 0)
621                         path->mnt = NULL;
622                 path->dentry = NULL;
623                 return false;
624         }
625         if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
626                 path->dentry = NULL;
627                 return false;
628         }
629         return !read_seqcount_retry(&path->dentry->d_seq, seq);
630 }
631
632 static bool legitimize_links(struct nameidata *nd)
633 {
634         int i;
635         for (i = 0; i < nd->depth; i++) {
636                 struct saved *last = nd->stack + i;
637                 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
638                         drop_links(nd);
639                         nd->depth = i + 1;
640                         return false;
641                 }
642         }
643         return true;
644 }
645
646 /*
647  * Path walking has 2 modes, rcu-walk and ref-walk (see
648  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
649  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
650  * normal reference counts on dentries and vfsmounts to transition to ref-walk
651  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
652  * got stuck, so ref-walk may continue from there. If this is not successful
653  * (eg. a seqcount has changed), then failure is returned and it's up to caller
654  * to restart the path walk from the beginning in ref-walk mode.
655  */
656
657 /**
658  * unlazy_walk - try to switch to ref-walk mode.
659  * @nd: nameidata pathwalk data
660  * Returns: 0 on success, -ECHILD on failure
661  *
662  * unlazy_walk attempts to legitimize the current nd->path and nd->root
663  * for ref-walk mode.
664  * Must be called from rcu-walk context.
665  * Nothing should touch nameidata between unlazy_walk() failure and
666  * terminate_walk().
667  */
668 static int unlazy_walk(struct nameidata *nd)
669 {
670         struct dentry *parent = nd->path.dentry;
671
672         BUG_ON(!(nd->flags & LOOKUP_RCU));
673
674         nd->flags &= ~LOOKUP_RCU;
675         if (unlikely(!legitimize_links(nd)))
676                 goto out2;
677         if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
678                 goto out1;
679         if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
680                 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
681                         goto out;
682         }
683         rcu_read_unlock();
684         BUG_ON(nd->inode != parent->d_inode);
685         return 0;
686
687 out2:
688         nd->path.mnt = NULL;
689         nd->path.dentry = NULL;
690 out1:
691         if (!(nd->flags & LOOKUP_ROOT))
692                 nd->root.mnt = NULL;
693 out:
694         rcu_read_unlock();
695         return -ECHILD;
696 }
697
698 /**
699  * unlazy_child - try to switch to ref-walk mode.
700  * @nd: nameidata pathwalk data
701  * @dentry: child of nd->path.dentry
702  * @seq: seq number to check dentry against
703  * Returns: 0 on success, -ECHILD on failure
704  *
705  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
706  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
707  * @nd.  Must be called from rcu-walk context.
708  * Nothing should touch nameidata between unlazy_child() failure and
709  * terminate_walk().
710  */
711 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
712 {
713         BUG_ON(!(nd->flags & LOOKUP_RCU));
714
715         nd->flags &= ~LOOKUP_RCU;
716         if (unlikely(!legitimize_links(nd)))
717                 goto out2;
718         if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
719                 goto out2;
720         if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
721                 goto out1;
722
723         /*
724          * We need to move both the parent and the dentry from the RCU domain
725          * to be properly refcounted. And the sequence number in the dentry
726          * validates *both* dentry counters, since we checked the sequence
727          * number of the parent after we got the child sequence number. So we
728          * know the parent must still be valid if the child sequence number is
729          */
730         if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
731                 goto out;
732         if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
733                 rcu_read_unlock();
734                 dput(dentry);
735                 goto drop_root_mnt;
736         }
737         /*
738          * Sequence counts matched. Now make sure that the root is
739          * still valid and get it if required.
740          */
741         if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
742                 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
743                         rcu_read_unlock();
744                         dput(dentry);
745                         return -ECHILD;
746                 }
747         }
748
749         rcu_read_unlock();
750         return 0;
751
752 out2:
753         nd->path.mnt = NULL;
754 out1:
755         nd->path.dentry = NULL;
756 out:
757         rcu_read_unlock();
758 drop_root_mnt:
759         if (!(nd->flags & LOOKUP_ROOT))
760                 nd->root.mnt = NULL;
761         return -ECHILD;
762 }
763
764 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
765 {
766         if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
767                 return dentry->d_op->d_revalidate(dentry, flags);
768         else
769                 return 1;
770 }
771
772 /**
773  * complete_walk - successful completion of path walk
774  * @nd:  pointer nameidata
775  *
776  * If we had been in RCU mode, drop out of it and legitimize nd->path.
777  * Revalidate the final result, unless we'd already done that during
778  * the path walk or the filesystem doesn't ask for it.  Return 0 on
779  * success, -error on failure.  In case of failure caller does not
780  * need to drop nd->path.
781  */
782 static int complete_walk(struct nameidata *nd)
783 {
784         struct dentry *dentry = nd->path.dentry;
785         int status;
786
787         if (nd->flags & LOOKUP_RCU) {
788                 if (!(nd->flags & LOOKUP_ROOT))
789                         nd->root.mnt = NULL;
790                 if (unlikely(unlazy_walk(nd)))
791                         return -ECHILD;
792         }
793
794         if (likely(!(nd->flags & LOOKUP_JUMPED)))
795                 return 0;
796
797         if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
798                 return 0;
799
800         status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
801         if (status > 0)
802                 return 0;
803
804         if (!status)
805                 status = -ESTALE;
806
807         return status;
808 }
809
810 static void set_root(struct nameidata *nd)
811 {
812         struct fs_struct *fs = current->fs;
813
814         if (nd->flags & LOOKUP_RCU) {
815                 unsigned seq;
816
817                 do {
818                         seq = read_seqcount_begin(&fs->seq);
819                         nd->root = fs->root;
820                         nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
821                 } while (read_seqcount_retry(&fs->seq, seq));
822         } else {
823                 get_fs_root(fs, &nd->root);
824         }
825 }
826
827 static void path_put_conditional(struct path *path, struct nameidata *nd)
828 {
829         dput(path->dentry);
830         if (path->mnt != nd->path.mnt)
831                 mntput(path->mnt);
832 }
833
834 static inline void path_to_nameidata(const struct path *path,
835                                         struct nameidata *nd)
836 {
837         if (!(nd->flags & LOOKUP_RCU)) {
838                 dput(nd->path.dentry);
839                 if (nd->path.mnt != path->mnt)
840                         mntput(nd->path.mnt);
841         }
842         nd->path.mnt = path->mnt;
843         nd->path.dentry = path->dentry;
844 }
845
846 static int nd_jump_root(struct nameidata *nd)
847 {
848         if (nd->flags & LOOKUP_RCU) {
849                 struct dentry *d;
850                 nd->path = nd->root;
851                 d = nd->path.dentry;
852                 nd->inode = d->d_inode;
853                 nd->seq = nd->root_seq;
854                 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
855                         return -ECHILD;
856         } else {
857                 path_put(&nd->path);
858                 nd->path = nd->root;
859                 path_get(&nd->path);
860                 nd->inode = nd->path.dentry->d_inode;
861         }
862         nd->flags |= LOOKUP_JUMPED;
863         return 0;
864 }
865
866 /*
867  * Helper to directly jump to a known parsed path from ->get_link,
868  * caller must have taken a reference to path beforehand.
869  */
870 void nd_jump_link(struct path *path)
871 {
872         struct nameidata *nd = current->nameidata;
873         path_put(&nd->path);
874
875         nd->path = *path;
876         nd->inode = nd->path.dentry->d_inode;
877         nd->flags |= LOOKUP_JUMPED;
878 }
879
880 static inline void put_link(struct nameidata *nd)
881 {
882         struct saved *last = nd->stack + --nd->depth;
883         do_delayed_call(&last->done);
884         if (!(nd->flags & LOOKUP_RCU))
885                 path_put(&last->link);
886 }
887
888 int sysctl_protected_symlinks __read_mostly = 0;
889 int sysctl_protected_hardlinks __read_mostly = 0;
890
891 /**
892  * may_follow_link - Check symlink following for unsafe situations
893  * @nd: nameidata pathwalk data
894  *
895  * In the case of the sysctl_protected_symlinks sysctl being enabled,
896  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
897  * in a sticky world-writable directory. This is to protect privileged
898  * processes from failing races against path names that may change out
899  * from under them by way of other users creating malicious symlinks.
900  * It will permit symlinks to be followed only when outside a sticky
901  * world-writable directory, or when the uid of the symlink and follower
902  * match, or when the directory owner matches the symlink's owner.
903  *
904  * Returns 0 if following the symlink is allowed, -ve on error.
905  */
906 static inline int may_follow_link(struct nameidata *nd)
907 {
908         const struct inode *inode;
909         const struct inode *parent;
910         kuid_t puid;
911
912         if (!sysctl_protected_symlinks)
913                 return 0;
914
915         /* Allowed if owner and follower match. */
916         inode = nd->link_inode;
917         if (uid_eq(current_cred()->fsuid, inode->i_uid))
918                 return 0;
919
920         /* Allowed if parent directory not sticky and world-writable. */
921         parent = nd->inode;
922         if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
923                 return 0;
924
925         /* Allowed if parent directory and link owner match. */
926         puid = parent->i_uid;
927         if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
928                 return 0;
929
930         if (nd->flags & LOOKUP_RCU)
931                 return -ECHILD;
932
933         audit_inode(nd->name, nd->stack[0].link.dentry, 0);
934         audit_log_link_denied("follow_link");
935         return -EACCES;
936 }
937
938 /**
939  * safe_hardlink_source - Check for safe hardlink conditions
940  * @inode: the source inode to hardlink from
941  *
942  * Return false if at least one of the following conditions:
943  *    - inode is not a regular file
944  *    - inode is setuid
945  *    - inode is setgid and group-exec
946  *    - access failure for read and write
947  *
948  * Otherwise returns true.
949  */
950 static bool safe_hardlink_source(struct inode *inode)
951 {
952         umode_t mode = inode->i_mode;
953
954         /* Special files should not get pinned to the filesystem. */
955         if (!S_ISREG(mode))
956                 return false;
957
958         /* Setuid files should not get pinned to the filesystem. */
959         if (mode & S_ISUID)
960                 return false;
961
962         /* Executable setgid files should not get pinned to the filesystem. */
963         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
964                 return false;
965
966         /* Hardlinking to unreadable or unwritable sources is dangerous. */
967         if (inode_permission(inode, MAY_READ | MAY_WRITE))
968                 return false;
969
970         return true;
971 }
972
973 /**
974  * may_linkat - Check permissions for creating a hardlink
975  * @link: the source to hardlink from
976  *
977  * Block hardlink when all of:
978  *  - sysctl_protected_hardlinks enabled
979  *  - fsuid does not match inode
980  *  - hardlink source is unsafe (see safe_hardlink_source() above)
981  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
982  *
983  * Returns 0 if successful, -ve on error.
984  */
985 static int may_linkat(struct path *link)
986 {
987         struct inode *inode = link->dentry->d_inode;
988
989         /* Inode writeback is not safe when the uid or gid are invalid. */
990         if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
991                 return -EOVERFLOW;
992
993         if (!sysctl_protected_hardlinks)
994                 return 0;
995
996         /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
997          * otherwise, it must be a safe source.
998          */
999         if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1000                 return 0;
1001
1002         audit_log_link_denied("linkat");
1003         return -EPERM;
1004 }
1005
1006 static __always_inline
1007 const char *get_link(struct nameidata *nd)
1008 {
1009         struct saved *last = nd->stack + nd->depth - 1;
1010         struct dentry *dentry = last->link.dentry;
1011         struct inode *inode = nd->link_inode;
1012         int error;
1013         const char *res;
1014
1015         if (!(nd->flags & LOOKUP_RCU)) {
1016                 touch_atime(&last->link);
1017                 cond_resched();
1018         } else if (atime_needs_update_rcu(&last->link, inode)) {
1019                 if (unlikely(unlazy_walk(nd)))
1020                         return ERR_PTR(-ECHILD);
1021                 touch_atime(&last->link);
1022         }
1023
1024         error = security_inode_follow_link(dentry, inode,
1025                                            nd->flags & LOOKUP_RCU);
1026         if (unlikely(error))
1027                 return ERR_PTR(error);
1028
1029         nd->last_type = LAST_BIND;
1030         res = inode->i_link;
1031         if (!res) {
1032                 const char * (*get)(struct dentry *, struct inode *,
1033                                 struct delayed_call *);
1034                 get = inode->i_op->get_link;
1035                 if (nd->flags & LOOKUP_RCU) {
1036                         res = get(NULL, inode, &last->done);
1037                         if (res == ERR_PTR(-ECHILD)) {
1038                                 if (unlikely(unlazy_walk(nd)))
1039                                         return ERR_PTR(-ECHILD);
1040                                 res = get(dentry, inode, &last->done);
1041                         }
1042                 } else {
1043                         res = get(dentry, inode, &last->done);
1044                 }
1045                 if (IS_ERR_OR_NULL(res))
1046                         return res;
1047         }
1048         if (*res == '/') {
1049                 if (!nd->root.mnt)
1050                         set_root(nd);
1051                 if (unlikely(nd_jump_root(nd)))
1052                         return ERR_PTR(-ECHILD);
1053                 while (unlikely(*++res == '/'))
1054                         ;
1055         }
1056         if (!*res)
1057                 res = NULL;
1058         return res;
1059 }
1060
1061 /*
1062  * follow_up - Find the mountpoint of path's vfsmount
1063  *
1064  * Given a path, find the mountpoint of its source file system.
1065  * Replace @path with the path of the mountpoint in the parent mount.
1066  * Up is towards /.
1067  *
1068  * Return 1 if we went up a level and 0 if we were already at the
1069  * root.
1070  */
1071 int follow_up(struct path *path)
1072 {
1073         struct mount *mnt = real_mount(path->mnt);
1074         struct mount *parent;
1075         struct dentry *mountpoint;
1076
1077         read_seqlock_excl(&mount_lock);
1078         parent = mnt->mnt_parent;
1079         if (parent == mnt) {
1080                 read_sequnlock_excl(&mount_lock);
1081                 return 0;
1082         }
1083         mntget(&parent->mnt);
1084         mountpoint = dget(mnt->mnt_mountpoint);
1085         read_sequnlock_excl(&mount_lock);
1086         dput(path->dentry);
1087         path->dentry = mountpoint;
1088         mntput(path->mnt);
1089         path->mnt = &parent->mnt;
1090         return 1;
1091 }
1092 EXPORT_SYMBOL(follow_up);
1093
1094 /*
1095  * Perform an automount
1096  * - return -EISDIR to tell follow_managed() to stop and return the path we
1097  *   were called with.
1098  */
1099 static int follow_automount(struct path *path, struct nameidata *nd,
1100                             bool *need_mntput)
1101 {
1102         struct vfsmount *mnt;
1103         int err;
1104
1105         if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1106                 return -EREMOTE;
1107
1108         /* We don't want to mount if someone's just doing a stat -
1109          * unless they're stat'ing a directory and appended a '/' to
1110          * the name.
1111          *
1112          * We do, however, want to mount if someone wants to open or
1113          * create a file of any type under the mountpoint, wants to
1114          * traverse through the mountpoint or wants to open the
1115          * mounted directory.  Also, autofs may mark negative dentries
1116          * as being automount points.  These will need the attentions
1117          * of the daemon to instantiate them before they can be used.
1118          */
1119         if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1120                            LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1121             path->dentry->d_inode)
1122                 return -EISDIR;
1123
1124         nd->total_link_count++;
1125         if (nd->total_link_count >= 40)
1126                 return -ELOOP;
1127
1128         mnt = path->dentry->d_op->d_automount(path);
1129         if (IS_ERR(mnt)) {
1130                 /*
1131                  * The filesystem is allowed to return -EISDIR here to indicate
1132                  * it doesn't want to automount.  For instance, autofs would do
1133                  * this so that its userspace daemon can mount on this dentry.
1134                  *
1135                  * However, we can only permit this if it's a terminal point in
1136                  * the path being looked up; if it wasn't then the remainder of
1137                  * the path is inaccessible and we should say so.
1138                  */
1139                 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1140                         return -EREMOTE;
1141                 return PTR_ERR(mnt);
1142         }
1143
1144         if (!mnt) /* mount collision */
1145                 return 0;
1146
1147         if (!*need_mntput) {
1148                 /* lock_mount() may release path->mnt on error */
1149                 mntget(path->mnt);
1150                 *need_mntput = true;
1151         }
1152         err = finish_automount(mnt, path);
1153
1154         switch (err) {
1155         case -EBUSY:
1156                 /* Someone else made a mount here whilst we were busy */
1157                 return 0;
1158         case 0:
1159                 path_put(path);
1160                 path->mnt = mnt;
1161                 path->dentry = dget(mnt->mnt_root);
1162                 return 0;
1163         default:
1164                 return err;
1165         }
1166
1167 }
1168
1169 /*
1170  * Handle a dentry that is managed in some way.
1171  * - Flagged for transit management (autofs)
1172  * - Flagged as mountpoint
1173  * - Flagged as automount point
1174  *
1175  * This may only be called in refwalk mode.
1176  *
1177  * Serialization is taken care of in namespace.c
1178  */
1179 static int follow_managed(struct path *path, struct nameidata *nd)
1180 {
1181         struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1182         unsigned managed;
1183         bool need_mntput = false;
1184         int ret = 0;
1185
1186         /* Given that we're not holding a lock here, we retain the value in a
1187          * local variable for each dentry as we look at it so that we don't see
1188          * the components of that value change under us */
1189         while (managed = READ_ONCE(path->dentry->d_flags),
1190                managed &= DCACHE_MANAGED_DENTRY,
1191                unlikely(managed != 0)) {
1192                 /* Allow the filesystem to manage the transit without i_mutex
1193                  * being held. */
1194                 if (managed & DCACHE_MANAGE_TRANSIT) {
1195                         BUG_ON(!path->dentry->d_op);
1196                         BUG_ON(!path->dentry->d_op->d_manage);
1197                         ret = path->dentry->d_op->d_manage(path, false);
1198                         if (ret < 0)
1199                                 break;
1200                 }
1201
1202                 /* Transit to a mounted filesystem. */
1203                 if (managed & DCACHE_MOUNTED) {
1204                         struct vfsmount *mounted = lookup_mnt(path);
1205                         if (mounted) {
1206                                 dput(path->dentry);
1207                                 if (need_mntput)
1208                                         mntput(path->mnt);
1209                                 path->mnt = mounted;
1210                                 path->dentry = dget(mounted->mnt_root);
1211                                 need_mntput = true;
1212                                 continue;
1213                         }
1214
1215                         /* Something is mounted on this dentry in another
1216                          * namespace and/or whatever was mounted there in this
1217                          * namespace got unmounted before lookup_mnt() could
1218                          * get it */
1219                 }
1220
1221                 /* Handle an automount point */
1222                 if (managed & DCACHE_NEED_AUTOMOUNT) {
1223                         ret = follow_automount(path, nd, &need_mntput);
1224                         if (ret < 0)
1225                                 break;
1226                         continue;
1227                 }
1228
1229                 /* We didn't change the current path point */
1230                 break;
1231         }
1232
1233         if (need_mntput && path->mnt == mnt)
1234                 mntput(path->mnt);
1235         if (ret == -EISDIR || !ret)
1236                 ret = 1;
1237         if (need_mntput)
1238                 nd->flags |= LOOKUP_JUMPED;
1239         if (unlikely(ret < 0))
1240                 path_put_conditional(path, nd);
1241         return ret;
1242 }
1243
1244 int follow_down_one(struct path *path)
1245 {
1246         struct vfsmount *mounted;
1247
1248         mounted = lookup_mnt(path);
1249         if (mounted) {
1250                 dput(path->dentry);
1251                 mntput(path->mnt);
1252                 path->mnt = mounted;
1253                 path->dentry = dget(mounted->mnt_root);
1254                 return 1;
1255         }
1256         return 0;
1257 }
1258 EXPORT_SYMBOL(follow_down_one);
1259
1260 static inline int managed_dentry_rcu(const struct path *path)
1261 {
1262         return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1263                 path->dentry->d_op->d_manage(path, true) : 0;
1264 }
1265
1266 /*
1267  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1268  * we meet a managed dentry that would need blocking.
1269  */
1270 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1271                                struct inode **inode, unsigned *seqp)
1272 {
1273         for (;;) {
1274                 struct mount *mounted;
1275                 /*
1276                  * Don't forget we might have a non-mountpoint managed dentry
1277                  * that wants to block transit.
1278                  */
1279                 switch (managed_dentry_rcu(path)) {
1280                 case -ECHILD:
1281                 default:
1282                         return false;
1283                 case -EISDIR:
1284                         return true;
1285                 case 0:
1286                         break;
1287                 }
1288
1289                 if (!d_mountpoint(path->dentry))
1290                         return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1291
1292                 mounted = __lookup_mnt(path->mnt, path->dentry);
1293                 if (!mounted)
1294                         break;
1295                 path->mnt = &mounted->mnt;
1296                 path->dentry = mounted->mnt.mnt_root;
1297                 nd->flags |= LOOKUP_JUMPED;
1298                 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1299                 /*
1300                  * Update the inode too. We don't need to re-check the
1301                  * dentry sequence number here after this d_inode read,
1302                  * because a mount-point is always pinned.
1303                  */
1304                 *inode = path->dentry->d_inode;
1305         }
1306         return !read_seqretry(&mount_lock, nd->m_seq) &&
1307                 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1308 }
1309
1310 static int follow_dotdot_rcu(struct nameidata *nd)
1311 {
1312         struct inode *inode = nd->inode;
1313
1314         while (1) {
1315                 if (path_equal(&nd->path, &nd->root))
1316                         break;
1317                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1318                         struct dentry *old = nd->path.dentry;
1319                         struct dentry *parent = old->d_parent;
1320                         unsigned seq;
1321
1322                         inode = parent->d_inode;
1323                         seq = read_seqcount_begin(&parent->d_seq);
1324                         if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1325                                 return -ECHILD;
1326                         nd->path.dentry = parent;
1327                         nd->seq = seq;
1328                         if (unlikely(!path_connected(&nd->path)))
1329                                 return -ENOENT;
1330                         break;
1331                 } else {
1332                         struct mount *mnt = real_mount(nd->path.mnt);
1333                         struct mount *mparent = mnt->mnt_parent;
1334                         struct dentry *mountpoint = mnt->mnt_mountpoint;
1335                         struct inode *inode2 = mountpoint->d_inode;
1336                         unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1337                         if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1338                                 return -ECHILD;
1339                         if (&mparent->mnt == nd->path.mnt)
1340                                 break;
1341                         /* we know that mountpoint was pinned */
1342                         nd->path.dentry = mountpoint;
1343                         nd->path.mnt = &mparent->mnt;
1344                         inode = inode2;
1345                         nd->seq = seq;
1346                 }
1347         }
1348         while (unlikely(d_mountpoint(nd->path.dentry))) {
1349                 struct mount *mounted;
1350                 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1351                 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1352                         return -ECHILD;
1353                 if (!mounted)
1354                         break;
1355                 nd->path.mnt = &mounted->mnt;
1356                 nd->path.dentry = mounted->mnt.mnt_root;
1357                 inode = nd->path.dentry->d_inode;
1358                 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1359         }
1360         nd->inode = inode;
1361         return 0;
1362 }
1363
1364 /*
1365  * Follow down to the covering mount currently visible to userspace.  At each
1366  * point, the filesystem owning that dentry may be queried as to whether the
1367  * caller is permitted to proceed or not.
1368  */
1369 int follow_down(struct path *path)
1370 {
1371         unsigned managed;
1372         int ret;
1373
1374         while (managed = READ_ONCE(path->dentry->d_flags),
1375                unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1376                 /* Allow the filesystem to manage the transit without i_mutex
1377                  * being held.
1378                  *
1379                  * We indicate to the filesystem if someone is trying to mount
1380                  * something here.  This gives autofs the chance to deny anyone
1381                  * other than its daemon the right to mount on its
1382                  * superstructure.
1383                  *
1384                  * The filesystem may sleep at this point.
1385                  */
1386                 if (managed & DCACHE_MANAGE_TRANSIT) {
1387                         BUG_ON(!path->dentry->d_op);
1388                         BUG_ON(!path->dentry->d_op->d_manage);
1389                         ret = path->dentry->d_op->d_manage(path, false);
1390                         if (ret < 0)
1391                                 return ret == -EISDIR ? 0 : ret;
1392                 }
1393
1394                 /* Transit to a mounted filesystem. */
1395                 if (managed & DCACHE_MOUNTED) {
1396                         struct vfsmount *mounted = lookup_mnt(path);
1397                         if (!mounted)
1398                                 break;
1399                         dput(path->dentry);
1400                         mntput(path->mnt);
1401                         path->mnt = mounted;
1402                         path->dentry = dget(mounted->mnt_root);
1403                         continue;
1404                 }
1405
1406                 /* Don't handle automount points here */
1407                 break;
1408         }
1409         return 0;
1410 }
1411 EXPORT_SYMBOL(follow_down);
1412
1413 /*
1414  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1415  */
1416 static void follow_mount(struct path *path)
1417 {
1418         while (d_mountpoint(path->dentry)) {
1419                 struct vfsmount *mounted = lookup_mnt(path);
1420                 if (!mounted)
1421                         break;
1422                 dput(path->dentry);
1423                 mntput(path->mnt);
1424                 path->mnt = mounted;
1425                 path->dentry = dget(mounted->mnt_root);
1426         }
1427 }
1428
1429 static int path_parent_directory(struct path *path)
1430 {
1431         struct dentry *old = path->dentry;
1432         /* rare case of legitimate dget_parent()... */
1433         path->dentry = dget_parent(path->dentry);
1434         dput(old);
1435         if (unlikely(!path_connected(path)))
1436                 return -ENOENT;
1437         return 0;
1438 }
1439
1440 static int follow_dotdot(struct nameidata *nd)
1441 {
1442         while(1) {
1443                 if (path_equal(&nd->path, &nd->root))
1444                         break;
1445                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1446                         int ret = path_parent_directory(&nd->path);
1447                         if (ret)
1448                                 return ret;
1449                         break;
1450                 }
1451                 if (!follow_up(&nd->path))
1452                         break;
1453         }
1454         follow_mount(&nd->path);
1455         nd->inode = nd->path.dentry->d_inode;
1456         return 0;
1457 }
1458
1459 /*
1460  * This looks up the name in dcache and possibly revalidates the found dentry.
1461  * NULL is returned if the dentry does not exist in the cache.
1462  */
1463 static struct dentry *lookup_dcache(const struct qstr *name,
1464                                     struct dentry *dir,
1465                                     unsigned int flags)
1466 {
1467         struct dentry *dentry = d_lookup(dir, name);
1468         if (dentry) {
1469                 int error = d_revalidate(dentry, flags);
1470                 if (unlikely(error <= 0)) {
1471                         if (!error)
1472                                 d_invalidate(dentry);
1473                         dput(dentry);
1474                         return ERR_PTR(error);
1475                 }
1476         }
1477         return dentry;
1478 }
1479
1480 /*
1481  * Parent directory has inode locked exclusive.  This is one
1482  * and only case when ->lookup() gets called on non in-lookup
1483  * dentries - as the matter of fact, this only gets called
1484  * when directory is guaranteed to have no in-lookup children
1485  * at all.
1486  */
1487 static struct dentry *__lookup_hash(const struct qstr *name,
1488                 struct dentry *base, unsigned int flags)
1489 {
1490         struct dentry *dentry = lookup_dcache(name, base, flags);
1491         struct dentry *old;
1492         struct inode *dir = base->d_inode;
1493
1494         if (dentry)
1495                 return dentry;
1496
1497         /* Don't create child dentry for a dead directory. */
1498         if (unlikely(IS_DEADDIR(dir)))
1499                 return ERR_PTR(-ENOENT);
1500
1501         dentry = d_alloc(base, name);
1502         if (unlikely(!dentry))
1503                 return ERR_PTR(-ENOMEM);
1504
1505         old = dir->i_op->lookup(dir, dentry, flags);
1506         if (unlikely(old)) {
1507                 dput(dentry);
1508                 dentry = old;
1509         }
1510         return dentry;
1511 }
1512
1513 static int lookup_fast(struct nameidata *nd,
1514                        struct path *path, struct inode **inode,
1515                        unsigned *seqp)
1516 {
1517         struct vfsmount *mnt = nd->path.mnt;
1518         struct dentry *dentry, *parent = nd->path.dentry;
1519         int status = 1;
1520         int err;
1521
1522         /*
1523          * Rename seqlock is not required here because in the off chance
1524          * of a false negative due to a concurrent rename, the caller is
1525          * going to fall back to non-racy lookup.
1526          */
1527         if (nd->flags & LOOKUP_RCU) {
1528                 unsigned seq;
1529                 bool negative;
1530                 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1531                 if (unlikely(!dentry)) {
1532                         if (unlazy_walk(nd))
1533                                 return -ECHILD;
1534                         return 0;
1535                 }
1536
1537                 /*
1538                  * This sequence count validates that the inode matches
1539                  * the dentry name information from lookup.
1540                  */
1541                 *inode = d_backing_inode(dentry);
1542                 negative = d_is_negative(dentry);
1543                 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1544                         return -ECHILD;
1545
1546                 /*
1547                  * This sequence count validates that the parent had no
1548                  * changes while we did the lookup of the dentry above.
1549                  *
1550                  * The memory barrier in read_seqcount_begin of child is
1551                  *  enough, we can use __read_seqcount_retry here.
1552                  */
1553                 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1554                         return -ECHILD;
1555
1556                 *seqp = seq;
1557                 status = d_revalidate(dentry, nd->flags);
1558                 if (likely(status > 0)) {
1559                         /*
1560                          * Note: do negative dentry check after revalidation in
1561                          * case that drops it.
1562                          */
1563                         if (unlikely(negative))
1564                                 return -ENOENT;
1565                         path->mnt = mnt;
1566                         path->dentry = dentry;
1567                         if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1568                                 return 1;
1569                 }
1570                 if (unlazy_child(nd, dentry, seq))
1571                         return -ECHILD;
1572                 if (unlikely(status == -ECHILD))
1573                         /* we'd been told to redo it in non-rcu mode */
1574                         status = d_revalidate(dentry, nd->flags);
1575         } else {
1576                 dentry = __d_lookup(parent, &nd->last);
1577                 if (unlikely(!dentry))
1578                         return 0;
1579                 status = d_revalidate(dentry, nd->flags);
1580         }
1581         if (unlikely(status <= 0)) {
1582                 if (!status)
1583                         d_invalidate(dentry);
1584                 dput(dentry);
1585                 return status;
1586         }
1587         if (unlikely(d_is_negative(dentry))) {
1588                 dput(dentry);
1589                 return -ENOENT;
1590         }
1591
1592         path->mnt = mnt;
1593         path->dentry = dentry;
1594         err = follow_managed(path, nd);
1595         if (likely(err > 0))
1596                 *inode = d_backing_inode(path->dentry);
1597         return err;
1598 }
1599
1600 /* Fast lookup failed, do it the slow way */
1601 static struct dentry *__lookup_slow(const struct qstr *name,
1602                                     struct dentry *dir,
1603                                     unsigned int flags)
1604 {
1605         struct dentry *dentry, *old;
1606         struct inode *inode = dir->d_inode;
1607         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1608
1609         /* Don't go there if it's already dead */
1610         if (unlikely(IS_DEADDIR(inode)))
1611                 return ERR_PTR(-ENOENT);
1612 again:
1613         dentry = d_alloc_parallel(dir, name, &wq);
1614         if (IS_ERR(dentry))
1615                 return dentry;
1616         if (unlikely(!d_in_lookup(dentry))) {
1617                 if (!(flags & LOOKUP_NO_REVAL)) {
1618                         int error = d_revalidate(dentry, flags);
1619                         if (unlikely(error <= 0)) {
1620                                 if (!error) {
1621                                         d_invalidate(dentry);
1622                                         dput(dentry);
1623                                         goto again;
1624                                 }
1625                                 dput(dentry);
1626                                 dentry = ERR_PTR(error);
1627                         }
1628                 }
1629         } else {
1630                 old = inode->i_op->lookup(inode, dentry, flags);
1631                 d_lookup_done(dentry);
1632                 if (unlikely(old)) {
1633                         dput(dentry);
1634                         dentry = old;
1635                 }
1636         }
1637         return dentry;
1638 }
1639
1640 static struct dentry *lookup_slow(const struct qstr *name,
1641                                   struct dentry *dir,
1642                                   unsigned int flags)
1643 {
1644         struct inode *inode = dir->d_inode;
1645         struct dentry *res;
1646         inode_lock_shared(inode);
1647         res = __lookup_slow(name, dir, flags);
1648         inode_unlock_shared(inode);
1649         return res;
1650 }
1651
1652 static inline int may_lookup(struct nameidata *nd)
1653 {
1654         if (nd->flags & LOOKUP_RCU) {
1655                 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1656                 if (err != -ECHILD)
1657                         return err;
1658                 if (unlazy_walk(nd))
1659                         return -ECHILD;
1660         }
1661         return inode_permission(nd->inode, MAY_EXEC);
1662 }
1663
1664 static inline int handle_dots(struct nameidata *nd, int type)
1665 {
1666         if (type == LAST_DOTDOT) {
1667                 if (!nd->root.mnt)
1668                         set_root(nd);
1669                 if (nd->flags & LOOKUP_RCU) {
1670                         return follow_dotdot_rcu(nd);
1671                 } else
1672                         return follow_dotdot(nd);
1673         }
1674         return 0;
1675 }
1676
1677 static int pick_link(struct nameidata *nd, struct path *link,
1678                      struct inode *inode, unsigned seq)
1679 {
1680         int error;
1681         struct saved *last;
1682         if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1683                 path_to_nameidata(link, nd);
1684                 return -ELOOP;
1685         }
1686         if (!(nd->flags & LOOKUP_RCU)) {
1687                 if (link->mnt == nd->path.mnt)
1688                         mntget(link->mnt);
1689         }
1690         error = nd_alloc_stack(nd);
1691         if (unlikely(error)) {
1692                 if (error == -ECHILD) {
1693                         if (unlikely(!legitimize_path(nd, link, seq))) {
1694                                 drop_links(nd);
1695                                 nd->depth = 0;
1696                                 nd->flags &= ~LOOKUP_RCU;
1697                                 nd->path.mnt = NULL;
1698                                 nd->path.dentry = NULL;
1699                                 if (!(nd->flags & LOOKUP_ROOT))
1700                                         nd->root.mnt = NULL;
1701                                 rcu_read_unlock();
1702                         } else if (likely(unlazy_walk(nd)) == 0)
1703                                 error = nd_alloc_stack(nd);
1704                 }
1705                 if (error) {
1706                         path_put(link);
1707                         return error;
1708                 }
1709         }
1710
1711         last = nd->stack + nd->depth++;
1712         last->link = *link;
1713         clear_delayed_call(&last->done);
1714         nd->link_inode = inode;
1715         last->seq = seq;
1716         return 1;
1717 }
1718
1719 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1720
1721 /*
1722  * Do we need to follow links? We _really_ want to be able
1723  * to do this check without having to look at inode->i_op,
1724  * so we keep a cache of "no, this doesn't need follow_link"
1725  * for the common case.
1726  */
1727 static inline int step_into(struct nameidata *nd, struct path *path,
1728                             int flags, struct inode *inode, unsigned seq)
1729 {
1730         if (!(flags & WALK_MORE) && nd->depth)
1731                 put_link(nd);
1732         if (likely(!d_is_symlink(path->dentry)) ||
1733            !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1734                 /* not a symlink or should not follow */
1735                 path_to_nameidata(path, nd);
1736                 nd->inode = inode;
1737                 nd->seq = seq;
1738                 return 0;
1739         }
1740         /* make sure that d_is_symlink above matches inode */
1741         if (nd->flags & LOOKUP_RCU) {
1742                 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1743                         return -ECHILD;
1744         }
1745         return pick_link(nd, path, inode, seq);
1746 }
1747
1748 static int walk_component(struct nameidata *nd, int flags)
1749 {
1750         struct path path;
1751         struct inode *inode;
1752         unsigned seq;
1753         int err;
1754         /*
1755          * "." and ".." are special - ".." especially so because it has
1756          * to be able to know about the current root directory and
1757          * parent relationships.
1758          */
1759         if (unlikely(nd->last_type != LAST_NORM)) {
1760                 err = handle_dots(nd, nd->last_type);
1761                 if (!(flags & WALK_MORE) && nd->depth)
1762                         put_link(nd);
1763                 return err;
1764         }
1765         err = lookup_fast(nd, &path, &inode, &seq);
1766         if (unlikely(err <= 0)) {
1767                 if (err < 0)
1768                         return err;
1769                 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1770                                           nd->flags);
1771                 if (IS_ERR(path.dentry))
1772                         return PTR_ERR(path.dentry);
1773
1774                 path.mnt = nd->path.mnt;
1775                 err = follow_managed(&path, nd);
1776                 if (unlikely(err < 0))
1777                         return err;
1778
1779                 if (unlikely(d_is_negative(path.dentry))) {
1780                         path_to_nameidata(&path, nd);
1781                         return -ENOENT;
1782                 }
1783
1784                 seq = 0;        /* we are already out of RCU mode */
1785                 inode = d_backing_inode(path.dentry);
1786         }
1787
1788         return step_into(nd, &path, flags, inode, seq);
1789 }
1790
1791 /*
1792  * We can do the critical dentry name comparison and hashing
1793  * operations one word at a time, but we are limited to:
1794  *
1795  * - Architectures with fast unaligned word accesses. We could
1796  *   do a "get_unaligned()" if this helps and is sufficiently
1797  *   fast.
1798  *
1799  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1800  *   do not trap on the (extremely unlikely) case of a page
1801  *   crossing operation.
1802  *
1803  * - Furthermore, we need an efficient 64-bit compile for the
1804  *   64-bit case in order to generate the "number of bytes in
1805  *   the final mask". Again, that could be replaced with a
1806  *   efficient population count instruction or similar.
1807  */
1808 #ifdef CONFIG_DCACHE_WORD_ACCESS
1809
1810 #include <asm/word-at-a-time.h>
1811
1812 #ifdef HASH_MIX
1813
1814 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1815
1816 #elif defined(CONFIG_64BIT)
1817 /*
1818  * Register pressure in the mixing function is an issue, particularly
1819  * on 32-bit x86, but almost any function requires one state value and
1820  * one temporary.  Instead, use a function designed for two state values
1821  * and no temporaries.
1822  *
1823  * This function cannot create a collision in only two iterations, so
1824  * we have two iterations to achieve avalanche.  In those two iterations,
1825  * we have six layers of mixing, which is enough to spread one bit's
1826  * influence out to 2^6 = 64 state bits.
1827  *
1828  * Rotate constants are scored by considering either 64 one-bit input
1829  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1830  * probability of that delta causing a change to each of the 128 output
1831  * bits, using a sample of random initial states.
1832  *
1833  * The Shannon entropy of the computed probabilities is then summed
1834  * to produce a score.  Ideally, any input change has a 50% chance of
1835  * toggling any given output bit.
1836  *
1837  * Mixing scores (in bits) for (12,45):
1838  * Input delta: 1-bit      2-bit
1839  * 1 round:     713.3    42542.6
1840  * 2 rounds:   2753.7   140389.8
1841  * 3 rounds:   5954.1   233458.2
1842  * 4 rounds:   7862.6   256672.2
1843  * Perfect:    8192     258048
1844  *            (64*128) (64*63/2 * 128)
1845  */
1846 #define HASH_MIX(x, y, a)       \
1847         (       x ^= (a),       \
1848         y ^= x, x = rol64(x,12),\
1849         x += y, y = rol64(y,45),\
1850         y *= 9                  )
1851
1852 /*
1853  * Fold two longs into one 32-bit hash value.  This must be fast, but
1854  * latency isn't quite as critical, as there is a fair bit of additional
1855  * work done before the hash value is used.
1856  */
1857 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1858 {
1859         y ^= x * GOLDEN_RATIO_64;
1860         y *= GOLDEN_RATIO_64;
1861         return y >> 32;
1862 }
1863
1864 #else   /* 32-bit case */
1865
1866 /*
1867  * Mixing scores (in bits) for (7,20):
1868  * Input delta: 1-bit      2-bit
1869  * 1 round:     330.3     9201.6
1870  * 2 rounds:   1246.4    25475.4
1871  * 3 rounds:   1907.1    31295.1
1872  * 4 rounds:   2042.3    31718.6
1873  * Perfect:    2048      31744
1874  *            (32*64)   (32*31/2 * 64)
1875  */
1876 #define HASH_MIX(x, y, a)       \
1877         (       x ^= (a),       \
1878         y ^= x, x = rol32(x, 7),\
1879         x += y, y = rol32(y,20),\
1880         y *= 9                  )
1881
1882 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1883 {
1884         /* Use arch-optimized multiply if one exists */
1885         return __hash_32(y ^ __hash_32(x));
1886 }
1887
1888 #endif
1889
1890 /*
1891  * Return the hash of a string of known length.  This is carfully
1892  * designed to match hash_name(), which is the more critical function.
1893  * In particular, we must end by hashing a final word containing 0..7
1894  * payload bytes, to match the way that hash_name() iterates until it
1895  * finds the delimiter after the name.
1896  */
1897 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1898 {
1899         unsigned long a, x = 0, y = (unsigned long)salt;
1900
1901         for (;;) {
1902                 if (!len)
1903                         goto done;
1904                 a = load_unaligned_zeropad(name);
1905                 if (len < sizeof(unsigned long))
1906                         break;
1907                 HASH_MIX(x, y, a);
1908                 name += sizeof(unsigned long);
1909                 len -= sizeof(unsigned long);
1910         }
1911         x ^= a & bytemask_from_count(len);
1912 done:
1913         return fold_hash(x, y);
1914 }
1915 EXPORT_SYMBOL(full_name_hash);
1916
1917 /* Return the "hash_len" (hash and length) of a null-terminated string */
1918 u64 hashlen_string(const void *salt, const char *name)
1919 {
1920         unsigned long a = 0, x = 0, y = (unsigned long)salt;
1921         unsigned long adata, mask, len;
1922         const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1923
1924         len = 0;
1925         goto inside;
1926
1927         do {
1928                 HASH_MIX(x, y, a);
1929                 len += sizeof(unsigned long);
1930 inside:
1931                 a = load_unaligned_zeropad(name+len);
1932         } while (!has_zero(a, &adata, &constants));
1933
1934         adata = prep_zero_mask(a, adata, &constants);
1935         mask = create_zero_mask(adata);
1936         x ^= a & zero_bytemask(mask);
1937
1938         return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1939 }
1940 EXPORT_SYMBOL(hashlen_string);
1941
1942 /*
1943  * Calculate the length and hash of the path component, and
1944  * return the "hash_len" as the result.
1945  */
1946 static inline u64 hash_name(const void *salt, const char *name)
1947 {
1948         unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1949         unsigned long adata, bdata, mask, len;
1950         const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1951
1952         len = 0;
1953         goto inside;
1954
1955         do {
1956                 HASH_MIX(x, y, a);
1957                 len += sizeof(unsigned long);
1958 inside:
1959                 a = load_unaligned_zeropad(name+len);
1960                 b = a ^ REPEAT_BYTE('/');
1961         } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1962
1963         adata = prep_zero_mask(a, adata, &constants);
1964         bdata = prep_zero_mask(b, bdata, &constants);
1965         mask = create_zero_mask(adata | bdata);
1966         x ^= a & zero_bytemask(mask);
1967
1968         return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1969 }
1970
1971 #else   /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1972
1973 /* Return the hash of a string of known length */
1974 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1975 {
1976         unsigned long hash = init_name_hash(salt);
1977         while (len--)
1978                 hash = partial_name_hash((unsigned char)*name++, hash);
1979         return end_name_hash(hash);
1980 }
1981 EXPORT_SYMBOL(full_name_hash);
1982
1983 /* Return the "hash_len" (hash and length) of a null-terminated string */
1984 u64 hashlen_string(const void *salt, const char *name)
1985 {
1986         unsigned long hash = init_name_hash(salt);
1987         unsigned long len = 0, c;
1988
1989         c = (unsigned char)*name;
1990         while (c) {
1991                 len++;
1992                 hash = partial_name_hash(c, hash);
1993                 c = (unsigned char)name[len];
1994         }
1995         return hashlen_create(end_name_hash(hash), len);
1996 }
1997 EXPORT_SYMBOL(hashlen_string);
1998
1999 /*
2000  * We know there's a real path component here of at least
2001  * one character.
2002  */
2003 static inline u64 hash_name(const void *salt, const char *name)
2004 {
2005         unsigned long hash = init_name_hash(salt);
2006         unsigned long len = 0, c;
2007
2008         c = (unsigned char)*name;
2009         do {
2010                 len++;
2011                 hash = partial_name_hash(c, hash);
2012                 c = (unsigned char)name[len];
2013         } while (c && c != '/');
2014         return hashlen_create(end_name_hash(hash), len);
2015 }
2016
2017 #endif
2018
2019 /*
2020  * Name resolution.
2021  * This is the basic name resolution function, turning a pathname into
2022  * the final dentry. We expect 'base' to be positive and a directory.
2023  *
2024  * Returns 0 and nd will have valid dentry and mnt on success.
2025  * Returns error and drops reference to input namei data on failure.
2026  */
2027 static int link_path_walk(const char *name, struct nameidata *nd)
2028 {
2029         int err;
2030
2031         while (*name=='/')
2032                 name++;
2033         if (!*name)
2034                 return 0;
2035
2036         /* At this point we know we have a real path component. */
2037         for(;;) {
2038                 u64 hash_len;
2039                 int type;
2040
2041                 err = may_lookup(nd);
2042                 if (err)
2043                         return err;
2044
2045                 hash_len = hash_name(nd->path.dentry, name);
2046
2047                 type = LAST_NORM;
2048                 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2049                         case 2:
2050                                 if (name[1] == '.') {
2051                                         type = LAST_DOTDOT;
2052                                         nd->flags |= LOOKUP_JUMPED;
2053                                 }
2054                                 break;
2055                         case 1:
2056                                 type = LAST_DOT;
2057                 }
2058                 if (likely(type == LAST_NORM)) {
2059                         struct dentry *parent = nd->path.dentry;
2060                         nd->flags &= ~LOOKUP_JUMPED;
2061                         if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2062                                 struct qstr this = { { .hash_len = hash_len }, .name = name };
2063                                 err = parent->d_op->d_hash(parent, &this);
2064                                 if (err < 0)
2065                                         return err;
2066                                 hash_len = this.hash_len;
2067                                 name = this.name;
2068                         }
2069                 }
2070
2071                 nd->last.hash_len = hash_len;
2072                 nd->last.name = name;
2073                 nd->last_type = type;
2074
2075                 name += hashlen_len(hash_len);
2076                 if (!*name)
2077                         goto OK;
2078                 /*
2079                  * If it wasn't NUL, we know it was '/'. Skip that
2080                  * slash, and continue until no more slashes.
2081                  */
2082                 do {
2083                         name++;
2084                 } while (unlikely(*name == '/'));
2085                 if (unlikely(!*name)) {
2086 OK:
2087                         /* pathname body, done */
2088                         if (!nd->depth)
2089                                 return 0;
2090                         name = nd->stack[nd->depth - 1].name;
2091                         /* trailing symlink, done */
2092                         if (!name)
2093                                 return 0;
2094                         /* last component of nested symlink */
2095                         err = walk_component(nd, WALK_FOLLOW);
2096                 } else {
2097                         /* not the last component */
2098                         err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2099                 }
2100                 if (err < 0)
2101                         return err;
2102
2103                 if (err) {
2104                         const char *s = get_link(nd);
2105
2106                         if (IS_ERR(s))
2107                                 return PTR_ERR(s);
2108                         err = 0;
2109                         if (unlikely(!s)) {
2110                                 /* jumped */
2111                                 put_link(nd);
2112                         } else {
2113                                 nd->stack[nd->depth - 1].name = name;
2114                                 name = s;
2115                                 continue;
2116                         }
2117                 }
2118                 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2119                         if (nd->flags & LOOKUP_RCU) {
2120                                 if (unlazy_walk(nd))
2121                                         return -ECHILD;
2122                         }
2123                         return -ENOTDIR;
2124                 }
2125         }
2126 }
2127
2128 static const char *path_init(struct nameidata *nd, unsigned flags)
2129 {
2130         const char *s = nd->name->name;
2131
2132         if (!*s)
2133                 flags &= ~LOOKUP_RCU;
2134
2135         nd->last_type = LAST_ROOT; /* if there are only slashes... */
2136         nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2137         nd->depth = 0;
2138         if (flags & LOOKUP_ROOT) {
2139                 struct dentry *root = nd->root.dentry;
2140                 struct inode *inode = root->d_inode;
2141                 if (*s && unlikely(!d_can_lookup(root)))
2142                         return ERR_PTR(-ENOTDIR);
2143                 nd->path = nd->root;
2144                 nd->inode = inode;
2145                 if (flags & LOOKUP_RCU) {
2146                         rcu_read_lock();
2147                         nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2148                         nd->root_seq = nd->seq;
2149                         nd->m_seq = read_seqbegin(&mount_lock);
2150                 } else {
2151                         path_get(&nd->path);
2152                 }
2153                 return s;
2154         }
2155
2156         nd->root.mnt = NULL;
2157         nd->path.mnt = NULL;
2158         nd->path.dentry = NULL;
2159
2160         nd->m_seq = read_seqbegin(&mount_lock);
2161         if (*s == '/') {
2162                 if (flags & LOOKUP_RCU)
2163                         rcu_read_lock();
2164                 set_root(nd);
2165                 if (likely(!nd_jump_root(nd)))
2166                         return s;
2167                 nd->root.mnt = NULL;
2168                 rcu_read_unlock();
2169                 return ERR_PTR(-ECHILD);
2170         } else if (nd->dfd == AT_FDCWD) {
2171                 if (flags & LOOKUP_RCU) {
2172                         struct fs_struct *fs = current->fs;
2173                         unsigned seq;
2174
2175                         rcu_read_lock();
2176
2177                         do {
2178                                 seq = read_seqcount_begin(&fs->seq);
2179                                 nd->path = fs->pwd;
2180                                 nd->inode = nd->path.dentry->d_inode;
2181                                 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2182                         } while (read_seqcount_retry(&fs->seq, seq));
2183                 } else {
2184                         get_fs_pwd(current->fs, &nd->path);
2185                         nd->inode = nd->path.dentry->d_inode;
2186                 }
2187                 return s;
2188         } else {
2189                 /* Caller must check execute permissions on the starting path component */
2190                 struct fd f = fdget_raw(nd->dfd);
2191                 struct dentry *dentry;
2192
2193                 if (!f.file)
2194                         return ERR_PTR(-EBADF);
2195
2196                 dentry = f.file->f_path.dentry;
2197
2198                 if (*s) {
2199                         if (!d_can_lookup(dentry)) {
2200                                 fdput(f);
2201                                 return ERR_PTR(-ENOTDIR);
2202                         }
2203                 }
2204
2205                 nd->path = f.file->f_path;
2206                 if (flags & LOOKUP_RCU) {
2207                         rcu_read_lock();
2208                         nd->inode = nd->path.dentry->d_inode;
2209                         nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2210                 } else {
2211                         path_get(&nd->path);
2212                         nd->inode = nd->path.dentry->d_inode;
2213                 }
2214                 fdput(f);
2215                 return s;
2216         }
2217 }
2218
2219 static const char *trailing_symlink(struct nameidata *nd)
2220 {
2221         const char *s;
2222         int error = may_follow_link(nd);
2223         if (unlikely(error))
2224                 return ERR_PTR(error);
2225         nd->flags |= LOOKUP_PARENT;
2226         nd->stack[0].name = NULL;
2227         s = get_link(nd);
2228         return s ? s : "";
2229 }
2230
2231 static inline int lookup_last(struct nameidata *nd)
2232 {
2233         if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2234                 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2235
2236         nd->flags &= ~LOOKUP_PARENT;
2237         return walk_component(nd, 0);
2238 }
2239
2240 static int handle_lookup_down(struct nameidata *nd)
2241 {
2242         struct path path = nd->path;
2243         struct inode *inode = nd->inode;
2244         unsigned seq = nd->seq;
2245         int err;
2246
2247         if (nd->flags & LOOKUP_RCU) {
2248                 /*
2249                  * don't bother with unlazy_walk on failure - we are
2250                  * at the very beginning of walk, so we lose nothing
2251                  * if we simply redo everything in non-RCU mode
2252                  */
2253                 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2254                         return -ECHILD;
2255         } else {
2256                 dget(path.dentry);
2257                 err = follow_managed(&path, nd);
2258                 if (unlikely(err < 0))
2259                         return err;
2260                 inode = d_backing_inode(path.dentry);
2261                 seq = 0;
2262         }
2263         path_to_nameidata(&path, nd);
2264         nd->inode = inode;
2265         nd->seq = seq;
2266         return 0;
2267 }
2268
2269 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2270 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2271 {
2272         const char *s = path_init(nd, flags);
2273         int err;
2274
2275         if (IS_ERR(s))
2276                 return PTR_ERR(s);
2277
2278         if (unlikely(flags & LOOKUP_DOWN)) {
2279                 err = handle_lookup_down(nd);
2280                 if (unlikely(err < 0)) {
2281                         terminate_walk(nd);
2282                         return err;
2283                 }
2284         }
2285
2286         while (!(err = link_path_walk(s, nd))
2287                 && ((err = lookup_last(nd)) > 0)) {
2288                 s = trailing_symlink(nd);
2289                 if (IS_ERR(s)) {
2290                         err = PTR_ERR(s);
2291                         break;
2292                 }
2293         }
2294         if (!err)
2295                 err = complete_walk(nd);
2296
2297         if (!err && nd->flags & LOOKUP_DIRECTORY)
2298                 if (!d_can_lookup(nd->path.dentry))
2299                         err = -ENOTDIR;
2300         if (!err) {
2301                 *path = nd->path;
2302                 nd->path.mnt = NULL;
2303                 nd->path.dentry = NULL;
2304         }
2305         terminate_walk(nd);
2306         return err;
2307 }
2308
2309 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2310                            struct path *path, struct path *root)
2311 {
2312         int retval;
2313         struct nameidata nd;
2314         if (IS_ERR(name))
2315                 return PTR_ERR(name);
2316         if (unlikely(root)) {
2317                 nd.root = *root;
2318                 flags |= LOOKUP_ROOT;
2319         }
2320         set_nameidata(&nd, dfd, name);
2321         retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2322         if (unlikely(retval == -ECHILD))
2323                 retval = path_lookupat(&nd, flags, path);
2324         if (unlikely(retval == -ESTALE))
2325                 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2326
2327         if (likely(!retval))
2328                 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2329         restore_nameidata();
2330         putname(name);
2331         return retval;
2332 }
2333
2334 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2335 static int path_parentat(struct nameidata *nd, unsigned flags,
2336                                 struct path *parent)
2337 {
2338         const char *s = path_init(nd, flags);
2339         int err;
2340         if (IS_ERR(s))
2341                 return PTR_ERR(s);
2342         err = link_path_walk(s, nd);
2343         if (!err)
2344                 err = complete_walk(nd);
2345         if (!err) {
2346                 *parent = nd->path;
2347                 nd->path.mnt = NULL;
2348                 nd->path.dentry = NULL;
2349         }
2350         terminate_walk(nd);
2351         return err;
2352 }
2353
2354 static struct filename *filename_parentat(int dfd, struct filename *name,
2355                                 unsigned int flags, struct path *parent,
2356                                 struct qstr *last, int *type)
2357 {
2358         int retval;
2359         struct nameidata nd;
2360
2361         if (IS_ERR(name))
2362                 return name;
2363         set_nameidata(&nd, dfd, name);
2364         retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2365         if (unlikely(retval == -ECHILD))
2366                 retval = path_parentat(&nd, flags, parent);
2367         if (unlikely(retval == -ESTALE))
2368                 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2369         if (likely(!retval)) {
2370                 *last = nd.last;
2371                 *type = nd.last_type;
2372                 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2373         } else {
2374                 putname(name);
2375                 name = ERR_PTR(retval);
2376         }
2377         restore_nameidata();
2378         return name;
2379 }
2380
2381 /* does lookup, returns the object with parent locked */
2382 struct dentry *kern_path_locked(const char *name, struct path *path)
2383 {
2384         struct filename *filename;
2385         struct dentry *d;
2386         struct qstr last;
2387         int type;
2388
2389         filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2390                                     &last, &type);
2391         if (IS_ERR(filename))
2392                 return ERR_CAST(filename);
2393         if (unlikely(type != LAST_NORM)) {
2394                 path_put(path);
2395                 putname(filename);
2396                 return ERR_PTR(-EINVAL);
2397         }
2398         inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2399         d = __lookup_hash(&last, path->dentry, 0);
2400         if (IS_ERR(d)) {
2401                 inode_unlock(path->dentry->d_inode);
2402                 path_put(path);
2403         }
2404         putname(filename);
2405         return d;
2406 }
2407
2408 int kern_path(const char *name, unsigned int flags, struct path *path)
2409 {
2410         return filename_lookup(AT_FDCWD, getname_kernel(name),
2411                                flags, path, NULL);
2412 }
2413 EXPORT_SYMBOL(kern_path);
2414
2415 /**
2416  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2417  * @dentry:  pointer to dentry of the base directory
2418  * @mnt: pointer to vfs mount of the base directory
2419  * @name: pointer to file name
2420  * @flags: lookup flags
2421  * @path: pointer to struct path to fill
2422  */
2423 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2424                     const char *name, unsigned int flags,
2425                     struct path *path)
2426 {
2427         struct path root = {.mnt = mnt, .dentry = dentry};
2428         /* the first argument of filename_lookup() is ignored with root */
2429         return filename_lookup(AT_FDCWD, getname_kernel(name),
2430                                flags , path, &root);
2431 }
2432 EXPORT_SYMBOL(vfs_path_lookup);
2433
2434 static int lookup_one_len_common(const char *name, struct dentry *base,
2435                                  int len, struct qstr *this)
2436 {
2437         this->name = name;
2438         this->len = len;
2439         this->hash = full_name_hash(base, name, len);
2440         if (!len)
2441                 return -EACCES;
2442
2443         if (unlikely(name[0] == '.')) {
2444                 if (len < 2 || (len == 2 && name[1] == '.'))
2445                         return -EACCES;
2446         }
2447
2448         while (len--) {
2449                 unsigned int c = *(const unsigned char *)name++;
2450                 if (c == '/' || c == '\0')
2451                         return -EACCES;
2452         }
2453         /*
2454          * See if the low-level filesystem might want
2455          * to use its own hash..
2456          */
2457         if (base->d_flags & DCACHE_OP_HASH) {
2458                 int err = base->d_op->d_hash(base, this);
2459                 if (err < 0)
2460                         return err;
2461         }
2462
2463         return inode_permission(base->d_inode, MAY_EXEC);
2464 }
2465
2466 /**
2467  * lookup_one_len - filesystem helper to lookup single pathname component
2468  * @name:       pathname component to lookup
2469  * @base:       base directory to lookup from
2470  * @len:        maximum length @len should be interpreted to
2471  *
2472  * Note that this routine is purely a helper for filesystem usage and should
2473  * not be called by generic code.
2474  *
2475  * The caller must hold base->i_mutex.
2476  */
2477 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2478 {
2479         struct dentry *dentry;
2480         struct qstr this;
2481         int err;
2482
2483         WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2484
2485         err = lookup_one_len_common(name, base, len, &this);
2486         if (err)
2487                 return ERR_PTR(err);
2488
2489         dentry = lookup_dcache(&this, base, 0);
2490         return dentry ? dentry : __lookup_slow(&this, base, 0);
2491 }
2492 EXPORT_SYMBOL(lookup_one_len);
2493
2494 /**
2495  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2496  * @name:       pathname component to lookup
2497  * @base:       base directory to lookup from
2498  * @len:        maximum length @len should be interpreted to
2499  *
2500  * Note that this routine is purely a helper for filesystem usage and should
2501  * not be called by generic code.
2502  *
2503  * Unlike lookup_one_len, it should be called without the parent
2504  * i_mutex held, and will take the i_mutex itself if necessary.
2505  */
2506 struct dentry *lookup_one_len_unlocked(const char *name,
2507                                        struct dentry *base, int len)
2508 {
2509         struct qstr this;
2510         int err;
2511         struct dentry *ret;
2512
2513         err = lookup_one_len_common(name, base, len, &this);
2514         if (err)
2515                 return ERR_PTR(err);
2516
2517         ret = lookup_dcache(&this, base, 0);
2518         if (!ret)
2519                 ret = lookup_slow(&this, base, 0);
2520         return ret;
2521 }
2522 EXPORT_SYMBOL(lookup_one_len_unlocked);
2523
2524 #ifdef CONFIG_UNIX98_PTYS
2525 int path_pts(struct path *path)
2526 {
2527         /* Find something mounted on "pts" in the same directory as
2528          * the input path.
2529          */
2530         struct dentry *child, *parent;
2531         struct qstr this;
2532         int ret;
2533
2534         ret = path_parent_directory(path);
2535         if (ret)
2536                 return ret;
2537
2538         parent = path->dentry;
2539         this.name = "pts";
2540         this.len = 3;
2541         child = d_hash_and_lookup(parent, &this);
2542         if (!child)
2543                 return -ENOENT;
2544
2545         path->dentry = child;
2546         dput(parent);
2547         follow_mount(path);
2548         return 0;
2549 }
2550 #endif
2551
2552 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2553                  struct path *path, int *empty)
2554 {
2555         return filename_lookup(dfd, getname_flags(name, flags, empty),
2556                                flags, path, NULL);
2557 }
2558 EXPORT_SYMBOL(user_path_at_empty);
2559
2560 /**
2561  * mountpoint_last - look up last component for umount
2562  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2563  *
2564  * This is a special lookup_last function just for umount. In this case, we
2565  * need to resolve the path without doing any revalidation.
2566  *
2567  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2568  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2569  * in almost all cases, this lookup will be served out of the dcache. The only
2570  * cases where it won't are if nd->last refers to a symlink or the path is
2571  * bogus and it doesn't exist.
2572  *
2573  * Returns:
2574  * -error: if there was an error during lookup. This includes -ENOENT if the
2575  *         lookup found a negative dentry.
2576  *
2577  * 0:      if we successfully resolved nd->last and found it to not to be a
2578  *         symlink that needs to be followed.
2579  *
2580  * 1:      if we successfully resolved nd->last and found it to be a symlink
2581  *         that needs to be followed.
2582  */
2583 static int
2584 mountpoint_last(struct nameidata *nd)
2585 {
2586         int error = 0;
2587         struct dentry *dir = nd->path.dentry;
2588         struct path path;
2589
2590         /* If we're in rcuwalk, drop out of it to handle last component */
2591         if (nd->flags & LOOKUP_RCU) {
2592                 if (unlazy_walk(nd))
2593                         return -ECHILD;
2594         }
2595
2596         nd->flags &= ~LOOKUP_PARENT;
2597
2598         if (unlikely(nd->last_type != LAST_NORM)) {
2599                 error = handle_dots(nd, nd->last_type);
2600                 if (error)
2601                         return error;
2602                 path.dentry = dget(nd->path.dentry);
2603         } else {
2604                 path.dentry = d_lookup(dir, &nd->last);
2605                 if (!path.dentry) {
2606                         /*
2607                          * No cached dentry. Mounted dentries are pinned in the
2608                          * cache, so that means that this dentry is probably
2609                          * a symlink or the path doesn't actually point
2610                          * to a mounted dentry.
2611                          */
2612                         path.dentry = lookup_slow(&nd->last, dir,
2613                                              nd->flags | LOOKUP_NO_REVAL);
2614                         if (IS_ERR(path.dentry))
2615                                 return PTR_ERR(path.dentry);
2616                 }
2617         }
2618         if (d_is_negative(path.dentry)) {
2619                 dput(path.dentry);
2620                 return -ENOENT;
2621         }
2622         path.mnt = nd->path.mnt;
2623         return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2624 }
2625
2626 /**
2627  * path_mountpoint - look up a path to be umounted
2628  * @nd:         lookup context
2629  * @flags:      lookup flags
2630  * @path:       pointer to container for result
2631  *
2632  * Look up the given name, but don't attempt to revalidate the last component.
2633  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2634  */
2635 static int
2636 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2637 {
2638         const char *s = path_init(nd, flags);
2639         int err;
2640         if (IS_ERR(s))
2641                 return PTR_ERR(s);
2642         while (!(err = link_path_walk(s, nd)) &&
2643                 (err = mountpoint_last(nd)) > 0) {
2644                 s = trailing_symlink(nd);
2645                 if (IS_ERR(s)) {
2646                         err = PTR_ERR(s);
2647                         break;
2648                 }
2649         }
2650         if (!err) {
2651                 *path = nd->path;
2652                 nd->path.mnt = NULL;
2653                 nd->path.dentry = NULL;
2654                 follow_mount(path);
2655         }
2656         terminate_walk(nd);
2657         return err;
2658 }
2659
2660 static int
2661 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2662                         unsigned int flags)
2663 {
2664         struct nameidata nd;
2665         int error;
2666         if (IS_ERR(name))
2667                 return PTR_ERR(name);
2668         set_nameidata(&nd, dfd, name);
2669         error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2670         if (unlikely(error == -ECHILD))
2671                 error = path_mountpoint(&nd, flags, path);
2672         if (unlikely(error == -ESTALE))
2673                 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2674         if (likely(!error))
2675                 audit_inode(name, path->dentry, 0);
2676         restore_nameidata();
2677         putname(name);
2678         return error;
2679 }
2680
2681 /**
2682  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2683  * @dfd:        directory file descriptor
2684  * @name:       pathname from userland
2685  * @flags:      lookup flags
2686  * @path:       pointer to container to hold result
2687  *
2688  * A umount is a special case for path walking. We're not actually interested
2689  * in the inode in this situation, and ESTALE errors can be a problem. We
2690  * simply want track down the dentry and vfsmount attached at the mountpoint
2691  * and avoid revalidating the last component.
2692  *
2693  * Returns 0 and populates "path" on success.
2694  */
2695 int
2696 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2697                         struct path *path)
2698 {
2699         return filename_mountpoint(dfd, getname(name), path, flags);
2700 }
2701
2702 int
2703 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2704                         unsigned int flags)
2705 {
2706         return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2707 }
2708 EXPORT_SYMBOL(kern_path_mountpoint);
2709
2710 int __check_sticky(struct inode *dir, struct inode *inode)
2711 {
2712         kuid_t fsuid = current_fsuid();
2713
2714         if (uid_eq(inode->i_uid, fsuid))
2715                 return 0;
2716         if (uid_eq(dir->i_uid, fsuid))
2717                 return 0;
2718         return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2719 }
2720 EXPORT_SYMBOL(__check_sticky);
2721
2722 /*
2723  *      Check whether we can remove a link victim from directory dir, check
2724  *  whether the type of victim is right.
2725  *  1. We can't do it if dir is read-only (done in permission())
2726  *  2. We should have write and exec permissions on dir
2727  *  3. We can't remove anything from append-only dir
2728  *  4. We can't do anything with immutable dir (done in permission())
2729  *  5. If the sticky bit on dir is set we should either
2730  *      a. be owner of dir, or
2731  *      b. be owner of victim, or
2732  *      c. have CAP_FOWNER capability
2733  *  6. If the victim is append-only or immutable we can't do antyhing with
2734  *     links pointing to it.
2735  *  7. If the victim has an unknown uid or gid we can't change the inode.
2736  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2737  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2738  * 10. We can't remove a root or mountpoint.
2739  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2740  *     nfs_async_unlink().
2741  */
2742 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2743 {
2744         struct inode *inode = d_backing_inode(victim);
2745         int error;
2746
2747         if (d_is_negative(victim))
2748                 return -ENOENT;
2749         BUG_ON(!inode);
2750
2751         BUG_ON(victim->d_parent->d_inode != dir);
2752
2753         /* Inode writeback is not safe when the uid or gid are invalid. */
2754         if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2755                 return -EOVERFLOW;
2756
2757         audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2758
2759         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2760         if (error)
2761                 return error;
2762         if (IS_APPEND(dir))
2763                 return -EPERM;
2764
2765         if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2766             IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2767                 return -EPERM;
2768         if (isdir) {
2769                 if (!d_is_dir(victim))
2770                         return -ENOTDIR;
2771                 if (IS_ROOT(victim))
2772                         return -EBUSY;
2773         } else if (d_is_dir(victim))
2774                 return -EISDIR;
2775         if (IS_DEADDIR(dir))
2776                 return -ENOENT;
2777         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2778                 return -EBUSY;
2779         return 0;
2780 }
2781
2782 /*      Check whether we can create an object with dentry child in directory
2783  *  dir.
2784  *  1. We can't do it if child already exists (open has special treatment for
2785  *     this case, but since we are inlined it's OK)
2786  *  2. We can't do it if dir is read-only (done in permission())
2787  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2788  *  4. We should have write and exec permissions on dir
2789  *  5. We can't do it if dir is immutable (done in permission())
2790  */
2791 static inline int may_create(struct inode *dir, struct dentry *child)
2792 {
2793         struct user_namespace *s_user_ns;
2794         audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2795         if (child->d_inode)
2796                 return -EEXIST;
2797         if (IS_DEADDIR(dir))
2798                 return -ENOENT;
2799         s_user_ns = dir->i_sb->s_user_ns;
2800         if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2801             !kgid_has_mapping(s_user_ns, current_fsgid()))
2802                 return -EOVERFLOW;
2803         return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2804 }
2805
2806 /*
2807  * p1 and p2 should be directories on the same fs.
2808  */
2809 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2810 {
2811         struct dentry *p;
2812
2813         if (p1 == p2) {
2814                 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2815                 return NULL;
2816         }
2817
2818         mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2819
2820         p = d_ancestor(p2, p1);
2821         if (p) {
2822                 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2823                 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2824                 return p;
2825         }
2826
2827         p = d_ancestor(p1, p2);
2828         if (p) {
2829                 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2830                 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2831                 return p;
2832         }
2833
2834         inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2835         inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2836         return NULL;
2837 }
2838 EXPORT_SYMBOL(lock_rename);
2839
2840 void unlock_rename(struct dentry *p1, struct dentry *p2)
2841 {
2842         inode_unlock(p1->d_inode);
2843         if (p1 != p2) {
2844                 inode_unlock(p2->d_inode);
2845                 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2846         }
2847 }
2848 EXPORT_SYMBOL(unlock_rename);
2849
2850 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2851                 bool want_excl)
2852 {
2853         int error = may_create(dir, dentry);
2854         if (error)
2855                 return error;
2856
2857         if (!dir->i_op->create)
2858                 return -EACCES; /* shouldn't it be ENOSYS? */
2859         mode &= S_IALLUGO;
2860         mode |= S_IFREG;
2861         error = security_inode_create(dir, dentry, mode);
2862         if (error)
2863                 return error;
2864         error = dir->i_op->create(dir, dentry, mode, want_excl);
2865         if (!error)
2866                 fsnotify_create(dir, dentry);
2867         return error;
2868 }
2869 EXPORT_SYMBOL(vfs_create);
2870
2871 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2872                 int (*f)(struct dentry *, umode_t, void *),
2873                 void *arg)
2874 {
2875         struct inode *dir = dentry->d_parent->d_inode;
2876         int error = may_create(dir, dentry);
2877         if (error)
2878                 return error;
2879
2880         mode &= S_IALLUGO;
2881         mode |= S_IFREG;
2882         error = security_inode_create(dir, dentry, mode);
2883         if (error)
2884                 return error;
2885         error = f(dentry, mode, arg);
2886         if (!error)
2887                 fsnotify_create(dir, dentry);
2888         return error;
2889 }
2890 EXPORT_SYMBOL(vfs_mkobj);
2891
2892 bool may_open_dev(const struct path *path)
2893 {
2894         return !(path->mnt->mnt_flags & MNT_NODEV) &&
2895                 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2896 }
2897
2898 static int may_open(const struct path *path, int acc_mode, int flag)
2899 {
2900         struct dentry *dentry = path->dentry;
2901         struct inode *inode = dentry->d_inode;
2902         int error;
2903
2904         if (!inode)
2905                 return -ENOENT;
2906
2907         switch (inode->i_mode & S_IFMT) {
2908         case S_IFLNK:
2909                 return -ELOOP;
2910         case S_IFDIR:
2911                 if (acc_mode & MAY_WRITE)
2912                         return -EISDIR;
2913                 break;
2914         case S_IFBLK:
2915         case S_IFCHR:
2916                 if (!may_open_dev(path))
2917                         return -EACCES;
2918                 /*FALLTHRU*/
2919         case S_IFIFO:
2920         case S_IFSOCK:
2921                 flag &= ~O_TRUNC;
2922                 break;
2923         }
2924
2925         error = inode_permission(inode, MAY_OPEN | acc_mode);
2926         if (error)
2927                 return error;
2928
2929         /*
2930          * An append-only file must be opened in append mode for writing.
2931          */
2932         if (IS_APPEND(inode)) {
2933                 if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2934                         return -EPERM;
2935                 if (flag & O_TRUNC)
2936                         return -EPERM;
2937         }
2938
2939         /* O_NOATIME can only be set by the owner or superuser */
2940         if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2941                 return -EPERM;
2942
2943         return 0;
2944 }
2945
2946 static int handle_truncate(struct file *filp)
2947 {
2948         const struct path *path = &filp->f_path;
2949         struct inode *inode = path->dentry->d_inode;
2950         int error = get_write_access(inode);
2951         if (error)
2952                 return error;
2953         /*
2954          * Refuse to truncate files with mandatory locks held on them.
2955          */
2956         error = locks_verify_locked(filp);
2957         if (!error)
2958                 error = security_path_truncate(path);
2959         if (!error) {
2960                 error = do_truncate(path->dentry, 0,
2961                                     ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2962                                     filp);
2963         }
2964         put_write_access(inode);
2965         return error;
2966 }
2967
2968 static inline int open_to_namei_flags(int flag)
2969 {
2970         if ((flag & O_ACCMODE) == 3)
2971                 flag--;
2972         return flag;
2973 }
2974
2975 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2976 {
2977         struct user_namespace *s_user_ns;
2978         int error = security_path_mknod(dir, dentry, mode, 0);
2979         if (error)
2980                 return error;
2981
2982         s_user_ns = dir->dentry->d_sb->s_user_ns;
2983         if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2984             !kgid_has_mapping(s_user_ns, current_fsgid()))
2985                 return -EOVERFLOW;
2986
2987         error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2988         if (error)
2989                 return error;
2990
2991         return security_inode_create(dir->dentry->d_inode, dentry, mode);
2992 }
2993
2994 /*
2995  * Attempt to atomically look up, create and open a file from a negative
2996  * dentry.
2997  *
2998  * Returns 0 if successful.  The file will have been created and attached to
2999  * @file by the filesystem calling finish_open().
3000  *
3001  * Returns 1 if the file was looked up only or didn't need creating.  The
3002  * caller will need to perform the open themselves.  @path will have been
3003  * updated to point to the new dentry.  This may be negative.
3004  *
3005  * Returns an error code otherwise.
3006  */
3007 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3008                         struct path *path, struct file *file,
3009                         const struct open_flags *op,
3010                         int open_flag, umode_t mode,
3011                         int *opened)
3012 {
3013         struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3014         struct inode *dir =  nd->path.dentry->d_inode;
3015         int error;
3016
3017         if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3018                 open_flag &= ~O_TRUNC;
3019
3020         if (nd->flags & LOOKUP_DIRECTORY)
3021                 open_flag |= O_DIRECTORY;
3022
3023         file->f_path.dentry = DENTRY_NOT_SET;
3024         file->f_path.mnt = nd->path.mnt;
3025         error = dir->i_op->atomic_open(dir, dentry, file,
3026                                        open_to_namei_flags(open_flag),
3027                                        mode, opened);
3028         d_lookup_done(dentry);
3029         if (!error) {
3030                 /*
3031                  * We didn't have the inode before the open, so check open
3032                  * permission here.
3033                  */
3034                 int acc_mode = op->acc_mode;
3035                 if (*opened & FILE_CREATED) {
3036                         WARN_ON(!(open_flag & O_CREAT));
3037                         fsnotify_create(dir, dentry);
3038                         acc_mode = 0;
3039                 }
3040                 error = may_open(&file->f_path, acc_mode, open_flag);
3041                 if (WARN_ON(error > 0))
3042                         error = -EINVAL;
3043         } else if (error > 0) {
3044                 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3045                         error = -EIO;
3046                 } else {
3047                         if (file->f_path.dentry) {
3048                                 dput(dentry);
3049                                 dentry = file->f_path.dentry;
3050                         }
3051                         if (*opened & FILE_CREATED)
3052                                 fsnotify_create(dir, dentry);
3053                         if (unlikely(d_is_negative(dentry))) {
3054                                 error = -ENOENT;
3055                         } else {
3056                                 path->dentry = dentry;
3057                                 path->mnt = nd->path.mnt;
3058                                 return 1;
3059                         }
3060                 }
3061         }
3062         dput(dentry);
3063         return error;
3064 }
3065
3066 /*
3067  * Look up and maybe create and open the last component.
3068  *
3069  * Must be called with i_mutex held on parent.
3070  *
3071  * Returns 0 if the file was successfully atomically created (if necessary) and
3072  * opened.  In this case the file will be returned attached to @file.
3073  *
3074  * Returns 1 if the file was not completely opened at this time, though lookups
3075  * and creations will have been performed and the dentry returned in @path will
3076  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3077  * specified then a negative dentry may be returned.
3078  *
3079  * An error code is returned otherwise.
3080  *
3081  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3082  * cleared otherwise prior to returning.
3083  */
3084 static int lookup_open(struct nameidata *nd, struct path *path,
3085                         struct file *file,
3086                         const struct open_flags *op,
3087                         bool got_write, int *opened)
3088 {
3089         struct dentry *dir = nd->path.dentry;
3090         struct inode *dir_inode = dir->d_inode;
3091         int open_flag = op->open_flag;
3092         struct dentry *dentry;
3093         int error, create_error = 0;
3094         umode_t mode = op->mode;
3095         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3096
3097         if (unlikely(IS_DEADDIR(dir_inode)))
3098                 return -ENOENT;
3099
3100         *opened &= ~FILE_CREATED;
3101         dentry = d_lookup(dir, &nd->last);
3102         for (;;) {
3103                 if (!dentry) {
3104                         dentry = d_alloc_parallel(dir, &nd->last, &wq);
3105                         if (IS_ERR(dentry))
3106                                 return PTR_ERR(dentry);
3107                 }
3108                 if (d_in_lookup(dentry))
3109                         break;
3110
3111                 error = d_revalidate(dentry, nd->flags);
3112                 if (likely(error > 0))
3113                         break;
3114                 if (error)
3115                         goto out_dput;
3116                 d_invalidate(dentry);
3117                 dput(dentry);
3118                 dentry = NULL;
3119         }
3120         if (dentry->d_inode) {
3121                 /* Cached positive dentry: will open in f_op->open */
3122                 goto out_no_open;
3123         }
3124
3125         /*
3126          * Checking write permission is tricky, bacuse we don't know if we are
3127          * going to actually need it: O_CREAT opens should work as long as the
3128          * file exists.  But checking existence breaks atomicity.  The trick is
3129          * to check access and if not granted clear O_CREAT from the flags.
3130          *
3131          * Another problem is returing the "right" error value (e.g. for an
3132          * O_EXCL open we want to return EEXIST not EROFS).
3133          */
3134         if (open_flag & O_CREAT) {
3135                 if (!IS_POSIXACL(dir->d_inode))
3136                         mode &= ~current_umask();
3137                 if (unlikely(!got_write)) {
3138                         create_error = -EROFS;
3139                         open_flag &= ~O_CREAT;
3140                         if (open_flag & (O_EXCL | O_TRUNC))
3141                                 goto no_open;
3142                         /* No side effects, safe to clear O_CREAT */
3143                 } else {
3144                         create_error = may_o_create(&nd->path, dentry, mode);
3145                         if (create_error) {
3146                                 open_flag &= ~O_CREAT;
3147                                 if (open_flag & O_EXCL)
3148                                         goto no_open;
3149                         }
3150                 }
3151         } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3152                    unlikely(!got_write)) {
3153                 /*
3154                  * No O_CREATE -> atomicity not a requirement -> fall
3155                  * back to lookup + open
3156                  */
3157                 goto no_open;
3158         }
3159
3160         if (dir_inode->i_op->atomic_open) {
3161                 error = atomic_open(nd, dentry, path, file, op, open_flag,
3162                                     mode, opened);
3163                 if (unlikely(error == -ENOENT) && create_error)
3164                         error = create_error;
3165                 return error;
3166         }
3167
3168 no_open:
3169         if (d_in_lookup(dentry)) {
3170                 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3171                                                              nd->flags);
3172                 d_lookup_done(dentry);
3173                 if (unlikely(res)) {
3174                         if (IS_ERR(res)) {
3175                                 error = PTR_ERR(res);
3176                                 goto out_dput;
3177                         }
3178                         dput(dentry);
3179                         dentry = res;
3180                 }
3181         }
3182
3183         /* Negative dentry, just create the file */
3184         if (!dentry->d_inode && (open_flag & O_CREAT)) {
3185                 *opened |= FILE_CREATED;
3186                 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3187                 if (!dir_inode->i_op->create) {
3188                         error = -EACCES;
3189                         goto out_dput;
3190                 }
3191                 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3192                                                 open_flag & O_EXCL);
3193                 if (error)
3194                         goto out_dput;
3195                 fsnotify_create(dir_inode, dentry);
3196         }
3197         if (unlikely(create_error) && !dentry->d_inode) {
3198                 error = create_error;
3199                 goto out_dput;
3200         }
3201 out_no_open:
3202         path->dentry = dentry;
3203         path->mnt = nd->path.mnt;
3204         return 1;
3205
3206 out_dput:
3207         dput(dentry);
3208         return error;
3209 }
3210
3211 /*
3212  * Handle the last step of open()
3213  */
3214 static int do_last(struct nameidata *nd,
3215                    struct file *file, const struct open_flags *op,
3216                    int *opened)
3217 {
3218         struct dentry *dir = nd->path.dentry;
3219         int open_flag = op->open_flag;
3220         bool will_truncate = (open_flag & O_TRUNC) != 0;
3221         bool got_write = false;
3222         int acc_mode = op->acc_mode;
3223         unsigned seq;
3224         struct inode *inode;
3225         struct path path;
3226         int error;
3227
3228         nd->flags &= ~LOOKUP_PARENT;
3229         nd->flags |= op->intent;
3230
3231         if (nd->last_type != LAST_NORM) {
3232                 error = handle_dots(nd, nd->last_type);
3233                 if (unlikely(error))
3234                         return error;
3235                 goto finish_open;
3236         }
3237
3238         if (!(open_flag & O_CREAT)) {
3239                 if (nd->last.name[nd->last.len])
3240                         nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3241                 /* we _can_ be in RCU mode here */
3242                 error = lookup_fast(nd, &path, &inode, &seq);
3243                 if (likely(error > 0))
3244                         goto finish_lookup;
3245
3246                 if (error < 0)
3247                         return error;
3248
3249                 BUG_ON(nd->inode != dir->d_inode);
3250                 BUG_ON(nd->flags & LOOKUP_RCU);
3251         } else {
3252                 /* create side of things */
3253                 /*
3254                  * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3255                  * has been cleared when we got to the last component we are
3256                  * about to look up
3257                  */
3258                 error = complete_walk(nd);
3259                 if (error)
3260                         return error;
3261
3262                 audit_inode(nd->name, dir, LOOKUP_PARENT);
3263                 /* trailing slashes? */
3264                 if (unlikely(nd->last.name[nd->last.len]))
3265                         return -EISDIR;
3266         }
3267
3268         if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3269                 error = mnt_want_write(nd->path.mnt);
3270                 if (!error)
3271                         got_write = true;
3272                 /*
3273                  * do _not_ fail yet - we might not need that or fail with
3274                  * a different error; let lookup_open() decide; we'll be
3275                  * dropping this one anyway.
3276                  */
3277         }
3278         if (open_flag & O_CREAT)
3279                 inode_lock(dir->d_inode);
3280         else
3281                 inode_lock_shared(dir->d_inode);
3282         error = lookup_open(nd, &path, file, op, got_write, opened);
3283         if (open_flag & O_CREAT)
3284                 inode_unlock(dir->d_inode);
3285         else
3286                 inode_unlock_shared(dir->d_inode);
3287
3288         if (error <= 0) {
3289                 if (error)
3290                         goto out;
3291
3292                 if ((*opened & FILE_CREATED) ||
3293                     !S_ISREG(file_inode(file)->i_mode))
3294                         will_truncate = false;
3295
3296                 audit_inode(nd->name, file->f_path.dentry, 0);
3297                 goto opened;
3298         }
3299
3300         if (*opened & FILE_CREATED) {
3301                 /* Don't check for write permission, don't truncate */
3302                 open_flag &= ~O_TRUNC;
3303                 will_truncate = false;
3304                 acc_mode = 0;
3305                 path_to_nameidata(&path, nd);
3306                 goto finish_open_created;
3307         }
3308
3309         /*
3310          * If atomic_open() acquired write access it is dropped now due to
3311          * possible mount and symlink following (this might be optimized away if
3312          * necessary...)
3313          */
3314         if (got_write) {
3315                 mnt_drop_write(nd->path.mnt);
3316                 got_write = false;
3317         }
3318
3319         error = follow_managed(&path, nd);
3320         if (unlikely(error < 0))
3321                 return error;
3322
3323         if (unlikely(d_is_negative(path.dentry))) {
3324                 path_to_nameidata(&path, nd);
3325                 return -ENOENT;
3326         }
3327
3328         /*
3329          * create/update audit record if it already exists.
3330          */
3331         audit_inode(nd->name, path.dentry, 0);
3332
3333         if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3334                 path_to_nameidata(&path, nd);
3335                 return -EEXIST;
3336         }
3337
3338         seq = 0;        /* out of RCU mode, so the value doesn't matter */
3339         inode = d_backing_inode(path.dentry);
3340 finish_lookup:
3341         error = step_into(nd, &path, 0, inode, seq);
3342         if (unlikely(error))
3343                 return error;
3344 finish_open:
3345         /* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3346         error = complete_walk(nd);
3347         if (error)
3348                 return error;
3349         audit_inode(nd->name, nd->path.dentry, 0);
3350         error = -EISDIR;
3351         if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3352                 goto out;
3353         error = -ENOTDIR;
3354         if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3355                 goto out;
3356         if (!d_is_reg(nd->path.dentry))
3357                 will_truncate = false;
3358
3359         if (will_truncate) {
3360                 error = mnt_want_write(nd->path.mnt);
3361                 if (error)
3362                         goto out;
3363                 got_write = true;
3364         }
3365 finish_open_created:
3366         error = may_open(&nd->path, acc_mode, open_flag);
3367         if (error)
3368                 goto out;
3369         BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3370         error = vfs_open(&nd->path, file, current_cred());
3371         if (error)
3372                 goto out;
3373         *opened |= FILE_OPENED;
3374 opened:
3375         error = open_check_o_direct(file);
3376         if (!error)
3377                 error = ima_file_check(file, op->acc_mode, *opened);
3378         if (!error && will_truncate)
3379                 error = handle_truncate(file);
3380 out:
3381         if (unlikely(error) && (*opened & FILE_OPENED))
3382                 fput(file);
3383         if (unlikely(error > 0)) {
3384                 WARN_ON(1);
3385                 error = -EINVAL;
3386         }
3387         if (got_write)
3388                 mnt_drop_write(nd->path.mnt);
3389         return error;
3390 }
3391
3392 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3393 {
3394         struct dentry *child = NULL;
3395         struct inode *dir = dentry->d_inode;
3396         struct inode *inode;
3397         int error;
3398
3399         /* we want directory to be writable */
3400         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3401         if (error)
3402                 goto out_err;
3403         error = -EOPNOTSUPP;
3404         if (!dir->i_op->tmpfile)
3405                 goto out_err;
3406         error = -ENOMEM;
3407         child = d_alloc(dentry, &slash_name);
3408         if (unlikely(!child))
3409                 goto out_err;
3410         error = dir->i_op->tmpfile(dir, child, mode);
3411         if (error)
3412                 goto out_err;
3413         error = -ENOENT;
3414         inode = child->d_inode;
3415         if (unlikely(!inode))
3416                 goto out_err;
3417         if (!(open_flag & O_EXCL)) {
3418                 spin_lock(&inode->i_lock);
3419                 inode->i_state |= I_LINKABLE;
3420                 spin_unlock(&inode->i_lock);
3421         }
3422         return child;
3423
3424 out_err:
3425         dput(child);
3426         return ERR_PTR(error);
3427 }
3428 EXPORT_SYMBOL(vfs_tmpfile);
3429
3430 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3431                 const struct open_flags *op,
3432                 struct file *file, int *opened)
3433 {
3434         struct dentry *child;
3435         struct path path;
3436         int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3437         if (unlikely(error))
3438                 return error;
3439         error = mnt_want_write(path.mnt);
3440         if (unlikely(error))
3441                 goto out;
3442         child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3443         error = PTR_ERR(child);
3444         if (IS_ERR(child))
3445                 goto out2;
3446         dput(path.dentry);
3447         path.dentry = child;
3448         audit_inode(nd->name, child, 0);
3449         /* Don't check for other permissions, the inode was just created */
3450         error = may_open(&path, 0, op->open_flag);
3451         if (error)
3452                 goto out2;
3453         file->f_path.mnt = path.mnt;
3454         error = finish_open(file, child, NULL, opened);
3455         if (error)
3456                 goto out2;
3457         error = open_check_o_direct(file);
3458         if (error)
3459                 fput(file);
3460 out2:
3461         mnt_drop_write(path.mnt);
3462 out:
3463         path_put(&path);
3464         return error;
3465 }
3466
3467 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3468 {
3469         struct path path;
3470         int error = path_lookupat(nd, flags, &path);
3471         if (!error) {
3472                 audit_inode(nd->name, path.dentry, 0);
3473                 error = vfs_open(&path, file, current_cred());
3474                 path_put(&path);
3475         }
3476         return error;
3477 }
3478
3479 static struct file *path_openat(struct nameidata *nd,
3480                         const struct open_flags *op, unsigned flags)
3481 {
3482         const char *s;
3483         struct file *file;
3484         int opened = 0;
3485         int error;
3486
3487         file = get_empty_filp();
3488         if (IS_ERR(file))
3489                 return file;
3490
3491         file->f_flags = op->open_flag;
3492
3493         if (unlikely(file->f_flags & __O_TMPFILE)) {
3494                 error = do_tmpfile(nd, flags, op, file, &opened);
3495                 goto out2;
3496         }
3497
3498         if (unlikely(file->f_flags & O_PATH)) {
3499                 error = do_o_path(nd, flags, file);
3500                 if (!error)
3501                         opened |= FILE_OPENED;
3502                 goto out2;
3503         }
3504
3505         s = path_init(nd, flags);
3506         if (IS_ERR(s)) {
3507                 put_filp(file);
3508                 return ERR_CAST(s);
3509         }
3510         while (!(error = link_path_walk(s, nd)) &&
3511                 (error = do_last(nd, file, op, &opened)) > 0) {
3512                 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3513                 s = trailing_symlink(nd);
3514                 if (IS_ERR(s)) {
3515                         error = PTR_ERR(s);
3516                         break;
3517                 }
3518         }
3519         terminate_walk(nd);
3520 out2:
3521         if (!(opened & FILE_OPENED)) {
3522                 BUG_ON(!error);
3523                 put_filp(file);
3524         }
3525         if (unlikely(error)) {
3526                 if (error == -EOPENSTALE) {
3527                         if (flags & LOOKUP_RCU)
3528                                 error = -ECHILD;
3529                         else
3530                                 error = -ESTALE;
3531                 }
3532                 file = ERR_PTR(error);
3533         }
3534         return file;
3535 }
3536
3537 struct file *do_filp_open(int dfd, struct filename *pathname,
3538                 const struct open_flags *op)
3539 {
3540         struct nameidata nd;
3541         int flags = op->lookup_flags;
3542         struct file *filp;
3543
3544         set_nameidata(&nd, dfd, pathname);
3545         filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3546         if (unlikely(filp == ERR_PTR(-ECHILD)))
3547                 filp = path_openat(&nd, op, flags);
3548         if (unlikely(filp == ERR_PTR(-ESTALE)))
3549                 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3550         restore_nameidata();
3551         return filp;
3552 }
3553
3554 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3555                 const char *name, const struct open_flags *op)
3556 {
3557         struct nameidata nd;
3558         struct file *file;
3559         struct filename *filename;
3560         int flags = op->lookup_flags | LOOKUP_ROOT;
3561
3562         nd.root.mnt = mnt;
3563         nd.root.dentry = dentry;
3564
3565         if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3566                 return ERR_PTR(-ELOOP);
3567
3568         filename = getname_kernel(name);
3569         if (IS_ERR(filename))
3570                 return ERR_CAST(filename);
3571
3572         set_nameidata(&nd, -1, filename);
3573         file = path_openat(&nd, op, flags | LOOKUP_RCU);
3574         if (unlikely(file == ERR_PTR(-ECHILD)))
3575                 file = path_openat(&nd, op, flags);
3576         if (unlikely(file == ERR_PTR(-ESTALE)))
3577                 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3578         restore_nameidata();
3579         putname(filename);
3580         return file;
3581 }
3582
3583 static struct dentry *filename_create(int dfd, struct filename *name,
3584                                 struct path *path, unsigned int lookup_flags)
3585 {
3586         struct dentry *dentry = ERR_PTR(-EEXIST);
3587         struct qstr last;
3588         int type;
3589         int err2;
3590         int error;
3591         bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3592
3593         /*
3594          * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3595          * other flags passed in are ignored!
3596          */
3597         lookup_flags &= LOOKUP_REVAL;
3598
3599         name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3600         if (IS_ERR(name))
3601                 return ERR_CAST(name);
3602
3603         /*
3604          * Yucky last component or no last component at all?
3605          * (foo/., foo/.., /////)
3606          */
3607         if (unlikely(type != LAST_NORM))
3608                 goto out;
3609
3610         /* don't fail immediately if it's r/o, at least try to report other errors */
3611         err2 = mnt_want_write(path->mnt);
3612         /*
3613          * Do the final lookup.
3614          */
3615         lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3616         inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3617         dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3618         if (IS_ERR(dentry))
3619                 goto unlock;
3620
3621         error = -EEXIST;
3622         if (d_is_positive(dentry))
3623                 goto fail;
3624
3625         /*
3626          * Special case - lookup gave negative, but... we had foo/bar/
3627          * From the vfs_mknod() POV we just have a negative dentry -
3628          * all is fine. Let's be bastards - you had / on the end, you've
3629          * been asking for (non-existent) directory. -ENOENT for you.
3630          */
3631         if (unlikely(!is_dir && last.name[last.len])) {
3632                 error = -ENOENT;
3633                 goto fail;
3634         }
3635         if (unlikely(err2)) {
3636                 error = err2;
3637                 goto fail;
3638         }
3639         putname(name);
3640         return dentry;
3641 fail:
3642         dput(dentry);
3643         dentry = ERR_PTR(error);
3644 unlock:
3645         inode_unlock(path->dentry->d_inode);
3646         if (!err2)
3647                 mnt_drop_write(path->mnt);
3648 out:
3649         path_put(path);
3650         putname(name);
3651         return dentry;
3652 }
3653
3654 struct dentry *kern_path_create(int dfd, const char *pathname,
3655                                 struct path *path, unsigned int lookup_flags)
3656 {
3657         return filename_create(dfd, getname_kernel(pathname),
3658                                 path, lookup_flags);
3659 }
3660 EXPORT_SYMBOL(kern_path_create);
3661
3662 void done_path_create(struct path *path, struct dentry *dentry)
3663 {
3664         dput(dentry);
3665         inode_unlock(path->dentry->d_inode);
3666         mnt_drop_write(path->mnt);
3667         path_put(path);
3668 }
3669 EXPORT_SYMBOL(done_path_create);
3670
3671 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3672                                 struct path *path, unsigned int lookup_flags)
3673 {
3674         return filename_create(dfd, getname(pathname), path, lookup_flags);
3675 }
3676 EXPORT_SYMBOL(user_path_create);
3677
3678 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3679 {
3680         int error = may_create(dir, dentry);
3681
3682         if (error)
3683                 return error;
3684
3685         if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
3686             !ns_capable(dentry->d_sb->s_user_ns, CAP_MKNOD))
3687                 return -EPERM;
3688
3689         if (!dir->i_op->mknod)
3690                 return -EPERM;
3691
3692         error = devcgroup_inode_mknod(mode, dev);
3693         if (error)
3694                 return error;
3695
3696         error = security_inode_mknod(dir, dentry, mode, dev);
3697         if (error)
3698                 return error;
3699
3700         error = dir->i_op->mknod(dir, dentry, mode, dev);
3701         if (!error)
3702                 fsnotify_create(dir, dentry);
3703         return error;
3704 }
3705 EXPORT_SYMBOL(vfs_mknod);
3706
3707 static int may_mknod(umode_t mode)
3708 {
3709         switch (mode & S_IFMT) {
3710         case S_IFREG:
3711         case S_IFCHR:
3712         case S_IFBLK:
3713         case S_IFIFO:
3714         case S_IFSOCK:
3715         case 0: /* zero mode translates to S_IFREG */
3716                 return 0;
3717         case S_IFDIR:
3718                 return -EPERM;
3719         default:
3720                 return -EINVAL;
3721         }
3722 }
3723
3724 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3725                 unsigned int dev)
3726 {
3727         struct dentry *dentry;
3728         struct path path;
3729         int error;
3730         unsigned int lookup_flags = 0;
3731
3732         error = may_mknod(mode);
3733         if (error)
3734                 return error;
3735 retry:
3736         dentry = user_path_create(dfd, filename, &path, lookup_flags);
3737         if (IS_ERR(dentry))
3738                 return PTR_ERR(dentry);
3739
3740         if (!IS_POSIXACL(path.dentry->d_inode))
3741                 mode &= ~current_umask();
3742         error = security_path_mknod(&path, dentry, mode, dev);
3743         if (error)
3744                 goto out;
3745         switch (mode & S_IFMT) {
3746                 case 0: case S_IFREG:
3747                         error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3748                         if (!error)
3749                                 ima_post_path_mknod(dentry);
3750                         break;
3751                 case S_IFCHR: case S_IFBLK:
3752                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3753                                         new_decode_dev(dev));
3754                         break;
3755                 case S_IFIFO: case S_IFSOCK:
3756                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3757                         break;
3758         }
3759 out:
3760         done_path_create(&path, dentry);
3761         if (retry_estale(error, lookup_flags)) {
3762                 lookup_flags |= LOOKUP_REVAL;
3763                 goto retry;
3764         }
3765         return error;
3766 }
3767
3768 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3769                 unsigned int, dev)
3770 {
3771         return do_mknodat(dfd, filename, mode, dev);
3772 }
3773
3774 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3775 {
3776         return do_mknodat(AT_FDCWD, filename, mode, dev);
3777 }
3778
3779 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3780 {
3781         int error = may_create(dir, dentry);
3782         unsigned max_links = dir->i_sb->s_max_links;
3783
3784         if (error)
3785                 return error;
3786
3787         if (!dir->i_op->mkdir)
3788                 return -EPERM;
3789
3790         mode &= (S_IRWXUGO|S_ISVTX);
3791         error = security_inode_mkdir(dir, dentry, mode);
3792         if (error)
3793                 return error;
3794
3795         if (max_links && dir->i_nlink >= max_links)
3796                 return -EMLINK;
3797
3798         error = dir->i_op->mkdir(dir, dentry, mode);
3799         if (!error)
3800                 fsnotify_mkdir(dir, dentry);
3801         return error;
3802 }
3803 EXPORT_SYMBOL(vfs_mkdir);
3804
3805 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3806 {
3807         struct dentry *dentry;
3808         struct path path;
3809         int error;
3810         unsigned int lookup_flags = LOOKUP_DIRECTORY;
3811
3812 retry:
3813         dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3814         if (IS_ERR(dentry))
3815                 return PTR_ERR(dentry);
3816
3817         if (!IS_POSIXACL(path.dentry->d_inode))
3818                 mode &= ~current_umask();
3819         error = security_path_mkdir(&path, dentry, mode);
3820         if (!error)
3821                 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3822         done_path_create(&path, dentry);
3823         if (retry_estale(error, lookup_flags)) {
3824                 lookup_flags |= LOOKUP_REVAL;
3825                 goto retry;
3826         }
3827         return error;
3828 }
3829
3830 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3831 {
3832         return do_mkdirat(dfd, pathname, mode);
3833 }
3834
3835 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3836 {
3837         return do_mkdirat(AT_FDCWD, pathname, mode);
3838 }
3839
3840 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3841 {
3842         int error = may_delete(dir, dentry, 1);
3843
3844         if (error)
3845                 return error;
3846
3847         if (!dir->i_op->rmdir)
3848                 return -EPERM;
3849
3850         dget(dentry);
3851         inode_lock(dentry->d_inode);
3852
3853         error = -EBUSY;
3854         if (is_local_mountpoint(dentry))
3855                 goto out;
3856
3857         error = security_inode_rmdir(dir, dentry);
3858         if (error)
3859                 goto out;
3860
3861         error = dir->i_op->rmdir(dir, dentry);
3862         if (error)
3863                 goto out;
3864
3865         shrink_dcache_parent(dentry);
3866         dentry->d_inode->i_flags |= S_DEAD;
3867         dont_mount(dentry);
3868         detach_mounts(dentry);
3869
3870 out:
3871         inode_unlock(dentry->d_inode);
3872         dput(dentry);
3873         if (!error)
3874                 d_delete(dentry);
3875         return error;
3876 }
3877 EXPORT_SYMBOL(vfs_rmdir);
3878
3879 long do_rmdir(int dfd, const char __user *pathname)
3880 {
3881         int error = 0;
3882         struct filename *name;
3883         struct dentry *dentry;
3884         struct path path;
3885         struct qstr last;
3886         int type;
3887         unsigned int lookup_flags = 0;
3888 retry:
3889         name = filename_parentat(dfd, getname(pathname), lookup_flags,
3890                                 &path, &last, &type);
3891         if (IS_ERR(name))
3892                 return PTR_ERR(name);
3893
3894         switch (type) {
3895         case LAST_DOTDOT:
3896                 error = -ENOTEMPTY;
3897                 goto exit1;
3898         case LAST_DOT:
3899                 error = -EINVAL;
3900                 goto exit1;
3901         case LAST_ROOT:
3902                 error = -EBUSY;
3903                 goto exit1;
3904         }
3905
3906         error = mnt_want_write(path.mnt);
3907         if (error)
3908                 goto exit1;
3909
3910         inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3911         dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3912         error = PTR_ERR(dentry);
3913         if (IS_ERR(dentry))
3914                 goto exit2;
3915         if (!dentry->d_inode) {
3916                 error = -ENOENT;
3917                 goto exit3;
3918         }
3919         error = security_path_rmdir(&path, dentry);
3920         if (error)
3921                 goto exit3;
3922         error = vfs_rmdir(path.dentry->d_inode, dentry);
3923 exit3:
3924         dput(dentry);
3925 exit2:
3926         inode_unlock(path.dentry->d_inode);
3927         mnt_drop_write(path.mnt);
3928 exit1:
3929         path_put(&path);
3930         putname(name);
3931         if (retry_estale(error, lookup_flags)) {
3932                 lookup_flags |= LOOKUP_REVAL;
3933                 goto retry;
3934         }
3935         return error;
3936 }
3937
3938 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3939 {
3940         return do_rmdir(AT_FDCWD, pathname);
3941 }
3942
3943 /**
3944  * vfs_unlink - unlink a filesystem object
3945  * @dir:        parent directory
3946  * @dentry:     victim
3947  * @delegated_inode: returns victim inode, if the inode is delegated.
3948  *
3949  * The caller must hold dir->i_mutex.
3950  *
3951  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3952  * return a reference to the inode in delegated_inode.  The caller
3953  * should then break the delegation on that inode and retry.  Because
3954  * breaking a delegation may take a long time, the caller should drop
3955  * dir->i_mutex before doing so.
3956  *
3957  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3958  * be appropriate for callers that expect the underlying filesystem not
3959  * to be NFS exported.
3960  */
3961 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3962 {
3963         struct inode *target = dentry->d_inode;
3964         int error = may_delete(dir, dentry, 0);
3965
3966         if (error)
3967                 return error;
3968
3969         if (!dir->i_op->unlink)
3970                 return -EPERM;
3971
3972         inode_lock(target);
3973         if (is_local_mountpoint(dentry))
3974                 error = -EBUSY;
3975         else {
3976                 error = security_inode_unlink(dir, dentry);
3977                 if (!error) {
3978                         error = try_break_deleg(target, delegated_inode);
3979                         if (error)
3980                                 goto out;
3981                         error = dir->i_op->unlink(dir, dentry);
3982                         if (!error) {
3983                                 dont_mount(dentry);
3984                                 detach_mounts(dentry);
3985                         }
3986                 }
3987         }
3988 out:
3989         inode_unlock(target);
3990
3991         /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3992         if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3993                 fsnotify_link_count(target);
3994                 d_delete(dentry);
3995         }
3996
3997         return error;
3998 }
3999 EXPORT_SYMBOL(vfs_unlink);
4000
4001 /*
4002  * Make sure that the actual truncation of the file will occur outside its
4003  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4004  * writeout happening, and we don't want to prevent access to the directory
4005  * while waiting on the I/O.
4006  */
4007 long do_unlinkat(int dfd, struct filename *name)
4008 {
4009         int error;
4010         struct dentry *dentry;
4011         struct path path;
4012         struct qstr last;
4013         int type;
4014         struct inode *inode = NULL;
4015         struct inode *delegated_inode = NULL;
4016         unsigned int lookup_flags = 0;
4017 retry:
4018         name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4019         if (IS_ERR(name))
4020                 return PTR_ERR(name);
4021
4022         error = -EISDIR;
4023         if (type != LAST_NORM)
4024                 goto exit1;
4025
4026         error = mnt_want_write(path.mnt);
4027         if (error)
4028                 goto exit1;
4029 retry_deleg:
4030         inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4031         dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4032         error = PTR_ERR(dentry);
4033         if (!IS_ERR(dentry)) {
4034                 /* Why not before? Because we want correct error value */
4035                 if (last.name[last.len])
4036                         goto slashes;
4037                 inode = dentry->d_inode;
4038                 if (d_is_negative(dentry))
4039                         goto slashes;
4040                 ihold(inode);
4041                 error = security_path_unlink(&path, dentry);
4042                 if (error)
4043                         goto exit2;
4044                 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4045 exit2:
4046                 dput(dentry);
4047         }
4048         inode_unlock(path.dentry->d_inode);
4049         if (inode)
4050                 iput(inode);    /* truncate the inode here */
4051         inode = NULL;
4052         if (delegated_inode) {
4053                 error = break_deleg_wait(&delegated_inode);
4054                 if (!error)
4055                         goto retry_deleg;
4056         }
4057         mnt_drop_write(path.mnt);
4058 exit1:
4059         path_put(&path);
4060         if (retry_estale(error, lookup_flags)) {
4061                 lookup_flags |= LOOKUP_REVAL;
4062                 inode = NULL;
4063                 goto retry;
4064         }
4065         putname(name);
4066         return error;
4067
4068 slashes:
4069         if (d_is_negative(dentry))
4070                 error = -ENOENT;
4071         else if (d_is_dir(dentry))
4072                 error = -EISDIR;
4073         else
4074                 error = -ENOTDIR;
4075         goto exit2;
4076 }
4077
4078 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4079 {
4080         if ((flag & ~AT_REMOVEDIR) != 0)
4081                 return -EINVAL;
4082
4083         if (flag & AT_REMOVEDIR)
4084                 return do_rmdir(dfd, pathname);
4085
4086         return do_unlinkat(dfd, getname(pathname));
4087 }
4088
4089 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4090 {
4091         return do_unlinkat(AT_FDCWD, getname(pathname));
4092 }
4093
4094 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4095 {
4096         int error = may_create(dir, dentry);
4097
4098         if (error)
4099                 return error;
4100
4101         if (!dir->i_op->symlink)
4102                 return -EPERM;
4103
4104         error = security_inode_symlink(dir, dentry, oldname);
4105         if (error)
4106                 return error;
4107
4108         error = dir->i_op->symlink(dir, dentry, oldname);
4109         if (!error)
4110                 fsnotify_create(dir, dentry);
4111         return error;
4112 }
4113 EXPORT_SYMBOL(vfs_symlink);
4114
4115 long do_symlinkat(const char __user *oldname, int newdfd,
4116                   const char __user *newname)
4117 {
4118         int error;
4119         struct filename *from;
4120         struct dentry *dentry;
4121         struct path path;
4122         unsigned int lookup_flags = 0;
4123
4124         from = getname(oldname);
4125         if (IS_ERR(from))
4126                 return PTR_ERR(from);
4127 retry:
4128         dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4129         error = PTR_ERR(dentry);
4130         if (IS_ERR(dentry))
4131                 goto out_putname;
4132
4133         error = security_path_symlink(&path, dentry, from->name);
4134         if (!error)
4135                 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4136         done_path_create(&path, dentry);
4137         if (retry_estale(error, lookup_flags)) {
4138                 lookup_flags |= LOOKUP_REVAL;
4139                 goto retry;
4140         }
4141 out_putname:
4142         putname(from);
4143         return error;
4144 }
4145
4146 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4147                 int, newdfd, const char __user *, newname)
4148 {
4149         return do_symlinkat(oldname, newdfd, newname);
4150 }
4151
4152 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4153 {
4154         return do_symlinkat(oldname, AT_FDCWD, newname);
4155 }
4156
4157 /**
4158  * vfs_link - create a new link
4159  * @old_dentry: object to be linked
4160  * @dir:        new parent
4161  * @new_dentry: where to create the new link
4162  * @delegated_inode: returns inode needing a delegation break
4163  *
4164  * The caller must hold dir->i_mutex
4165  *
4166  * If vfs_link discovers a delegation on the to-be-linked file in need
4167  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4168  * inode in delegated_inode.  The caller should then break the delegation
4169  * and retry.  Because breaking a delegation may take a long time, the
4170  * caller should drop the i_mutex before doing so.
4171  *
4172  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4173  * be appropriate for callers that expect the underlying filesystem not
4174  * to be NFS exported.
4175  */
4176 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4177 {
4178         struct inode *inode = old_dentry->d_inode;
4179         unsigned max_links = dir->i_sb->s_max_links;
4180         int error;
4181
4182         if (!inode)
4183                 return -ENOENT;
4184
4185         error = may_create(dir, new_dentry);
4186         if (error)
4187                 return error;
4188
4189         if (dir->i_sb != inode->i_sb)
4190                 return -EXDEV;
4191
4192         /*
4193          * A link to an append-only or immutable file cannot be created.
4194          */
4195         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4196                 return -EPERM;
4197         /*
4198          * Updating the link count will likely cause i_uid and i_gid to
4199          * be writen back improperly if their true value is unknown to
4200          * the vfs.
4201          */
4202         if (HAS_UNMAPPED_ID(inode))
4203                 return -EPERM;
4204         if (!dir->i_op->link)
4205                 return -EPERM;
4206         if (S_ISDIR(inode->i_mode))
4207                 return -EPERM;
4208
4209         error = security_inode_link(old_dentry, dir, new_dentry);
4210         if (error)
4211                 return error;
4212
4213         inode_lock(inode);
4214         /* Make sure we don't allow creating hardlink to an unlinked file */
4215         if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4216                 error =  -ENOENT;
4217         else if (max_links && inode->i_nlink >= max_links)
4218                 error = -EMLINK;
4219         else {
4220                 error = try_break_deleg(inode, delegated_inode);
4221                 if (!error)
4222                         error = dir->i_op->link(old_dentry, dir, new_dentry);
4223         }
4224
4225         if (!error && (inode->i_state & I_LINKABLE)) {
4226                 spin_lock(&inode->i_lock);
4227                 inode->i_state &= ~I_LINKABLE;
4228                 spin_unlock(&inode->i_lock);
4229         }
4230         inode_unlock(inode);
4231         if (!error)
4232                 fsnotify_link(dir, inode, new_dentry);
4233         return error;
4234 }
4235 EXPORT_SYMBOL(vfs_link);
4236
4237 /*
4238  * Hardlinks are often used in delicate situations.  We avoid
4239  * security-related surprises by not following symlinks on the
4240  * newname.  --KAB
4241  *
4242  * We don't follow them on the oldname either to be compatible
4243  * with linux 2.0, and to avoid hard-linking to directories
4244  * and other special files.  --ADM
4245  */
4246 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4247               const char __user *newname, int flags)
4248 {
4249         struct dentry *new_dentry;
4250         struct path old_path, new_path;
4251         struct inode *delegated_inode = NULL;
4252         int how = 0;
4253         int error;
4254
4255         if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4256                 return -EINVAL;
4257         /*
4258          * To use null names we require CAP_DAC_READ_SEARCH
4259          * This ensures that not everyone will be able to create
4260          * handlink using the passed filedescriptor.
4261          */
4262         if (flags & AT_EMPTY_PATH) {
4263                 if (!capable(CAP_DAC_READ_SEARCH))
4264                         return -ENOENT;
4265                 how = LOOKUP_EMPTY;
4266         }
4267
4268         if (flags & AT_SYMLINK_FOLLOW)
4269                 how |= LOOKUP_FOLLOW;
4270 retry:
4271         error = user_path_at(olddfd, oldname, how, &old_path);
4272         if (error)
4273                 return error;
4274
4275         new_dentry = user_path_create(newdfd, newname, &new_path,
4276                                         (how & LOOKUP_REVAL));
4277         error = PTR_ERR(new_dentry);
4278         if (IS_ERR(new_dentry))
4279                 goto out;
4280
4281         error = -EXDEV;
4282         if (old_path.mnt != new_path.mnt)
4283                 goto out_dput;
4284         error = may_linkat(&old_path);
4285         if (unlikely(error))
4286                 goto out_dput;
4287         error = security_path_link(old_path.dentry, &new_path, new_dentry);
4288         if (error)
4289                 goto out_dput;
4290         error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4291 out_dput:
4292         done_path_create(&new_path, new_dentry);
4293         if (delegated_inode) {
4294                 error = break_deleg_wait(&delegated_inode);
4295                 if (!error) {
4296                         path_put(&old_path);
4297                         goto retry;
4298                 }
4299         }
4300         if (retry_estale(error, how)) {
4301                 path_put(&old_path);
4302                 how |= LOOKUP_REVAL;
4303                 goto retry;
4304         }
4305 out:
4306         path_put(&old_path);
4307
4308         return error;
4309 }
4310
4311 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4312                 int, newdfd, const char __user *, newname, int, flags)
4313 {
4314         return do_linkat(olddfd, oldname, newdfd, newname, flags);
4315 }
4316
4317 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4318 {
4319         return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4320 }
4321
4322 /**
4323  * vfs_rename - rename a filesystem object
4324  * @old_dir:    parent of source
4325  * @old_dentry: source
4326  * @new_dir:    parent of destination
4327  * @new_dentry: destination
4328  * @delegated_inode: returns an inode needing a delegation break
4329  * @flags:      rename flags
4330  *
4331  * The caller must hold multiple mutexes--see lock_rename()).
4332  *
4333  * If vfs_rename discovers a delegation in need of breaking at either
4334  * the source or destination, it will return -EWOULDBLOCK and return a
4335  * reference to the inode in delegated_inode.  The caller should then
4336  * break the delegation and retry.  Because breaking a delegation may
4337  * take a long time, the caller should drop all locks before doing
4338  * so.
4339  *
4340  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4341  * be appropriate for callers that expect the underlying filesystem not
4342  * to be NFS exported.
4343  *
4344  * The worst of all namespace operations - renaming directory. "Perverted"
4345  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4346  * Problems:
4347  *
4348  *      a) we can get into loop creation.
4349  *      b) race potential - two innocent renames can create a loop together.
4350  *         That's where 4.4 screws up. Current fix: serialization on
4351  *         sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4352  *         story.
4353  *      c) we have to lock _four_ objects - parents and victim (if it exists),
4354  *         and source (if it is not a directory).
4355  *         And that - after we got ->i_mutex on parents (until then we don't know
4356  *         whether the target exists).  Solution: try to be smart with locking
4357  *         order for inodes.  We rely on the fact that tree topology may change
4358  *         only under ->s_vfs_rename_mutex _and_ that parent of the object we
4359  *         move will be locked.  Thus we can rank directories by the tree
4360  *         (ancestors first) and rank all non-directories after them.
4361  *         That works since everybody except rename does "lock parent, lookup,
4362  *         lock child" and rename is under ->s_vfs_rename_mutex.
4363  *         HOWEVER, it relies on the assumption that any object with ->lookup()
4364  *         has no more than 1 dentry.  If "hybrid" objects will ever appear,
4365  *         we'd better make sure that there's no link(2) for them.
4366  *      d) conversion from fhandle to dentry may come in the wrong moment - when
4367  *         we are removing the target. Solution: we will have to grab ->i_mutex
4368  *         in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4369  *         ->i_mutex on parents, which works but leads to some truly excessive
4370  *         locking].
4371  */
4372 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4373                struct inode *new_dir, struct dentry *new_dentry,
4374                struct inode **delegated_inode, unsigned int flags)
4375 {
4376         int error;
4377         bool is_dir = d_is_dir(old_dentry);
4378         struct inode *source = old_dentry->d_inode;
4379         struct inode *target = new_dentry->d_inode;
4380         bool new_is_dir = false;
4381         unsigned max_links = new_dir->i_sb->s_max_links;
4382         struct name_snapshot old_name;
4383
4384         if (source == target)
4385                 return 0;
4386
4387         error = may_delete(old_dir, old_dentry, is_dir);
4388         if (error)
4389                 return error;
4390
4391         if (!target) {
4392                 error = may_create(new_dir, new_dentry);
4393         } else {
4394                 new_is_dir = d_is_dir(new_dentry);
4395
4396                 if (!(flags & RENAME_EXCHANGE))
4397                         error = may_delete(new_dir, new_dentry, is_dir);
4398                 else
4399                         error = may_delete(new_dir, new_dentry, new_is_dir);
4400         }
4401         if (error)
4402                 return error;
4403
4404         if (!old_dir->i_op->rename)
4405                 return -EPERM;
4406
4407         /*
4408          * If we are going to change the parent - check write permissions,
4409          * we'll need to flip '..'.
4410          */
4411         if (new_dir != old_dir) {
4412                 if (is_dir) {
4413                         error = inode_permission(source, MAY_WRITE);
4414                         if (error)
4415                                 return error;
4416                 }
4417                 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4418                         error = inode_permission(target, MAY_WRITE);
4419                         if (error)
4420                                 return error;
4421                 }
4422         }
4423
4424         error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4425                                       flags);
4426         if (error)
4427                 return error;
4428
4429         take_dentry_name_snapshot(&old_name, old_dentry);
4430         dget(new_dentry);
4431         if (!is_dir || (flags & RENAME_EXCHANGE))
4432                 lock_two_nondirectories(source, target);
4433         else if (target)
4434                 inode_lock(target);
4435
4436         error = -EBUSY;
4437         if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4438                 goto out;
4439
4440         if (max_links && new_dir != old_dir) {
4441                 error = -EMLINK;
4442                 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4443                         goto out;
4444                 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4445                     old_dir->i_nlink >= max_links)
4446                         goto out;
4447         }
4448         if (!is_dir) {
4449                 error = try_break_deleg(source, delegated_inode);
4450                 if (error)
4451                         goto out;
4452         }
4453         if (target && !new_is_dir) {
4454                 error = try_break_deleg(target, delegated_inode);
4455                 if (error)
4456                         goto out;
4457         }
4458         error = old_dir->i_op->rename(old_dir, old_dentry,
4459                                        new_dir, new_dentry, flags);
4460         if (error)
4461                 goto out;
4462
4463         if (!(flags & RENAME_EXCHANGE) && target) {
4464                 if (is_dir) {
4465                         shrink_dcache_parent(new_dentry);
4466                         target->i_flags |= S_DEAD;
4467                 }
4468                 dont_mount(new_dentry);
4469                 detach_mounts(new_dentry);
4470         }
4471         if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4472                 if (!(flags & RENAME_EXCHANGE))
4473                         d_move(old_dentry, new_dentry);
4474                 else
4475                         d_exchange(old_dentry, new_dentry);
4476         }
4477 out:
4478         if (!is_dir || (flags & RENAME_EXCHANGE))
4479                 unlock_two_nondirectories(source, target);
4480         else if (target)
4481                 inode_unlock(target);
4482         dput(new_dentry);
4483         if (!error) {
4484                 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4485                               !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4486                 if (flags & RENAME_EXCHANGE) {
4487                         fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4488                                       new_is_dir, NULL, new_dentry);
4489                 }
4490         }
4491         release_dentry_name_snapshot(&old_name);
4492
4493         return error;
4494 }
4495 EXPORT_SYMBOL(vfs_rename);
4496
4497 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4498                         const char __user *newname, unsigned int flags)
4499 {
4500         struct dentry *old_dentry, *new_dentry;
4501         struct dentry *trap;
4502         struct path old_path, new_path;
4503         struct qstr old_last, new_last;
4504         int old_type, new_type;
4505         struct inode *delegated_inode = NULL;
4506         struct filename *from;
4507         struct filename *to;
4508         unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4509         bool should_retry = false;
4510         int error;
4511
4512         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4513                 return -EINVAL;
4514
4515         if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4516             (flags & RENAME_EXCHANGE))
4517                 return -EINVAL;
4518
4519         if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4520                 return -EPERM;
4521
4522         if (flags & RENAME_EXCHANGE)
4523                 target_flags = 0;
4524
4525 retry:
4526         from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4527                                 &old_path, &old_last, &old_type);
4528         if (IS_ERR(from)) {
4529                 error = PTR_ERR(from);
4530                 goto exit;
4531         }
4532
4533         to = filename_parentat(newdfd, getname(newname), lookup_flags,
4534                                 &new_path, &new_last, &new_type);
4535         if (IS_ERR(to)) {
4536                 error = PTR_ERR(to);
4537                 goto exit1;
4538         }
4539
4540         error = -EXDEV;
4541         if (old_path.mnt != new_path.mnt)
4542                 goto exit2;
4543
4544         error = -EBUSY;
4545         if (old_type != LAST_NORM)
4546                 goto exit2;
4547
4548         if (flags & RENAME_NOREPLACE)
4549                 error = -EEXIST;
4550         if (new_type != LAST_NORM)
4551                 goto exit2;
4552
4553         error = mnt_want_write(old_path.mnt);
4554         if (error)
4555                 goto exit2;
4556
4557 retry_deleg:
4558         trap = lock_rename(new_path.dentry, old_path.dentry);
4559
4560         old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4561         error = PTR_ERR(old_dentry);
4562         if (IS_ERR(old_dentry))
4563                 goto exit3;
4564         /* source must exist */
4565         error = -ENOENT;
4566         if (d_is_negative(old_dentry))
4567                 goto exit4;
4568         new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4569         error = PTR_ERR(new_dentry);
4570         if (IS_ERR(new_dentry))
4571                 goto exit4;
4572         error = -EEXIST;
4573         if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4574                 goto exit5;
4575         if (flags & RENAME_EXCHANGE) {
4576                 error = -ENOENT;
4577                 if (d_is_negative(new_dentry))
4578                         goto exit5;
4579
4580                 if (!d_is_dir(new_dentry)) {
4581                         error = -ENOTDIR;
4582                         if (new_last.name[new_last.len])
4583                                 goto exit5;
4584                 }
4585         }
4586         /* unless the source is a directory trailing slashes give -ENOTDIR */
4587         if (!d_is_dir(old_dentry)) {
4588                 error = -ENOTDIR;
4589                 if (old_last.name[old_last.len])
4590                         goto exit5;
4591                 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4592                         goto exit5;
4593         }
4594         /* source should not be ancestor of target */
4595         error = -EINVAL;
4596         if (old_dentry == trap)
4597                 goto exit5;
4598         /* target should not be an ancestor of source */
4599         if (!(flags & RENAME_EXCHANGE))
4600                 error = -ENOTEMPTY;
4601         if (new_dentry == trap)
4602                 goto exit5;
4603
4604         error = security_path_rename(&old_path, old_dentry,
4605                                      &new_path, new_dentry, flags);
4606         if (error)
4607                 goto exit5;
4608         error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4609                            new_path.dentry->d_inode, new_dentry,
4610                            &delegated_inode, flags);
4611 exit5:
4612         dput(new_dentry);
4613 exit4:
4614         dput(old_dentry);
4615 exit3:
4616         unlock_rename(new_path.dentry, old_path.dentry);
4617         if (delegated_inode) {
4618                 error = break_deleg_wait(&delegated_inode);
4619                 if (!error)
4620                         goto retry_deleg;
4621         }
4622         mnt_drop_write(old_path.mnt);
4623 exit2:
4624         if (retry_estale(error, lookup_flags))
4625                 should_retry = true;
4626         path_put(&new_path);
4627         putname(to);
4628 exit1:
4629         path_put(&old_path);
4630         putname(from);
4631         if (should_retry) {
4632                 should_retry = false;
4633                 lookup_flags |= LOOKUP_REVAL;
4634                 goto retry;
4635         }
4636 exit:
4637         return error;
4638 }
4639
4640 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4641                 int, newdfd, const char __user *, newname, unsigned int, flags)
4642 {
4643         return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4644 }
4645
4646 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4647                 int, newdfd, const char __user *, newname)
4648 {
4649         return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4650 }
4651
4652 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4653 {
4654         return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4655 }
4656
4657 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4658 {
4659         int error = may_create(dir, dentry);
4660         if (error)
4661                 return error;
4662
4663         if (!dir->i_op->mknod)
4664                 return -EPERM;
4665
4666         return dir->i_op->mknod(dir, dentry,
4667                                 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4668 }
4669 EXPORT_SYMBOL(vfs_whiteout);
4670
4671 int readlink_copy(char __user *buffer, int buflen, const char *link)
4672 {
4673         int len = PTR_ERR(link);
4674         if (IS_ERR(link))
4675                 goto out;
4676
4677         len = strlen(link);
4678         if (len > (unsigned) buflen)
4679                 len = buflen;
4680         if (copy_to_user(buffer, link, len))
4681                 len = -EFAULT;
4682 out:
4683         return len;
4684 }
4685
4686 /*
4687  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4688  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4689  * for any given inode is up to filesystem.
4690  */
4691 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4692                             int buflen)
4693 {
4694         DEFINE_DELAYED_CALL(done);
4695         struct inode *inode = d_inode(dentry);
4696         const char *link = inode->i_link;
4697         int res;
4698
4699         if (!link) {
4700                 link = inode->i_op->get_link(dentry, inode, &done);
4701                 if (IS_ERR(link))
4702                         return PTR_ERR(link);
4703         }
4704         res = readlink_copy(buffer, buflen, link);
4705         do_delayed_call(&done);
4706         return res;
4707 }
4708
4709 /**
4710  * vfs_readlink - copy symlink body into userspace buffer
4711  * @dentry: dentry on which to get symbolic link
4712  * @buffer: user memory pointer
4713  * @buflen: size of buffer
4714  *
4715  * Does not touch atime.  That's up to the caller if necessary
4716  *
4717  * Does not call security hook.
4718  */
4719 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4720 {
4721         struct inode *inode = d_inode(dentry);
4722
4723         if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4724                 if (unlikely(inode->i_op->readlink))
4725                         return inode->i_op->readlink(dentry, buffer, buflen);
4726
4727                 if (!d_is_symlink(dentry))
4728                         return -EINVAL;
4729
4730                 spin_lock(&inode->i_lock);
4731                 inode->i_opflags |= IOP_DEFAULT_READLINK;
4732                 spin_unlock(&inode->i_lock);
4733         }
4734
4735         return generic_readlink(dentry, buffer, buflen);
4736 }
4737 EXPORT_SYMBOL(vfs_readlink);
4738
4739 /**
4740  * vfs_get_link - get symlink body
4741  * @dentry: dentry on which to get symbolic link
4742  * @done: caller needs to free returned data with this
4743  *
4744  * Calls security hook and i_op->get_link() on the supplied inode.
4745  *
4746  * It does not touch atime.  That's up to the caller if necessary.
4747  *
4748  * Does not work on "special" symlinks like /proc/$$/fd/N
4749  */
4750 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4751 {
4752         const char *res = ERR_PTR(-EINVAL);
4753         struct inode *inode = d_inode(dentry);
4754
4755         if (d_is_symlink(dentry)) {
4756                 res = ERR_PTR(security_inode_readlink(dentry));
4757                 if (!res)
4758                         res = inode->i_op->get_link(dentry, inode, done);
4759         }
4760         return res;
4761 }
4762 EXPORT_SYMBOL(vfs_get_link);
4763
4764 /* get the link contents into pagecache */
4765 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4766                           struct delayed_call *callback)
4767 {
4768         char *kaddr;
4769         struct page *page;
4770         struct address_space *mapping = inode->i_mapping;
4771
4772         if (!dentry) {
4773                 page = find_get_page(mapping, 0);
4774                 if (!page)
4775                         return ERR_PTR(-ECHILD);
4776                 if (!PageUptodate(page)) {
4777                         put_page(page);
4778                         return ERR_PTR(-ECHILD);
4779                 }
4780         } else {
4781                 page = read_mapping_page(mapping, 0, NULL);
4782                 if (IS_ERR(page))
4783                         return (char*)page;
4784         }
4785         set_delayed_call(callback, page_put_link, page);
4786         BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4787         kaddr = page_address(page);
4788         nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4789         return kaddr;
4790 }
4791
4792 EXPORT_SYMBOL(page_get_link);
4793
4794 void page_put_link(void *arg)
4795 {
4796         put_page(arg);
4797 }
4798 EXPORT_SYMBOL(page_put_link);
4799
4800 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4801 {
4802         DEFINE_DELAYED_CALL(done);
4803         int res = readlink_copy(buffer, buflen,
4804                                 page_get_link(dentry, d_inode(dentry),
4805                                               &done));
4806         do_delayed_call(&done);
4807         return res;
4808 }
4809 EXPORT_SYMBOL(page_readlink);
4810
4811 /*
4812  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4813  */
4814 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4815 {
4816         struct address_space *mapping = inode->i_mapping;
4817         struct page *page;
4818         void *fsdata;
4819         int err;
4820         unsigned int flags = 0;
4821         if (nofs)
4822                 flags |= AOP_FLAG_NOFS;
4823
4824 retry:
4825         err = pagecache_write_begin(NULL, mapping, 0, len-1,
4826                                 flags, &page, &fsdata);
4827         if (err)
4828                 goto fail;
4829
4830         memcpy(page_address(page), symname, len-1);
4831
4832         err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4833                                                         page, fsdata);
4834         if (err < 0)
4835                 goto fail;
4836         if (err < len-1)
4837                 goto retry;
4838
4839         mark_inode_dirty(inode);
4840         return 0;
4841 fail:
4842         return err;
4843 }
4844 EXPORT_SYMBOL(__page_symlink);
4845
4846 int page_symlink(struct inode *inode, const char *symname, int len)
4847 {
4848         return __page_symlink(inode, symname, len,
4849                         !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4850 }
4851 EXPORT_SYMBOL(page_symlink);
4852
4853 const struct inode_operations page_symlink_inode_operations = {
4854         .get_link       = page_get_link,
4855 };
4856 EXPORT_SYMBOL(page_symlink_inode_operations);